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Abstract. In this paper, we study the 3D Lamé system and establish its weighted
positive definiteness for a certain range of elastic constants. By modifying the general
theory developed in [4], we then show, under the assumption of weighted positive
definiteness, that the divergence of the classical Wiener integral for a boundary point
guarantees the continuity of solutions to the Lamé system at this point.
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1. The Main Results

In our previous work [1], we studied weighted integral inequalities of
the type

/Lu-\IIudmzo (1)
Q

for general second order elliptic systems L in IR"™ (n > 3). For weights
that are smooth and positive homogeneous of order 2 — n, we have
shown that L is positive definite in the sense of (1) only if the weight
is the fundamental matrix of L, possibly multiplied by a semi-positive
definite constant matrix.

A question that arises naturally is under what conditions are ellip-
tic systems indeed positive definite with such weights. Although it is
difficult to answer this question in general, we study, as a special case,
the 3D Lamé system

Lu = —Au — agraddivu, u = (u, UQ,Ug)T

in this paper, deriving sufficient conditions for its weighted positive
definiteness and showing that some restrictions on the elastic constants
are inevitable. By modifying the general theory developed in [4], we
then show that the divergence of the classical Wiener integral for a
boundary point guarantees the continuity of solutions to the Lamé
system at this point, assuming the weighted positive definiteness.

We first recall the following definition.
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2 Luo and Maz’ya

DEFINITION 1.1. Let L be the 3D Lamé system
Lu = —Au — agraddivu = —Dypu; — aDyg;ug (i=1,2,3),

where as usual repeated indices indicate summation. The system L is
said to be positive definite with weight U(x) = (Vi;(x))} i—; if

/ (Lu) ! Wu dz = —/ [Dyrui(x) + aDygiug(x)|uj(x)¥;;(z) de > 0
" " )

for all real valued, smooth vector functions u = (u;)i_;, u; € C§(IR3\
{0}). As usual, D denotes the gradient (D1, Do, D3)T and Du is the

Jacobian matriz of .

Remark. The 3D Lamé system satisfies the strong elliptic condition if
and only if « > —1, and we will make this assumption throughout this
paper. Il

The fundamental matrix of the 3D Lamé system is given by ® =
(q)ij)?,j:h where

iy = car™ (O + Sgwiw)  (L5=12.3) (3)
a+2 -0
Co = ——— .
“ 8r(a+1)

As usual, ¢;; is the Kronecker delta, r = |z| and w; = x;/|z|.
The first result we shall prove in this paper is the following

THEOREM 1.2. The 8D Lamé system L is positive definite with weight
® when a— < a < ag, where a— =~ —0.194 and oy ~ 1.524. It

is not positive definite with weight ® when o < a(_c) ~ —0.902 or
a > o' ~ 39.450.

The proof of this theorem is given in Section 2.
Let © be an open set in IR? and consider the Dirichlet problem

Lu=f, fi € C(Q), u; € HY(Q). (4)

As usual, H(Q) is the completion of C§°(Q) in the Sobolev norm:

1/2
| £l o) = (1 120y + 1 DFIaey|

DEFINITION 1.3. The point P € 02 is reqular with respect to L if,
for any f = (fi)3_q, fi € C(Y), the solution of (4) satisfies

QSI}TIEPUZ(JU) =0 (1=1,2,3). (5)
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3D Lamé System 3

DEFINITION 1.4. The classical harmonic capacity of a compact set
K in IR? is given by:

cap(K) = inf{/R3 IDf(2)2da: f € A(K)},
where
AK) = {f € CP(IR?) : f =1 in a neighborhood of K}

Note that an equivalent definition of cap(K) can be obtained by replac-
ing A(K) with A;(K) where

A1 (K) = {f €CE(RY) : f>1on K}
( [3], sec. 2.2.1).
Using Theorem 1.2, we will prove that the divergence of the classical
Wiener integral for a boundary point P guarantees its regularity with
respect to the Lamé system. To simplify notations we assume, without

loss of generality, that P = O is the origin of the space.

THEOREM 1.5. Suppose the 3D Lamé system L is positive definite
with weight ®. Then O € 02 is reqular with respect to L if

1 —
| can(B,\ )2 dp = . (6)
As usual, B, is the open ball centered at O with radius p.

