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Abstract. We introduce a class of weak solutions to the quasilin-
ear equation −∆pu = σ|u|p−2u in an open set Ω ⊂ Rn with p > 1,
where ∆pu = ∇ · (|∇u|p−2∇u) is the p-Laplacian operator. Our
notion of solution is tailored to general distributional coefficients
σ which satisfy the inequality

−Λ
∫

Ω

|∇h|pdx ≤ 〈|h|p, σ〉 ≤ λ
∫

Ω

|∇h|pdx,

for all h ∈ C∞0 (Ω). Here 0 < Λ < +∞, and

0 < λ < (p− 1)2−p if p ≥ 2, or 0 < λ < 1 if 0 < p < 2.

As we shall demonstrate, these conditions on λ are natural for
the existence of positive solutions, and cannot be relaxed in gen-
eral. Furthermore, our class of solutions possesses the optimal local
Sobolev regularity available under such a mild restriction on σ.

We also study weak solutions of the closely related equation
−∆pv = (p − 1)|∇v|p + σ, under the same conditions on σ. Our
results for this latter equation will allow us to characterize the class
of σ satisfying the above inequality for positive λ and Λ, thereby
extending earlier results on the form boundedness problem for the
Schrödinger operator to p 6= 2.

1. Introduction

This paper concerns a study of weak solutions to certain quasilinear
elliptic equations, and closely related integral inequalities with distri-
butional weights. Let p ∈ (1,∞) and let Ω ⊂ Rn be an open set, with
n ≥ 1. The model equation we consider is given by

(1.1) − div(|∇u|p−2∇u) = σ|u|p−2u in Ω.
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Here σ is a distribution which lies in the local dual Sobolev space

L−1,p′

loc (Ω) (see Section 3 for definitions). The sole condition we im-
pose on σ is the validity of the following weighted Sobolev-Poincaré
inequality:

(1.2) |〈|h|p, σ〉| ≤ C

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω).

We will see that there is a two way correspondence between the in-
equality (1.2) and the existence of positive solutions to (1.1) belonging
to a certain class. Furthermore, our class of weak solutions has the
optimal local Sobolev regularity under the condition (1.2).

In the case p = 2, the equation (1.1) reduces to the time independent
Schrödinger equation, and condition (1.2) becomes the form bounded-
ness property of the potential σ (see [RS75], Sec. X.2). Even in this
linear framework our results are very recent; they were obtained in
[JMV11] where a further discussion can be found. The current paper
contains a complete counterpart for quasilinear operators of the pri-
mary results of [JMV11]. This extension is by no means immediate,
and many new ideas are required to handle the non-linear case.

In comparison with the existing literature for (1.1), the contribution
of this paper is that no additional compactness conditions will be im-
posed on σ. In particular, we are interested in developing a theory of
positive solutions for (1.1) under such conditions on σ so that standard
variational techniques do not appear to be applicable. Furthermore,
we do not separate the positive and negative parts of σ, and hence we
will permit highly oscillating σ, along with strong singularities, in what
follows.

The equation (1.1) has been attacked by a variety of techniques.
For instance, Smets [Sme99] developed a suitable notion of concen-
trated compactness (building on the work of P. L. Lions) to study
(1.1). In order to carry this out, an additional hypothesis beyond (1.2)
is imposed on σ. A second method we mention is an adaptation of
the methods of Brézis and Nirenberg [BN83] by Brézis, Marcus and
Shafrir, see [BM97, MS00], in order to study (1.1) with Hardy-type
potentials σ(x) = dist(x, ∂Ω)−p in a bounded domain Ω. This second
approach makes use of the local compactness properties of σ in a pro-
found way. More recently, a generalization to quasilinear operators of
the Allegretto-Piepenbrink theorem for the Schrödinger operator has
been carried out by Pinchover and Tintarev [PT07, Pin07]. For addi-
tional interesting works on the equation (1.1), see [AFT04, SW99] and
references therein.
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These approaches show the subtleties contained in the condition (1.2)
in general. On one hand we do not have local compactness, and on
the other hand there is no global dual Sobolev condition contained
in (1.2). It is known that under the condition (1.2), the equation
(1.1) may display some of the characteristics found in equations with
critical Sobolev exponents. This was observed by Tertikas [Ter98] in
the classical case p = 2.

In this paper, we do not attempt to adapt tools developed for el-
liptic problems with critical exponents. Instead, our approach hinges
on obtaining quantitative information on the doubling properties of a
sequence of solutions to equations which approximate (1.1). The ar-
gument owes most to the regularity theory of elliptic equations with
measure data, in particular the paper of Mingione [Min07]. We describe
our method in more detail once our primary theorem is stated.

Parallel to our study of (1.1), we will consider (possibly sign chang-
ing) weak solutions of

(1.3) −div(|∇v|p−2∇v) = (p− 1)|∇v|p + σ in Ω.

This equation is of interest in its own right in nonlinear PDE, for
instance, see the paper of Ferone and Murat [FM00], and references
therein. Related problems are considered in [AHBV09, Por02, MP02,
GT03, ADP06, PS06]. The critical p-growth in the gradient term ap-
pearing on the right hand side of (1.3) means a strong a priori bound
is required to overcome weak convergence issues and prove the exis-
tence of solutions to (1.3). In this paper, we employ a well-known
connection between solutions of (1.3) and (1.1) with the aid of the
substitution v = log(u), where u a positive solution of (1.1). This
substitution is known to be delicate, especially when going from the
equation (1.3) to the equation (1.1), see [FM00]. There are several
recent works devoted to questions related to this substitution, see for
example [ADP06, AHBV09, KKT11] and references therein.

Our second result, Theorem 1.4, illustrates the utility of our work
on the equations (1.1) and (1.3). It regards a characterization of the
Sobolev-Poincaré inequality (1.2). This result is a direct extension of
the p = 2 case already studied in [MV02a]. Our characterization of
this inequality for p 6= 2, which is of substantial interest, comes as a
relatively straightforward corollary of our main results for the elliptic
equations.

Since it is the effect of the lower order term σ|u|p−2u on the dif-
ferential operator which is of most interest here, we have introduced
equations (1.1) and (1.3) with the p-Laplacian operator. However, our
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methods extend to quasilinear operators with more general structure
discussed in Section 2.

It is not obvious how one makes sense of solutions to equation (1.1)
under the sole condition (1.2), while for equation (1.3) the situation is
more straightforward. We make the following definition:

Definition 1.1 (Weak solutions). Let σ ∈ L−1,p′

loc (Ω).

(i) A function u is a weak solution of (1.1) if both u ∈ L1,p
loc(Ω) and

|u|p−2u ∈ L1,p
loc(Ω), and (1.1) holds in the sense of distributions. In

other words, for any function ϕ ∈ C∞0 (Ω) one has∫
Ω

|∇u|p−2∇u · ∇ϕdx = 〈σ, |u|p−2uϕ〉.

(ii) A function v is a weak solution of (1.3) if v ∈ L1,p
loc(Ω), and (1.3)

holds in the sense of distributions. This means that for any ϕ ∈ C∞0 (Ω),
one has ∫

Ω

|∇v|p−2∇v · ∇ϕdx = (p− 1)

∫
Ω

|∇v|pϕdx+ 〈σ, ϕ〉.

Using Definition 1.1, all terms in (1.1) and (1.3) are well defined as
distributions. A function u ∈ L1,p

loc(Ω) will be called positive if there
exists E ⊂ Ω with u(x) > 0 for all x ∈ Ω\E and capp(E,Ω) = 0 (see
(1.11)). This is not an artificial definition, as there are simple examples
of σ which should be included in our study, for which all positive weak
solutions have an interior zero.

The two inequalities contained in (1.2) are responsible for different
properties of solutions to (1.1). We therefore separate them into an
upper bound

(1.4) 〈|h|p, σ〉 ≤ λ

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω),

and a lower bound

(1.5) −〈|h|p, σ〉 ≤ Λ

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω).

There will be no smallness condition required on the parameter Λ > 0
in (1.5) at any point in the paper.

We are now in a position to state our main theorem. Let p# be
defined by p# = (p− 1)2−p if p ≥ 2, and p# = 1 if 1 < p ≤ 2.
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Theorem 1.2. The following statements hold:

(i) Suppose that σ ∈ L−1,p′

loc (Ω) satisfies (1.4) with λ ∈ (0, p#), and
(1.5) with Λ > 0. Then there exists a positive weak solution u of (1.1)
(see Definition 1.1) satisfying

(1.6)

∫
Ω

|∇u|p

up
|h|pdx ≤ C0

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω),

for a constant C0 = C0(Λ, p). Furthermore, if v = log(u), then v ∈
L1,p

loc(Ω) is a weak solution of (1.3) satisfying

(1.7)

∫
Ω

|∇v|p|h|pdx ≤ C0

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω).

(ii) Conversely, if there is a solution v ∈ L1,p
loc(Ω) of (1.3) so that (1.7)

holds for a constant C0, then the inequality (1.4) holds with λ = 1 and
(1.5) holds for a constant Λ = Λ(C0).

In part (i) of Theorem 1.2, the local regularity of the solution to (1.1)
is optimal (i.e. cannot be replaced by L1,q

loc(Ω) for any q > p). This is
the case even when p = 2, see [JMV11].

Remark 1.3. The condition 0 < λ < p# is sharp in order to obtain a
solution of (1.1) in the sense of Definition 1.1. If Ω = Rn, this can be
seen from working with the potential

σ = t · c0|x|−p, for c0 =
(n− p

p

)p
, and 0 < t ≤ 1.

