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Abstract. The paper mainly concerns the results by N. Grachev and the author
in the harmonic potential theory for polyhedra. Pointwise estimates for kernels of
inverse operators are presented which imply the invertibility of the integral operator
generated by the double layer potential in the space of continuous functions and in
L,. Auxiliary pointwise estimates for Green’s kernel of the Neumann problem are
proved.
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1 Survey of results on the invertibility of boundary
integral operators

To begin with, I mention some results by N. Grachev and the author on integral equa-
tions of the potential theory on smooth surfaces with isolated conic vertices obtained
in [GM1], [GM3], [GM4], where, as in [M1] (see also [M2]), the study of integral equa-
tions is reduced to the study of certain auxiliary boundary value problems. We found
representations for inverse operators of these equations in terms of inverse operators
of the interior and exterior Dirichlet and Neumann problems. Using estimates for the
fundamental solutions of these boundary value problems, we arrived at estimates for
kernels of inverse operators of integral equations. Such estimates lead to theorems
on the invertibility of integral equations in various function spaces. In particular, the
solvability in the space of continuous functions C' for the integral equation associated
with the Dirichlet problem could be stated without any assumptions on openings of
the cones with smooth generatrices.

For a fairly large class of surfaces, the solvability of the boundary integral equation
in the space C' was proved by Burago and Maz’ya [BM] and Kral [K], whose approach
requires that the essential norm |T'| of the double layer potential T is less than 1.
This condition can be formulated in geometrical terms. However, it does not hold
even for all cones with smooth generatrices. Angell, Kleinman, Kral [AKK] and



Kral and Wendland [KW] succeeded in compelling the inequality |T'| < 1 to hold by
replacing the usual norm in C' with some equivalent weighted norm. The polyhedral
surfaces considered in [KW] are formed by a finite number of rectangles parallel to
the coordinate planes.

Since in the papers [GM1], [GM4] the solvability of the above mentioned integral
equation on surfaces with a finite number of conic vertices in the space C' was proved
without any additional geometric assumptions, it became plausible that the use of the
essential norm has been unnecessary and appeared only in the method of proof. We
[GM6], and independently Rathsfeld [R], extended the result in [GM4] to arbitrary
polyhedra using different methods. In [R], a proof based on the Mellin transform was
used. By the same approach, Elschner [E] studied the invertibility and the Fredholm
property of a similar integral operator with a complex parameter on a polyhedral
surface in certain weighted La-Sobolev spaces.

Now I pass to a description of results obtained by Grachev and the author in
[GMS6]. We denote by I' the boundary of a compact polyhedron in R?. By Gt we
denote the interior of the polyhedron and by G~ its exterior. Consider two problems
for the Laplace operator

Au=0 on G, u=f on T, (1.1)
Av=0on G, Ov/On =g on T\ M. (1.2)

Here M 1is the set of singularities of the polyhedron, i.e. the union of edges and
vertices, and 0/0n stands for the derivative in the direction of the outer normal to
\M.

Let O1,0,,...,0,, be the vertices of the polyhedron, let My, Ms, ..., M} be the
edges and let

ri(x) =dist(z, M;) =, r(z) = lgliigk ri(x),

pi(x) = dist(z,0;) plx) = 1£i_<nm pi(x).

By w;, i = 1,2,...,k we denote the opening of the dihedral angle with the edge M;
coinciding with G near M; and let

)\j :ﬂ/wi7 A :7‘(‘/(27‘[‘—0.}0, )\Zmln{)\j7)\;}
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Let K;, i = 1,2,...,m, be the cone with the vertex O; which coincides with GT
near the point O;. The open set that the cone K; cuts from the unit sphere 52
centered at O; is denoted by QT and the set S2\Q+ is denoted by Q™.

