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1 Introduction

In the present paper we find the best coefficients in certain inequalities for solutions to the
heat equation. Previously results of similar nature for stationary problems were obtained in
our works [1]-[4] and [6], where solutions of the Laplace, Lamé and Stokes equations were
considered.

In particular, in [6] a representation for the sharp coefficient A, ,(x) in the inequality

v {“@)H < Auy(@) (- 0)] (1)

T

was derived, where u is a harmonic function in the half-space R} = {z = (2/,z,) : 2’ €
R™ 1, z, > 0}, represented by the Poisson integral with boundary values in LF(R™™1), || - ||,
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is the norm in LP(R™ 1), 1 < p < co. It was shown that
An?p
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for 1 <p < oo, and A, 1 = 2n/wy, A = 1. Here and henceforth we denote by w, the area
of the unit sphere S*~! in R”.
Another sharp estimate for the modulus of the gradient of harmonic functions in R’} was
obtained in [2]:

[Vu(z)] < Nop(z) (1.2)

ov
where v is the unit normal vector to OR%, p € [1,n], € R}. The best value of the coefficient
in (1.2) is given by
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for 1 <p <mn,and N,; = 1/w,.

The plan of the present paper is as follows. Section 2 is auxiliary. It is devoted to a
certain optimization problem with respect to vector parameter inside of the integral over
the unit sphere of R™. In the next sections we study solutions to the heat equation. The
boundary value problem

ou
ot
is considered in Section 3. Here f € L? (R”_l x (0, +oo)), 1 < p < oo, and the solution u

is represented by the heat double layer potential. Te norm in the space L” (]R"fl x (0, t)) is
defined by

t 1/p
') Pda'd for 1 ,
L { [ [ eoppa } rispeoe,

ess sup{|f(2/,7)|: 2’ € R" 7€ (0,1)} for p=oc.

=a’Au in R} x (0,+00), u|,_,=0, u| _ = f('1)

The main result obtained in Section 3 is the inequality

‘vx {“Zf’“}\ < Wyl )1l

n
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with the best coefficient

p=1
Cn7 n+p+2 p P
Wp(xvt) = 2+f+1 max{/ WH,A((emen))Kemen” p=1 |(em )|p71 da} 5 (1'4)
T » |z[=1 Sn—1
where (z,t) is an arbitrary point in R’ x (0, 400),
wie (1) = / gre~tde; (1.5)
K/u?
and ) )
27 (4a?)' " gy (n+4)q
Cnp = n ) R = ) = -
P ,n_%—qu‘f‘l'f‘% da’t 2

with p~t 4+ ¢t = 1.
The extremal problem in (1.4) is solved for the case 2 < p < oo and the explicit formula

p—1

w/2 oo np ” p P
Wy(z,t) = ;Hl {an 1/ {/ , gzuﬁl)e_gdf}c = ¥sin”” 219d19}
0 2151

xn 4a2t cos2 9

is obtained. In particular,

1 2 /2 0o
Weolz,t) = _16a7ym {/ , f"/Qe_gdf} cos? 1 sin" 2 9dv .

T (5122 o
2 0 4a2tc72)5279

In Section 4 we obtain an analog of (1.2) for solutions of the Neumann problem

ou ou
ot oz,
with g € LP(R"! x (0, 400)), represented by the heat single layer potential, 1 < p < oc.
It is shown that for an arbitrary point (z,t) € R x (0, +00), the sharp coefficient N, (z, t)
in the inequality

=a’Au in R} x (0,+00), ul,_ 0 =0, = g(2', 1)

=0

Vau(z, )] < N, D)l |91l

is given by
kn,p n—p+2 D %
Np(x7t) = a1 |m|a>1{ lwn,/\(<emen))|(emen)| p=l |(ea )|’Hd0_ ) (1~6)
Tnt s
where wy, y(u) is the same as in (1.5), and
2B=p)/pg2/p 2 2
knJ):: _______HELT_ ; R = 1zggi ; = EZE:t__Zg —-2.
/2q2 "y 4at 2

The extremal problem in (1.6) is solved for the case 2 < p < (n +4)/2 and the explicit
formula

pL
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is obtained. In particular,

b w/2 oo 1/2
No(z,t) = 5 {/ {/ , §”e£d§} cos” 2 9 sin" 2 ﬁdﬁ} :
2 0 z

where

2 Extremal problems for integrals with parameters

2.1 Extremal problem for integrals with parameter on the space with measure

Let X is the space with o-finite measure p defined on the o-algebra & of measurable sets,
parameters y and y, are elements of a set Y, p(x;y) and f(z;y) are [0, 4o00]-valued S-
measurable functions on X for any fixed y € Y.

