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Abstract. We propose a fast method for high order approximations of the solution of n-
dimensional parabolic problems over hyper-rectangular domains in the framework of the method
of approximate approximations. This approach, combined with separated representations, make
our method effective also in very high dimensions. We report on numerical results illustrating
that our formulas are accurate and provide the predicted approximation rate 6 up to dimension
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1 Introduction

Multidimensional boundary value problems arise in mathematical physics, financial mathemat-
ics, biology, chemistry and other applied fields. The computational complexity of the algorithms
grows exponentially in the dimension. This effect was called ”curse of dimensionality” (Bell-
mann) and it was the greatest impediment to solving real-world problems.

In [6] and [7], Beylkin and Mohlenkamp introduced the strategy of ”separated representa-
tions” (also tensor structured approximations ) which allowed to perform numerical computa-
tions in higher dimensions. In recent years modern methods based on tensor product approxima-
tions have been applied successfully (e.g. [2, 3, 4, 5, 9, 10, 11, 13] and the references therein) to
some class of multidimensional integral operators. Some algorithms approximate the operator
kernel via a separated representation given by a linear combination of exponentials or Gaus-
sians, which yields a form with elements given by one-dimensional sums. As a result, efficient
fast algorithms in dimensions 2 and 3 are obtained, which permit further generalizations to



dimensions greater than 3. Other methods are based on piecewise polynomial approximations
of a separated representation of the density. Then the integral operator applied to the basis
functions is approximated by computing a number of one-dimensional integrals. The difficulty
is the necessity to find accurate separated representations of the integral operator acting on
piecewise polynomials, especially for higher order approximations. The convergence orders 2
and 3 were confirmed by numerical experiments in dimension 3.

A new method of an arbitrary high order and high accuracy, which does not approximate
or modify the kernel of the integral operator, was recently introduced in [14] and [15] for the
cubature of high dimensional Newton potential over the full space and over half spaces. The
density is approximated by the basis functions introduced in the method of approximate approx-
imations, which provides high order semi-analytic cubature formulas. This approach, combined
with separated representations, makes the method fast and effective also in very high dimensions.
For the potential of advection-diffusion over hyper-rectangular domains, the corresponding new
method was introduced in [16] and, more generally, in [17].

In this paper we propose a fast method in the framework of approximate approximations for
the n—dimensional time dependent problem

?;: — Axu+2b - Vyu+cu = f(x,t),
u(x,0) = g(x)

for (x,t) € R" x Ry with Ry =[0,00), b € C", ¢ € C. We suppose that f and g are supported
with respect to x in a hyper-rectangle [P, Q] = {x = (z1,...,2,) € R" : P; < 2; < Qj, j =
wn},supp f C [P, Q] xRy, suppg C [P, Q]. The solution of (1.1) can be written as [8, p.49]

(1.1)

c¢,b c¢,b
u(x,t) = Hiploy f5,1) + Py 9(x, 1),
where .
(c.b) _ e x—y—2bt|2/(4)
Pt = o [ e oy)dy (1.2
P.Q]
/ d
e “ds —|x—y—2bs|?2/(4s
[PQ]f / 47T8n/2 / € | Y |/( )f(Y7t_s)dy
° P.ql (1.3)

—/<§3ﬂ 9)(x,t = 5)ds.
0

Our method consists in approximating the functions f and g via the basis functions introduced
by approximate approximations, which are product of Gaussians and special polynomials. The
action of the potential P[( Q)} applied to the basis functions admits a separated representation
that is it is represented as product of functions depending only on one of the space variables.
Then a separated representation of the initial condition g provides a separated representation

(¢,b)

of the potential. Moreover, /H[P,Q} f is expressed as a one-dimensional integral with separated
integrand. This construction, combined with an accurate quadrature rule as suggested in [13]
and a separated representation of the density f, provides a separated representation of the
integral operator (1.3). Only one-dimensional operations are used. We derive formulas of an



arbitrary high order, fast and accurate also in very high dimensions. The accuracy of the method
and the convergence orders 2,4 and 6 are confirmed by numerical experiments up to dimension
n = 107.

The paper is organized as follows. We start in Section 2 by describing the method in the
case of second order approximations. We then consider higher order approximations in Section
3 and, for f and g with separated representation, we derive a tensor product representation
of H[(IC,’%] f and 73[(;,’2} g which admits efficient one-dimensional operations. Finally, in Section
4, we report on numerical results, illustrating that our formulas are accurate and provide the
predicted approximation rates 2, 4 and 6 also if the dimension is very high.

2 Description of the method

The functions f and g in (1.1) are approximated by quasi-interpolant on the rectangular grids
{(hm, 7i)} and {hm}, respectively,

t—Ti X — hm
My f(x,t (hm, 71) ) 2.1
o) = e 3 S0 (5 (555 =y
meZ™
X — hm

2.2

( hV'D > @2

where 7, h, are the steps; Dy and D are positive fixed parameters; 17 € S(R) and n € S(R™) are

the generating functions, which belong to the Schwartz space S of smooth and rapidly decaying
functions.

Nhg(

-

mezmn

We say that the generating functions fulfill the moment condition of order Ny and N, respec-
tively, if
/ﬁ(t) t°dt = éo,5, 0 < s < No; /n(x) x%dx = g0, 0 < |a] < N. (2.3)
R R”

The main feature of the approximate quasi-interpolation is expressed in the following

Theorem 2.1. (/18, p.34]) Suppose that the generating functions satisfy conditions (2.3). Given
e > 0 there exist D > 0 and Dy > 0 such that, for any f € CF(R™ x R) with L = max(N, Np)
and g € C{'(R™), the approzimation errors of the quasi-interpolants (2.1), (2.2) can be estimated
pointwise by

|f(X’ t) - Mh,Tf(Xv t)| < Cl(h\/E)N + 62(7— DO)NO

N—-1 No—1
e[S WD |\aafum+z SRRV o
|a|=0 :

N—

l9(x) = Nig(x)| <er(hVD)N Z HaafllLoo

where the constants ¢; and co do not depend on h, T, D, Dy.



