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1 Introduction.
We study the third boundary value problem for the equation
Au+wu=f, (1.1)

in a planar domain €2 with an exterior cusp O on 0f). By w we denote arbitrary
real or complex number and f is a given complex valued function. The solutions are
subject to the boundary condition,

Opu — pu = g, on 00\ O, (1.2)

where p and g are prescribed complex valued functions on 92 \ O. Let us describe
the domain . We fix a certain Cartesian system = = (1, x2) with the origin O and
set . := QN {zr; < e}, where ¢ is a small positive number. We assume that ().
coincides with the set

{l’ 0<z < g, ¢0($1) < Ty < ¢1($1)}, (].3)

where ¢y and ¢, are functions from C?[0, ¢, such that

¢0(0) = ¢1(0) = ¢,(0) = ¢1(0) = 0, (1.4)

and
1(0) > ¢5(0) . (1.5)

Moreover, let € be so small that ¢; > ¢y on (0,¢). We assume that p € C*°(0Q2\ O)
and there exist two complex numbers pg and p;, such that

p(x) =po, v €{r:0< 2 <&, 2= o(x1)}, (1.6)

plx)=p, z€{r:0<x <e, 1o =P1(x1)}, (1.7)

Our goal is to describe the asymptotic behavior of solutions to the problem (2.1), (1.2)
in the neighborhood of an external cusp O. The solutions we are dealing with belong
to a very wide class; to be more precise they may grow as exp(cz;') as x; — +0,
with a sufficiently small positive constant c.

The problem (1.1), (1.2) is a particular case of an elliptic boundary value problems
in cuspidal domains considered in [1], [2], where the Fredholm and other properties of
solutions were investigated. The Dirichlet and Neumann problems for the Laplacian
and Lamé system were studied from different points of view in [3]-[19] ( see also [20],
where other references can be found).

It appears that the problem (1.1), (1.2) has special features which make its study
more complicated in comparison with Dirichlet and Neumann problems. In fact, the
principal term in the asymptotic representation of a solution is determined by the
lower order term in the boundary operator. To be more precise, for example, we

prove that
Ltiy/A-1 loiy/A-1

u(z) ~ ez, T tcory ? . a1 — +0, (1.8)

2



where

Po + p1

A= PO 1.9
7(0) ~ 6410) -

provided A > }l. In the case \ < }l we have

1 /IC _1_ /Ty
u(z) ~ 1y Vi +exy VY /\, x; — +0. (1.10)
And, finally, if A = i’
_1 _1

u(z) ~ iz ? +eoxy *lney,  x; — +0. (1.11)

In the above formulae ¢; and ¢y are some constants.

The asymptotic representations (1.8), (1.10) and (1.11) show, in particular, that
for real A\ the profile of the solution, in general, depends on the sign of 4\ — 1: the
solution exhibits an oscillatory behavior if and only if 4\ > 1.

The paper is organised as follows: Section 2. contains known auxiliary results. In
Section 3. we map a small neighborhood of the cusp into a suitable strip and investi-
gate the resulting transformed problem. In the last section we study the asymptotic
behavior of solutions near the cusp and their other properties.

2 Formulation of the problem and known results.

Consider the problem:
Au+wu=finQ, Odyu—pu=g, on N\ O. (2.1)

It is known that the boundary value problem (2.1) is Fredholm in certain weighted
spaces, see [2]. Let T be a domain and £ > 0 be fixed. Let 3,7 bereal and [ =0, 1, ....
We define weighted Sobolev space Wj_(T) as the closure of the set C§° (T\ O) with
respect to the norm

s W (DI =

48
> / e [y [0, (2.2)
T

lo]<t

where ¢ € Z?2 is the usual multi-index. Furthermore, for [ > 1 we define Wé;l/ (7))
as the trace space for WAW(T) on the boundary 0T. Then one can see that operator

A of the boundary value problem (2.1) is continuous from Wé*f(Q) to Wh_(Q) x
Wé;l/Q(@Q) for any [ = 0,1, .. and any real # and ~.

Theorem 2.1. Suppose that 37~ ¢ Z. Then the operator Ag of the boundary value
problem (2.1) is Fredholm from Wj_(Q) to Wj_(Q) x W;/j(ﬁQ) for any real y. In

particular, for any 6 > 0 small enough, every solution of (2.1) satisfies the estimate

@ < € (1Fbwg ) + 19127200y + lhas @1 ) - (2.3)



Remark 2.1. Let us assume that

w| + [Ipllcza\s.) + |pol + 1] < K, (2.4)

where K is a fixed large positive number. Then, the constant ¢ in (2.3), can be chosen
independently of w and p. The condition (2.4) will be assumed throughout the paper.

Theorem 2.2. Let —m < 1 <0 < o <7, and u € W5, () be a solution of the

boundary value problem (2.1) where (f,g) € W, ,(Q) x Wgﬁ(@Q) Then the solution
u admits representation
u = ciuy + Coug + u, in €., (2.5)

for sufficiently small €. Here w € W3, (), ¢; are constants, and u; € W3 _(Q), j =
1,2, are linearly independent modulo WéQW(Q) and solve the homogeneous problem
(2.1) in Q..

These statements are simple particular cases of Theorem 9.2.1 and Theorem 9.2.2
from [2]. The exact information on the forbidden values of /3 is due to the known
eigenvalues of related operator pencil, which corresponds to the Neumann Laplacian
on the interval [0, 1].