A particular case of the assertion below with p = 1 and somewhat weaker assumption
was proved in [5].

Proposition 1. Let y, be a fized point of Y. Let v € (0,+00) and let the integral

/Xp(x;yo)f”(ﬂc;y)du (2.1)

attains its supremum ony € Y at the pointy, € Y (the case of +00 is not excluded). Further
on, let

Z(y,y,) = /Xp(fv;yo)fa(x;y)fﬂ(rr;yo)du : (2.2)

where o > 0,5 > 0.
Then the equality holds

sup Z(y, Yy) = Z(Yy: Yy) = /Xp(m;yo)f”(w;yo)dﬂ (2.3)

yey

for any a and B such that a4 5 = 7.
In particular, the supremum of I(y,y,) over y € Y is independent of y, if the value of
integral

/ p(z;y) [ (2 y)dp
b's
does not depend on y.

Proof. Let a« > 0 and 8 > 0 are arbitrary numbers, a + $ = . The case § = 0 is obvious.
Now, let 5 > 0. By Holder’s inequality, the integral

To) = [ plasn) s (i)
= /X(pi(x;yo)f“(w;y)) (pg(flf;yo)fﬁ(x;yo)) dp

4



does not exceed the product

[ twmriamad { [

Since integral (2.1) attains its supremum on y € Y at y,, it follows that

SupT(y, yy) < /X (s 0) £ (5, (2.4)

yey

;

o
2
@R

(x;yo)fﬁg(x;yo)du}

On the other hand, by (2.2) we have

supZ(y,v,) = Z(yy,Yy) = / p(x;yo) [ (3 y,)dp
yey X

which together with (2.4) completes the proof. O

2.2 Extremal problem for integral over S"!

Let e, be the n-dimensional unit vector joining the origin to a point o € S*~!. We denote
by e and z the n-dimensional unit vectors and assume that e is a fixed vector. Let p and f
be non-negative Lebesgue measurable functions in [—1, 1].

The next assertion is an immediate consequence of Proposition 1.

Corollary 1. Let v > 0 and let the integral

/Sn1 p((eg, e))f”((eg, z))da (2.5)

attains its supremum on z € R", |z| = 1 at the vector e. Further, let « > 0,5 > 0 and
a+ B =~. Then

s [ pl(ere)*((ere) £ ((er.2))do

|z|=1
= /S B p((e(,, e))f”((ea, e))da. (2.6)
Remark By the equality
/ F((eo, e))da = wn_l/ F(cos 19) sin™ 2 9dv,
sn—1 0

we conclude that value of the integral in the right-hand side of (2.6) is independent of e. In
the case of the even function F', the last equality can be written as

w/2
/ F((es,€))do = 2w, / F(cosd) sin™ > ddd. (2.7)
sn-1 0

Further, we consider a special case of Corollary 1 with v = 2,

prap(t) = wer(wlul”,  f(u) = ful, (2.8)
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where k, A\, u > 0 and

W) = jo e €de =T <)\ T, %) . (2.9)
Here by
[(a, ) :/ o te8de (2.10)

is denoted the additional incomplete Gamma-function.