We construct an approximation of the solution of (1.1) if we approximate f and g such that

the integrals P[(IC,’E] and ’H[(lf,”tg} applied to it can be computed, analytically or at least efficiently.
This can be done if we approximate g in [P, Q] and f in [P, Q] xR, by means of the approximate
quasi-interpolants (2.1), (2.2) with appropriately chosen generating functions.

The functions g and f are CV with respect to x in [P, Q], but vanish for x ¢ [P, Q]. Thus

the sum

Diﬂ > g(hm)n<xh_\/%m)

hmeP,Q]

approximates g only in a subdomain of [P, Q], similarly

Jﬁ S fhm,ri)i (j;%) n <Xh_\/%m>

(hm,ri)€[P,Q) xR

approximates f only in a subdomain of [P, Q] x R,. Therefore we extend g and f into a larger
domain with preserved smoothness such that the extensions g and f satisfy

IFlwx @y < Cliglwy gy - I lwe @oxr) < Clflwep.qxe,y  C>0.

The quasi-interpolants of the extensions fand g approximate f in [P, Q] x Ry and g in [P, Q]
with the error estimate (2.4).The extensions can be done, for example, by using Hestenes reflec-
tion principle ([12], see also [19, p.27]). This is considered in Section 4.

Since 1 and 7 are smooth and of rapid decay, for any error € > 0 one can fix r > 0, 79 > 0
and positive parameters D and Dy such that the quasi-interpolants

(r) _ 1 Y N~ [ T—TI x — hm
M) = e X Tomrii () ().

QT

hmeQ,.p,

1 X — hm
M) = =~ S G(hm)y ( ) ,
Dn/2 it h/D

provide the error estimates

£ (x,8) = MY f(x,)] = O((WD)N + (1/Do)™) + ¢,
9(x) = N g(x)| = O((WD)N) + & (2.5)

forallx € [P, Q] and t € [0,7], T > 0. Here Qy,; = (—ro7y/Dy, T+r07y/ Dy, ) and Qyp, = [T/, I;
with I; = (P — rhv/D, Qj + rh@). Then the sum

c r 1 ~ e Cx—v— y — hm
P[(P:t(g]('/vfg) )(Xat) = W Z g(hm)i / e Ix—y 2bt|2/(4t)n< ) dy

47t)n/2 hv/D
fmESen ) P.Q] VP
o Dn/2 hocs hg [Pm7Qm}T/ h\/ﬁ ’ h2'D



with C = h*Dc, B = hv/Db, Py, = (P — hm)/(hv/D) and Qm = (Q — hm)/(h\/D) provides
an approximation of 77[(1(; bQ)] g(x,t) in [P, Q] x [0, T]. Similarly,

t

(¢,b) () CB) X—hm t—s
H[P,Q] <Mh,7'f)(x7t Z f hm TZ /n Pm,Qm 77( h\/,zs 9 h2D)dS
T’LEQ,OT 0
hmeQ,
approximates 7—[%;’13} f(x,t) in [P, Q] x [0,T]. Denoting
c,b T c,b r
un - (%,1) = Higioy (M) (x,1) + PRy (N 9) (x,1), (2.6)

it is easy to deduce the following

Theorem 2.2. For any € > 0 there exist D > 0 and Dy > 0 such that uy, ; in (2.6) approzimates
the solution of the Cauchy problem (1.1) with the error estimate

lu(x,t) — up (X, t)| < T(h\/> + ca.7( T\/>
N-1 No—1

0% gllzee + 102 fllpee) +
/=0 5=0

”atfHL"O ;

for all (x,t) € R™ x [0,T]. The constants ci v and ca 7 depend only on N and Ny.
Consider, for example, the generating functions 7y(x) = e_‘x|2/w”/2 and 72(t) = e_tZ/\/Tr.

Then the conditions of Theorem 2.1 are fulfilled with N = Ny = 2. Hence, from (2.6), at the
points of the uniform grid {(hk, 7¢)},

1 - k—-m 7/
Uh,r(hkﬂ'g)zm Z g(hm)P[(P ()Qm ( )

2
hmEQTh \/7 h D
T4
(or(e—i)? kem o (2.7)
(hm 25, p&B) <77 7) d
W ng f 'TZ) 0/ [Pman] 2 \/5 h2D g
hmEST)Or;

In the following we denote the two terms on the right by ¥; and X,.
It can be easily seen that from (1.2)

G —c b
P[(P,C%} M (x,t) = e ¢! H gt <Z>§,gj)(xj, t)) (2.8)

with the analytic expression
e (z—2bt)%/(1+4t)
2y/mV/1 + 4t

Here erfc denotes the complementary error function ([1, p.262])

o) (,1) =

( 1+4t( _m—2bt))
ere At 1+ 4t

[e.o]

/ e dt.

T

erfe(z) =

S



The computation of the convolutions in (2.7) is very efficient if the functions §(x) and f(x,t)
allow a separated representation; that is, within a prescribed accuracy, they can be represented
as sum of products of univariate functions

P n

P n
:Z ng (@) +0(E), fexet) =3 B [[ @0 +06). (29

Then the first term in (2.7) is approximated by the product of one-dimensional sums

n

1 _ (C,B) k—-m 70\ e ()
X1= 5o > glhm) Plpr,Qu) 2 ( JD th) ~ D ZO‘PHSJ (kj, 7€)
hmeQTh p:1 ]:1
where
p (p) hfb)’f mj 1 (hv/Dby) (ki —m; 1
(kj, ) = Z 9; ( 2 ) ¢Qm ( ) ) :
hrmel, ( VD ' h?D VD ' h?*D )
Here we set
Pj — hm]’ Qj — hmj

P L = 5 P
N T A WG
The second term 39 on the right of (2.7) involves additionally an integration, which must be
approximated by an efficient quadrature. The integral

k4

. k
KQ(hk, hm, TE, TZ) — /e_(TZ—J—Tl)Q/(TQDO) ’P[(]gm]%()gm] 2 ( \/7m hQO:D) d
0

cannot be taken analytically. Therefore we use a quadrature based on the classical trapezoidal

rule. It is known that it is exponentially converging for rapidly decaying smooth functions on
the real line (see [21, 20]). Making the substitution