Let §; and v; be positive numbers such that 6;(d; + 1) and v;(v; + 1) are the first
positive eigenvalues of the Dirichlet problem in Q7 and the Neumann problem in 2~
for the Laplace-Beltrami operator on S2. We also set

M = min{éi, Vi, 1}
Let W1 denote the classical double layer potential with the density :
1 0 1
W= 2 [ (L Yy, sect
o) =i [ (g v@dse, we

We are looking for a solution of the equation (1.1) in the form of a double potential.
It is known that the density ¢ satisfies the integral equation

(1+T)p=2F1. (1.3)



Here T is the operator on I' defined by the equation

(TY)(x) = 2Wop(z) + (1 — d(x)) ¥ (x),

where d(z) = 1 for z € Q\M, d(x) = w; /7 for x € M;, d(z) = meas Q /27 for z € O;,
and Wy is the direct value on I' of the double layer potential.

Now we formulate the main result for the integral equation associated with the
Dirichlet problem.

Theorem 1 Let »x = mins;, A =min ;. If

p>2/(1+3x), p>1/A (1.4)

then the integral operator
14+T: Ly(I") — Ly()

and the operator
1+7T:CT)—C()

perform the isomorphisms. The inverse operator admits the representation
(1+T)'"f=QQ+L+M)f, (1.5)

where L and M are integral operators on T' with the kernels L(z,y) and M(z,y)
admiting the following estimates:

If M; is the nearest edge to the point y and O; is the nearest vertex to y, then
r Aj—1l—¢
M) S (1.6)

Mz 9)] < eply) (25

The kernel L(xz,y) is different from zero only if the point x lies near the point y.
Suppose that x and y lie in a neighbourhood of a verter O;, i = 1,2,...,m and this
neighbourhood contains no vertices of the polyhedron other than O;. If M; and M,
are the nearest edges to y and x, then

£z, y)| < cp(y)2<zg?;;)*j—1—e’

+C(7“(y)+|w—y|)_2(r(x)r($) )Al_s(r(y)r(y) )Aj_l_s (1.7)

+ ]z -yl + | —y|

for p(z)/2 < p(y) < 2p(x), and

£Go)] < ) pla) + p(y)) (BT ETEy

in the opposite case. Here € is any small positive number.
Remark 1. A similar theorem holds for the integral equation
(14+T")¢ =-2g, (1.9)

associated with the Neumann problem, where T™* is the operator formally adjoint to
T. In that case it is sufficient to replace (1.4) by the estimates

1<p<2/(1-3), p<1/(1-))



and to replace z by y and vice versa in the estimates (1.6) - (1.8). However, the
invertibility in the space C(I') should not be mentioned.

Here is a brief description of our method. First we consider the interior Dirichlet
problem and the exterior Neumann problem in some weighted Holder spaces with the
weight p? r7, where B and v are real. It is known (see [MP1]), that there exists a
unique solution satisfying (1.1) and that the representation

u(z) = / P (. €) F(€) dse (1.10)

holds with derivatives of the kernel P (z,¢) admiting the following estimates:

Suppose that the points z and £ lie in a neighbourhood of a vertex O;, i =
1,2,...,m, and M; and M, are the nearest edges to x and &. If either 2 p(§) < p(z
or p(§) > 2p(x), then

0705 P (,€)| < corr pla) 17 p(€) 11 () + ple)) ™

min{p(z), p(&) }\ %= (r(x)\ N ~lol=e () \Ne-lrl=1-e
(Soae ) Go) o G ~

plz)
In the zone p(§) < 2p(x) < 4p(§), the estimates have the form

070 P (2,€)] < cop |2 — g2 117

r(z) Aj—lol—e r(€) S
(orrma) . Gereoe) '

In the case z € U;, £ € Uy, where U; and U, are small neighbourhoods of the
vertices O; and O, with ¢ # ¢, the estimates take the form

T AT i—|o|—¢€ q—|T|—¢ T(iC) Aj=lol=e 7’(5) Ai=lr|=1=e
0700 P* (@, 6)] < o pla) 1 p@ T (D) () .

Here ¢ and 7 are arbitrary multi-indices, € is a sufficiently small positive number.

A similar representation
uw) = [ @ (.69l ds (111)

holds for the solution of the Neumann problem (1.2) and the kernel @~ (z, &) obeys
the following relations (see [GM4] and Part 2 of the book [MR]):

Suppose that the points = and ¢ lie in a neighbourhood of the vertex O;, i =
1,2,...,m, and M; and M, are the nearest edges to x and &. If either 2 p(z) < p(§)
or p(z) > 2 p(§), then

Q (2,8 =9 (0,8) + R (x,&) for 2p(x) < p(§),
Q (2, =Q (2,0) + R (§x) for 2p(§) < p(x),

where

Q7(0,8) = 27 (§0) = a; /p(§) +b; +d; (§), a; =1/measQ;.