The above function spaces are based on ezponential weights (zero is a forbidden
value of ). However they are not sufficient for our purpose to obtain asymptotics
of the solutions near the cusp. Below we will construct alternative weighted Sobolev
spaces with power-type weights, such that the operator will be Fredholm and addi-
tionally will have zero index for large range of parameters. On the other hand, we
will provide a precise information on u; and wuy appearing in Theorem 2.2, and on
their asymptotic behaviour near the singularity point O.

3 Problem in a strip.

3.1 Change of variables and asymptotic properties in the
strip

In this section we investigate local properties of the solution of the problem
Au+wu = fin Q.; O,u— pou = go on Sp; Opu — pru = g; on Sy. (3.1)

Our approach is based on employing the following transformation:

o wy—olrr) 2
Z—W, t-;xll, (32)
where
¢:=¢1—¢o, k= ¢(0)— §(0). (3.3)

This transformation maps the cusp 2. onto semi-strip Il = {(¢, z)|z € (0,1),¢ > T},
T=2

ke’



Then conditions (1.4) on ¢;, j = 1,2 imply that, for ¢ — +o0:
2¢7(0)

510 (0) ~ 2 = o), (3.4)
/ 2¢//(0
o) = 201~ o), 5)
¢ (z1(t)) = O(1). (3.6)
In order to rewrite (3.1) in the new variables (¢, z), we routinely evaluate
2 0z Kt? o ¢
(911 = — K—I%(?t + a_,]}laz = — 7875 — (E + Zg) 8Z, (37)

2 2 2 2
92 = <ﬁ) o2+ Ly | 902 Ot ataz+(ﬁ) 2+225. (38

0xy 0x? 0xy 0x; 0x; ? 0_35%

[l 4 4 0z Ot 02\> ., 0%
- (@ + 2770 + 2 (28x1 (%lataz + (8_951> o0; + a—x%az :

1 1

Opy = ——0,, 0° = 02, 3.9
e O 3
Consequently,
2,4
Ax+w::8§1+8§2+w:%(83+8§+£), (3.10)
where
4 0z Ot 02 \? 0z 1 K24
=2t! 2 - 24 2~ AL - '
L=2t 815—1—52154 ( A 8xlataz+ (3561) o0; + 8x%8Z+ <<Z52(SC1) 1 >8Z —i—w)
(3.11)

In a similar way, using (3.7) and (3.9),we have

On, = (14 (00)°) /2 (000, — Oay) =

2 / /
(1+ (6h)%) (—cbg (%at + (% + z%) az> — dflaz) _
k2P,

— / 241 _g9 _ _
= (14 (¢p)*)"?¢ 1( 0, 20+ 62>8t> , for z =0,

and
On, = (14 ()22 (=1 0s, + 02,) =
son—1/2 [, (Kt o & - B
(1+ (1)) (¢1 (7@ + <EO + zg) az> ) 1@) _
K2 )

_ 1\2y1/2 -1 _
= (14 (¢1)) "% (02+2(1+¢,12)0t) , for z=1.

5



As a result we have:

(07 + 07+ L)u=F, inlly, (3.12)
(0. + No)u=Go, 2=0, t >T. (3.13)
and

0.+ Mu=Gy, z=1,t>T. (3.14)

Here g2
No= - (1fj;) oo (1) (3.15)

2
= o) 10

and F = 4 f Go=¢(1+¢2) g0, Gr = ¢ (14 ¢2) g,
In what follows we explore a more subtle properties of the operators appearing in
(3.12)-(3.14), therefore we will need the following representations:

" 2 /
No=—2 ‘;(to)a 2§§+m0, Ny = 2 O(O)at+ (Ht “bzg)aﬁ@— poo (1+6) 777,
(3.17)
d)”( ). 20 ¢”( ) KEOYT o 201 2\ ~1/2
N = 0y — 2 +9, My = Oy + 2(1+ ) vt T 19 (1+¢ ) :
(3.18)

Next we are going to employ “method of projections”, in a form somewhat similar
o [21]. Let us represent the solution to (3.12)-(3.14) in the form of the following
decomposition

u(t, z) = up (t) + us(t, 2), (3.19)

where u;(t) = fol u(t,z)dz = Piu, uy = Pyu := u — Pyu. (Hence P, and P» are
appropriate projectors.) Clearly fol us(t, z)dz = 0. Substituting (3.19) into (3.12) we
get,

Our + A pyus + L(ur +up) = F, (3.20)

where A,y := 07 + 02. Integrating (3.20) with respect to z over (0,1) we obtain
8,52161 + PlAUQ + P1£(U1 + U2> = PlF, in HT, (321)

having henceforth dropped the subscript (¢, z) for Ay ) for ease of notation. Using
(3.11) yields

)
82’&1 + 2t 8tu1 +

2t4u1 + Pla u -+ Pl,CUz F in HT. (322)

Integrating by parts in the third term in (3.22) and using (3.13)-(3.16) we get

4w
OFup + 2t 0uy + @m — Niu|,=1 — Nou|.—o + PiLus = §1,



where §, := P F — G — Gy. Using further (3.17) and (3.18),

P0+P1u n 4w
Kt2 1 g2

Q?ul + 2 Uy — ‘ﬁlul - ‘ﬁoul (323)

—Musg|,=1 — Noug|.—0 + P1Lug = F1, t > T.