70

o= £(1+tanh(— smhf)) 1 4 e—7sinhé’

5 (2.10)

introduced in [20], Ko transforms to the following integral over R with doubly exponentially
decaying integrand
Ko(hk, hm, 70, T1)

arl [ e (/4TI )2/Dy (o ¢ P k—m "y
2 1 + cosh(7sinh §) [Pm’Qm 12 ( VD h2D(1 + e~ 7simhe)

—0o0

)i

The quadrature with the trapezoidal rule with step size x gives for sufficiently large S € N

. 7['7—6/1 7 sinh(sk) D (C B) k —1m 7—6
Ko(hk,hm, 70, Ti) ~ Z w, e~ (/e )—1)?/Do ,P[P7 o™ (—= 5
s=—8 ’ ( VD ash D)



where we denote

cosh(sk)
1 + cosh(wsinh(sk)) ’

Gy = 1 o~ snh(R) (2.11)

Wg =

Then for the second term Y3 on the right of (2.7) one gets

-~ TEK/\/% g/ 1+e7r slnh(sn)) /DO ~ . (C7B) k —1m TE
22 ~ 9 ,7IDOD” Z Ws Z f(hm,TZ) P[Pm,Qm] 2 ( \/’ZS ) (IShQDr) .

TZEQTO,-
hmeQ,.p,

By using the separate representation (2.9) of fand (2.8) we can approximate similar to
Z f hm TZ)P[( B) ]772 (k m 70 ) ~ e_cré/zzs XP:B ﬁT(p)(k:' 0. Ti. a )
Pm,Qm / 2 ~ p i 7 ) s Ws )y
hmeQ,, D 'ash?D p=1  j=1

where

Tj(p)(kj,ﬁ, Ti,as) = Z f;p)(hmj,n')
hijI]'

(h\/>b k —m; T/ h\Fb) k —m; A
x (o™ (+ 75 adtD) S (* NG aiop)

Thus we get an efficiently computable second order approximation (2.7) of the initial value
problem (1.1)

e—ctt P n
up, - (hk, 70) ~ Z o H S (kj, 70)

(2.12)

f —cTl/as g7 sinh(sw
27\-/;07\31 Z 0 Z —(£/(14-e7 sinh(sk)y_ /DOZB HTp) (kj, 70,71, a5) .

‘rieﬁroq—

In the following we show, that the same ideas hold also for higher order approximations. We
assume that 7(x) is the product of univariate basis functions of the form Gaussians times special
polynomials

n 1)yM-1 Hopr—1(x; e_sz
n(x)ZjI:[lnzM(l’j); 2 (25) = 92M (1\f)( 1)! = ll’(jj)

(2.13)
where Hj, are the Hermite polynomials

Hy(z) = (~1)%e” (;i)ke—a@

and 77(t) = m2n, (). The functions 77 and 7 satisfy the moment conditions of order Ny = 2M)
and N = 2M, respectively (cf. [18, p.56]).



3 High order cubature formulas

To get formulas similar to (2.12) for higher order approximations, we approximate the density
with quasi-interpolants based on (2.13). We start with the following

Theorem 3.1. Let M > 1. The integral (1.2) applied to the generating function H;L:1 nam (25)
n (2.13) can be written as

PQ] H 772M = eict H((I)M(4t7 Tj — 2b]t7 ]DJ) - (I)M(4t7 Tj— Qb]ta Q])) (31)
j=1
where
—a2/(1+1) —F2(t,x,p)
e e
Dy (t,x,p) = W(erfc (F(t,m,p))RM(t,az) — TQM(t,x,p)),
with
1+t T
F(t,l‘,p): t (p_l_l_t)a
M-—1
1 (—1)k T
R (t = H
Ql(tax7p) - 07

Qu(t.z,p) =2 (k:!il: ; (Wlf <H2k—e(P)Hz_1<p\/;)
- (Yo I D)) ar o

Ry and Qpy are polynomials in x of degree 2M — 2 and 2M — 3 (provided that M > 1),
respectively.

Proof. The computation of the integral (1.2) applied to a generating function with tensor product
form is reduced to the computation of one-dimensional integrals

n @
¢,b) e € (xj—
Gl H772M =e e/t H / st 2 i () .
Using the representation ([18, p.55])
(y) = LM_W I

we have proved in [16, Theorem 1], that

1
= /e_(x_y)2/tn2M(y) dy = ®p(t, x,p)
p

and (3.1) follows. O



For M = 1,2, 3 the functions Ry and Qs are given by

1
Ri(t,z) = ; t =0
1( 7$) \/m7 Ql( ,[B,p) )
1 z? Vit L
Ro(t,z) = Ri(t - t = 147
o(t:9) = Ralto) + 5 — e @) = g (T +0)
3 3 2 z?

Rs(t,x) = Ra(t -
3(t, x) o(t, ) + 8(L+1)52  2(1+1¢)7/2 + 2(141)9/27

Vit 223 2pr? —5x  (2p* —5)x —3p 9
t = — 2p° — .
Qs(t,,p) 4(1+t)<(1+t)3+ e T T ")
Using Theorem 3.1, we can specify the high order approximation
(e.b) (Ar(r) _ 1 ~ p(C.B) X—hm t
Q] (Nh g)(X,t) - Dn/Q Z ( [Pm Qm] H 772M h\/ﬁ ’ h2D)

hmeQ,.p,

- 4t ;i — hm; — 2bit
D"/2 Z (hm) I:I(q)M(h?D’x] h% : ,ij)

hmeQ,., j=1
4t x; — hm; — 2b;t
_ < j j j m))
M h2D7 h\/ﬁ 7@ j

for the generating function 7 defined in (2.13). This is a semi-analytic cubature formula for

P[(f, ]8] g(x,t) with the error O((hv/D)?M). If additionally § allows a separated representation

P n
~> o [] g7 ()
p=1 j=1

then we derive at the points of the uniform grid {(hk,7¢)}

1 k-m +/ e_CTZ L (p)