Lemma 1. Let

Foxun(z) = /S 1 we((es,€))|(es, )" (eq,2)* Vdo . (2.11)
Then for any k, A\, u > 0, 0 < v < 2, the equality
max Firpn(2) = Foau(e) = /Snl wen((eq,€))| (€0, ) *do (2.12)
holds.
Proof. (i) The case v = 0. By (2.11),
Fiapo(z) = /Snl w,@,\((ea, e)) ’(ea, e)|“‘(ea, z)]Qda . (2.13)

Let 2/ = z — (z,e)e. We choose the Cartesian coordinates with origin O at the center of
the sphere S*~! such that e; = e and e, is collinear to 2’. Then z = ae; + SBe,, where

o 4+ 5% =1. (2.14)

Now, we rewrite (2.13) in the form

Fn,/\,,u,()(z) :/ wn,)\((eaa €1>) ‘(607 el)w(eaa aeq + ﬁen>2d0
§n—1

:/S wen (e e1))|(enr e1)" [0* (e, €1)2 +208(es, 1) (€r, €0) + 5 (s, €4)2] dor. (2.15)

n—1

Let us show that
/ 1 w,@,\((eo, el))|(eg, e’ (e, er)(es, e,)do=0. (2.16)
Sn—

The last equality is obvious for the case n = 2. We suppose that n > 3. We denote
by ¥1,7s,...,9,_1 the spherical coordinates with the center at O, where ¢; € [0, 7] for
1<i<n-2 and 9, ; € [0,27x]. Then for any o = (01,...,0,) € S"! we have

o1 = cos

09 = sin v cos Vs,

Op—1 = sin; ...sin,_scost),_1,

op =sinty ...sint,_osint,_1.



Using the equalities
(ey,e1) =01 =costy, (e, e,)=0,=sind...sind, osind,

and

do = sin" 29 sin" 3V . ..sinV,_o dd1d0s . .. d0,_1,
we calculate the integral on the left-hand side of (2.16):

/ wer((€a€2)) (€0 €1)[ (€0 1) (€0, 0)do

Sn—l
T T 27 n—2

:/ / / w,i’,\(cosé’l)|COSI%V‘COSI%(H sin™ " 191-) sin¥,,_1dY;...d0,_sd¥,_,
o Jo Jo i=1

™ ™ n—2 21
=1, / / (Hsin”_iﬁi) dYs...d0, s / sin ¥, _1dd,_1 , (2.17)
0 0 i—o 0

where

Iy = / wﬁ,A( coS 191) | cos ¥, | cos ¥y sin™ ! 9, dv); .
0

Since the inner integral in (2.17) is equal to zero, we arrive at (2.16).
So, by (2.14), (2.15) and (2.16), we have

Fopuo(z) :/s w&k((ea,el))|(eg,el)|“[a2(eg,el)z—l—ﬁz(eg,en)Z]da < max{U, V}, (2.18)

n—1

where
U= we((€r,€1))|(eq, €1)[*do (2.19)
Sn—l
and
V:/ wﬁ,,\((eg,el))](eg,el)]“(eg,en)zda. (2.20)
Snfl

In view of (2.7) and the evenness of w, \(u) in u, we can write (2.19) as

w/2
U =2w,_1 / Wi (cos V) cost 2 9y sin™ % Wy did; .
0

By the change of variable ¥ = 7 — ¢ in the integral on the right-hand side of the last
equality, we obtain

w/2
U= 2w, / Wi (sin ) sin® 2 @ cos™ 2 pdyp . (2.21)
0



Now, we calculate the integral on the right-hand side of (2.20):

- / Grn((€ns €1))](€0s 1) (er, €0)7do
Sn—l

T T 2T n—1
— / .. / / Wi x(cos Vq)| cos V" (H sin™ - 192-> dd, ...d0,_sd?,_;
0 o Jo paiey

s s x [n—1
= {/ Wi A (cosVq)| cos ¥y |# sin” ﬁldﬂl}{Q/ / (H sin™ 1 79i> dﬁg...dﬁn_l} (2.22)
0 0 0o\

Putting ¥, = ¢+ 7 in the first integral on the right-hand side of (2.22), we arrive at equality

s /2
/ Wi\ (cos ¥y )| cos V1| sin” 1 dv)y = 2 / Wi\ (sin ) sin ¢ cos™ pdyp . (2.23)
0 0

Evaluating the multiple integral on the right-hand side of (2.22), we obtain

™ x [n—1 n—1 " .z/2
2 / / Hsin"“*iﬁi dds...dV, :2-2”*21'[ / sin® ¥dv
0 0 \j—o k=20