For R(z,§) and d; (£) one has the estimates
o - vilol—e (T(E) e
10F d;7(©)] < co pla) Ce) ™

|agagR_ (LC, £)| < Co,r p(-T)Vi_‘U‘_Ep(g)_l_l’i_h'\—a (;EZJ‘:;)A{’E (;Eg))\“.

In the intermediate zone p(x) < 2 p(§) < 4 p(x), the estimate takes the form

oo o @) YN (€ 3\
0706 Q7 (2,€)] < |$,5|1+\a|+|r\<r(x)+|x—§|> (r(£)+\x—£\) '

In the case x € U;, £ € Uy, where U; and U, are small neighbourhoods of the
vertices O; and Oy with ¢ # ¢, we have

Q0,01 <o e (1)) ¥ (2O,

Here we use the notation

)‘frs - min{O, )‘j - ‘O—| - 5}3 )\3_6 - min{ov >‘l - |7_| - 5}a
vi o =min{0,v; — |o| — e}, Vi =min{0,v, — |7| —e}.

One can show that the representation

1

(1+T)" =3

0
1-Q P 1.12
(1-0 5 (112)
for the inverse operator of the integral equation associated with the Dirichlet problem
holds in the space of traces on I' of functions from the weighted Holder space men-
tioned above. Here PT and @~ are the integral operators defined by the equalities
(1.10) and (1.11).

The estimates for derivatives of the kernels PT(x, &), Q@ (x,€) and the equality
(1.12) allow to establish the representation (1.5) in Hélder spaces and to obtain es-
timates (1.6) - (1.8) for the kernels £(z,y) and M(z,y). With the help of these
estimates one can show that the operator (1 + 7)~! is continuous in the space of
continuous functions as well as in an appropriate L, space and can extend the repre-
sentation (1.5) to these spaces.

Remark 2. The inverse to the integral operator in (1.9) has the form

(147" = %(1 _ %pw*)

2 Properties of the Neumann problem in a polyhe-
dral cone

The results in this section are borrowed from preprint [GM5]. We consider the Neu-
mann problem in a polyhedral cone. Its solvability in certain weighted Holder and
Sobolev spaces is shown and estimates for the fundamental solution are obtained. In
Subsection 2.1 the problem is studied in some weighted Hilbert spaces. Subsection
2.2 is devoted to a generalization of previous results to the L, norm with p > 2 which
enables one to prove the existence of Green’s function and to obtain estimates both



for this function and its derivatives (Subsection 2.3). With the help of such esti-
mates, the solvability of the Neumann problem in various function spaces is proved
in Subsection 2.4.

Our estimates for Green’s function of the Neumann problem are similar to those
obtained in the case of the Dirichlet problem in [MP1]. The Neumann and mixed
boundary value problems for a class of elliptic systems are treated in Part 2 of the
book [MR].

2.1 Solvability of the Neumann problem in a polyhedral cone.
The case of weighted Hilbert spaces

1. Function spaces. Let K be an open polyhedral cone in R? with the vertex O and

the edges M;, j = 1,2,...,k. The faces 0K;, j = 1,2,...,k, of the cone are plane

sectors. By M we denote the set of singularities of K, i.e. M = Ui<;<;M;, and by

w; the opening of the dihedral angle coinciding with K in a neighbourhood of int M;.
Suppose that O is the origin of some Cartesian system.

Let B €R, 1 < p < o0, let I be integer, I > 0, and let & be a vector (01,2, ..., ),
d; € R. We introduce the space Wé’%(K ) of functions u in K with the finite norm

: k 1/p
—li S
el ey = (32 /K | =00 [T % [V euprar) .
’ i=1 =i

Here r;(z) = dist(z, M;) and V; = {87 /02 0x5?0x5° }.

In what follows by L} 5(K) we denote the space Wg:g (K).