Dn/2 . % g(hm) P[Pm Qm] HUQM ( VD th) Dn/2 ZO‘P HS (s, 70)

m rh
where now
SP (kj 1) =
JoNT
4t ki —m; 2bt 4t ki —m; 2bt

2 9 ) (g = 5 = 55 Fom) = St = 75 = 1 Q)

hijIj
Similarly, we specify the approximation

Hipoy (M) F)(x,t) =

t

1 s—m (C,B) X—hm t—s

(h (P Xm0 g,

/DO'DTL TZE% f m, T 0/772M0 /7,D > [P, Qm) H 772M ( WD h2D> S
hmeglor;



At the points {(hk,7¢)} we have
Hirg <M§;jlf><hk, 0)

Tl
™ —0—T1 L k—-m o
\/W > f(hm,7i /772M0 <T\/170 > Pm7Qm anM ( NG ,TQD)CZU
TZGQT()T 0 J=1
hmeQ,
1 -
f(hm, 7i) Kpr ap, (Rk, hm, 7€, 71)
/=D n Do D™ Z >0
™o TZEQTO-,-
hmeQ,.p,

where, in view of (2.13) and Theorem 3.1

(— )MO 17.\/7 e—¢0 o—(Tl—0—7i)?/(T*Dy) T —0—T1
K hk, h y4 Hoppoo1 (———
.M ( m, 7(,7i) = 22Mo=1( My — 1)! / ™ —0—Ti 2Mo 1( 7Dy )
- 40 ki —m; 2b;0 40 ki —m, 2b;0
P J J J Pm ) J J J .
Xj];[l( M<h2D7 \/,13 h\/ﬁv J) M<h2D7 \/5 h\/’57Q j>>d0

Again, by making the substitution (2.10), the integrals are transformed to

(C)Motprty/Dy [ e WSO B0 goert/ (e T gy 4 grinhe)
22M0(M0 —1)! /(1 + orsnh€) 2ngp—1( N )
% cosh § ﬁ ( 47/ kj —mj 2bj7’€ )
1+ cosh(msinh¢) 13\ AID(1+ e msinhe)’ /D /D1 4 e msinhe)

M( 47/ . kj—mj_ 2()]'7'6 Q ))df
h?D(1+ e msmh&)” /D py/D(1 4 e-msinhg) T

with integrands decaying doubly exponentially. Then the trapezoidal rule with step size x and
S € N gives

KMMO(hk hm T/ TZ)

-0

e sinh(ks 7 sinh(ks .
_ (=DM tartky/Dy Z ortfa, € /AT i)/ D Hon 1(5/(1 + e sinh(xs)) 1
22M0 MO _ 1 f/ 1 + eﬂ'smh(/cs)) —q 0~ \/'ZTO

@ Arl  kj—m; 27l B Arl  kj—m; 27l
stH( (ashQD f ash\/lz—),ij) (I)M(ashQD’ \/5 ash\/—7Qm])>

J=1

with wy, as given in (2.11). By using the separate representation (2.9) of f we derive

™ YMo=17 0k o—crt/a
H[PQ](M()f)(hk,TZ)z,/Dn 2(2M0 o= 1)1 Z we e CTE as

((/(1+e7rsmh HS)) l) /'DO Z/(l _|_ e7rsmh HS

. P n
Z 6/( + e7rs1nh(ns)) —i HQMO*l( \/7 z_: ]:[ k]ﬂ'f T as)

‘riEQTO.,—

10



(p)

where now the one-dimensional sums T} are given by

Tj(p)(k:j,TE,Ti,as Z f (hmj, Ti)

hm;el;
470 k‘ —m;y _ ijTE . 410 k‘j — mj _ 2bj7’€
(oG ™ 5w ™) "G D a0

Thus we get a computable approximation of the initial value problem (1.1)

o—CT P n
wn (W, 70) ~ /j Zapnsj(p (k;, 7€)
7rsmh(/<s - P n
=+ Q\Z%S:Z_Swse_”g/as Z UQMO(E/(l—i_e\/— )Z 1;[ kj,Tﬁ Ti, as) ,

Tz‘EﬁmT
which has the order O((hv/D)*M + (7y/Dg)*M0) for (x,t) € R™ x [0,T], T > 0.

Remark 3.1. Consider the initial value problem for the parabolic equation

@—AV Vxu+2b-Vyu+cu= f(x,t) in R*" xRy (3.2)

ot
u(x,0) = g(x) on R"™. (3.3)

where the matriz A of order n is supposed to be real, symmetric and positive definite. There exist
an orthogonal matriz O and a diagonal matriz D with positive entries such that A = OT D?O.
By introducing new coordinates € = D™1Ox we have Vi = OTD_1V§ and AVx - Vx = Ag¢.
Hence, if we set U(€,t) = u(x,t), F(&,t) = f(x,t), G(&) = g(x), B = D~'Ob, then the problem
(3.2), (3.3) reduces to the initial value problem
ou . n
B —AU+28-VeU+cU= F(§,t) in R"xRy (3.4)
U(€,0) = G(&) on R™ (3.5)

The solution of (3.4), (3.5) can be represented as

U, t) =Pt ) + / (PEBF(, 5)) (&t —s)ds (3.6)
0

where
—ct

le—y—2p¢?
PPN = o [T )y
R’VL
An approzimate solution of (3.4),(3.5) can be obtained by using the generating function [18,
p.55]n(x) = ﬂ*”/QLS\Z/fl)(\x]Z)e*'x'Q, where Ly) are the generalized Laguerre polynomials defined
by

_ k
Wy Sy (d —y, ket _

11



and 7(t) = nang (t) (¢f. [18, p. 120] ).
In order to get an approximate formula which can be used in high dimensions we use the
quasi-interpolants

n

)~ 5 S Glm) [[ o (gl;/’%“)

mezmn Jj=
1 . t—71i\ 1 & —hm;
P&, 1) ~ F(hm, o H)
(5 ) \/W ZEZZ ( m TZ)nZMo (T\/ZTO>]1;[1772M< h\/ﬁ
mezZm

From (3.6) we obtain the following approximation of U at the nodes (hk,T{)

- 410 hk; — hm; — 28,74
Up.+(hk, 70) = D %ﬂ hm)]l;[lPM<h2D’ j WJT) ; )
Tl
o TK—TZ—J - 40  hkj —hm; — 2850
ﬁ"l)ﬂ)"% (hm, 7i O/e 772M0( )1;[ (hZD’ J h\/% J )da,
mezZ"

where we denote
Pr(0,¢) = e /IO Ry (0,¢) .