If t = 1, then (1.4) holds with best constant λ = 1 by the classical mul-
tidimensional variant of Hardy’s inequality. An elementary calculation
shows that the equation (1.1) has a positive solution u(x) = |x|γ, with
γ = γ(t, n, p), for all t ∈ (0, 1].

If p ≥ 2 and t = (p − 1)2−p, we may choose γ = p−n
p(p−1)

, in which

case, the solution u(x) = |x|γ is the unique (up to constant multiple)
positive solution of (1.1) in L1,p

loc(R
n) (see [Pol03, PS05]). Notice that

up−1 6∈ L1,p
loc(R

d), and hence u is not a solution in the sense of Definition
1.1. For all p > 1 and t = 1, we have γ = p−n

p
, and the resulting solution

u is the unique (up to constant multiple) positive distributional solution
of (1.1) (see [PS05]). Note that |x|(p−n)/p does not lie in L1,p

loc(Ω), and
therefore the assumption that λ < 1 in Theorem 1.2 cannot be relaxed.

Notice that the above example also shows that one cannot expect
global integrability properties of solutions of (1.1) (at least in un-
weighted Sobolev spaces).

The solution of (1.1) obtained in Theorem 1.2 may possess improved
integrability properties if one has better control of the parameter λ > 0.
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This follows from a slight modification of the method of Brézis and Kato
[BK79], and is carried out in Section 5.

The heart of the proof of Theorem 1.2 lies in proving part (i). Here
the proof breaks off into two parts. The first part consists of estab-
lishing local Lp-estimates on the gradient of a suitable approximating
sequence. This follows a similar path to the linear case p = 2 pre-
viously presented in [JMV11], where doubling properties are used in
order to compensate for a lack of compactness. The second part of
the proof concerns the passage to the limit, where there are significant
hurdles. We follow the general scheme spelled out in the important pa-
pers [BBGPV95, DMMOP] in reducing matters to certain convergence
in measure properties. However, the proof of the required convergence
in measure will be quite non-trivial on the basis of the distributional
nature of σ, and several judicious choices of test functions will be re-
quired.

1.1. A characterization of the inequality (1.2). We shall now
state our characterization of the Sobolev-Poincaré inequality (1.2). We
focus on the case when Ω = Rn, since one can obtain similar inequali-
ties for a wide class of domains by the method spelled out in [MV02a].
Furthermore, we will consider only n ≥ 2, since the one dimensional
case was previously studied in [MV02b].

Theorem 1.4. Let n ≥ 2, and suppose σ ∈ L−1,p′

loc (Ω). For a constant
C0 > 0, the inequality

(1.8) |〈|h|p, σ〉| ≤ C0

∫
Rn

|∇h|pdx, for all h ∈ C∞0 (Rn),

holds if and only if

(i) 1 < p < n, and there exists C1 = C1(C0, n, p) and ~Γ ∈ (Lp
′

loc(R
n))n

such that one can represent σ = div(~Γ), with ~Γ satisfying

(1.9)

∫
Rn

|h|p|~Γ|p′dx ≤ C1

∫
Rn

|∇h|pdx for all h ∈ C∞0 (Rn).

(ii) p ≥ n, and σ ≡ 0.

The strength of Theorem 1.4 lies in recasting the inequality (1.8)
with indefinite weight σ, in terms of the inequality (1.9) with positive

weight |~Γ|p′ . The inequality (1.9) has a rich history in its own right (see
[Ad09], [Maz11]). Combining this result with Theorem 1.4, we arrive
at the following corollary.

Corollary 1.5. Let p ∈ (1, n). Then (1.8) holds if and only if there

exists C1 = C1(C0, n, p) and ~Γ ∈ (Lp
′

loc(R
n))n, such that σ = div(~Γ),
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with ~Γ satisfying

(1.10)

∫
E

|~Γ|p′dx ≤ Ccapp(E) for all compact sets E ⊂ Rn.

Here capp(E) = capp(E,R
n) is the capacity associated with the

homogeneous Sobolev space L1,p(Rn). For a general open set Ω ⊂ Rn,
and a compact set E ⊂ Ω, we define

(1.11) capp(E,Ω) = inf{||∇h||pLp(Ω) : h ≥ 1 on E, h ∈ C∞0 (Ω)}.

Several conditions equivalent to (1.10) (or (1.9)) which do not involve
capacities are known (see, e.g., [V]).

1.2. The plan of the paper. The plan of the paper is as follows. In
Section 2 we formulate our main theorem in the framework of a more
general quasilinear operator. Then in Section 3 we develop the required
preliminaries. Section 4 is the heart of the paper, and Theorem 1.2 is
proved there. In Section 5, we remark on additional integrability prop-
erties for solutions of (1.1). Finally, Section 6 is devoted to deducing
Theorem 1.4 from Theorem 1.2.

2. The main result for the general operator

Since our techniques do not use the particular structure of the p-
Laplacian operator, we state a version of Theorem 1.2 for more general
operators. In a couple of places in our argument, we will sacrifice
generality for ease of exposition, but in such instances we will indicate
how the argument can be extended.

For an open set Ω ⊂ Rn, let A : Ω×Rn → R be measurable in the
first variable for each ξ ∈ Rn, and continuous in the second variable
for almost every x ∈ Ω. In addition, suppose A satisfies the following
conditions:

(1) (Ellipticity and boundedness) There exists 0 < m ≤M so that
for almost every x ∈ Ω and for all ξ ∈ Rn,

(2.1) A(x, ξ) · ξ ≥ m|ξ|p, and |A(x, ξ)| ≤M |ξ|p−1.

(2) (Homogeneity) For all ξ ∈ Rn, and almost every x ∈ Ω,

(2.2) A(x, tξ) = |t|p−2tA(x, ξ), for any t ∈ R.

(3) (Monotonicity) There exists a constant c > 0 such that, for
almost every x ∈ Ω, and for all ξ, η ∈ Rn \ {0},

(2.3) (A(x, ξ)−A(x, η))·(ξ−η) ≥ c

|ξ − η|
p, if p ≥ 2,

|ξ − η|2

(|ξ|2−p + |η|2−p)
if 1 < p ≤ 2.
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(4) (Continuity) There exists a modulus of continuity ω : [0,∞)→
[0,∞) so that limε→0+ ω(ε) = 0, and

(2.4) |A(x, ξ)−A(y, ξ)| ≤ ω(|x− y|)|ξ|p−1.

(5) (Convexity) For almost every x ∈ Ω, the function

(2.5) ξ → A(x, ξ) · ξ is convex on Rn.

These assumptions will be in force for the remainder of this paper,
unless stated otherwise.

Remark 2.1. The convexity assumption here is natural for our prob-
lem. Indeed, in our more general version of the Sobolev-Poincaré in-
equality (1.2) (see (2.8) below), the convexity condition guarantees the
right hand side (when raised to the power 1/p) is a semi-norm. In
the linear case p = 2, and A(·, ξ) = aij(·)ξi, it is routine to check
that convexity is a consequence of ellipticity of the matrix (aij). One
can obtain existence results without the convexity assumption if one
permits a smaller constant in the inequality (2.9) below (see Remark
2.3).

It seems likely that the continuity assumption on the operator (con-
dition (2.4)) can be weakened. This assumption is used to obtain a cer-
tain convergence of measure result (carried out in Section 4.6). Since
this convergence result is quite technical, we decided not to complicate
matters by introducing a more refined regularity assumption on the
operator. In the linear case p = 2, there is no need for any continuity
assumption, see [JMV11].

With the conditions on our operator stated, we are now in a position
to state our main result. We will consider solutions of the following
equations, which are the natural generalizations of (1.1) and (1.3) re-
spectively:

(2.6) −div(A(x,∇u)) = σ|u|p−2u in Ω,

and,

(2.7) −div(A(x,∇v)) = (p− 1)A(x,∇v) · ∇v + σ in Ω.

We will consider solutions of (2.6) as in Definition 1.1, with (1.1) re-
placed by (2.6). The more general variant of the Sobolev-Poincaré
inequality (1.2) in this context is

(2.8) |〈σ, |h|p〉| ≤ C

∫
Ω

A(x,∇h) · ∇h dx, for all h ∈ C∞0 (Ω).
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Theorem 2.2. Suppose Ω is an open set, and suppose that A satisfies
the assumptions (2.1)–(2.5).

(i) Suppose that σ ∈ L−1,p′

loc (Ω) satisfies

(2.9) 〈|h|p, σ〉 ≤ λ

∫
Ω

A(x,∇h) · ∇hdx, for all h ∈ C∞0 (Ω),

with λ ∈ (0, p#). In addition, suppose that

(2.10) −〈|h|p, σ〉 ≤ Λ

∫
Ω

A(x,∇h) · ∇hdx, for all h ∈ C∞0 (Ω),

for some Λ > 0. Then there exists a positive weak solution u of (2.6)
(see Definition 1.1) satisfying

(2.11)

∫
Ω

|∇u|p

up
|h|pdx ≤ C0

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω),

for a positive constant C0 = C0(Λ, p). Moreover, if v = log(u), then
v ∈ L1,p

loc(Ω) is a weak solution of (2.7) satisfying

(2.12)

∫
Ω

|∇v|p|h|pdx ≤ C0

∫
Ω

|∇h|pdx, for all h ∈ C∞0 (Ω).

(ii) Conversely, if there is a solution v ∈ L1,p
loc(Ω) of (2.7) so that

(2.12) holds for a constant C0, then the inequality (2.9) holds with
λ = (M/m)p and (2.10) holds for a constant Λ = Λ(C0,M).

One can also carry out a more local version of Theorem 2.2, akin
to Theorem 1.2 in [JMV11], using only local conditions on the oper-
ator A and potential σ. Since all our arguments are local, this is a
straightforward modification of the proof that follows, cf. Section 3 of
[JMV11].