On the other hand, subtracting (3.21) from (3.20) and integrating by parts we
similarly obtain,

This equation is supplemented by the boundary conditions, see(3.13) and (3.14) :
—6zu2 +M(U1 + Uz) = Go, z=0 and aZUQ +./\/1(U1 + UQ) = Gl, z=1. (325)

We then rewrite (3.23) and (3.24), (3.25) as a system of boundary value problems,

with anticipated “main order” parts A;, A, and “perturbations” B;;, 7,5 = 1.2:
Ajuy +Brug + Broug = F1, t>T, (3.26)
Borug + (A.2 + %22)?1,2 =5 t>T. (327)

Here

2 4w
A1 = af—f—)\tiQ s A= ;(po—l-pl), %11 = m—mo—ml, %12 = P1£—N1—./\f(), (328)

2

and
Asuy = (AU2, _azu2‘2=07 azu2|z=1)7 (3-29)

Bor = (No+N1, Mo, M), Bogug = ((P2£+N0+N1)U27-/\[()U2|z=07-/\[1u2|z=1)7 (3.30)

and §y = (P2 F + G1 + Go,Go,Gy). Let us notice that, by our construction, u is a
solution to the problem (3.12)-(3.14) if and only if the vector (uy,uz) is a solution to
(3.26), (3.27).

Let x be cut-off function such that

x € C*(R), x(t)=0fort < —1and x(t) =1 fort > 1. (3.31)
Let xc(t) := x(t = T) (recall that T = -£). Consider a system
A1u1 + %i1u1 + %iQUQ — gi, (332)

%Slul + (A.2 + %;2)1,62 = ;, (333)

where B;; = x:B;j, & = X355 1,7 = 1,2. The presence of the cut-off functions
allows us to consider a new system (3.32)-(3.33) for ¢ < T as well. On the other
hand, any solution of (3.32), (3.33) is a solution of (3.26),(3.27) for t > T+ 1 (since
these systems coincide for t > T+ 1).



Let us consider the operator of the main order in (3.32):
Ay =0+ A7 (3.34)

We are going to consider it as an operator on functions defined on R,. Let us
introduce the functional space VA(R,) (I = 0,1, ..., and 0 € R) which we define as
the closure of C3°(R ) with respect to the norm

l
Ju: VRO =S /R 2 tn=D| gy 2. (3.35)
n=0 +

Then, employing e.g. the Mellin’s transform, we have

Lemma 3.1. Let 0 # 1+ Re(}l — )\)1/2. Then operator Ay is an isomorphism from
VZ(R:) to VP(R,).

Remark 3.1. Clearly A; and A" depend on parameters A and o. In fact we have
the following estimates:

Al <o 1A <e (017 (Rea-0)) L wao)

where constant ¢ depends only on K ( see (2.4)). In particular, norm of A;' remain
bounded by a constant dependent only on K, provided

o—l—Re(i—)\)m > K 0—1+Re(i—)\)1/2 > K (3.37)

The definition of operator of main order in (3.33), namely of Neumann Laplacian,
see (3.29), is more subtle due to the presence of the projections Py and P, in (3.33).
We are going to consider this operator as an operator acting on the functions defined
on the whole strip II = {(¢,2)| — 00 <t < 400,z € (0,1)}. To this end we need a
Sobolev space with a power-type weight H.(II) (I = 0,1,... and ¢ € R), which we
define as the closure of the set C§°(II) with respect to the norm

|u = HL(IT)||? = Z/ (t2 + 1) |Voul|*dtdz.

15|<1

In the usual way we define the trace spaces HY 2(8H).
Now we define the domain of the other main order operator A, and its range:

1
D2 = {u2 € H2(I) : / ug(t,z)dz =0, t € R}, (3.38)
0

and

= {f e L3(I) x HY*(R) x HY*(R / fi(t,2) fo(t) + §3(t) , t € ]R}.
(3.39)



Lemma 3.2. For any o € R, Ay is an isomorphism from D2 to R2.

Proof. Obviously A, acts continuously for any o. Let us prove its invertibility. To
prove the claim for ¢ = 0 we apply Fourier transform ¢ — £ and use the explicit
Green’s function for the resulting operator pencil, see [22] p.27. (The presence of
singularity at & = 0 does not cause problems, due to the orthogonality condition in
the definition of the space R?, see (3.39)).

Consider now the problem

Asu =T, (3.40)
in the space D? for o # 0. Multiplying (3.40) by (t)7 := (a +t?)°/2, a > 1, we get
Ax()7u+[(1)7, Asu = ()71, (3.41)

where [-,] denotes the commutator. Now (t)°f € RJ and [(t)7, Ay](t)™7 can be
directly checked to be small from D to R for a large enough. Consequently there
is a unique solution to (3.41), (¢)°u € D3. This is equivalent to u € D2 O

Now we can treat the remaining operators in (3.32) and (3.33) as perturbations of
A, and A,. Below we use the notation A < B instead of A < ¢B.