We also need the space of traces on 0K for functions from Wé’fs (K) denoted by
Wé;”p’p(aKj). Let Wé:sl/p’p([“)K) refer to the space of functions w on 0K whose
restrictions u; on 0K belong to Wé;sl/p’p(ﬁKj) and let

k
Hu”WéT;/p’p(é?K) = z; ||u||W;l3:;]/p'p(aKj).
]:

2. The model boundary value problem in a plane infinite sector. By @ we denote
an infinite sector with opening w and the vertex O. Let QT be the sides of this
sector and let dQ be the boundary of @, i.e. Q = QT UOQ~ U {0}.

Given any § € R and any nonnegative integer [, we introduce the space W(Q) of
functions in @ for which the norm

! 1/2
lellwiioy = (I Vsul )
Jj=0

is finite. Here r = r(z) is the distance from the point x to the vertex O.

The space of traces on 9Q ™ of functions from W}(Q) will be denoted by Wé_l/Q (0Q%).

It is well-known (see [MP1]) that the norm in Wé_l/z (0QF) can be defined by the
formula

-1 [e%s) T
HUH?/VH/"‘(aQt) = Z ([ u(j)H%g(aQi)—’_/ r%dr/ T‘2|u(l—1)(r—i—T)—u(l_l)(r)PdT,
s . 0 0
=0



Furthermore, for any positive ¢, we introduce the norm [[ul[yy1(q ) defined by

! , 1/2
ulhwzn = (P10l )
i=0

Similarly, one can define the norm depending on a positive parameter ¢ in the space
of traces on JQ*:

-1

[ul3yi172 00 4y = 2 M I UL, 00+
=0

+/ rz‘sdr/ T_2|u(l_1)(7“ +7)— u(l_l)(r)|2d7'.
0 0
Consider the boundary value problem depending on the complex parameter

0%y O%u

o2 T g TSI e

ou
o, —Jon oQ\0, (2.1)

where 9/0n is the derivative in the direction of outer normal.

Lemma 1 [ZS],[GM2] Let A(7) be the operator of the problem (2.1). If
0<1-6<min{l,7/w},

then the operator

A1) s WEQ) — WR(Q) x [Tw,"*(0Q)
+

performs an isomorphism.

Lemma 2 Suppose that 0 < 1 — 6 < min{1,7/w}. If v belons to the line Revy = c1,
then there exists a posiitive number co such that the problem (2.1) has the unique
solution u € WZ(Q,|y]) for every v with [Im~| > ca, and for any f € W(Q),

gt e W;/z(aQi, [v]). The solution admits the estimate
lllwz @ < e(Iflwsc@ + g 9™ w272 0% 1) (2:2)

where the constant ¢ > 0 is the same for all v with [Im~y| > c2 and f € WQ(Q),
g* € W; (00, 1).

Proof. Let v = a+ib, —oco < b < oo. It suffices to consider the case a = 0. We
introduce the function v(z) = u(|b| ). Then the existence of the solution of (2.1) and
the estimate (2.2) follow from Lemma 1 applied to the function v.

3. The Neumann problem in a cone. Let ) be a spherical polygon, i.e. = KNS?,
where S? is the unit sphere centered at O. We introduce the notation

Ej:MjﬂSQ, 8Qj:8Kjﬁ52

Since K is a polyhedral cone, it follows that in a neighbourhood U; of each point Ej,
j=1,2,...,k, there exists a diffeomorphism s¢; mapping U; into a plane sector Q;.



Suppose that the differential of 5; is identical at E;. We define the space W§(€2),
0 = (01,02,...,0;). We say that a function u on 2 with support in U; belongs to this
space if kju € ng (Q;). If a function u vanishes near all angle points then u € W§(f2)

if and only if u € W&(2). The case of a function with arbitrary support is considered
in a standard manner with the help of partition of unity.