CrETEIIG) | e
e NN
which together with (2.22) and (2.23) leads to
2 e w/2
V== 11 / Wi (sin ) sin® @ cos™ pdyp . (2.24)
n—1Jo

Let us show that U > V. Integrating by parts in (2.21), we have

U 1 2 : sl n—1
S — i Wi (sin @) sin T o d( cos™ ! @)

1 w/2
= / cos" ! ¢ d(wyx(sin ) sin** )
n—1J

IR d
= / cos" 1 o< (u+ 1) sin* @ cos o wy(sin ) + sin“ T p—w, \(sin @) ¢ d.
n—1J, ’ de ™

In view of (2.24), we can rewrite the last equality as

U \% 1 /2 ) d
- "hpsint T o (si dy . 2.25
Y1 2o moi /0 {COS ittt oo (sin s@)} o (2.25)

By definition (2.9) of the function wy x, we arrive at

d K A in? o 2K COS s
LI ot BEERE g (0)7)
dgpwﬁ’/\(sm #) (sin2 4,0) c sin® o or ¥ "2)7
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which together with (2.25) implies

U>1V.
This, by (2.18) and (2.19), leads to the inequality
i Py of2) < / Gen((es€1)|(es, 1) *2do (2.26)
z|=1 Snfl

By (2.7), the value of the integral

/S wnn((€r€))|(e, €)[F+2do

n—1

is independent of e. Hence, by (2.26),

max F,  .0(2) S/ we((€s,€))|(€s, )] do . (2.27)
s

jz=1 ni

The obvious lower estimate

|Hl\a}1{ Fli,)\,,u,0<z> Z Fn,)\,p,,0<e) - / WR,)\(<607 e))|<ea7 €)|'u+2d0'
zZ|= Sn—l

together with (2.27), leads to (2.12) for the case v = 0.
(ii) The case v € (0,2). By (2.8), we rewrite (2.11) as

Fonl2) = [ pensl(ene) " ((ere)) £ (e 2))do

By part (i) of the proof,

|z|=1

max FK,,)\,M,O(Z) = FK,)\,/L,O(G) = / pn,)\,u((eoa e))fQ((eav 6))d0’ )
sn—1

which, by Corollary 1 with v = 2, implies

max F;{,)\,u,u(z) - /S‘n1 pn,/\,u((em e))fZ((em e))dO’ :

|z|=1

Last inequality combined with (2.8), proves (2.12) for any v € (0, 2). O

3 Weighted estimate for solutions of the Dirichlet problem

Here we deal with a solution of the first boundary value problem for the heat equation:

0
( (9_1; = a*Au , (z,t) € R} x (0,400),

u‘t:o =0 7 (31)
(U, o= f(',t).




Here f € L? (R”_l x (0, +oo)), 1 < p < o0, and u is represented by the heat double layer
potential

e 4a2(t T) , ,
o) = e 3.2

with y = (¢/,0),¥ € R"™'. The norm || f||,, was introduced in (1.3).

Proposition 2. Let (x,t) be an arbitrary point in R} x (0,4+00). The sharp coefficient
Wy(z,t) in the inequality

u(z,t)
v { DY < W0l 53
s given by
Cn,p n+p+2 P p;fl
Wy(z,t) = peEs) |r£1|a>1< i wer((€s,€n))|(€r,€0)] 71 |(e0, 2)|PTdo , (3.4)
xn n—1
where )
27 (4a2)'t
7r2 q2 P

p 4+ gt =1, wen(x) is defined by (2.9) and

2 2 4 4
o @ P (b, mptd (36)
4a’t  4a’(p— 1)t 2 2(p—1)
In particular,
Cnp /2 S nptd n+2(p+) e r
Wol,t) = = 2wn—1/ / . £2=N e~ dE 5 co ¥ sin™ " 9dv) (3.7)
$n P 0 4a2tc25219
for2 <p < oo.
As a special case of (3.7) one has
1602 w/ oo
Weo(z,t) = a 1\/_ 278 3 cos® ¥ sin™ 2 Odi) . (3.8)
NG VA
4a4t cos® ¢
Proof. (i) General case. By (3.2),
|z —y|?
(:U t) e 4a2(t T) , ,
te (tain) " Jo Juwr =y s m)dydr
Differentiating with respect to z;, j = ,n, we obtain