Lemma 3.3. For any o € R the following estimates hold:

1B llve  moy—vewsy) S L 1B vz —vor,) S e (3.42)
1BLllpz_ m—vewy) S 1, 1BLllpzay-vor,) S & (3.43)

1B lve @, )—romm S 1, (3.44)

”%22”172 )—RO_(IT) 5 1, ||$322||D2 I1)—RY (I1) 5 €. (3'45)

Proof. 1. Let us prove first (3.43). We have, see (3.28),
1B aualPo,) S IXPrluzllbog,) + xeWi +No)ua[log, - (3.46)

Consider the second term on the right hand side of (3.46). Using (3.16), (3.4) and
(3.5), we obtain

IxMalige,y S [ BWinaPde S | #71oult DP + 16,0t DEd: S
T

/mt 2yt D + 271 Dt VPt S Nzl
T

and
IxNual[ow,) S € / 27 (It ua(t, V)P + [0ua(t, 1)) dt S
T

+o00
f/ (1+12)7 (Jus(t, DI + [Brus(t, DIP)dt S lfus 3.

—00



In the same way we obtain
IxNowalVo,) S lluallfz s IIXeNouallboe,) S € lluzllfz -

The first terms in right hand part of (3.46) can be estimated via (3.11),(3.4)-(3.6) as
follows:

IxePLLu: 3o g,
S [ 2]+ [VushPdedt S g,
T

and
HX5P1£U2||%/(9(R+) S ||“2||?{§_1(H)'

This proves (3.43).
2. Now let us prove the estimate (3.44) for 85,. We have, via (3.30),

1985001 g = lxe (N + N gy + ety gy + My
S IxeNowa g ) + Ixe Ny [ - (3.47)
Consider the first term on the right hand side of (3.47).
Xe/NoUr||grany ~ 11 Xe o) Ul Xe 0 o) Ot F- .
IxeNowallZy any S IIx=0(1+ 6F) ™ 2wl + Ixt?066(1+ 6F) " drunllzyy. (3.48)
Considering the last term in (3.48),

Ixet?¢d0(1+ ¢5) " Ol S

/Tt%(’%at%P +|¢'0Fun |* + |(Orun ) 0it* iy (1 + o) ') it
where we have used condition (3.4). Now using (3.5) and (3.6) we get
|60 |* + | 9607w + | (B )0t o (1 + 65) 71 S
2|0 | + 72|07 u P, t > e

and consequently

Ix=t*¢¢6(1 + ¢6) " Oy < lluallze, )-
Consider now the first term on the right hand side of (3.48). We have

Ixed(1+ ¢6) a7 < / 27 (|gw | + [p0iwr |* + [ur 0ep(1 + o) ") dtdz <
IIr

/ 27t ua [ 4+ 70 [* + 1w [P) dtdz S Jlua |32 g,y -
Ir

The second term on the right hand side of (3.47) can be estimated in the same way.
Consequently, assembling,

195, w1l zg < / £ (¢ ual® + 72|00 ]” + 07 ua*) it S [l [Tz
T
yielding (3.44).

10



Remark 3.2. If we separate the main order terms from the operator B3, then for the
remainder, i.e. operator B = x:(Mo + M1, Mo, 1) we will have better estimate,
namely

||%§1Hv§71(11@+)_nzg(n) S, (3.49)
which can be proved in the same way.
3. Now let us proof (3.42). We have, via (3.28),

4w 2

||%§1U1H%/§(R+) N / t%( perrl + |Mowr|* + |m1U1|2)dt- (3.50)
T
Using (3.17), (3.4) and (3.5) we get
’m0U1| SJ t_3|U1| + t_2|(9tu1|, (351)
and it follows from (3.18), (3.4) and (3.5) that
|‘ﬁlu1| 5 t_3|U1| + t_2|8tu1|. (352)
As a result
1985w Vo, ) S /Tt%t_2 (™ ual + 7210w P)dt < Pz m, ) (3.53)
and

185 ullVpe,) S € llunllVo, ).

4. The estimate (3.45) can be obtained in the same way. Indeed
1985502l g ) S lIxe(PoL + No + Ni)uallZa ) + [IXeNovall /e gy + XN 172

and since uy € H2(IT) and all the coefficients are decaying at least as t~!, we easily
obtain the desired estimates. O

Remark 3.3. Clearly, the operators B¢

5 4,7 = 1,2, depend analytically on w, py and
P1-

Corollary 3.4. Operator AZ, defined by the matriz operator

A+ 8BS Be
Af = o Pn 3.54
< W5, A+ B, ) (3:54)

is an isomorphism from V2(Ry) x D2(II) to VX(Ry) x R,(IT) for o # 1 + Re(1/4 —
MY2 X = 2(py+ p1) and € small enough.

Remark 3.4. Let us clarify the meaning of € being small enough. In fact ¢ should
satisfy the estimate

c<ec ((g — 17— (Re(1/4 - )\)1/2)2) | (3.55)
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where ¢ depends only on K. In particular Corollary 3.4 implies that there is a solution
u to the problem (3.12)-(3.14) in Iy for T > ,_%EO This solution can be represented
in the form

u(t, z) = up(t) +ualt, z), ui(t) = /0 u(t, z)dz,
and

i llve@e, ) + vl mza,,) < c <||F||L§(HT) + ||G||H;/2(RT)> ; (3.56)

where ¢ does not depend on F' and (G, and satisfies the estimate

¢ < (K, o) ((a 12— (Re (1/4 — ,\)1/2>2> o (3.57)

In other words if |o] < K and (2.4),(3.37) are satisfied, then ¢ does not depend on
o, po, p1 either (it depends only on K).

We next describe the asymptotic behavior of the solution of (3.12)-(3.14) with a
special right hand side.