The proof of this theorem is given in Section 3.

2. Proof of Theorem 1.2
We start the proof of Theorem 1.2 by rewriting the integral
/ (Lu)T dudr = —/ (Dyui + aDyug)uj®;; de
R3 R3
into a more revealing form. In the following, we shall write [ fdx
instead of [ps fdx, and by u? we always mean Z?:l u%; to express

(Zle uii)Q we will write uz;u;; instead. Furthermore, we always assume
u; € C§°(IR?) unless otherwise stated.
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4 Luo and Maz’ya
LEMMA 2.1.
/ (L) Su dz — %|u(0)|2 + Bluu) (1)
where
PB(u,u) = %/(ujDkuk — ugDyu;) D@5 dx

+ /(Dkuleu] + achukDiuj)(I)ij dx.

Proof. By definition,
/(LU)T(I)U der = — / Dkkui . qu)ij dr — « / Dkiuk . u]@ij dr =: Il +I2.
Since ® is symmetric, we have ®;; = ®;; and

Il = —/Dkkui . qu)ij dx

1

= —5 /[Dkk(uzu]) — 2DkUkauj:| (bij dx

1
= —5 /uiujDka)ij dr + /Dkukauj . (I)ij dr.
On the other hand, ® is the fundamental matrix of L, so we have
— D@y — Dy ®p; = 6;56(x),

and

1 1
—5 /UinDkkq)ij dr = 5 /Uiuj [5ij5($) + aDki(pkj} dx

1 o
1 o}
= 5‘71(0)‘2 — 5 (Dkuk suj + ukauj)Dl@ij dr.

Now I5 can be written as
I, = a/Dkuk(Din c @ + ujDiCI)ij) dzx,
and the lemma follows by adding up the results.
Remark. With ®(z) replaced by ®,(z) := ®(z — y), we have
/(Lu)T<I>yu dx = /(Luy)TCDUy dx (uy(z) = u(x +v))

1 1
= Sy O + Bl wy) = 3 luly)? + By (),
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3D Lamé System 5

where
(6]
By(u,u) = 3 /(UjDkuk — wp Dyuj) Di®y i; dz
+ /(DkUkaUj + aDgupDiug) y,ij dz.

O
To proceed, we introduce the following decomposition for C§°(IR?)
functions:

fla)=f(r)+g(x),  [eCPl0,0), g C5(R),

where
1

flr) = ) f(rw) do.
Note that

/2 g(rw)do =0, Vr > 0,
S

so we may think of f as the “0O-th order harmonics” of the function f.
We shall show below in Lemma 2.2 that all O-th order harmonics in (7)
are canceled out, so it is possible to control u by Du.

LEMMA 2.2. With the decomposition

wi(x) = u;(r) + vi(x) (i=1,2,3) (8)
where
_ 1
ui(r) = —/ ui(rw) do
dm s vr>0 (i=1,2,3),
/ vi(rw)do =0
S2
we have 1
/ (L) Bude = SJu(0)? + 2" (s, u) 9)
where
B (u,u) = %/(UjDkvk — vk Dyv;) D@y da (10)

+ /(Dkukauj + aDyug Diuj) @ d.

Proof. By Lemma 2.1, it is enough to show

/(UjDk’u,k — ukauj)Di@j dr = /(UjDk’Uk — ’Ukavj)Di(I)ij dx.
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6 Luo and Maz’ya

Since
/(UjDkuk — ug Dyu;) D;®;; dx
= /(@Dm — U Dytij) D;®;; do + /(ajDkvk — Uy Dyvj) D;®;; dx
+ /(ijkﬁk — v Dy;) D@5 da + /(ijkvk — v Dyvj) D@5 dx
= L+ D+ I3+ Iy,

it suffices to show Iy = Iy = I3 = 0. Now

_ «
Diq)ij = Di [CaT‘ 1 (5” + 70& i Qwiwj)]