The space of traces on 9€; of functions from W}(Q), I > 1, will be denoted
by ngl/z(mi). We say that u € Wé71/2(8§2) if the restriction w; of u to every
component 99Q; is in Wéfl/z(aﬁi) and

k
||“HW;*1/2(89) = Z ||“||w;*1/2(aszi)'
i=1

Further, replacing Wéj(Qj) by ng(Qj,t) in the definition of the W}(Q)-norm, we
introduce the norm Hu||Wé(Q’t) for any positive ¢. Similarly, one can define the norm

”“HW"‘”"’(BQ " also depending on the parameter t.
5 s

Consider the Neumann problem

Au=f in K, % =@ on OK\M. (2.3)
n
We assume that f € L%ﬁ(K)7 pE Wﬁl)/(f(aK). We are looking for a set of indices 3,
d for which the problem (2.1) is solvable in Wé;(K) Let p = |z| and let A’ be the
Lapalace-Beltrami operator on S?. We rewrite the problem (2.3) in the form

Ou = pp on OO\E, (2.4)
n

((ﬁ)QerngA')u:pzf in K, 5

dp

where F = U;U;. Using the Mellin transform

fL(’}/, ) = (271—)71/2 /OOO pivilu(pa ) dpa

we can formally write the system (2.4) as the following system with the complex

parameter y
. oun =
(Y +y+A)i=F inQ, a% — & on 9Q, (2.5)

where F' = f(y —2), ®(7) = $(y — 1).
Let 2((7) stand for the operator of the problem (2.5).

Theorem 2 Suppose that

is not an eigenvalue of the operator pencil A(7y). Let 0 < §; <1 and 1 —6; < m/wj.
Then

(i) Given f € L3 5(K) and ¢ € Wﬁl,/(;Q(aK), there exists a unique solution u €

Wﬁzg(K) satisfying the problem (2.3) and there is a positive constant ¢ depending
only on K such that

lellwase < ¢ (17122 400 + 10 lw1/2 050 (2.6)



(ii) Let

FeL}s(K)NL3 5(K),  ¢e W) 0K nW)/3 (0K),

where B € R and &' is a vector with components 63, 0 < 1—4% < min{l,7/w},
7=1,2,... k. Suppose that the numbers

1 i 1 i
A WIRTIE RIS o
j=1 j=1
are not eigenvalues of A(7y) and that the eigenvalues v1,...,vs of the operator pencil

A(v) lie in the interval

k k
1 1 , ,
i—ﬂleéj<'yj<§fﬂle5j.
J= J=

If u is a solution of the problem (2.3) from the space Wg:g(K), then

u(z) = Z z]: ciimV gij(w) + R(x). (2.7)

i=1j=1

Here @;5, j =1,...,k; are eigenfunctions of the Laplace-Beltrami operator A’ corre-
sponding to the eigenvalues v +y;, ¢ij are certain constants, and R is a solution of
the problem (2.3) from the space W;g([()

Proof. Let A;(y) denote the operator of the problem (2.1) in the sector @); and
let 2;(y) stand for the transformation of () under the diffeomorphism ;. Let 7.
be a smooth function identically equal to 1 in the ball B, of radius € with center at
the vertex of the sector @; and vanishing outside the ball By.. From (2.5) it follows
that the norm of the operator

e (25 (7) — A; (7))« W3Qy, Iv)) — WEQ;) x [ W *(0Q%, 1)
+

is small for small € and large |y|. Hence, by Lemma 2, the solvability of the problem
(2.5) in WZ(Qj, |]) and the estimate
lallwz@ i < e (1 lwgy + 1201290,

are established by a standard argument (see [AV]).
The properties of the Mellin transform imply the equalities

~12 _ 2
/Re'y:l—ﬂ—zl? 16;—3/2 HUHWé(Q’l’yl)d7 N Hu”Wlleﬁ(Ky
J=

112 — 12
/| oy 81 = Wl sy
Hence the function
u(p,) = (2m) 1 P (), Pl 28)
Rey=1/2—8-3%_, 6;
belongs to Wg; (K), satisfies the problem (2.3) and obeys the estimate (2.6).
Replacing the line of integration in (2.8) by the line Rey = 1/2 — 8’ — Zle %,
we arrive at (2.7) (see [Ko]).



2.2 Solvability of the Neumann problem in a polyhedral cone.
The case of weighted Sobolev spaces

1. The Neumann problem in a dihedral angle. Let D be an open dihedral angle in
R? with opening w € (0,27), w # 7, and let 9D* be its sides. By Lfoﬂ(D) we denote

the completion of C§°(D) in the norm

1/p
(o0l ) + Ml )

Here r(z) is the distance from the point z to the edge M of D, B is a ball with radius
1, BC D.