By making the substitution (2.10), the trapezoidal rule with step size k provides the quadrature
of the integrals

Tl o —y (1 —1/as) — i\ Arl ki —m; 26T
2 s:zswse e VDo >,-131PM(CL8’127>’ NN _ashjﬁ)>

with wg, as given in (2.11). Assuming separated representations

P n

P n
=S [[6V ) +06), FEn=> 8]F" &t +0e),
j=1 j

p=1

we derive an approzimation up, . (hA~'k, 7€) = Uy, - (hk, 7€) of the solution u of (3.2)

410 hkj— hm; — 2B;7¢
up, - (hA 1k, 70) o GP (hk;) P i j J
: EEE N | DAL vy

S
TR (1—-1/as) —1i
4 E —crt/as <—8)
NGy ¢ Dy /Dy

€L

n

470 k;i —m; 2874
xZﬁpH Z FJ(]D (hmgj, Ti) PM< si;D’ ]\/T)m] — asij:/—ﬁ)

p=1 Jj=1m,;€Z
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4 Numerical Results

4.1 Initial-value problem

In this Section we provide results for the approximation of the solution of the problem

% —Axu=0, (x,t)eR"xRy; wu(x,0)=gx), xeR" (4.7)
with supp g C [p, q]",
g(x) = [Jwx;),  x=(x1,.zn) € [p,q]" (4.8)
j=1

and w € CN([p, q]).

If w € CN([p,q]), by using Hestenes reflection principle we construct an extension of w(x)
outside [p, q] as

( N+1 .
> caw(—as(r—q)+q), g<uz< q+—qu
s=1
w(z) = w(z), p<z<gq (4.9)
N+1 .
> caw(—as(x —p) +p), —%Saﬁﬂ?
s=1

where {a1, ..., an+1 } are different positive constants, A = maxj<s<n41 o and ey = {c1,...,cN+1}

satisfy the system
N+1

> e(—a) =1, k=0,..,N.
s=1

For example, if oy = 1/2° (extension 1) we have

s = {15, 54,40}, cq = {5617, —10098,7, 7480, —95040/7, 52224 /7},
c6 = {522665/1519, —5644782/217, 41813207,
— 265636800/49, 145966080,/7, —7114162176/217, 25490882560,/1519};

if oy = 1/s (extension 2) then

o = {6,—32,27}, ¢4 = {15, —640, 3645, —6144, 3125},
c6 = {28, —7168, 153090, —917504, 2187500, —2239488, 823543};

if oy = s (extension 3) then
co = {6, 8,3}, cq = {15, 40,45, 24,5}, cg = {28, —112,210, —224, 140, —48, 7}.
Obviously w € CN([p — T2, g+ S52]) and

19wy (o g4 5] = llwllway pp.g) -
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Hence an extension of g(x) with preserved smoothness is
n
g(x) = [T @(=)
j=1
and an approximate solution of (4.7) is given by

Parn(9)(x,t) =

1 _ 4 x;, —hm; p—hm,; 4 xz; —hm; q— hm,;
-7 hm;j)(® J J I _ @ J j i)
w3 wtm)(outep 75575 ~ o “op wp )

j=1 hm; el
(4.10)

We provide results of some experiments which show accuracy and numerical convergence
orders of the method. If we assume [p,¢] = [-1,1] and w(z) = e~e’tar iy (4.8), then problem
(4.7) has exact value

2 2
a t+azj Ij

u(x,t) = ﬁ S (erfc (2(@ —2)tt - 1) — erfc (2(@ +2tta - 1>> .
o VAl 2VtV/4t + 1 2VtV/At + 1
In Table 1 we compare the values of the exact solution and the approximate solution at some
points in dimensions n = 3,10,100. We choose the Hestenes extension corresponding to as =
1/s.

Table 2 shows that the method is effective also for higher space dimensions. We report on
exact values and absolute errors for the solution of (4.7) at some grid points for space dimensions
n = 103,10, 10°. We considered Hestenes extension with to oy = 1/2°. The approximations
in Table 1 and 2 have been computed on a uniform grid with step size h = 1/80 and N = 6.

We assumed D = 4 in order to have the saturation error comparable with the double precision
rounding errors.

In Tables 3, 4 and 5 we show that formula (4.10) approximates the exact solution with the
predicted approximate orders (2.5) in the space dimensions n = 3,10, 102,103,104, 10°. In Table
3 we assumed w(z) = e~ and the Hestenes extension o = s; in Tables 4 and 5 we assumed

w(z) = et®* which gives the exact solution of (4.7)
n S A(a+ 1)t 1 A(a— 1)t 1
4t—1 . — — .
u<x,t>=He(erﬁ< (a+ 1)+, >_erﬁ( (-1t +a;+ ))
o2V 2VtV/4t — 1 2v/tV/At — 1
erfi denotes the imaginary error function defined as erfi(z) = —ierf(iz). We choose a =

0.575770212624068, the extension w(x) = w(z) in Table 4 and the Hestenes extension with
as = 1/2% in Table 5. For very high dimensional cases the second order formula fails, whereas
the sixth order formula approximates with the predicted approximation rate. In all the cases
the numerical results coincide with those if using other Hestenes extensions.