_ Cq¥
= —coT Qwiéij—l— T 2[ 2

—~wiw; + (84 — wiwj + (85 — ijz')wz}

a+ 2
_ Ca _
= —CoT 2wj + aj_ 5" 20j =t dor 2w, (11)
where
4. — —2¢q -1
T a+2 An(at 1)
We have
= da/r wj(a;Dyty, - wi — up Dyt - wy) de (D, = 0/0r)

do | 77 2(1; Dy, - wjwg — U Dyl - wyw;) do = 0,

do | 77 2(vjDyily, - wjwy, — vE Dyt - wiw;) dz = 0.
As for I5, we obtain
Iy = dy | r~%(4;Dyvy, - wj — UxDyvj - w;) da
=d, / (@;Dgvy - wj — @jDjvy, - wy,) da
=— E£%1+ dg, [aj (€)vp(ew)wjwy, — U, (e)vk(ew)ijk} do

. -3 _ _ _
— 613(% de, o, {vkr [—2ujijk +rDytj - wijwy + Ui (65 — ijk)}

— o3 [—Qfajijk +rDyuj - wijwy + @0k — wkwj)} } dz = 0.

The result follows.
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3D Lamé System 7

Remark. With ®(z) replaced by ®,(z) := ®(x — y) and (8) replaced
by
ui(z) = u;i(ry) + vi(z) (1=1,2,3),
where r, = |z — y| and
_ 1
u;(ry) = Ir /52 ui(y + ryw) do
/52 vi(y +ryw)do =0

we have

Vr, >0  (i=1,2,3),

/(Lu)T<I>yu dr = %|u(y)|2 + %, (u, u)

where
«
B,y (u,u) = 5 /(’UjDkvk — 0y Dyvj) Di®y i da
+ /(DkukaUj + aDypugDiu;) @y 5 da.

O
In the next Lemma, we use the definition of ® and derive an explicit
expression for the bilinear form %*(u, u) defined in (10).

LEMMA 2.3.

B (u,u) = cq / {a (_T_ 27“_2 {vk(Dkv) cw — (divo)(v - w)} (12)

200+ 3
1 _12
+r {|Dru| +aa+2

(D, i;)*w? + | Dv]? + a(div v)?

2

+ o 2\(Dkv) w|? + ao—éi— 2(div v)|wi(D;v) - W]
a3aa—|——|—24 (Dyu - w)(dive) + oDy - w)|[w;(D;v) - w]} } dz.

Before proving this lemma, we need a simple yet important obser-
vation that will be useful in the following computation.

LEMMA 2.4. Let g € C§°(IR?) be such that
/ g(rw)do =0, Vr > 0.
52
Then
[ f)g@)dz =0

Ve C5°l0,00).
/r‘lDf(r) -Dg(z)dz =0
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8 Luo and Maz’ya

Proof. By switching to polar coordinates, we easily see that
[ F09() dz = /OOO r2f(r) dr /S g(rw) do = 0.
On the other hand,
/r_lDf('r) -Dg(x)dr = /r_lDrfDig - w; dx

S /g {—1"_2(D,ﬂf)wi2 + 7‘_1(D,«rf)wi2 + T_QDTf(dn' — w?)] dz

__ / g(r2D,f + 17" Dy f) da = 0,
where the last equality follows by switching to polar coordinates.
Proof of Lemma 2.3. By definition,

B (u,u) = %/(UjDkvk — v Dyv;) D@5 dx
+ /(Dkukauj + aDgugDiu;) @i de =: I + L.

We have shown in Lemma 2.2 that (see (11))

I, =27 'ad, / r~2w; (v; Dy, — v Dyv;) da
_ Cal
Ca+2
On the other hand,

r—2 [Uk(DkU) ~w — (dive)(v W)} dx.

Co X
o+ 2

I, = ca/r_leukaui dr + /r_leukauj - wiw; dx

C a2
16% —
B /7“ 1DkukDin s Wiy dx

+ caa/r_leukDiui dx +

= I3+ 14+ Is + Ig.

a+

Substituting u; = 4; + v; into I3 and using Lemma 2.4 yields

Iz = ca/r_l(D,«aiD,«ai Wi+ Dyv; Dyv;) dx + 2c¢q / r~ ' Dyi; Dyv; da:
= ca/7"_1(|ana|2 + |Dv|?) dz. (13)

Next,

Is = caoz/T_l(DrﬂkDrﬂi - ww; + 2Djv; Dydiy, - wi, + Dyvp Div;) d.
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3D Lamé System 9

Note that for k # i,
[o¢]
/T’leTﬂkDrﬂi - wpw; dr = / rDyu D, dr/ wrw; do = 0,
0 52

and therefore

I; = Caa/r_l {(Drai)%f + 2(divo)(Dyu - w) + (div v)ﬂ dz.