Theorem 3.5. Let F(t,z) = p(2)t*In™t, Go(t) = bot*In™t, G1(t) = byt*In™¢,
where a, by and by are complez-valued constants, m = 0,1, .., and p € L*(0,1). Then,
for sufficiently small e, there ezists a solution of the problem (3.12)-(3.14) u, such
that

1
u(t, z) = uy(t) + ual(t, 2), / ug(t,2)dz =0, t>T,
0

Ul(t) = ’le(t> —Hll(t), '[Ll € Vf(RT), Vo < 1/2 — R@OZ, (358)
uy(t, z) = ts(t, 2) + a(t, 2), Gy € HX(Il), Yo < 1/2 — Rea.

Here
(1) = **2Q(In1),

Uo(t, 2) = t*In" tP(2) + t*Q(Int) Py (2) + t°Q'(Int) Py (2),
where P, P, P, € H*(0,1), and
1. ifa# _%i\/%_)‘ then

ay.
=y T (3.59)
ps k
where ay, are constants;
2. ifa=—2+,/1—Xand X\ # 1/4 then
m—+1 a
k
Q=>4 (3.60)
k=1

where ay, are constants;
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S ifa=—2+,/3—Xand \=1/4 then
Am+-2 m+2
Q1) = CEDH (3.61)
where a9 s a constant.

Proof. The statement of the theorem is equivalent to the existence of a solution of
the equation
Au=g, t>T, (3.62)

where A is the matrix block operator appearing in left hand side of (3.26)-(3.27),

u = (u1,uz), and

§=(81,82), §1=(p1 —bo—b1)t*In"t, Fo = ((p2+bo+b1),bo,b1)t* In" ¢,

P = / p(2)dz, pa(z) = pl(=) — i,

u = (iy,0:) +1u, uc€V:(Ry)x D(Ily), Yo <1/2 - Rea. (3.63)

Let us notice that
Uy, Us) € V2 (Rp) x H? (Il , Vo < 1/2 —Rea, 3.64
o—1 o—1

and does not belong to V2, n  (Ry) x H?
3 (0%

®1_RegUIr), s0 (3.63) indeed delivers an
53— e

asymptotics of solution u.
The existence of the above solution follows from the existence of the solution of
the following problem,
Afu = —XlAE (ﬂl, 112) + Xlg, (365)

in the space VZ(R,) x D(II) (see Corollary 3.4), since systems (3.62) and (3.65)
coincide for ¢ > T'.

It remains to verify that the right hand side in (3.65) belongs to the space
VO(R,) x R2(I). For the first component of x1A® (i, Us) — x1§ which we denote
I;, we have

Il = XlAﬂf“”Q(ln t) —+ %‘iltcx—i&@(ln t) + SB§2/[L2 — Xl(pl — b() — bl)ta lIlmt =

X1 (0] + M72)t2Q(Int) — (p1 — bo — ba)t* In™ t) + B, t**Q(Int) + B,ts. (3.66)

The second and third terms in (3.66) are clearly in V(R,), see (3.64) and (3.53),
(3.43). As for the first term in (3.66), we choose ) to make it disappear, i.e. @) has
to be a solution of the equation,

02 + Mt Ht*2Q(Int) = (p1 — by — by)t* In™ t. 3.67)
t

This equation can be easily solved, and one can directly verify that () has the form
(3.59)-(3.61) (depending on the parameters o and \).
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In particular, if o # —% +1/7 — A we have

am =m! ((a+2)(a+1) — )\)_1 (p1 — by — by),
ar = ((a+2)(a+1) — )\)_1 ((—2a — 3)ags1 — agy2), k=m—1,..0.
Ifa=-3+,/1—Xand A +#1/4, then

41 = m! (2(01 + 2) - 1)71 (pl — bg — b1)7
ap=—2(a+2) = 1) apy, k=m,m—1,.1.

Ifa=-34+,/1—Xand A =1/4, then

Am+2 = m!(]?l —bo — bl)-

As a result we conclude that I; € V2(R,).

Now let us estimate the second component of x1A® (y, Us) — § which we denote
by I,. We have

Iy = xaB5,11 (1) + x1A2102(t, 2) — X182 + X1B51sa(t, 2). (3.68)
Clearly the last term in (3.68) belongs to R2(I1), see (3.64) and (3.45). Let us evaluate
the remaining terms. We have

;1 = XE('/\[O +Nl>-/\[07-/\/1)

B 2 A 200(0) 2po 2¢/7(0) 2p e
o (?at 2’ Kt 0 Kt? Kt % Kt? O + 90, T, M),

AZU = (at2u + agua _azu|z=0> azu|z:1)-

Therefore,
X185, (1) =

(2 +2) =22 Cooa +2) - m), 2 @00 +2) - o)) Q)
+ (2, =265 (0)x 7, 2¢1 (0)r™1) t*Q'(Int) + X (Mo + M1, Mo, M)t T*Q(Int), (3.69)
viAsia(t2) = i (Pl (2), ~ P(0), Pi(1) ) °Q(in )
1 (PY(2), = B3(0), PA(1) )@ (t) + x ( P"(2), = P'(0), P/(1) )t ™t
+x1 (OF(t*In™ tP(2) + t“Q(Int) Py(z) + t*Q'(Int) Py(2)), 0,0) . (3.70)
—x182 = x1 (= P2 — by — by, —bo, —by )" In™ . (3.71)

Clearly the last term in (3.70) is in R2(II), see (3.64). The same is true for the last
term in (3.69), see (3.64) and (3.49). We need to pick up P, P, and P, in such a
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way that the sum of the remaining terms in (3.69),(3.70) and (3.71) disappears. We
achieve this by putting

P = 2afion (B2 - ) —aston (5 - 7).