4.2 Nonhomogeneous problem

Here we provide results for the approximation of the solution of the problem

ou

5 Axu = f(x,t), (x,t) e R" xR, u(x,0)=0, xeR" (4.11)
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dimension‘ x ‘

exact value

approximation

absolute error

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

0.86121990655
0.93676607451
0.99999999999
1.04761443148
1.07700323115
1.08649719117
1.07552092225
1.04465031641

0.86121990666
0.93676607463
1.00000000013
1.04761443163
1.07700323130
1.08649719133
1.07552092240
1.04465031656

1.1056E-10
1.2297E-10
1.3395E-10
1.4293E-10
1.4940E-10
1.5301E-10
1.5354E-10
1.5098E-10

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

0.86121990655
0.93676607451
0.99999999999
1.04761443148
1.07700323115
1.08649719117
1.07552092225
1.04465031641

0.86121990693
0.93676607493
1.00000000044
1.04761443195
1.07700323164
1.08649719167
1.07552092274
1.04465031689

3.7976E-10
4.1578E-10
4.4652E-10
4.7038E-10
4.8604E-10
4.9261E-10
4.8971E-10
4.7751E-10

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

n = 100

0.86121990655
0.93676607451
0.99999999999
1.04761443148
1.07700323115
1.08649719117
1.07552092225
1.04465031641

0.86121991039
0.93676607869
1.00000000446
1.04761443616
1.07700323596
1.08649719603
1.07552092706
1.04465032109

3.8407E-09
4.1804E-09
4.4652E-09
4.6804E-09
4.8142E-09
4.8589E-09
4.8119E-09
4.6757E-09

Table 1: Exact, approximated values and absolute errors for the solution of (4.7) with w(x)

(&
using Ps 0.0125, in (2,0, ...,

—z?+az i

with supp f C [-1,1]" x R..

Assuming (2.9), the approximate solution of (4.11) is

f/(l 4 sinh(ns))

(MM : or s T/7+rov/Do
My, (f)(hk,7l) = Ws:z_:sws _ %:F 772Mo<
xz SIS £2(my i) « < (ol ( ﬁ;”ﬂ %m)

3=1|m;|<1/h+rVD

with f;(x,t) = v(t)w

15

=

VDo

) (

—my

T/

VD

" ash?D

i(x), suppw; C [—1,1], i = 1,2, with v(t) = t, w1 (z) = ze” and we(x)

))-

First we demonstrate the effectiveness of the method on 1—dimensional examples, where an
explicit solution can be obtained in a closed analytic form. We computed the solution of (4.11)
=e”.

n (4.8), a = 2.97109077126449, and the Hestenes extension corresponding to as = 1/s
0) eR™, ¢ = 1.



n | 1000 | 10000 | 100000

T ‘ exact value error ‘ exact value error ‘ exact value error

-0.4 0.861219  3.8451E-08 0.861219  3.8455E-07 0.861219  3.8455E-06
-0.2 0.936766 4.1826E-08 0.936766 4.1829E-07 0.936766 4.1829E-06
0.0 0.999999  4.4652E-08 0.999999  4.4652E-07 0.999999  4.4652E-06
0.2 1.047614 4.6781E-08 1.047614 4.6779E-07 1.047614 4.6779E-06
0.4 1.077003  4.8096E-08 1.077003  4.8091E-07 1.077003  4.8091E-06
0.6 1.086497  4.8522E-08 1.086497 4.8515E-07 1.086497 4.8515E-06
0.8 1.075520 4.8034E-08 1.075520 4.8026E-07 1.075520 4.8025E-06
1.0 1.044650 4.6657E-08 1.044650 4.6647E-07 1.044650 4.6646E-06

Table 2: Exact values and absolute errors for the solution of (4.7) with w(x) = e~ 7 AT in (4.8),
a = 2.97109077126449, at (z,0,...,0) € R", t = 1, using Ps0.0125 and the Hestenes extension
corresponding to as = 1/s.

We extend w;(z) outside [—1,1] by (4.9) and v(t) outside R by
v(t), t>0

v(t) =< N1

Z csv(—agt), t<0
s=1

where {cs} and {as} are defined in Section 4.1.
(0,0)
[-1,1
points (x,t) of the grid. In numerical calculation we used the x—step size h = 0.025, the t—step
size 7 = 0.05 and the Hestenes extension with ag = s, T' = 2. The computational time on a 2 cpu
Xeon Quad-Core processor with 2.4 Ghz is 0.26 seconds. If the dimension n is greater than 1, the
approximation of the potential requires to compute 2.5 Pn of one-dimensional operations and

then the computational time scales linearly in the space dimension n. In Tables 7 and 8 we report
(0,0
[_17
H}EAf’M)fg for M = 1,2,3, with w = w, v = v (Table 7) and the Hestenes extension a; = 1/s
(Table 8), T'= 1. Other parameters were D = Dy = 4, and x = 0.01, S = 611 in the trapezoidal

rule.

(3

] f1 and the approximate value ”;flh :3) f1 at some

In Table 6 we compare the exact value H z

on the absolute errors and the approximation rates for H )1] fo. We used the approximation

The method is effective also if the dimension n is greater than 1, but we don’t know any closed
form analytic solution for right hand sides f(x,t) with nonvanishing values on the boundary
J[P, Q]. Therefore we conclude this Section with some results for right hand sides

J p=1j=1

f(x,t) = (% — A [Twtae) = ST AP 5,0, x = (21, 20) € [1,1]

=1
O =wle) i G#p Ot = () o) (412)

where suppw C [—1,1] and suppv C Ri. If w(+l) = wy(£1l) = 0 and v(0) = 0, then the
solution of (4.11) is u(x,t) = [[j_, w(z;)v(t).
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h1 error rate error rate error rate