As for Iy,
Calt _ _ _
I, = aj— 5" LDy (; + v;) Dy (0 + vj) - wiwj da
Calt _ o _
= aj— 57 1(DTuiDTuj 'wiij,% + D,; Dyvj - wiwjwy,
+ Dk’l)iDr'aj S WiWiWE + Dk’l)Z‘Dk’Uj . wiwj) dx
Calt
= 2= [ 7 (Dyi) %} + 2Dy - w) i (Dyv) - w] + [ Do - w]?] da.
a4+ 2
Similarly,
Ca0? _1 _ _
I = D) r Dk(uk—l—vk)Di(uj—i—vj) CWiWj dx
2
Calt
= aa+ 5 rt (DrﬂkD,«ﬂj . wZ-Qijk + Dyt Divj - wiwjwy,
+ D, Dyvy, - wiw; + DyvpDivj - wiw;) dx
Ty (D122 + (Dt - w)[wi(Div) - ]
a4+ 2 I
+ (Dyt - w)(div o) + (div v)[w;(D;v) w]} dx.
The lemma follows by adding up all these integrals. O

With the help of Lemma 2.3, we now complete the proof of Theorem
1.2.
Proof of Theorem 1.2. By Lemma 2.2 and 2.3,
1
—c;! /(Lu)Tq)u dr = icgl\u(O)F + 11 + Iy + I,

where

_ _ 2+3,  _
I = /r ! [‘DTUP +a— ) (Dy;)*w? + | Dv?

+ a(dive)? + %H\(Dkv) - wl|?| d,
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10 Luo and Maz’ya

2
B 4 o ) .y 3o+ 4 _ )
I, = /r [a+2(dlvv)[wz(Dzv) w] + «a PN (Dt - w)(divv)

+ oDy - w)|w;i(D;v) - w]] dz,

I3—/ +27“ vk (Dyv) - w—(divv)(v-w)} dx.

Consider first the case o > 0. By switching to polar coordinates, we
have

2 3
L > /7“_1 {|D,ﬂ|2 +a a—:—Q (D, 1;)?w? + | Dv]? + a(divv) ] dx

S «
= [T+ 5 20 ipal + Dol + al divel2 ar

where we have written || - ||, for || - ||72(s2) and used the fact that

/2(Drﬂi)2wi2 do =
S

Next,

4 S

> (D) 3/ Dyaf? do = 5 | Dy,

2
3
\Ig\g/r_l{ a i ot 4 \Du wl||divo| + a|D,u - w||Dv|| d
a+2 o+

o0 a? o 3a—|—4
< di D — D d
< [T |5 diveleDoll + S S ID ] divoll

o
+ —||Dyul|o || Dv w} dr,
1Dl Do

where we have used
HDT’L_L . wHi = / Dr’az‘Dr’ﬁj - WiWj do
SQ

47 4 S 1
= Dyu; Dy - ?5753' =3 Z(Drﬂi)Q = g”DrﬂHi
i=1

As for I3, we note that

’Ig| <

< a+2 \vHDv[—Hdewvl)

/ Jollo1 Dol + [ div o) dr

<
- a—|—2
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3D Lamé System 11

Since 2 is the first non-trivial eigenvalue of the Laplace-Beltrami oper-
ator on S2, we have