P(z) = by ((2_21)2 - %) by (%2 - %) +P(2),
A =202 e (S5 1) - 2

2 6
where P € H?(0,1) is a unique solution of the problem

P"(z) = ps(2), z € (0,1), P(0) = P(1) =0, /0 P(2)dz = 0.

As result we conclude that the sum of (3.69)-(3.71) is in RY(II), and as a result
I, € RU(ID).

[
As a corollary of the proof of the above theorem we have
Theorem 3.6. There exist solutions v and v~ of the homogeneous problem (3.12)-
(3.14) for small enough €, such that
1
vE(t, 2) = vF () +vi(t, 2), / vi(t,2)dz =0, t > T,
0
where
v (t) = 0y (t) + 07 (), oF € V) (Ry), Your <5/2 — ReA™, (3.72)
vi(t,z) = 05 (t,2) + 05 (L, 2), 0F € H? (II7), Yor < 5/2 — ReA*.
Here
bE(t) = M Q*(In),
BE(t,2) = " 2QF (Int) PE(2) + 2 72(QF) (Int) Py(2),
where o1 1 >
- " -1 Z = _ ) o -1 Z_ —
P =200 (U515 - 4) 2o (5 - ).
2 (z—1)2 1 2 221
+ + +
P = 2 (et + ) (B - 1) - 2ot - o) (5 - ).
and

1. If X # 1/4 then

=120 -1/4)"2 QF(r) =1
2. If \=1/4 then

F=1/2, QN () =1, Q (1) =7
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Proof. We follow the pattern of Theorem 3.5. We define the remainder (i (t), o7 (t))
as a solution to the the problem

AT, T (1) = —xiA® (5£0), 1) (5.73)
Notice that x; A% (05 (¢), 95 () € VO(Ry) x RY(ID), Vo < 5/2 — Re A* | since
(02 — M) QF (Int) = 0.

Consequently there is a solution (37 (¢), 07 (t)) € VA (Ry) x HZ (Il7), Yo <5/2 —
Re A%,
[

Remark 3.5. There are many other solutions of the homogeneous problem (3.12)-
(3.14). Let us demonstrate how we can we fix these solutions. Consider the case A
is real and A > 1/4. Then v* can be chosen in such a way that their norms remain
bounded with respect to A and w?. Indeed for main terms i (¢) and 97 (¢) it follows
from the explicit formulae. Let us define

(DF (1), T (1)) := — <A;(}2—R6Ai—}{> X1A° (07 (1), 05°(1)) | (3.74)

where € is chosen to satisfy (3.55). The choice oy = 5/2 — Re A* — & ensures that
condition (3.37) is satisfied and we can use Remark 3.4 to estimate the remainders
07 (t) and o7°(t). As result our special solutions v* € V2 (Ry) x H2 (Ily), Vpi <
3/2 — Re A* are determined uniquely by our construction and the remainders are
bounded in V72, (Ry) x H2, (Il7), Yoy < 5/2 —ReA* — . The same result remains

true if A\ has a small imaginary part, say A € {|ImA\| < K~! Re\ > 1/4}.

3.2 Problem with additional smoothness of coefficients.

In this subsection we impose additional conditions on the functions ¢;, j = 1,2
describing the cusp. Namely we suppose that for all N = 0,1, ... the following holds

N
a5, (%‘(951) -3 bﬂﬁ)

Under the above conditions we have the following refined version of Theorem 3.5:

< Oyl 70k =0,1,2, b = ¢7(0)/2.  (3.75)

Theorem 3.7. Let F(t,z) = p(2)t*In™t, Go(t) = bpt*In"t, Gi(t) = byt*In™ ¢,
where a, by and by are complez-valued constants m = 0,1,.. and p € L*(0,1). Then,

for sufficiently small € and any M = 0,1, ..., there exists a solution of the problem
(3.12)-(3.14) w, such that

1
u(t, z) = ui(t) + us(t, 2), / us(t,z)dz =0, t>T,
0
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uy(t) =y (t) + a1 (t), @y € VA(Ry), Yo < 1/2 — Rea + M, (3.76)
uy(t, 2) = 1ot 2) + Ua(t, 2), Gy € H2(I7), Yo < 1/2 — Rear + M.

Here
M

dy(t) =) "7 "Qu(Int),

n=0

Zta "P,(z,Int),

where P,(z,7) is polynomial in T with coefficients in H?(0,1), and Q,(7) is a poly-
nomial.

Proof. The proof follows immediately, since we under assumptions (3.75) we can
iterate the procedure described in Theorem 3.5. O

The following theorem is in turn a refined version of Theorem 3.6. Here we assume
that A € R in order to formulate more precise results.