Remark 2.3. With convexity assumption on A removed, one can still
reach the conclusion of the part (i) of Theorem 2.2, provided that
λ < m

M
p#. We leave it to the reader to check that Lemmas 4.2 and 4.4

below can be pushed through in this range of λ without the convexity
property. The two lemmas just mentioned are where the convexity
plays a role.

Regarding statement (ii) of Theorem 2.2, it is the case even when
p = 2 that in general the constant λ needs to depend on M and m.
See Section 7 of [JMV11].

3. Preliminaries

We re-iterate that throughout this paper we will assume (unless
stated otherwise) that A : Ω×Rn → Rn satisfies (2.1)–(2.5).



10 B. J. JAYE, V. G. MAZ’YA, AND I. E. VERBITSKY

3.1. Notation. We shall denote by C a positive constant which may
depend on n, p, m, and M . Any additional dependencies (beyond n,
p, m, and M) of a constant C will be stated explicitly, for example a
constant C(λ) may depend on λ, as well as n, p, m, and M . Within a
proof a constant C may change from line to line.

For an open set Ω ⊂ Rn, we denote by C∞0 (Ω) the space of infinitely
differentiable functions with compact support in Ω. Define the energy
space L1,p

0 (Ω) to be the closure of C∞0 (Ω) in the semi-norm ||∇( · )||Lp(Ω).

We say that f ∈ L1,p
loc(Ω) if f ∈ Lploc(Ω) and fϕ ∈ L1,p

0 (Ω) for all

ϕ ∈ C∞0 (Ω). Let L−1,p′(Ω) be the dual space of L1,p
0 (Ω). We say that

σ ∈ L−1,p′

loc (Ω) if σϕ ∈ L−1,p′(Ω) whenever ϕ ∈ C∞0 (Ω). We define
W 1,p(Ω) as those functions f ∈ Lp(Ω) with weak derivative ∇f ∈
(Lp(Ω))n.

If Ω ⊂ Rn is a bounded open set, then the Poincaré inequality guar-
antees that L1,p

0 (Ω) is a Banach space with norm ||∇( · )||Lp(Ω), for any
1 < p <∞, see for example [Bre11], Corollary 9.19. We shall only use
that L1,p

0 (Ω) is a Banach space when the underlying set Ω is bounded1.
Provided Ω is a bounded set, every σ ∈ L−1,p′(Ω) may be represented as

σ = div(~T ), with ~T ∈ (Lp
′
(Ω))n, see for example [Bre11], Proposition

9.20.

3.2. Local smoothing. We begin this section with some remarks about
mollification. Fix ϕ so that ϕ ∈ C∞0 (B1(0)), ϕ ≥ 0, ϕ is radially sym-
metric, and

∫
B1(0)

ϕ(x)dx = 1. We denote ϕε(x) = ε−nϕ(x/ε).

For the majority of this paper, we will use the mollified operator Aε,
defined (for a smooth function f) by

(3.1) Aε(x,∇f(x)) =

∫
B(x,ε)

ϕε(y)A(x+ y,∇f(x))dy.

In other words, we only mollify the spatial variable, and leave the
gradient variable unchanged.

Remark 3.1. Let ε > 0 and suppose U ⊂⊂ Ω with dist(U, ∂Ω) > ε.
Then Aε : U ×Rn → Rn satisfies (2.1)–(2.3) and (2.5) inside U .

The next lemma concerns how the inequality (2.8) behaves under
mollification:

1If p < n, then the result is true regardless of Ω, but it is a delicate issue for
unbounded sets if p ≥ n, see [Maz11], Chapter 14.
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Lemma 3.2. Let U ⊂⊂ Ω, and let ε > 0 be such that ε < dist(U, ∂Ω).
Let λ > 0, suppose that σ satisfies

(3.2) 〈|h|p, σ〉 ≤ λ

∫
Ω

A(·,∇h) · ∇hdx, for all h ∈ C∞0 (Ω).

Then, with σε = ϕε ∗ σ, we have

(3.3)

∫
U

|h|pdσε ≤ λ

∫
U

Aε(·,∇) · ∇hdx, for all h ∈ L1,p
0 (U),

where dσε = σεdx.

Proof. Notice that σε ∈ C∞(U). By density, and the continuity of σε
and Aε, it suffices to prove (3.3) for h ∈ C∞0 (U). We first note that by
the interchange of mollification and the distribution (see for example
Lemma 6.8 of [LL01]), we have

〈σ, ϕε ∗ |h|p〉 =

∫
B(0,ε)

ϕε(t)〈σ, |h(· − t)|p〉dt.

By choice of U and ε, note that h( · − t) ∈ C∞0 (Ω) for all t ∈ Bε(0).
Hence

〈σε, |h|p〉 ≤ λ

∫
B(0,ε)

ϕε(t)
(∫

U

A(x,∇h(x− t)) · ∇h(x− t)dx
)
dt

= λ

∫
Ω

Aε(x,∇h(x)) · ∇h(x)dx,

which proves the lemma. �

The convexity property (2.5) combines with the homogeneity prop-
erty (2.2) to yield Minkowski’s inequality: For Γ1,Γ2 ∈ (Lp(Ω))n, we
have (∫

Ω

A(·,Γ1 + Γ2) · (Γ1 + Γ2)dx
)1/p

≤
(∫

Ω

A(·,Γ1) · (Γ1)dx
)1/p

+
(∫

Ω

A(·,Γ2) · (Γ2)dx
)1/p

.

(3.4)

The same statement holds forAε inside U ⊂⊂ Ω, provided dist(U, ∂Ω) >
ε: for any Γ1,Γ2 ∈ (Lp(U))n,(∫

U

Aε(·,Γ1 + Γ2) · (Γ1 + Γ2)dx
)1/p

≤
(∫

U

Aε(·,Γ1) · (Γ1)dx
)1/p

+
(∫

U

Aε(·,Γ2) · (Γ2)dx
)1/p

.
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3.3. Local existence. The next lemma concerns a local existence re-
sult. It will be used to produce a sequence of approximate solutions to
(2.6).

Lemma 3.3. Suppose that V is a bounded domain with a ball B ⊂⊂ V .
Suppose that Ã : V ×Rn → R satisfies (2.1)–(2.3). For 0 < λ < 1, let
σ̃ ∈ C∞(V ) satisfy

(3.5)

∫
V

|h|pdσ̃ ≤ λ

∫
V

Ã(x,∇h) · ∇hdx, for all h ∈ C∞0 (V ).

Then there exists a positive solution v ∈ Cα
loc(V ) ∩ L1,p(V ) of

−div(Ã(·,∇v)) = σ̃vp−1,

so that
∫
B
vqpdx = 1. Here q = max(p− 1, 1). Furthermore, v satisfies

the Harnack inequality in V .

Proof. The existence of a solution follows from the theory of monotone
operators. Indeed, note that (3.5) guarantees coercivity in the Sobolev
space L1,p

0 (V ) of the operator A(·,∇v)− σ̃|v|p−2v. On the other hand,
the smoothness of σ̃ ensures that the associated functional is weakly
continuous. From these two facts one can follow standard theory, see
e.g. Chapter 6 of [MZ97], to obtain the existence of a solution of the
equation {

−div(Ã(·,∇ṽ)) = σ̃|ṽ|p−2ṽ,

ṽ − 1 ∈ L1,p
0 (V ).

The solution ṽ is nonnegative. To see this, test the weak formulation
of the preceding equation with h = min(0, ṽ) ∈ L1,p

0 (V ). Note that∫
V

Ã(·,∇h) · ∇hdx =

∫
V

Ã(·,∇ṽ) · ∇hdx =

∫
V

|ṽ|p−2ṽh̃ σdx.

The last integral on the right hand side is equal to
∫
V
|h|pσ̃dx. Ap-

plying (3.5), this integral is in turn less than λ
∫
V
Ã(·,∇h) · ∇hdx,

and hence (1 − λ)
∫
V
Ã(·,∇h) · ∇hdx ≤ 0. Since λ ∈ (0, 1), it fol-

lows from (2.1) that
∫
V
|∇h|pdx = 0. We conclude that min(0, ṽ) = 0

quasi-everywhere, as required.
Using the smoothness of σ̃, we apply the results of Serrin [Ser64] to

yield the Harnack inequality for ṽ, along with the Hölder continuity
(for all 1 < p < ∞). To conclude the proof, it remains to renormalize
ṽ in order to obtain the given integrability property on B. �
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3.4. Weak reverse Hölder inequalities and BMO. In this section,
we recall a result from [JMV11] regarding weak reverse Hölder inequal-
ities. For an open set U , we say u ∈ BMO(U) if there is a positive
constant DU such that

(3.6) −
∫
B(x,r)

|u(y)−−
∫
B(x,r)

u(z)dz|pdy ≤ DU , for any ball B(x, 2r)⊂U.

A well known consequence of the John-Nirenberg inequality is that one
can replace the exponent p in (3.6) with any 0 < q <∞, and obtain a
comparable definition of BMO. We say that u ∈ BMOloc(Ω) if for each
compactly supported open set U ⊂⊂ Ω, there is a positive constant
DU > 0 so that (3.6) holds.

Definition 3.4. Let U ⊂ Rn be an open set.
(a) A nonnegative measurable function w is said to be doubling in U

if there exists a constant AU > 0 such that

(3.7) −
∫
B(x,2r)

w dx ≤ AU−
∫
B(x,r)

w dx, for all balls B(x, 4r) ⊂ U.

(b) A nonnegative measurable function w is said to satisfy a weak
reverse Hölder inequality in U if there exists constants q > 1 and BU >
0 such that

(3.8)
(
−
∫
B(x,r)

wqdx
)1/q

≤ BU−
∫
B(x,2r)

w dx, for all balls B(x, 2r) ⊂ U.