1
[v]IZ =/ lo(rw)Pdo < 5 [ [Dyfu(rw)]|* do
S2 2 S2
= [ D) do < D2, (14
S2

where D, is the gradient operator on S2. Thus
1 «
V2 a+2

and by putting all pieces together we obtain

(o]
I3] < |7 [1Dol2 + 1Dvl ) div ol ]

o0
L+L+13> / r(wTB+w) dr, (15)
0

where

_ . T
w = (HDrun, Dol || divoll,)”,

(1@ 2043 e _ o 3o+4]
3 a+2 2v/3 2V/3 a+2
po_| o, 1 a aat2'P
* 2/3 V2 a+2 2 a+2
a 3a+4 a a+27V2
L 2v3 a+2 2 a+2 “ |

Clearly, the weighted positive definiteness of L follows from the positive
definiteness of By, because the latter implies, for some ¢ > 0, that

o (o]
/ r(w? Byw) dr > c/ r|w|* dr
0 0
o 12 2 _ -1 2
> c/ r(||DyallZ, + [|Dv||Z) dr = c/r |Du|” dx.
0

The positive definiteness of By, on the other hand, is equivalent to the
positivity of the determinants of all leading principal minors of By :

a? + 6a
Pia(e) = % > 0, (16a)
Pi2(e) = —m [o/1 —4(1 —V2)a® - 12(3 — V2)a?

—12(6 - V2)a — 48] > 0, (16b)
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peal0) = ~ 5 (607 + (23 + 3v2)a’ + (13 + 19v2)a
~ (77 = 38V2)a® — (157 — 24v2)a — 96| > 0.
(16¢)

With the help of computer algebra packages, we find that (16) holds
for 0 < a < ay, where oy = 1.524 is the largest real root of p, 3.

The estimates of I, Is, and I3 are slightly different when o < 0,
since now the quadratic term «af divv||? in I; is negative. This means
that it is no longer possible to control the || divvl|, terms in I, I3 by
|| divv||?, and in order to obtain positivity we need to bound || div v||,,
by [|Dvl|, as follows:

IdivolZ < 3[[DvZ.

This leads to the following revised estimates:

00 a 2a+4+3 _ e}
Bz [T (0§ 2 Dl + DR + 3l DolE + S Dol
0 Oé+2

3 a+2
o [4/3a2 3a+4, o _
Rl < [ L2l - o TRl Dol = Dyl Dol .
< - . @ /mr[|ym||2+¢§|ym||2}dr
3 = \/5 (X+2 0 w w .
Hence 0o
11+12+132/ r(w! B_w) dr, (17)
0
where
_ T
w = (| Dy, [[Dv]lw) ",
a 2a+3 a 3a+4 «
B — 3 a+?2 2 a+?2 2v/3
~ |la 3a+4 « 1++3
—. —— 1+3 1 —V3
2 azz o 1t a+a+2( =% V3a)
The positive definiteness of B_ is equivalent to:
202 + 60+ 6
_ = >0 18
p 71(0[) 3(a+2) ? ( a’)
1
_ =—— |- 24+ 7V3)a* +2(15 + V2 — 11V3 + V6)a?
P-2(0) = gy |-+ TVB)a! +2(15 4 V2 - 11V 4 VB)a
+2(57 + 3V2 = 10v3 4 3v6)a? + 6(20 + V2 + VB)a + 24| >0,
(18b)
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3D Lamé System 13

and (18) holds for a_ < a < 0, where a_ ~ —0.194 is the smallest real
root of p_ o.

Now we show that the 3D Lamé system is not positive definite with
weight ® when « is either too close to —1 or too large. By Proposition
3.11 in [1], the 3D Lamé system is positive definite with weight ® only
if

N AT Pp(w) >0, VEER), Vwe S?  (p=1,2,3),

(eEal

where

o
AZV = 0ij08y + 5(52'551‘7 + 0iy055)
and (see equation (3))

(I)l](w) = Cql"” (61] + wiwj) (7/,] = ]., 2, 3)

a+2
This means, in particular, that the matrix

3
A(w; ) :(ZAm(I) )5 1
7’y:

o1 2(a+ 1)(a + 2 + aw?) a?wiws c?wiws
= ﬁ ?wiws 2(a + 2 + aw?) 0
(o +2) ?wiws 0 2(a + 2 + aw?)

is semi-positive definite for any w € S? if the 3D Lamé system is positive
definite with weight ®. But A(w;«) is semi-positive definite only if the
determinant of its leading principal minor

2 2
da(w; o) := det [2(0‘ +1(a+2 4 awi) Qwiws ]

a?wiws 2(a + 2 + aw?)