ulz, ) Ly
Vz{ Tn } 4 1 n+2/2/ /Rn 1 t—T "+4)/ G et ey, m)dydr.
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Hence,

u(:c,t) .T| ewy’z) —%74 / /
(vl‘ { Ty, } 7z) 4(12 (n+2) /2 / /R" 1 t — 7— n+4)/2 e )f(y 77—)dy dT, (39)

where z is a unit n-dimensional vector and e,, = (y —z)/|y — z|. By (3.9), we conclude that
the sharp coefficient W,(x,t) in inequality (3.3) is given by

W (x, [y — ol (€wy 2)|7 - ageel® B
p(Et) = (4 27r "/2 |z\ T g1 (t— 1) t4a/2 c yar '

We write the last equality in the form

_aly—=)? 1/q
Wy (1) :2—7rmax |y_$|q+"|(exy,z)|q d //t S dr (3.10)
P (dan) " ST e Tn y—ap ), Gy
Setting
_ dlz—yP
4a?(t — 1)’
we represent the inner integral on the right-hand side of (3.10) as
. _ 11\?2472:\2 9 (ntdg 1
e Aa(t=7) 4a 2 (nid)g_o
/ ——eant =\ —m / LS T Celids, (3.11)
o (t—7) qly — | aly—si?
By (2.9) and the equality
ly — x| (esys €n)| = 24 | (3.12)
we write (3.11) as
(n+4)q
t _ Q\g z| 9 T_1
e 4a?(=7) 40*(eqy, en)
/0 (t — T)(”+4)Q/2 dr = < qx% wﬁ)\((ewya en)), (313)

where x and A are defined by (3.6).
In view of (3.12), we have

Tn e
ly—a|"" = ——— : (3.14)
’ (exya en) ‘

which, in combination with (3.10) and (3.13), leads to

p—1

Wyant) =— 204a7) ¥ ax{/S wﬁ,A((ea,en))|(ea,en)\yﬁKeg,z)\leda} " (3.15)

-1y S, 2% |2l=1 | Jsn—1

11



where S" ! = {0 € S""! : (e,, e,) < 0}.
Using the evenness of the integrand in (3.15) with respect to e,, we obtain

p—1

2%(4c12)prl nipt2 2 g
Wy(z,t) = max wer((€s,€n))|(€r,€0)] 71 |(e0, 2)|[PTdop , (3.16)
TL_l §+1+l 2""7 ‘Z| 1 Sn—1
q
which proves (3.4).
(ii) The case p € [2,00]. Solving the system

D n—+p-+2

2y =—
Y1 Y p—1

with respect to v and u, we arrive at

p—2 n+4
v=——, u= .

p—1 p—1

So, ;1> 0 for any p > 1 and v € [0,1) for p > 2. Applying Lemma 1 to (3.16), we conclude
p—1
Cn, n+2(p+1) p
Wiet) = 2 { [ wlenenlienen arf T @an
p n—

Tn

where p € [2, 00] and the constant ¢, , is defined by (3.5). By (2.7) and (2.9), we write (3.17)
as (3.7). O

4 Estimate for solutions of the Neumann problem

Let us consider the Neumann problem for the heat equation:

( Ou

5 = a’Au (z,t) € R} x (0, 4+00),
u‘t:o =0, (4.1)
ou ,
it — ¢
L axn mn:0 g(x Y )

with g € LP (R”_l x (0, +oo)), 1 < p < oco. Here u is represented as the heat single layer
potential

e 4(‘112(ty ) ,
u(z,t) = (102 n/ S W, T)dy'dT (4.2)
a n—
where y = (¢/,0),y' € R"L,

Proposition 3. Let (x,t) be an arbitrary point in R} x (0,4+00). The sharp coefficient
Ny(z,t) in the inequality
Vou(z, )] < Np(@, )19 lp.e (4.3)