Theorem 3.8. There exist solutions vt and v~ of the homogeneous problem (3.12)-
(3.14) for small enough €, such that

1
vE(t, 2) = vF(t) +vi(t, 2), / vy (t,2)dz =0, t > T,
0
and for any M = 0,1, ...
v (t) = 07 (t) + 07 (t), 9 € VA (Ry), Yoo <5/2— ReA™ + M, (3.77)
vy (t,2) = 03 (t,2) + 03 (t,2), o5 € HZ (l7), Vo < 5/2 — ReA* + M,

= 1/240(\—1/4)2

Further,
1. If A > 1/4 then

where
P,(z) are polynomials and g, are some constants, qo is arbitrary;
2. If \ =1/4 then

M M
o) =D 12, b3 (Lz) =Y T P(2)
n=0

M

M
or(t) =Yt (Int), 0 Zt 271Q, (2, Int),
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P,(z) are polynomials, a, are some constants, aq is arbitrary, b,(7) are linear func-
tions of T, moreover by(T) = const X 7. Finally Q,(z,7) are polynomials in z and
linear in T;

3. If A < 1/4 then

M
0f(t) =) t
n=0

[T
N

M
Vi, 6 (hz) =Y VIR (),

n=0

M M
() = Y VAT (1), @;(t,z):Zt_%Jr\/g_”Qn(z,lnt),
n=0 n=0

P,(2) are polynomials, a, are some constants, aq is arbitrary, b,(T) are linear func-
tions of T, moreover by(T) = const. Finally Q,(z,T) are polynomials in z and linear
inT.

Proof. In the Theorem 3.6 we already proved the existence of v* and constructed the
main term of asymptotic expansion. Now the existence of lower order terms in the
asymptotic expansion of v* follows from Theorem 3.7. O

4 Asymptotics near cuspidal point and the Fred-
holm property

4.1 Asymptotics near cuspidal point

Returning back to variables (z1,x2) we obtain the local solution to the problem (3.1)
for £ small enough, which can be represented as

u(ry, o) = ui(xy) +us(zy,22), 0<mz <ée, 0<mzo < (1), (4.1)

where, see (3.2),
) #(z1)
uy(zy) = P(ay)” / u(xy, xe)dxe, Uy = Pou :=u — uy,
0
and from (3.56) we get,

lutllve s + zlhwg__ . S 1 lbwe oo + lglharss s,

Here we have used the notation W/ := W _, see (2.2), and

77’

- V,YZ(Q)||2 _ Z/ |ZL’1|2(7_Z+‘5|)|62U|2CZ$.
Q

|5]<1
Let us consider the space

VI(Q) = {u € V5,(Q) : Pru € WHQN B.)},
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with the norm
[ullvai) = llullvg @) + I P2ullwziens.)- (4.2)

Obviously the space does not depend on € > 0 and the norms are equivalent.
As a direct consequence of Corollary 3.4 and Remark 3.4 we have

Theorem 4.1. Let {f,g} € W2(Q) x Wy*(9Q) and v # 1/2 £ 1/2Re\/1/4 — A,
Then there exists a local solution u € Vg(QE) to the problem (3.1) for e small enough,
and

[ullvz.) < ¢ <||f||w3(92£> + H9||W§/2(525)> : (4.3)

Moreover, if condition (3.37) holds, then the constant ¢ in (4.3) can be chosen inde-
pendently of w?, qo and q.

The next theorem follows from Theorem 4.1 and Theorem 2.1:

Theorem 4.2. Let v # 1/2 + 1/2Rey/1/4 — A, then there exists €9 > 0 such that,
for any 0 < € < &g, every solution of (2.1) satisfies the estimate

lulbzo < € (1o + 19z oons, + ula@as, ) - (44)

Moreover, if condition (3.37) holds, then the constant ¢ in (4.3) can be chosen inde-
pendently of w?, qo and q.

The next theorem follows from Theorem 3.6 via change of variables (3.2).

Theorem 4.3. There exist solutions v™ and v~ of the homogeneous problem (3.1)
for small enough ¢, such that

@(x1)
vi(x) = vli(xl) + UQi(w), / v%(x)dxz =0, z; <e,
0
vi (21) = 07 (267 2y ") + 07 (w1), 0F € Vi, (), Vo > ReA™/2—1/4,  (4.5)

_ Lo — ¢0(371)
¢(r1)

0E(t) = 47 QF (Int),
03 (t,2) = N 2QF(Int) PE(2) + Y 2(QY) (Int) Pa(2),

o P = 2afon (B2 - 1) —aston (5 - 7).
P = 2 ot +0) (S5 - ) - 2eroat - o) (5 - 1),
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and
1. If X # 1/4 then
A =1/240(N—1/4)Y2 Q% () = 1;
2. If \ =1/4 then
AF=1/2, Q"() =1, Q (1) =T

Remark 4.1. It will be useful in what follows to use another representation for v
instead of (4.5), namely

+

vE =vi + v, (4.6)

where
vi =07 (26 e + 05 (28 e 2), (4.7)
and
vE eV (D), Vx> ReA™/2-1/4.

Let us mention again that if A € {|[lm)\ < K~',Re\ > 1/4}, we have uniform
boundness of vi and v*, see Remark 3.5.

The following theorem is a refined version of Theorem 2.2. It follows from Theo-
rems 2.2, 4.1 and 4.3.

Theorem 4.4. Let —7 < <0 and v, #1/2+1/2Re\/1/4— X, k =1,2. Suppose
that u € WEV(Q) is a solution of the boundary value problem (2.1), where (f,g) €

WY () x WVII/Q((?Q) Then the solution u admits representation
u=c vt +c v +a, in ., (4.8)

for sufficiently small €. Here u € Vgl(Qa), vt functions described in Theorem 4.8,
and ¢ are constants.

Proof. The proof follows from local solvability given by Theorem 4.1 and application
of Theorem 2.2. O

Remark 4.2. We can assume that ¢= are zero if v* € V2 (Q).