=4(a + D(a+ 2+ aw?)? — atwiws

is non-negative, and elementary estimate shows that
min do(w; o) < do[(271/2,271/2,0); a]
w€eS?

a4

= (a+1)(3a +4)% - 7= q(@).
It follows that the 3D Lamé system is not positive definite with weight

® when g(a) < 0, which holds for a < o' ~ —0.902 or @ > a!? ~
39.450. O
Remark. We have in fact shown that, for a— < a < a4 and some
¢ > 0 depending on «,

/(LU)Tq’udx > %|u(0)]2 i c/ |Du(x)|2d$

x|
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14 Luo and Maz’ya

If we replace ®(x) by ®,(x) := ®(z — y), then

/(Lu)TCIJyu dx = /[Lu(:): + )T du(z + y) dz

1

S+ ¢ [1Dute+ )P

Ja]
Wi +e [ 12498 (19)

v

2

| \/

3. Proof of Theorem 1.5

In the next lemma and henceforth, we use the notation
mpy(u) = p_3/ lu(x)|? de, Sy ={x:p<|z| <2p},
ans,

Myw)=p [ Ju(a)? da.
QNB,

LEMMA 3.1.  Suppose L is positive definite with weight ®, and let
u=(u;)3_y, ui € H'(Q) be a solution of

Lu=0 on 2N Ba,,.
Then
[L(unp)]Tq)yunp dzr < emp(u), Vy € By,
Q
where ny(x) = n(z/p), n € C5°(Bs3), n =1 on Byz, and ®y(z) =

O(x —y).
Proof. By definition of w,

Jm) @y, de = [ (L)@, umy de | (L)@ ur e

where the second integral on the right side vanishes and the first one
equals

_/Q{2Dkukanp+ukaknp+a(Diukanp+DkukDi77p+ukai77p)}ujnp(q)y)ij dzx.

Note that Dm), D277p have compact support in R := Bj,/3 \ By, 3
|DEn,| < cp~*, and

<cp 7, Vr € R, Vy € B,,.
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3D Lamé System 15
Thus

/ [L(un,)]" ®,un, dr < c/ o~ 2|u||Du| dz + c/ p 3 ul? dx
Q QNR QNR

1/2 1/2
< c[p_?’/ |ul? dx} {p_l/ |Du|2dx] +Cp_3/ lu|? dz.
Qns, QNR ons,

The lemma then follows from the well-known local energy estimate [5]

p |Dul? dx < pfg/ lu|? dz.
QNR ons,

Combining (19) (with u replaced by un,) and Lemma 3.1, we arrive
at the following local estimate.

COROLLARY 3.2. Let the conditions of Lemma 3.1 be satisfied. Then
|Du(z)[?

2
U +
lu(y)| oo, 10—yl

dz < emp(u), Yy € QN B,.

To proceed, we need the following Poincaré-type inequality (see [2]).

LEMMA 3.3. Let u = (u;)?_, be any vector function with u; € H* ().
Then for any p > 0,

c
< Dul|*d
mp(u) < cap(S,\ ) /QmSp| u|* dx

where c is independent of p.

The next corollary is a direct consequence of Corollary 3.2 and
Lemma 3.3.

COROLLARY 3.4. Let the conditions of Lemma 3.1 be satisfied. Then

D 2
|Du(@)” dr < ;/ | Du|? dz, Vy € QNB,.
onB, |z —y| cap(S, \ Q) Jans,

Ju(y) [P+
We are now in a position to prove the following lemma, which is the
key ingredient in the proof of Theorem 1.5.

LEMMA 3.5. Suppose L is positive definite with weight ®, and let
u = (u;)}_q, wi € HY(Q) be a solution of Lu = 0 on QN Bag. Then,
for all p € (0, R),

sup[u(@)*+ [ |Du(a)]

242
z€QNB, E

R _
| < c1Mag(u) exp {—62/ cap(B,\Q)r 2 dr|,
p

(20)

where c1, co are independent of p.
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16 Luo and Maz’ya

Proof. Define B
() ==~ eap(S, \ Q).
We first claim that ~(r) is bounded from above by some absolute
constant A. Indeed, The monotonicity of capacity implies that

cap(Sy \ Q) < cap(B;).