Our argument hinges on the following result.

Proposition 3.5. Let U be an open set. Suppose that w satisfies the
weak reverse Hölder inequality (3.8) in U . Then w is doubling in U if
and only if log(w) ∈ BMO(U). In particular, suppose w satisfies (3.8),
and there exists a constant DU such that for any ball B(x, 2s) ⊂ U

(3.9) −
∫
B(x,s)

|logw(y)−−
∫
B(x,s)

logw(z)dz|pdy ≤ DU .

Then there is a constant C(BU , DU) > 0, such that for any ball B(x, 4r) ⊂
U ,

(3.10) −
∫
B(x,2r)

w dx ≤ C(BU , DU)−
∫
B(x,r)

w dx.

For the proof of this proposition, see [JMV11], Proposition 2.3.
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4. Proof of the main result

4.1. Proof of part (i) of Theorem 2.2. Suppose that the hypotheses
of part (i) from Theorem 2.2 are in force. We shall assume henceforth
that Ω is a connected open set. This assumption is made without loss
of generality since we can apply the argument below in each connected
component. The assumption of connectedness is used in a Harnack
chain argument. We begin by constructing an approximating sequence.

4.2. Construction of an approximating sequence. Let (Ωj)j be
an exhaustion of Ω by smooth connected domains, in other words
Ωj ⊂⊂ Ωj+1 and ∪jΩj = Ω, see for example [EE87]. In addition,
fix a ball B so that 8B ⊂ Ω1.

Let εj = min(2−j, 1
2
d(Ωj, ∂Ωj+1)), and put σj = ϕεj∗σ andAj = Aεj ,

with ϕεj and Aεj as in Lemma 3.2. Note that Aj satisfies (2.1)–(2.3)
and (2.5) in Ωj.

Applying Lemma 3.2, it follows that (3.5) holds with σ̃ = σεj , Ã =
Aj and V = Ωj. As a result, the hypotheses of Lemma 3.3 are fulfilled,
and we deduce the existence of a sequence (uj)j of positive functions
satisfying

(4.1)

−div(Aj(·,∇uj)) = σju
p−1
j in Ω,∫

B

uqpj dx = 1.

Here q = max(p−1, 1), as before. In addition, within each Ωj the func-
tion uj satisfies the Harnack inequality (of course the implicit constants
in these estimates blow up with j and will be only used qualitatively).
Our first task will be to prove a local gradient estimate for the tail of
the sequence (uk)k>j inside Ωj.

Proposition 4.1. For a fixed j ≥ 1, suppose that B(x, 4r) ⊂⊂ Ωj.
There exists a positive constant C, depending on Ωj, B, B(x, 4r), Λ,
λ, m, M , p and n, so that the following two estimates hold:

(4.2)

∫
B(x,r)

|∇uk|p + |uk|pdx ≤ C for all k > j,

and,

(4.3)

∫
B(x,r)

|∇(up−1
k )|p + |uk|(p−1)pdx ≤ C for all k > j.

The key thing to note from Proposition 4.1 is this: For each fixed j,
the estimates (4.2) and (4.3) are independent of k for k > j.
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4.3. Caccioppoli estimates on the approximating sequence. In
order to prove Proposition 4.1, we work with three Caccioppoli esti-
mates. In each estimate, we will make use of only one of the assump-
tions on σ, and so we make this explicit in the statement of the relevant
lemma. We will often suppress the dependence on x in Ak and write
Ak(ξ) instead of Ak( ·, ξ).

Lemma 4.2. Suppose that (2.9) holds for 0 < λ < 1. There exists a
constant C = C(λ) > 0, such that for each k > j,

(4.4)

∫
Ωj

|∇uk|p|h|pdx ≤ C

∫
Ωj

upk|∇h|
pdx, for all h ∈ C∞0 (Ωj).

Proof. Fix j and k > j as in the statement of the lemma, and let
v = uk. With h ∈ C∞0 (Ωj), h ≥ 0, testing the weak formulation of

(4.1) with vhp ∈ L1,p
0 (Ωj) yields∫

Ωj

Ak(∇v) · ∇(vhp) dx =

∫
Ωj

hpvpdσk,

and hence,∫
Ωj

Ak(∇v) · (∇v)hp dx =

∫
Ωj

hpvpdσk −
∫

Ωj

vAk(∇v) · ∇(hp) dx.

Applying Lemma 3.2 and crudely employing (2.1), we dominate the
right hand side of this equality by

λ

∫
Ωj

Ak(∇(hv))·∇(hv) dx+ pM

∫
Ωj

v |h|p−1|∇v|p−1|∇h|dx.

Recall Young’s inequality with ε: for any ε > 0, and a, b ≥ 0,

(4.5) ab ≤ εap + (pε)−1/(p−1) (p− 1)

p
bp
′
.

It follows from (4.5) that for any ε > 0 there exists a constant C(ε),
depending on ε, m, M and p, such that

pM

∫
Ωj

v|h|p−1|∇v|p−1|∇h|dx ≤ εm

∫
Ωj

|∇v|php dx+C(ε)

∫
Ωj

vp|∇h|p dx.

Applying (2.1) in the first term in the right hand side of this inequality,
and bringing our estimates together, we obtain∫

Ωj

Ak(∇v) · (∇v)hp dx ≤ λ

∫
Ωj

Ak(∇(hv))·∇(hv) dx

+ ε

∫
Ωj

[Ak(∇v) · (∇v)]hp dx+ C(ε)

∫
Ωj

vp|∇h|p dx.
(4.6)
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Now we raise both sides of (4.6) to the power 1/p and appeal to the
elementary inequality

(4.7) (a+ b)1/p ≤ a1/p + b1/p for a, b > 0.

After applying the Minkowski inequality (3.4), we arrive at(∫
Ωj

[Ak(∇v) · ∇v]hp dx
)1/p

≤ (λ1/p+ε1/p)
(∫

Ωj

[Ak(∇v) · ∇v]hp dx
)1/p

+ λ1/p
(∫

Ωj

[Ak(∇h) · ∇h]vp dx
)1/p

+
(
C(ε)

∫
Ωj

vp|∇h|p dx
)1/p

.

Choosing ε < (1− λ1/p)p and rearranging, we conclude that∫
Ωj

[Ak(∇uk) · ∇uk]hpdx ≤ C(λ)

∫
Ωj

upk|∇h|
pdx.

Appealing to (2.1), we obtain (4.4). �

Lemma 4.3. Suppose that (2.10) holds for some Λ > 0. There exists
a constant C = C(Λ) > 0, such that for all k > j, one has

(4.8)

∫
Ωj

|∇uk|p

upk
|h|pdx ≤ C

∫
Ωj

|∇h|pdx, for all h ∈ C∞0 (Ωj).

Proof. Let h ∈ C∞0 (Ωj), with h ≥ 0. Since uj satisfies the Harnack
inequality in Ωj, there exists a constant c > 0 so that uk > c on the

support of h. Thus hpu1−p
k ∈ L1,p

0 (Ωj) is a valid test function, and hence

(4.9) −
∫

Ωj

Ak(∇uk) · ∇
( hp

up−1
k

)
dx = −

∫
Ωj

hpdσk.

On the other hand, by differentiating and applying (2.1) we see that

(p− 1)

∫
Ωj

Ak(∇uk) · ∇uk
upk

hpdx ≤ −
∫

Ωj

Ak(∇uk)·∇
( hp

up−1
k

)
dx

+Mp

∫
Ωj

|∇uk|p−1

up−1
k

|∇h|hp−1dx.

(4.10)

The second term on the right may be estimated using Young’s inequal-
ity and (2.1): for each ε > 0, there exists C(ε) > 0 such that

p

∫
Ωj

|∇uk|p−1

up−1
k

|∇h|hp−1dx ≤ε
∫

Ωj

Ak(∇uk) · ∇uk
upk

hpdx

+ C(ε)

∫
Ωj

|∇h|pdx.
(4.11)
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Applying (4.9) and (4.11) into (4.10), we estimate

(p− 1− ε)
∫

Ωj

Ak(∇uk) · ∇uk
upk

ψpdx ≤ −
∫

Ωj

hpdσk +C(ε)

∫
Ωj

|∇h|pdx.

To bound the first term on the right hand side of this inequality, note
that combining Lemma 3.2 with the lower form bound (2.10) yields

(4.12) −
∫

Ωj

hpdσk ≤ Λ

∫
Ωj

Ak(∇h) · ∇hdx ≤MΛ

∫
Ωj

|∇h|pdx.

Substituting (4.12) into the penultimate inequality, we deduce (4.8)
from (2.1). �

The third lemma will only be used in the case p ≥ 2, but is valid for
all 1 < p <∞.

Lemma 4.4. Suppose that (2.9) holds with 0 < λ < (p− 1)2−p. There
exists a constant C = C(λ) > 0, such that for all k > j,
(4.13)∫

Ωj

|∇(uk)
p−1|p|h|pdx ≤ C

∫
Ωj

|(uk)p−1|p|∇h|pdx, for all h ∈ C∞0 (Ωj).

Proof. Fix k ≥ j and h ∈ C∞0 (Ωj). Let v = uk, and note that

∫
Ω

[Ak(∇v) · ∇v]v(p−2)phpdx =
1

(p− 1)2

∫
Ω

Ak(∇v) · ∇
(
v(p−1)2hp

)
dx

− p

(p− 1)2

∫
Ω

[Ak(∇v) · ∇h]v(p−1)2hp−1dx.