4.2 On the indices of the operators

Consider the operator of the boundary value problem (2.1). Obviously it is continuous
from V2(Q) to WI(2) x W3/2(89). We denote this operator A..

Now we compare the attributes of the newly introduced operators .4, and of
previously studied operators Ag (see Theorem 2.1).

Theorem 4.5. Let —m < 1 < 0 < o < m, and 71 < 1/2 — 1/2Re\/1/4 — ),
Yo >1/241/2Re\/1/4 — A. Then

dim kerAg, = dim kerA,,, dim cokerAg, = dim cokerA,,, (4.9)

and
dim kerAg, = dim kerA, , dim cokerAg, = dim cokerA,,. (4.10)
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Proof. Let us prove (4.12). It follows from Theorem 4.4 that dim kerAg, = dim kerA., .
Let dim cokerAgs, = n. Then there exist n linearly independent functionals 91, ..., ¥, €

(W3, () x Wll/i(aQ))*, such that, for {f, g} € Wj _ () x ng(@Q), conditions

are equivalent to existence of a solution of Ag u = {f, g} . Clearly, conditions (4.11)

are necessary for solvability of A,,u = {f,g} if {f, g} € WJ,() x Wi2(09). Let
us show that these conditions are also sufficient for the solvability of A,,u = {f,g}.
Indeed then there exists a solution of Agu = {f,g}. Moreover, since {f,g} €

WI,(€) x WI/2(09) then, due to Theorem 4.4, u € V2, () and we get a solution
of A,u = {f,g}. It remains to notice that 1, ...,1, are linearly independent as

functionals from (W9, (€2) x Wi/ ?(09))" as well, since WS, (€) x WI2(09) is dense
in Wy, () x Wéfi(@ﬁ) Identities (4.10) can be proved in the same way. O

Corollary 4.6. It follows from Theorems 2.1, 4.2 and 4.5 that for v # 1/2 +
1/2Re\/1/4 — X, operator of the boundary value problem (2.1), A, is Fredholm from

VI(Q) to WI(Q) x WL/2(09Q). Moreover
indAg, = indA,, (4.12)

and

indAg, = ind A,,, (4.13)
for —m < B < 0 < By < m, and y1 < 1/2 — 1/2Re\/1/4 =X, 7o > 1/2 +
1/2Re\/T]4 — A,

We can describe the kernel of the adjoint operator A: in the following way: ¢ €
ker A% iff there exists u € ker AJ"_ such that

v{fon = [

ufdx +/ ugds, ¥ {f, g} € W(Q) x Wi/z(ﬁQ). (4.14)
Q o)

Here Af_7 is a formally adjoint operator to 4;_,, i.e. operator of the boundary
value problem (2.1) with w and p replaced by @ and 7, and acting from V}__(Q2) to
WO () x Wi/2 (092).

Following [22] (p.148), this representation allows us to evaluate the index of op-
erator A, in the case when p is real valued function. Indeed since the difference
of operators say A’ and A7 which correspond to different values of w is a compact
operator, it is enough to calculate the index of operator A, which corresponds to
w € R. In this case A{_, = A;_, and representation (4.14) implies

ind A, = —ind 4, _,. (4.15)
On the other hand (for definiteness let us consider the case A > 1/4), we have

ind A,, = ind A, +2, (4.16)
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where 7; < 1/2 < 9. The analogous identity was proved in [23] (or see monograph
[2]) for domains with conical singularities, but actually the proof relies on state-
ments analogous to Theorem 4.4 and representation (4.14). This provides the desired
information on index of A,.

Theorem 4.7. 1. Let A < 1/4, then

—1, v <1/2—1/2/1/4 =X
indA, =4 0, 1/2—1/2y/1/A— X<~y <1/2+1/2/1/4— X
: 1/2 = 1/2/1/4 + A < 7.

2. If X\ > 1/4 then
. _ _]-7 Y < 1/27
Z”‘MV_{ 1, 1/2<7.

Corollary 4.8. Let vy < 1/2 — 1/2Re\/1/4— X and 2 > 1/2 + 1/2Re\/1/4 — A

and w?, p are real, then dim ker A,, — dim ker A,, = 1. The corresponding one-
dimensional space is described by function n, for which we have the following asymp-
totic representation

n:a+’v++a7’07+7~7, in QEv ﬁ€W§,7(95)7 /6<7T'

Here functions v= are as described in Theorem 4.3, and a* are constants connected
by linear relation, i.e. either a~ = sa™ or a™ = sa™ with some constant s. Moreover,
if A< 1/4 then s € R, if \ > 1/4 then s € C and |s| = 1 (the last statement follows
by simple integration by parts).

Remark 4.3. Theorem 4.7 shows that if A > 1/4 then the index of operator A, is not
zero for any admissible value of «v. Bearing this in mind, we can modify our operator
introducing a space with radiation conditions: let A > 1/4 and v < 1/2, then

ueV Q) su=avt+a, weVi(Q), acC. (4.17)

Then it is clear that the corresponding operator Az‘ld* maps V,%’Jr into WS (Q) x

WWI/ ?(8Q) and its index is zero. Of course, one can consider different radiation condi-
tions, for example by adding to V,%(Q) the one-dimensional subspace generated by v~
(rather than v™) and constructing Ag“d’* with the same properties. An important
feature of these two particular extensions of A, is that the dimension of the kernel
does not increase, i.e. dim kerA, = dim kerAZ*»* for A > 1/4.
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