12



15 given by

p—1
kn n—p+2 P T
Noot) =] [ wu((emen)lienen FFenlfar) 0
where S—t)/pr2]
2(3-p)/p2/p
Fnp = ————— , (4.5)
’ n/2q2 Ty
p 4+ gt =1, wen(x) is defined by (2.9) and
2 2 2 -2 4
pe o _ P42, (n—2p+ (4.6)
4a’t  4a*(p— 1)t 2 2(p—1)
In particular,
) 1
kn /2 0o (n—2)p nt2 D
Np(w,t) = —5% {2wn1/ {/ , ¢ 2("2#656&“} cosp-1 9 sin"? ﬁdﬁ} (4.7)
xnp 0 4a2‘52’gs219

for2<p<(n+4)/2.
As a special case of (4.7) one has

/2 00 1/2
No(z,t) = Z {/ {/ , fne_édf} cos" 2 Y cos™ 2 19d19} , (4.8)
T 0 T T

2a2t cos2 ¢
where a
b, = )
25
Proof. (i) General case. Differentiating in (4.2) with respect to z;, j = 1,...,n, we obtain
|z —y|?
Vel )= = (dan / / 1 t—T o gy dr
a R™—
which leads to
Vou(z,t [y = l(eny, 2) - s dy/d 4.9
(Vaeu(,t),2) = Tl Sy S Gy g gy, m)dy'dr,  (4.9)
a n—

where z is a unit n-dimensional vector and e,, = (y — z)/|y — z|. It follows from (4.9) that
the sharp coefficient NV, (x,t) in inequality (4.3) is given by

N =l (a2t ez, |
A= (4a2 (4a20)" 251 o Jror (G )i i

13



Now, we write the last equality as

ly—a)2 1/q
1 —x|1" (ery, 2)|¢  z, b o dalen)
Ny(z,t) =— Qmax/ ly—=|"""|(€ay, 2)|* 2 dy/ e b . )
(4@277)n/ [zI=1 | Rt Ty, ly—x|n "7 Jo (t—7)C+2Da/
Putting
o dr—yP
da?(t — 1)’

we represent the inner integral on the right-hand side of (4.10) in the form

qly—z|? (n+2)g _4
)

t - 2 2
e 4a?(t—T) 4q 2 (n+2)q_2 i
_ (n+2)q/2dT: 2 sl e “ds. (4.11)
0 (t T) Q|y 37| qly—z|

By (2.9) and equality (3.12), we write (4.11) as follows

(n+2)q
- !

ly—=|? 9
t ¢ i 4a* (e4y, €n)
/0 (t—7)<n+2)q/2d72 o2 Wi ((€ay, €n)), (4.12)

2
qzy

where x and A are defined by (4.6).
Using (3.14) and substituting (4.12) into (4.10), we arrive at the representation
p—1
4 2)1/p n—p p B
N, 1) :Lma}({/ Wer (€ €n))|(eqr €0)] 751 | (€0, z)|p—1da} . (4.13)
S

nyl ntl |z|=1 n—1
7Tn/2q2 pxnp _

where S" ! = {0 € S""! : (e,, e,) < 0}.
In view of the evenness of the integrand in (4.13) with respect to e,, we obtain

pl
n—p+42

2B=p)/p42/p T P
Ny (z,t) :—nﬂmax{/ Wi ((€r,€0)) (€5, €0)] 7 |(eg,z)\z*1da} , (4.14)
S

n 1 z|=1 1
7Tn/2q2+pl,np || n

which proves (4.4).
(ii) The case p € [2,(n+ 4)/2]. Solving the system
oy Py, _np2
p—1 p—1
with respect to v and u, we obtain
S 2 _n—2p+4

) ﬂ -
p—1 p—1
Therefore, the conditions 0 < v < 2, > 0 hold for p € [2,(n+4)/2]. Applying Lemma 1 to
(4.14), we arrive at

p—1

k., n+2 2
Nt =2 { [ r((emen))llenenlFHar) (1.15)
T, P Sn—
where p € [2, (n+4)/2] and the constant k,, , is defined by (4.5). In view of (2.7) and (2.9),
we write (4.15) as (4.7). O
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