By choosing smooth test functions n,(z) = n(z/r) with n € C5°(B2)
and n =1 on Bg/y, we also have

cap(B;) S/ |Dn|? daz < sup \Dn(m)\Q/ r2dx
R3 z€IR3 Bay

= [gﬂ' sup ]Dn(a:)]z} T.
3 z€IR3
Hence the claim follows.
We next consider the case p € (0, R/2]. Denote the first and second
terms on the left side of (20) by ¢, and 1, respectively. From Corollary
3.4, it follows that for » < R,

C C

'r+ T'S— T rg—wr_@/}r"i‘ r T ¥r)s
Pr + 9 ’y(r)(wZ Yr) 7(T)( 2 ©2r — Pr)
which implies that
c cec0(r)
< — —coy(r) .
§0r+wr = 7(,’”) (@21""’7/}%) o+ 7(7') [6 ((PQT"HZQT‘)]? Veg >0

Since (r) < A and

cos cecoA
< max{l, —_—
c+ A

ce

sup , cepetTeco },

s€f0,4] €+ S
it is possible to choose ¢y > 0 sufficiently small so that
Ceco’Y(T)
sup——— < 1.
>0 C+ 7("“)
It follows, for ¢y chosen this way, that
or +Pr < e_COW(T)(SD% + ar). (21)
By setting r = 27'R (I € N) and repeatedly applying (21), we obtain

!
Po-ip + Py-ip < exp [_CO Z ’Y(Q—jR)} (PR + ¥R).
=1
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If [ is such that [ < logy(R/p) <1+ 1, then p < 27'R < 2p and

!
©p+Vp < Po-ip + thy-1p < €xp [—Co > ’Y(?_JR)} (PR + ¥R).
i=1

Note that by Corollary 3.2,

or+ ¥R < emp(u) < cMag(u).

In addition, the subadditivity of the harmonic capacity implies that

v(277R) > Z cap(Byi-ig \ %)_;gap(gz—m \Q)

1 J=1

cap(Bgr \ cap(Bo_i Q =lea Boy-; Q
[ p;_fR\ ) p(zz_l;%%\ )]+Z P(Qz_jg\ )

l

J

j=1

L cap(Br\Q) _,cap(Byip\ D) | g~ cap(Byir\ Y
2R

Since

v

we have

l . R _
exp [—co Z 7(23R)] < exp {—%ﬂ / cap(B, \ Q)r~2dr + 2coA|.
p

j=1
Hence (20) follows with ¢; = ce?04 and ¢y = co/4.
Finally we consider the case p € (R/2, R). By Corollary 3.2,

| Du(=)[?

dx < ecm,(u), Yy e QN B,,
QOBP ‘.T—y’ — P() Yy P

u(y)* +
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18 Luo and Maz’ya

which implies that

dx
sup fu(y)®+ [ [Dula) P < cMan(u).
yeQNB, QNB, |I\

In addition,
R _ R
/ cap(B, \ Q)r 2dr < A r~tdr = Alog?2,
p R/2

SO

d R _
[ sup |u(y)|*+ \Du(x)|2—x} exp {02/ cap(B,\Q)r 2 dr| < ¢y Mag(u)
yeQNB, QNB, || P

provided that ¢; > cec2Alog2,

Proof of Theorem 1.5. Consider the Dirichlet problem (4)
Lu=f, [ €C9Q), u € H(Q).
Since f vanishes near the boundary, there exists R > 0 such that f =0

in QN Byg. By Lemma 3.5,

R _
sup \u(x)\Q < 1 Msg(u) exp {—02 / cap(B; \ Q)r_2 dr] ,
x€QNB, p

and in particular,
R _
limsup |u(z)|? < e; Mag(u) exp [—02/ cap(B, \ Q)r 2 dr} =0,
z—0 0

where the last equation follows from the divergence of the Wiener
integral

1 —
/ cap(B, \ Q)r 2 dr = co.
0

Hence O is regular with respect to L. O
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