(4.14)

Using the properties of v (see Lemma 3.3), v(p−1)2hp is a valid test
function for all p > 1, and hence∫

Ω

Ak(∇v) · ∇
(
v(p−1)2hp

)
dx =

∫
Ω

vp(p−1)hpdσk

≤ λ

∫
Ω

Ak(∇(vp−1h)) · ∇(vp−1h)dx,

(4.15)

where Lemma 3.2 has been applied in the second inequality. The
Minkowski inequality implies that(∫

Ω

Ak(∇(vp−1h)) · ∇(vp−1h)dx
)1/p

≤
(∫

Ω

[Ak(∇vp−1) · ∇vp−1]hpdx
)1/p

+
(∫

Ω

[Ak(∇h) · ∇h]vp(p−1)dx
)1/p

.
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Note that [Ak(∇vp−1) · ∇vp−1]hp = (p − 1)p[Ak(∇v) · ∇v]vp(p−2)hp.
Bringing our estimates together, making use of the boundedness of A
from (2.1), we see that(∫

Ω

(Ak(∇v) · ∇v)v(p−2)phpdx
)1/p

≤ λ(1/p)(p− 1)
p−2
p

(∫
Ω

(Ak(∇v) · ∇v)v(p−2)phpdx
)1/p

+ λ1/p
(
CM

∫
Ω

vp(p−1)|∇h|pdx
)1/p

+
(
CM

∫
Ω

|∇v|p−1v(p−2)p+1|∇h|hp−1dx
)1/p

.

(4.16)

The third term in the right hand side of (4.16) is handled with Young’s
inequality: for any ε > 0, there exists C(ε) such that(
CM

∫
Ω

|∇v|p−1v(p−2)p+1|∇h|hp−1dx
)1/p

≤ ε
(∫

Ωj

(Ak(∇v) · ∇v)v(p−2)phpdx
)1/p

+C(ε)
(∫

Ωj

vp(p−1)|∇h|pdx
)1/p

.

Here (2.1) has also been used (as in (4.6)). By assumption on λ, we
have λ(1/p)(p − 1)1−2/p < 1. Choose ε > 0 so that ε < 1 − λ(1/p)(p −
1)1−2/p. Applying the previous estimate into (4.16) and rearranging,
we conclude that(∫

Ω

[Ak(∇v) · ∇v]v(p−2)phpdx
)1/p

≤ C(λ)
(∫

Ω

vp(p−1)|∇h|pdx
)1/p

.

Appealing to (2.1) once again, the lemma is proved. �

4.4. A uniform gradient estimate: the proof of Proposition 4.1.
Having established the required Caccioppoli inequalities, we move onto
proving Proposition 4.1.

The proof of Proposition 4.1. Fix k > j, and let v = uqk with q =
max(p−1, 1). To prove (4.2) and (4.3), we will employ Proposition 3.5
in U = Ωj to show that vp is doubling in Ωj, with constants independent
of k. To verify the hypothesis of Proposition 3.5, we first show that vp

satisfies a weak reverse Hölder inequality, i.e. that (3.8) holds in Ωj.
To this end, let us fix B(z, 2s) ⊂⊂ Ωj.



QUASILINEAR ELLIPTIC EQUATIONS 19

First suppose 1 < p < n. For any ψ ∈ C∞0 (Ωj), an application of
Sobolev’s inequality yields(∫

Ωj

v
pn
n−p |ψ|

pn
n−pdx

)n−p
pn ≤ C

(∫
Ωj

|∇v|p|ψ|p dx
)1/p

+ C
(∫

Ωj

vp |∇ψ|p dx
)1/p

.

(4.17)

Applying Lemma 4.2 (if p ≤ 2) or Lemma 4.4 (if p ≥ 2) in the first
term on the right hand side of (4.17), we deduce that

(4.18)
(∫

Ωj

v
pn
n−p |ψ|

pn
n−pdx

)n−p
n ≤ C(λ)

∫
Ωj

vp|∇ψ|pdx.

Specialising (4.18) to the case when ψ ∈ C∞0 (B(z, 2s)), with ψ ≡ 1 in
B(z, s), and |∇ψ| ≤ C/s, we have

(4.19)
(
−
∫
B(z,s)

(vp)
n
n−pdx

)n−p
n ≤ C(λ)−

∫
B(z,2s)

vp dx.

Hence the weak reverse Hölder inequality (3.8) holds in U = Ωj, with
w = vp and q = n/(n− p).

In the case when p = n, we appeal to the following Sobolev inequal-
ity: for each q <∞, and for all f ∈ C∞0 (B(z, 2s)),

(4.20)
(
−
∫
B(z,2s)

|f(y)|q dy
)1/q

≤ C(q)
(∫

B(z,2s)

|∇f(y)|p dy
)1/p

.

see for example [MZ97], Corollary 1.57. Using (4.20) as in (4.17), and
following the above argument to display (4.19), we see that for each
q <∞ that (3.8) holds in U = Ωj, with w = vp. When p > n, standard
Sobolev inequalities show that (3.8) continues to hold in U = Ωj, with
w = vp and any q ≤ ∞.

To apply Proposition 3.5, it remains to show that log(v) ∈ BMO(Ωj).
For this, fix a ball B(z, 2s) ⊂ Ωj, and note that Lemma 4.3 implies

(4.21)

∫
B(z,s)

|∇uk|p

upk
dx ≤ C(Λ)sn−p.

Indeed, to prove display (4.21) one simply picks h ∈ C∞0 (B(z, 2s)) so
that h ≡ 1 on B(z, s) and |∇h| ≤ C/s in display (4.8). On the other
hand, using the Poincaré inequality yields

−
∫
B(z,s)

| log v −−
∫
B(z,s)

log v|pdx ≤ Csp−n
∫
B(z,s)

|∇uk|p

upk
dx ≤C(Λ),(4.22)

and hence log v ∈ BMO(Ωj), with BMO-norm depending only on
p,Λ,m and M (see (3.6)). In particular, vp satisfies both (3.8) and
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(3.9) in Ωj. Proposition 3.5 can now be applied to conclude that vp is
doubling in Ωj, with doubling constant depending on m, M , n, p, λ
and Λ, see (3.10). In other words, there exists a constant C = C(λ,Λ),
such that for each ball B(z, 4s) ⊂ Ωj one has

(4.23) −
∫
B(z,2s)

vpdx ≤ C−
∫
B(z,s)

vpdx.

Since Ωj is a connected set with smooth boundary, one can find a
Harnack chain from B(x, 2r) to the fixed ball B ⊂⊂ Ω1. In other
words, there are three positive constants c0, c1 and N > 0, depending
on the smooth parameterization of Ωj, along with points x0, . . . xN and
balls B(xi, 4ri) ⊂ Ωj satisfying

(1) B(x0, r0) = B(x, 2r), and B(xN , rN) = B;
(2) ri ≥ c0 min(r0, rN), and |B(xi, ri)∩B(xi+1, ri+1)| ≥ c1 min(r0, rN)n

for all i = 0 . . . N − 1.

Combining the Harnack chain with the property that vp is doubling in
Ωj, a Harnack chain argument yields

−
∫
B(x,2r)

vpdx ≤ C(B(x, r),Ωj, B, λ,Λ)−
∫
B

vpdx.

By the normalization on vp (recall (4.1)), we get

(4.24) −
∫
B(x,2r)

vpdx ≤ C(B(x, r),Ωj, B, λ,Λ).

To complete the proof, it remains to deduce the required bounds for the
gradient in (4.2) and (4.3). First suppose that p ≥ 2. In this case, we
combine Lemmas 4.2 and 4.3 with (4.24) to conclude that the following
two estimates hold:∫

B(x,r)

|∇uk|pdx ≤
C

rp−n

(
−
∫
B(x,2r)

vpdx
)1/q

≤ C,

and ∫
B(x,r)

|∇up−1
k |

pdx ≤ C

rp−n

(
−
∫
B(x,2r)

vpdx
)1/q

≤ C,

for a constant C > 0, depending on n, p, m, M , B, Λ, λ, Ωj and
B(x, r). Here we have used Hölder’s inequality in the first of the two
displays above.

In the case 1 < p < 2, note that combining Lemma 4.2 with (4.24),
we have ∫

B(x,r)

|∇uk|pdx ≤
C

rp−n
−
∫
B(x,2r)

vpdx ≤ C,
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for a positive constant C > 0 depending on n, p, m, M , B, Λ, λ, Ωj

and B(x, r). On the other hand, a simple consequence of Lemma 4.3
is the inequality ∫

B(x,r)

|∇uk|p

upk
dx ≤ C,

(cf. display (4.21)). One can readily interpolate between these two
estimates to yield (4.3), indeed∫

B(x,r)

|∇uk|pup(p−2)
k dx ≤

∫
B(x,r)∩{uk≥1}

|∇uk|pup(p−2)
k dx

+

∫
B(x,r)∩{uk≤1}

|∇uk|pup(p−2)
k dx

≤
∫
B(x,r)

|∇uk|pdx+

∫
B(x,r)

|∇uk|p

upk
dx ≤ C,

(4.25)

with C depending on n, p, m, M , B, Λ, λ, Ωj and B(x, r) (but inde-
pendent of k). �

4.5. Convergence to a solution. Our first task is to deduce the
existence of a solution u(j) of (1.1) in each Ωj. We will concentrate on
the argument in Ω1 for ease of notation.

From (4.2) and (4.3), it follows by choosing a suitable covering of Ω1

that there is a constant K = K(λ,Λ,Ω1, B) so that for each k ≥ 2, we
have∫

Ω1

(|∇uk|p+|uk|p) dx≤K, and

∫
Ω1

(
|∇(uk)

p−1|p+|uk|p(p−1)
)
dx≤K.