10 | 0.466E-01 0.127E-02 0.351E-04

20 | 0.120E-01 1.95 | 0.828E-04 3.93 | 0.635E-06 5.79

n=3 40 | 0.304E-02 1.98 | 0.524E-05 3.98 | 0.100E-07 5.98
80 | 0.761E-03 1.99 | 0.328E-06 3.99 | 0.157E-09 5.99

160 | 0.190E-03 1.99 | 0.205E-07 3.99 | 0.246E-11 5.99

320 | 0.476E-04 1.99 | 0.128E-08 3.99 | 0.386E-13  5.99

10 | 0.112E+00 0.325E-02 0.928E-04

20 | 0.303E-01 1.88 | 0.213E-03 3.93 | 0.163E-05 5.82

n =10 40 | 0.774E-02 197 | 0.134E-04 3.98 | 0.259E-07 5.98
80 | 0.194E-02 1.99 | 0.843E-06 3.99 | 0.406E-09 5.99

160 | 0.487E-03 1.99 | 0.527E-07 3.99 | 0.635E-11 5.99

320 | 0.122E-03 1.99 | 0.330E-08 3.99 | 0.989E-13 6.00

10 | 0.177E-01 0.100E-02 0.295E-04

20 | 0.780E-02 1.18 | 0.668E-04 3.90 | 0.513E-06 5.84

n = 100 40 | 0.231E-02 1.75 | 0.423E-05 3.98 | 0.814E-08 5.97
80 | 0.602E-03 1.93 | 0.265E-06 3.99 | 0.128E-09 5.99

160 | 0.152E-03  1.98 | 0.166E-07 3.99 | 0.200E-11  5.99

320 | 0.382E-04 1.99 | 0.104E-08 3.99 | 0.311E-13 6.00

Table 3: Absolute errors and approximation rates for the solution of (4.7) with w(z) = e in
(4.8), at the point x = (0.1,0,...0), t = 0.02 using the approximation formula (4.10) and the

Hestenes extension with ag = s.

In Table 9 we compare the values of exact and approximate solution of (4.11) at some points,
in dimensions n = 3,10, 100, 1000, if w(z) = e*(2? — 1)? and v(t) = t. Table 10 shows that the
algorithm is successful also for much higher space dimensions. The approximations have been
computed using 7—7&?25 0.0125 on a uniform grid with z—step size h = 0.025 and t—step size
7 = 0.025, with M = Mo = 3, T'= 2 and the Hestenes extension corresponding to as = 1/25.
The parameters were D = Dy = 4, and x = 0.02, S = 305 in the trapezoidal rule.

In Table 11 we report on the absolute errors and the approximation rates in the space di-
mensions n = 3,10%, i = 1,...,7 for the solution of (4.11). We assumed w(z) = cos?(mx/2) and
v(t) =1 —e~tin (4.12). The approximations have been computed by ﬁg{‘f’M) for M =1,2,3,
T = 4 and the Hestenes extension with oy = 1/s. The results show that, for very high dimen-
sions, the second order formula fails whereas the forth and sixth order formulas approximate
with the predicted approximation rates and the error scales linearly in the space dimension.
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0.0000 2 | 0.375668941931 0.375668941588 | 0.343E-09
0.2000 2 | 0.523215078618 0.523215078096 | 0.522E-09
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| e error rate error rate error rate

10 10 | 0.372E-02 0.249E-04 0.830E-07

20 20 | 0.928E-03 2.00 | 0.155E-05 4.00 | 0.129E-08 6.00

40 40 | 0.232E-03 2.00 | 0.966E-07 4.00 | 0.201E-10 6.00

80 80 | 0.579E-04 2.00 | 0.604E-08 4.00 | 0.315E-12 5.99

160 160 | 0.145E-04 2.00 | 0.377E-09 4.00 | 0.477E-14 6.04

: (0,0) : 77(3,3) ~ _

Table 7: Exact, approximated values and rate for 7—[[71 1]f2 (0.2,1) using H g15.0.0125 and w = w,
v =0.

R ot error rate error rate ‘ error rate

10 10 | 0.450E-02 0.246E-04 0.816E-07

20 20 | 0.124E-02 1.99 | 0.154E-05 3.99 | 0.128E-08 5.98

40 40 | 0.309E-03 1.99 | 0.965E-07 3.99 | 0.201E-10 5.99

80 80 | 0.773E-04 1.99 | 0.604E-08 3.99 | 0.310E-12 6.01

160 160 | 0.193E-04 2.00 | 0.377E-09 3.99 | 0.268E-13 3.53

Table 8: Exact, approximated values and rate for ’HEE’I({ )1] f2(0.2,1) using 7716%%530.0125 and the
Hestenes extension corresponding to as = 1/s.

| | n=3 | n =10
T t ‘ exact value ‘ approximation error ‘ approximation error
-0.2 2 | 1.509084524073 | 1.509084524513 0.439E-09 | 1.509084526823 0.275E-08
0.0 2 | 2.000000000000 | 2.000000000713 0.713E-09 | 2.000000003735 0.374E-08
0.2 2 | 2.251289563841 | 2.251289564812 0.971E-09 | 2.251289568228 0.439E-08
0.4 2| 2.105263013311 | 2.105263014485 0.117E-08 | 2.105263017766 0.445E-08
0.6 2| 1.492679721280 | 1.492679722590 0.131E-08 | 1.492679725094 0.381E-08
0.8 2| 0.576860208665 | 0.576860210112 0.145E-08 | 0.576860211331 0.267E-08
1.0 2 | 0.000000000000 | 0.000000001729 0.173E-08 | 0.000000001694 0.169E-08
1.2 2 | 0.000000000000 | 0.000000001057 0.106E-08 | 0.000000000584 0.584E-09
| | n =100 | n = 1000
T t ‘ exact value ‘ approximation error ‘ approximation error
-0.2 2 | 1.509084524073 | 1.509084552907 0.288E-07 | 1.509084812981 0.289E-06
0.0 2 | 2.000000000000 | 2.000000038297 0.383E-07 | 2.000000382975 0.383E-06
0.2 2| 2.251289563841 | 2.251289607140 0.433E-07 | 2.251289995125 0.431E-06
0.4 2| 2105263013311 | 2.105263054196 0.409E-07 | 2.105263417014 0.404E-06
0.6 2| 1.492679721280 | 1.492679751068 0.298E-07 | 1.492680008316 0.287E-06
0.8 2 | 0.576860208665 | 0.576860221795 0.131E-07 | 0.576860321260 0.113E-06
1.0 2 | 0.000000000000 | 0.000000001648 0.165E-08 | 0.000000001624 0.162E-08
1.2 2 | 0.000000000000 | 0.000000000052 0.515E-10 | 0.000000000000 0.281E-13