(4.26)

Using weak compactness of W 1,p(Ω1), we claim that there is a subse-
quence uj,1 of uj, and a limit function u(1) ∈ W 1,p(Ω1) satisfying the
following properties:

(1) uj,1 → u(1) weakly in W 1,p(Ω1),

(2) up−1
j,1 → (u(1))p−1 weakly in W 1,p(Ω1),

(3) uj,1 → u(1) a.e. in Ω1.
(4) uj,1 → u(1) in Lpq(Ω1), where q = max(p− 1, 1)

Indeed, from (4.26) and weak compactness, we first pass to a subse-
quence satisfying (1). Appealing to Rellich’s theorem, we obtain a
further subsequence uj,1 satisfying uj,1 → u(1) in Lp(Ω), and also prop-

erty (3). But then up−1
j,1 converges almost everywhere to (u(1))p−1 in

Ω1. Since up−1
j,1 is uniformly bounded in W 1,p(Ω1), it follows from stan-

dard Sobolev space theory (see Theorem 1.32 of [HKM06]) that we
may pass to a further subsequence so that (2) holds. If 1 < p ≤ 2
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then the property (4) has already been demonstrated. If p > 2, then
a final application of Rellich’s theorem to the sequence up−1

j,1 yields the

required Lp(p−1)(Ω1) convergence for a subsequence.
Let h ∈ C∞0 (Ω1), and let U ⊂⊂ Ω1 be an open set containing

supp(h). Recall that σ ∈ L−1,p′(U), from which it follows that

(4.27) 〈σj,1, up−1
j,1 h〉 → 〈σ, (u(1))p−1h〉, as j →∞.

Indeed, by the triangle inequality we write

|〈σj,1, up−1
j,1 h〉 − 〈σ, (u(1))p−1h〉| ≤ |〈σ, (up−1

j,1 − (u(1))p−1)h〉|
+ |〈(σj,1 − σ), up−1

j,1 h〉|.
The first term on the right hand side converges to zero on account of
the weak convergence property (2). For the second term, we estimate

|〈(σj,1 − σ), up−1
j,1 h〉| ≤ ||∇(up−1

j,1 h)||Lp(U)||σj,1 − σ||L−1,p′ (U).

The right hand side here convergences to zero due to standard proper-
ties of the mollification, since the first term is bounded due to (4.26).
This establishes (4.27).

We next claim that there is another subsequence of uj,1 (again de-
noted by uj,1) such that

(4.28) Aj,1(·,∇uj,1)→ A(·,∇u(1)) in (L1
loc(Ω1))n.

The proof of (4.28) will be quite involved. For this reason we postpone
the proof to Section 4.6 and complete the rest of the argument.

From (4.27) and (4.28), it follows that

(4.29) −div(A(∇u(1))) = σ(u(1))p−1 in D′(Ω1).

Here the dominated convergence theorem has been used on the left
hand side, in conjunction with (4.28). For the right hand side, we have
applied the estimate (4.27). By the the normalization of the sequence
(uj)j in (4.1) and property (4), we see that

∫
B

(u(1))qpdx = 1, with q =
max(p− 1, 1).

The argument is now repeated in each Ωk. Each time we choose
a subsequence (uj,k)j of the sequence (uj,k−1)j converging to Ω(k−1) in
Ωk−1. In this manner we arrive at functions u(k) satisfying

(4.30) −div(A(∇u(k))) = σ(u(k))p−1 in D′(Ωk),

and

(4.31)

∫
B

(u(k))qpdx = 1, with q = max(p− 1, 1).

Note that u(k) = u(k−1) in Ωk−1 (equality here holding in the sense of
W 1,p(Ωk−1) functions). Hence if we define u by u = u(k) in Ωk, then u
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is well defined and −div(A(∇u)) = σup−1 in Ω. From (4.31) it follows
that u is not the zero function.

Recall that for each k > j, the approximate solution uqpk is doubling
in Ωj with doubling constants independent of k (see (4.23)). Passing
to the limit (using property (4)) it follows that uqp is locally doubling
in Ω. In particular u > 0 almost everywhere in Ω, and hence log(u) is
well defined almost everywhere.

We shall now show that (2.11) holds. Fix k ≥ 1. Then, for each
j > k, log(uj,k) → log(u) a.e. in Ωk. Combining Lemma 4.3 with
Theorem 1.32 of [HKM06], we pass to a subsequence of uj,k whose
logarithm converges weakly in W 1,p(Ωk) to log(u). From the lower-
weak semicontinuity of Lp(Ωk), it now follows that

(4.32)

∫
Ω

|∇u|p

up
|h|pdx ≤ C(Λ)

∫
Ω

|∇h|p, for all h ∈ C∞0 (Ωk).

Since there is no dependence on k in constant appearing in (4.32), we
let k →∞ to deduce (2.11).

Save for the estimate (4.28) (which will be proved in Section 4.6),
to finish the proof of part (i) of Theorem 1.2 it remains to show that
v = log(u) is a solution of (1.3). This is the content of the following
lemma:

Lemma 4.5. Let Ω be an open set, and suppose that σ ∈ L−1,p′

loc (Ω).
If there exists a positive solution u of (2.6) satisfying (2.11), then v =
log(u) ∈ L1,p

loc(Ω) is a solution of (2.7) so that (2.12) holds.

Proof. Let ε > 0. Then for h ∈ C∞0 (Ω), test the weak formulation of
(1.1) with ψ = h(u+ ε)1−p ∈ L1,p

c (Ω). This yields
(4.33)∫

Ω

A( ·,∇u)

(u+ ε)p−1
·∇h dx = (p−1)

∫
Ω

A( ·,∇u) · ∇u
(u+ ε)p

hdx+〈σ up−1

(u+ ε)p−1
, h〉.

Letting ε→ 0, it follows from the condition (2.11), and the dominated
convergence theorem, that we have∫

Ω

A(·,∇u)

(u+ ε)p−1
· ∇h dx→

∫
Ω

A( ·,∇u)

up−1
· ∇h dx, and

∫
Ω

A( ·,∇u) · ∇u
(u+ ε)p

hdx→
∫

Ω

A( ·,∇u) · ∇u
up

hdx.

To handle the last term in (4.33), note that

∇
( u

u+ ε

)p−1

= (p− 1)
∇u
u

( up−1

(u+ ε)p−1

) ε

u+ ε
.
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Hence |∇
(

u
u+ε

)p−1|p ≤ (p− 1)p
∣∣∇u
u

∣∣p, and the right hand side here is in

L1
loc(Ω) on account of (2.11). Since |∇

(
u
u+ε

)p−1| → 0 whenever u > 0,

the dominated convergence theorem yields |∇
(

u
u+ε

)p−1| → 0 in Lploc(Ω)
as ε→ 0.

On the other hand, it is clear that u
u+ε
→ 1 in Lploc(Ω) as ε→ 0, and

therefore u
u+ε
→ 1 in W 1,p

loc (Ω) as ε → 0. Since σ ∈ L−1,p′(supp(h)), we
conclude that

〈σ
( u

u+ ε

)p−1

, h〉 → 〈σ, h〉, as ε→ 0.

It follows that v = log(u) is a solution of (2.7). The estimate (2.12) is
immediate from (2.11). �

4.6. Convergence in measure. To complete the proof of part (i) of
Theorem 2.2, it remains to prove (4.28) for a subsequence of (uj,1)j.
Following a well known reduction, see for example Theorem 6.1 of
[BBGPV95], it suffices to assert a convergence in measure result. First
note that∫

Ω1

|Aεj(∇uj,1)−A(∇uj,1)|dx ≤ ω(εj)

∫
Ω1

|∇uj,1|p−1dx→ 0, as j →∞,

where in the last line we are using (4.2) and (2.4). As a result, in order
to assert (4.28) it suffices to prove (for a suitable subsequence of (uj,1)j)
that

A(·,∇uj,1)→ A(·,∇u(1)) in L1
loc(Ω1).

From the Vitali convergence theorem and the gradient estimate (4.2),
this local L1 convergence will follow once we assert that A(·,∇uj,1)
converges locally in measure to A(·,∇u(1)) in Ω1. Due to the continuity
of the operator A, this in turn is a consequence of the following lemma:

Lemma 4.6. Suppose B2r = B(x, 2r) ⊂ Ω1. Then for every δ > 0, we
have

|{x ∈ Br : |∇uj,1 −∇uk,1| > δ}| → 0 as j, k →∞,

Note that this reduction is still valid without the continuity assump-
tion on A. In this case one instead appeals to Nemetskii’s theorem, as
in [BBGPV95].

Proof. Let δ > 0. To simplify notation put uj,1 = vj, and u(1) = v. We
introduce parameters A and µ satisfying A > 1 and 0 < µ < A/2, and
write

|{x ∈ Br : |∇uj,1 −∇uk,1| > δ}| ≤ I + II + III + IV,
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where

I = |{x ∈ Br : |∇vj| > A}|+ |{x ∈ Br : |∇vk| > A}|,
II = |{x ∈ Br : vj > A}|+ |{x ∈ Br : vk > A}|,

III = |{x ∈ Br : |vj − vk| > µ}|,
and IV = |E|, with E defined by

E = {x ∈ Br : |∇vj −∇vk| > δ, |vj − vk| ≤ µ; |∇vj| ≤ A;

|∇vk| ≤ A; vj < A, vk < A}.
(4.34)

It is the estimate for IV which will require a careful analysis. We claim
that there exists a constant C(A, δ) > 0, depending on A, δ, B(x, r),
Ω1, the constant K from (4.26), as well as M , m, n and p, such that

(4.35) IV ≤ C(A, δ) ·
[
µmin(1,p−1) + o(1)

]
as j, k →∞.