Table 9: Exact, approximated values and absolute errors for the solution of (4.11) with f(x,?)
in (4.12) where w(z) = e*(2? — 1) and v(t) = t, at the point (z,0,...,0,¢) € R" x R, using

7/(3,3)

Ho.0125.0.0125 and the Hestenes extension corresponding to as
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‘ ‘ n = 10* ‘ n = 10° ‘ n = 108 ‘ n =107

T t ‘ exact value ‘ error ‘ error ‘ error ‘ error
-0.200 2 | 1.50908452 | 0.289E-05 | 0.289E-04 | 0.289E-03 | 0.289E-02
0.000 2 | 2.00000000 | 0.383E-05 | 0.383E-04 | 0.383E-03 | 0.383E-02
0.200 2| 2.25128956 | 0.431E-05 | 0.431E-04 | 0.431E-03 | 0.432E-02
0.400 2| 2.10526301 | 0.403E-05 | 0.403E-04 | 0.403E-03 | 0.404E-02
0.600 2| 1.49267972 | 0.286E-05 | 0.286E-04 | 0.286E-03 | 0.286E-02
0.800 2| 0.57686021 | 0.111E-05 | 0.110E-04 | 0.110E-03 | 0.111E-02
1.000 2 | 0.00000000 | 0.162E-08 | 0.161E-08 | 0.161E-08 | 0.161E-08

Table 10: Absolute errors for the solution of (4.11) with f(x,t) in (4.12) where w(x) = (2% —1)

and v(t) = t, at the point (,0,...,0,t) € R" x Ry using 7—[((5’6%570.0125 and the Hestenes extension
corresponding to as = 1/2°.

22



[ St error rate error rate error rate

40 20 | 0.868E-02 0.252E-04 0.485E-07

80 40 | 0.221E-02 197 | 0.165E-05 3.93 | 0.824E-09 5.87
n=3| 160 80 | 0.558E-03 1.98 | 0.106E-06 3.96 | 0.134E-10 5.94
320 160 | 0.140E-03 1.99 | 0.667E-08 3.98 | 0.210E-12  5.99
640 320 | 0.355E-04 1.98 | 0.409E-09 4.02 | 0.130E-13 5.66

40 20 | 0.268E-01 0.834E-04 0.171E-06

80 40 | 0.678E-02 1.98 | 0.523E-05 3.99 | 0.269E-08  5.99
n =10 | 160 80 | 0.170E-02 1.99 | 0.327E-06 3.99 | 0.421E-10 5.99
320 160 | 0.425E-03 1.99 | 0.205E-07 3.99 | 0.660E-12 5.99
640 320 | 0.107E-03 1.99 | 0.127E-08 4.01 | 0.142E-13 5.54

40 20 | 0.235E4-00 0.840E-03 0.173E-05

80 40 | 0.658E-01 1.83 | 0.527E-04 3.99 | 0.271E-07  5.99
n=10% | 160 80 | 0.169E-01 1.96 | 0.329E-05 3.99 | 0.423E-09 5.99
320 160 | 0.426E-02 1.99 | 0.206E-06 3.99 | 0.664E-11 5.99
640 320 | 0.107E-02 1.99 | 0.129E-07 4.00 | 0.135E-12 5.61

40 20 | 0.847E+00 0.837E-02 0.173E-04

80 40 | 0.477E+00 0.82 | 0.330E-04 3.99 | 0.271E-06 5.99
n=10%| 160 80 | 0.156E+00 1.61 | 0.527E-03  3.99 | 0.424E-08 5.99
320 160 | 0.418E-01 1.89 | 0.206E-05 3.99 | 0.664E-10 5.99
640 320 | 0.106E-01 1.97 | 0.129E-06 4.00 | 0.121E-11  5.77

40 20 | 0.888E+00 0.803E-01 0.173E-03

80 40 | 0.888E+00 0.00 | 0.526E-02 3.93 | 0.271E-05 5.99
n=10%* | 160 80 | 0.759E+00 0.22 | 0.330E-03  3.99 | 0.424E-07 5.99
320 160 | 0.340E+00 1.16 | 0.206E-04 3.99 | 0.663E-09  5.99
640 320 | 0.101E4-00 1.75 | 0.129E-05 3.99 | 0.120E-10 5.78

40 20 | 0.888E+00 0.544E4-00 0.173E-02

80 40 | 0.888E+00 0.00 | 0.512E-01 3.40 | 0.271E-04 5.99
n=10° | 160 80 | 0.888E+00 0.00 | 0.329E-02  3.95 | 0.424E-06 5.99
320 160 | 0.881E+00 0.01 | 0.206E-03  3.99 | 0.653E-08 6.01
640 320 | 0.622E4-00 0.50 | 0.129E-04 3.99 | 0.904E-10 6.17

40 20 | 0.888E+-00 0.888E+00 0.171E-01

80 40 | 0.888E+00 0.00 | 0.398E400 1.15 | 0.271E-03  5.98
n=10% | 160 80 | 0.888E+00 0.00 | 0.324E-01  3.61 | 0.423E-05 6.00
320 160 | 0.888E-+00 0.00 | 0.206E-02 3.97 | 0.607E-07 6.12
640 320 | 0.888E400 0.00 | 0.129E-03 3.99 | 0.120E-08  5.66

40 20 | 0.888E+00 0.888E4-00 0.157E4-00

80 40 | 0.888E-+00 0.00 | 0.886E+00 0.00 | 0.271E-02  5.86
n =107 | 160 80 | 0.888E+00 0.00 | 0.276E4+00 1.68 | 0.423E-04 6.00
320 160 | 0.888E+00 0.00 | 0.204E-01 3.75 | 0.568E-06 6.21
640 320 | 0.888E4-00 0.00 | 0.129E-02  3.98 | 0.654E-07 3.11

Table 11: Absolute errors and approximation rates for the solution of (4.11) with f(x,t) in
(4.12) where w(z) = cos?(mx/2) and v(t) = 1 — e~t, at the point x = (0.2,0,...,0); t = 4 using

ﬁgA;[’M) and the Hestenes extension corresponding to as = 1/s .
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