(we write C(A, δ) to emphasize the dependence on A and δ).
To show that this estimate will prove the lemma, let ε > 0. First

pick A > 1 such that I + II ≤ ε/4. Such a choice is possible by the
uniform integrability estimate (4.26) and Chebyshev’s inequality.

Next (with A > 1 fixed), let us pick µ ∈ (0, A/2) and N1 ∈ N so that
if j, k > N1 then IV ≤ ε/4. Here we have used the claimed estimate
(4.35).

With µ > 0 now fixed, the almost everywhere convergence of vj to v
yields N ∈ N with N ≥ N1 such that III ≤ ε/2 for every j, k > N .

We conclude that |{x ∈ Br : |∇uj,1−∇uk,1| > δ}| ≤ ε for j, k > N ,
as required.

It remains to prove (4.35). To this end, let k, j > 1, and split E
into the two sets E1 = E ∩ {vj ≥ vk}, and E2 = E\E1. We will
shall prove (4.35) with E replaced by E1. The estimate for E2 will
follow analogously. First note that from the properties of E, along
with monotonicity assumption (2.3), it follows that there is a positive
constant c(A, δ) such that

c(δ, A) ≤
[
A(∇vj)−A(∇vk)

]
·∇(vj − vk)(x), for each x ∈ E1.

Let h ∈ C∞0 (B2r) be a nonnegative bump function satisfying h ≡ 1
on Br, and |∇h| ≤ C (the constant here depends on r, but this is
suppressed as the constant in (4.35) may depend on r). Since both
uj ≤ A and uk ≤ A in E, the previous inequality yields

IV ≤ c(δ, A)

A

∫
E1

[
(A(∇vj)−A(∇vk))·∇(vj−vk)

]
(2A−max(uj, uk))+h

pdx.

Define test functions f and g by

(4.36) f = (µ− (vj − vk)+)+, and g = (2A−max(vk, vj))+.
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Notice that 0 ≤ f ≤ µ and 0 ≤ g ≤ 2A. Moreover, the chain rule
Sobolev functions (see for example Theorem 3.3.1 of [AH96]) guaran-
tees that f and g are in the class L1,p(B2r), and satisfy the following
properties:

(1) ∇f = −χ{0<vj−vk<µ}∇(vj − vk) a.e. on B2r,
(2) ∇g = −χ{max(vj ,vk)<2A}[χ{vk−vj>0}∇(vk− vj) +∇vj] a.e. on B2r.

To see the second identity write max(vk, vj) = max(vk−vj, 0)+vj. Also,

note that the product fghp ∈ L∞(B2r)∩L1,p
0 (B2r) (recall h ∈ C∞0 (B2r)),

and hence is a valid test function for (4.1).
Using the monotonicity assumption once again, we observe that
−
[
(A(∇vj)−A(∇vk)) · ∇f

]
ghp ≥ 0 a.e. on B2r, and hence

IV ≤ −c(δ, A)

A

∫
Ω1

[
(A(∇vj)−A(∇vk)) · ∇f

]
ghpdx.

We denote

V =

∫
Ω1

[
(A(∇vj)−A(∇vk)) · ∇f

]
ghpdx,

and we will estimate this term by appealing to the PDE (4.1). In
preparation for this, we write

V = −V I − V II + V III + IX, with

V I =

∫
Ω1

[
(A(∇vj)−A(∇vk)) · ∇g

]
fhpdx,

V II = p

∫
Ω1

[
(A(∇vj)−A(∇vk)) · ∇h

]
fghp−1dx,

V III =

∫
Ω1

(Aj(∇vj)−Ak(∇vk)) · ∇(fghp)dx,

IX =

∫
Ω1

[
A(∇vj)−Aj(∇vj)

+Ak(∇vk))−A(∇vk)
]
·∇(fghp)dx.

It is the term V III which requires care, and it is here where we shall
use (4.1). In all our estimates, we shall make frequent use of the two
bounds in (4.26), and we recall the constant K from those inequalities.

The terms V I and V II can be estimated in a straightforward man-
ner. For V I, observe that 0 ≤ f ≤ µ, so we have

|V I| ≤ µ

∫
B2r

[|A(∇vj)|+ |A(∇vj)|]|∇g|hpdx

≤Mµ

∫
B2r

[|∇vj|p−1 + |∇vk|p−1](|∇vj|+ |∇vk|)hpdx.
(4.37)
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where the second inequality follows from (2.1). Young’s inequality now
yields

|V I| ≤ Cµ
(∫

B2r

|∇vj|phpdx+

∫
B2r

|∇vk|phpdx
)
≤ Cµ,

where (4.26) has been used. For the estimate of V II, we further use
that 0 ≤ g ≤ 2A and |∇h| ≤ C, and by similar estimates we obtain

|V II| ≤ CµA
(∫

B2r

|∇vj|phpdx+

∫
B2r

|∇vk|phpdx
) p−1

p ≤ CAµK
p−1
p .

For IX, we use the continuity of the operator. Indeed, estimating
the three terms separately from where the gradient falls on f , g and
hp, we obtain∫

Ω1

[
A(∇vj)−Aj(∇vj)] · ∇(fghp)dx

=

∫
Ω1

[∫
B(x,εj)

ϕεj(y)(A(x,∇vj)−A(x+ y,∇vj))dy
]
·∇(fghp)dx

≤ ω(εj)C(A+ µ)

∫
B2r

|∇vj|p−1
[
|∇vj|+ |∇vk|+ C

]
dx ≤ C(A)Kω(εj).

(Recall that µ < A/2 and A > 1). The right hand side here is of the
order o(1) as j → ∞. Estimating the difference with j replaced by k
in the same manner, we obtain

IX = C(A)o(1), as j, k →∞.

When compared to (4.35), these estimates for V I, V II and IX are
good.

To handle the remaining term V III, we use the equation (4.1) to
obtain

V III =

∫
Ω1

fghp(vp−1
j σj − vp−1

k σk)dx,

where σj = ϕεj,1 ∗ σ. To continue our estimates we need to make use

of the local dual Sobolev property of σ. There exists ~T ∈ Lp′(B2r)
n so

that σ = div ~T in D′(B2r). As a result, we have σj = div(~Tj) with
~Tj = ϕεj ∗T , and Minkowski’s inequality for integrals yields the bound
||Tj||Lp′ (B2r)

≤ ||T ||Lp′ (B2r)
.
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Integrating by parts, we proceed by writing V III = X +XI +XII,
with

X =

∫
Ω1

(vp−1
j

~Tj − vp−1
k

~Tk) · (∇g)fhpdx

+ p

∫
Ω1

(vp−1
j

~Tj − vp−1
k

~Tk) · (∇h)hp−1fgdx,

XI =

∫
Ω1

(vp−1
j

~Tj − vp−1
k

~Tk) · (∇f)ghpdx,

and

XII =

∫
Ω1

(∇(vp−1
j ) · ~Tj −∇(vp−1

k ) · ~Tk)fghpdx.

The estimate for XI will be the most delicate (when the gradient falls
on f). To bound X, recall that f ≤ µ and max(vj, vk) ≤ 2A if ∇g 6= 0.
We therefore see that

|X| ≤ (2A)p−1µ

∫
B2r

[|~Tj|+ |~Tk|]|∇g|hpdx ≤ C(2A)p−1||~T ||Lp′ (B2r)K
1/p.

The estimate for XII is similar. Indeed, we notice that

|XII| ≤ 2Aµ

∫
B2r

[|∇vp−1
j |+ |∇v

p−1
k |](|~Tj|+ |~Tk|)h

pdx,

which does not exceed CAµ||~T ||Lp′ (B2r)
K1/p.

It remains to estimate XI. It will be convenient to denote

F = {0 < vj − vk < µ} ∩ {vj ≤ 2A} ∩B2r.

Note that ∇f = 0 almost everywhere outside of {0 < vj − vk < µ},
and g = 0 on the set max(uj, uk) > 2A. As a result g∇f = 0 almost
everywhere outside F , and the integral in XI can be taken over the set
F . The triangle inequality now yields

|XI| ≤
∣∣∣∫
F

∇(vj − vk) · ~Tj(vp−1
j − vp−1

k )(2A− vj)hpdx
∣∣∣

+
∣∣∣∫
F

∇(vj − vk) · (~Tj − ~Tk)v
p−1
k (2A− vj)hpdx

∣∣∣.
The second term here is easily estimated using the gradient estimates.
Indeed, we have∣∣∣∫

F

∇(uj − uk) · (~Tj − ~Tk)v
p−1
k (2A− vj)hpdx

∣∣∣
≤ CAp(||∇(vjh

p)||p + ||∇(vkh
p)||p)||(~Tj − ~Tk)h

p||p′

≤ CK1/pAp||(~Tj − ~Tk)h
p||p′ ,



QUASILINEAR ELLIPTIC EQUATIONS 29

and from standard properties of the mollification, the right hand side
of this bound is of the order C(A)o(1), as j, k →∞.

Now for our final estimate. We have to find a bound for the integral

XIII =
∣∣∣∫
F

∇(vj − vk) · ~Tj(vp−1
j − vp−1

k )(2A− vj)hpdx
∣∣∣.

To do this, let x ∈ F , and first note that if 1 < p < 2 we have

vj(x)p−1 − vk(x)p−1 ≤ (vj(x)− vk(x))p−1 ≤ µp−1.

If p ≥ 2, we instead observe that

vj(x)p−1 − vk(x)p−1 ≤ (p− 1)(vj(x)− vk(x)) · (vj(x)p−2 + vk(x)p−2)

≤ C(p− 1)Ap−2µ.

Either way, we obtain

XIII ≤CA1+max(p−2,0)µmin(p−1,1)

∫
F

|∇(vj − vk)|~Tj||hp|dx

≤ CK1/p||~T ||Lp′ (B2r)
A1+max(p−2,0)µmin(p−1,1).

(4.38)

Bringing all our estimates together, the desired inequality (4.35) fol-
lows. �

4.7. Proof of Theorem 2.2, part (ii).

Proof of Theorem 2.2, part (ii). Suppose there exists a solution v ∈
L1,p

loc(Ω) of (2.7). Then testing the weak formulation of (2.7) with |h|p,
for h ∈ C∞0 (Ω), we see that

〈σ, |h|p〉 ≤Mp

∫
Ω

|∇v|p−1|∇h||h|p−1dx−m(p− 1)

∫
Ω

|∇v|p|h|pdx,

where (2.1) has been used. Applying Young’s inequality, we have

Mp

∫
Ω

|∇v|p−1|∇h||h|p−1dx ≤ Mp

mp−1

∫
Ω

|∇h|p+m(p−1)

∫
Ω

|∇v|p|h|pdx,

and hence,

〈σ, |h|p〉 ≤ Mp

mp−1

∫
Ω

|∇h|pdx.

Using ellipticity of A (see (2.1)), we conclude that (2.9) holds with
λ = (M/m)p.
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Let us now suppose in addition that v satisfies (2.12) with a constant
C0 > 0. Testing (2.7) again with |h|p for h ∈ C∞0 (Ω), we can estimate

〈σ, |h|p〉 ≥ −pM
∫

Ω

|∇v|p−1|∇h||h|p−1dx−M
∫

Ω

|∇v|p|h|pdx

≥ −2M

∫
Ω

|∇v|phpdx−
∫

Ω

|∇h|pdx.
(4.39)

Where the first inequality here follows from (2.1), and the second is
the a consequence of Young’s inequality. Applying (2.12) we conclude
that

〈σ, |h|p〉 ≥ −(2MC0 + 1)

∫
Ω

|∇h|pdx.

Hence (2.10) holds with Λ = M(2MC0 + 1). �

5. A remark on higher integrability

In this section we remark on higher integrability of positive solutions
of (2.6). We show how the method of Brézis and Kato [BK79] can be
incorporated into our framework. Let Ω ⊂ Rn be an open set.

Theorem 5.1. Suppose that σ ∈ L−1,p
loc (Ω) satisfies (2.9) with constant

λ > 0 and (2.10) for Λ > 0. For each q ∈ (0,∞), there exists λ(q) > 0
such that if λ < λ(q), then there exists a positive solution u ∈ L1,p

loc(Ω)∩
Lqloc(Ω) of (2.6).

In dimensions n = 1, 2, the result follows from Theorem 2.2 using
standard Sobolev inequalities. We shall therefore assume that n ≥ 3.
We will continue to use the notation from the proof of Theorem 2.2 from
Section 4. In particular, we will assume without loss of generality that
Ω is connected, and we will use the approximate sequence of solutions
constructed from (4.1). The result is based on an iterative use of the
following lemma:

Lemma 5.2. Let s > p, and suppose that

(5.1) λ < λ(s) = (s− p+ 1)
(p
s

)p
.

Then there exists a constant C = C(λ), such that for all k > j

(5.2)

∫
Ωj

|∇(uk)
s/p|p|h|pdx ≤ C

∫
Ω

usk|∇h|pdx, for all h ∈ C∞0 (Ωj).

Proof. The proof mimics the proof of Lemma 4.4. We leave the details
to the reader. �
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Proof of Theorem 5.1. Fix k > j. We may assume that q > np/(n−p)
(otherwise the result has already been proved). We put sj =

(
n−p
n

)j
q,

for j = 0, . . . , N . Here N is chosen to be the largest integer so that
sN > p. Note that sN ≤ np/(n− p).

Let us suppose that λ < λ(s1), with λ(s1) as defined in (5.1). Since
λ(s) is monotone decreasing in s for s > p, we have λ < λ(sj) for all
1 ≤ j ≤ N .

For each ` = 0, . . . , N − 1, applying the Sobolev inequality in (5.2)
yields the inequality

(5.3)
(∫

Ωj

us`k |h|
pdx
)n−p

n ≤ C

∫
Ωj

u
s`+1

k |∇h|pdx, for any h ∈ C∞0 (Ω).

Now fix a ball B(x, 8r) ⊂ Ωj, and define functions h`, for ` = 0 . . . N−1,
satisfying

h` ∈ C∞0 (B(x, (1 + `+1
N

)r)), h` ≡ 1 on B(x, (1 + `
N

)r), |∇h`| ≤ CN
r
.

Substituting these test functions in (5.3) yields(
−
∫
B(x,(1+`/N)r)

us`k dx
)n−p

n ≤ CNp−
∫
B(x,(1+(`+1)/N)r)

u
s`+1

k dx, for each `.

An N -fold iteration of the preceeding inequality results in

−
∫
B(x,r)

us0k dx ≤ C(N, q, λ, r)
(
−
∫
B(x,2r)

usNk dx
) nN
n−p

.

Since sN ≤ np/(n − p), the right hand side of this equation can be
bounded using the estimate (4.2) (by way of Sobolev’s inequality). We
arrive at

(5.4)

∫
B(x,r)

uqkdx ≤ C(q, B(x, r), λ,Λ,Ωj, B).

Mimicking the passage to the limit in Section 4.5, we arrive (with an
additional application of Fatou’s lemma) at a positive solution u of
(2.6) with the property that u ∈ Lqloc(Ω). �

6. The proof of Theorem 1.4

For a measure µ and 0 < α < n, define the Riesz potential of order

α, Iα(µ)(x) =
∫
Rn

dµ(y)
|x−y|n−α . Denote by (−∆)−1 the Green’s operator in

Rn, given by

(6.1) (−∆)−1(µ)(x) =


1

2π

∫
Rn

log |x− y|dµ(y), if n = 2,

cnI2(µ)(x), if n ≥ 3.
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where cn > 0 has been chosen so that −cn∆| · −y|2−n = δy in D′(Rn).
Here δy is the Dirac delta measure concentrated at the point y.

Proof of Theorem 1.4. We shall first prove part (i). The sufficiency of

the representation of σ as σ = div(~Γ), with ~Γ satisfying (1.9) follows
from Hölder’s inequality. On the other hand, suppose σ satisfies (1.2)

with a constant C0 > 0. Then note that σ̃ = (p−1)2−p

2C0
σ satisfies the

hypothesis of Theorem 1.2.
Applying part (i) of Theorem 1.2, we see that there exists v ∈ L1,p

loc(Ω)
satisfying −div(|∇v|p−2∇v) = |∇v|p + σ̃ in Rn, such that

(6.2)

∫
Rn

|∇v|phpdx ≤ C

∫
Rn

|∇h|p, for all h ∈ C∞0 (Rd).

Now denote dµ = |∇v|pdx. Then µ satisfies∫
Rn

|h|pdµ ≤ C

∫
Rn

|∇h|pdx, for all h ∈ C∞0 (Rn).

It now follows from [MV95] (see also Theorem 1.7 of [V]) that there
exists a constant C > 0 such that

(6.3)

∫
E

(I1(µ))p
′
dx ≤ Ccapp(E), for all compact sets E ⊂ Rn.

We claim that there exists a solution w of

(6.4) −∆w =
( 2C0

(p− 1)2−p

)
µ =

( 2C0

(p− 1)2−p

)
|∇v|p in Rn,

along with a constant C = C(C0) such that

(6.5)

∫
E

|∇w|p′dx ≤ Ccapp(E), for all compact sets E ⊂ Rn.

To see this, let µN = |∇v|pχB(0,2N )dx. Then (6.3) is satisfied with µ
replaced by µN . Let

wN =
2C0

(p− 1)2−p∆−1µN − cN ,

where cN is chosen to ensure that |
∫
B(0,1)

wNdx| = 1.

Using the identity |∇∆−1µN | ≤ cI1(µN), we see that

(6.6)

∫
E

|∇wN |p
′
dx ≤ C(C0)capp(E), for all compact sets E ⊂ Rn.

Therefore the sequence (wN)N is uniformly bounded in L1,p′

loc (Rn). By
weak compactness and a diagonal argument, there is a subsequence
of wN (still denoted by wN), so that wN converges weakly to w in

L1,p′

loc (Rn). Using Rellich’s theorem, and the normalization on wN , we



QUASILINEAR ELLIPTIC EQUATIONS 33

see that w is not infinite. This limit function w is easily seen to be a
distributional solution of (6.4) satisfying (6.5).

Notice that the inequality (6.5) is equivalent to (see [Maz11])

(6.7)

∫
Rn

|∇w|p′ |h|p ≤ C(C0)

∫
Rn

|∇h|pdx, for all h ∈ C∞0 (Rn).

Let ~Γ = −
(

2C0

(p−1)2−p

)
|∇v|p−2∇v + ∇w. From displays (6.2) and (6.7),

we see that ~Γ satisfies the conclusion of the theorem.
Let us now turn to part (ii), which is more straightforward. We

suppose p ≥ n. As in the proof of part (i), we can reduce matters to
when C0 < (p − 1)2−p in (1.8). Applying Theorem 1.2, we deduce the
exists of v ∈ L1,p

loc(R
n), such that

(6.8) −div(|∇v|p−2∇v) = |∇v|p + σ in Rn,

satisfying (6.2). It is immediate from (6.2) and from the definition of
capacity (1.11) that∫

E

|∇v|pdx ≤ Ccapp(E), for all compact sets E ⊂ Rn.

However, with p ≥ n, it is well known (see [AH96, Maz11]) that
capp(E) = 0 for all compact sets E ⊂ Rn. Therefore |∇v| ≡ 0, and
hence σ ≡ 0. �
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