Let L;T;/ P(OD%) stand for the space of traces on D* of functions from L; 5(D)
and L;jﬁl /p (OD) for the space of functions u whose restrictions u* to dD* are in
Li;;/p(aDi). We set

-1 -1
lull,s""(@D) =2l "(oD*).
Consider the Neumann problem
0
on
The following result is well-known (see [GM2], [ZS]).

Au= f in D, o _ @ on 0D\ M. (2.9)

Theorem 3 Let 0 < 1— 8 <min{l/2,7/w}. Then
(i) The operator of the Neumann problem (2.9) performs an isomorphism

1/2
L3 4(D) ~ L3 4(D) x Ly/3(9D).

(i) Let p > 1, 6 > —2/p, let | be an integer, | >0,0<1—0+2—2/p < 7/w, and
let f € Ly (D), ¢ € LY "P(AD). Ifu € L}, 4(D) is a solution of the problem (2.9),
then u € L;Tf (D) and the exists a positive constant ¢ depending only on D such that

lall 2320 < 1y ) + N2l ptsa-vim o) + il 23, 0)-

y Wil)’ 5(D) we denote the space of functions u with the finite norm

lullwe o) = (anéwnp )

We also introduce the space Wl 1/p (0D) whose definition is obtained from the defi-
nition of the space L 1/p(aD) after replacing L by W.

Theorem 3 leads dlrectly to the following assertion.
Lemma 3 Let 6 and ¢ be functions from C§°(D) such that C = 0. Suppose that
0<1—p<min{l,r/w} and § > -2/p, 0 <l —-0+2—-2/p<m/w.

If u is a solution of the problem (2.9) and {f € WIIL (D), Cp € WlJrl 1/p(@D), and

Cu € Wgﬁ (D), then Ou € Wzl)f;z(D) and there exists a positive const(mt ¢ independent
of f and ¢ such that

||9U||WI§§2(D) <c (||Cf||w;)y5(D) + ||C%0||W;f5171/p(6D) + ||CUHW§ﬁ(D))-

10



2. The Neumann problem in a cone. We prove the following theorem.

Theorem 4 Let | be a nonnegative integer, p > 2, and let the components 6; of a
vector & satisfy the inequalities

(@) 0;>1—-2/p, 0<i+2—0;—2/p<m/w,.
(b) Assume that the number
k
1+2-3/p—B—> 4
j=1

is not an eigenvalue of A(~y). Then
(i) The operator of the problem (2.9) performs an isomorphism

+2,p +1—-1/p,
(ZZ) Suppose that

" I+1-1/p, U+1-1/p'p'
FeWER(E)NWEE(K), e Wi PP o) n w7 (oK),

where B, &', I, and p' satisfy the conditions (a) (b), and suppose that the closed
interval with end points

k k
14+2-3/p—B—> 6 and U'+2-3/p -8 =) 5
j=1 j=1

contains no eigenvalues of A(7y).
If u is a solution of the problem (2.3) from the space WéJ:sZ’p(K), then u €
U'42,p

W, 57 (K).

First we prove an auxiliary assertion. We introduce the sets U; = {z € K : 2071 <
|z| < 27t1}) j = £1,..., and by xj, 1; we denote the functions in the class C§°(R?)
such that

(1) suppx; C {z: 277! < |z[ < 271}, suppey; C {zx:2972 < |z| < 271?}
(2) xj(@)j(x) = x;(x), ij(a:) =1 forallz € K\0
J

(3) |zl*0%x; ()] < e, 2|10 (2)| < o for all multiindices .

Lemma 4 Let p > 2 and let 8, & satisfy the conditions (a), (b). If ¢ =0, f €
Wé’fs(K) and supp f C U,, then there exists a solution of the problem (2.3) such that

XU € W[l;:f’p(K) for all = 0,41,... and the estimate

”Xju”WéT;’p(K) < ¢2cln=il ||fHW}3‘f;(K)

holds, where € and ¢ are positive constants.

11



Proof. By v we denote the vector with components v; = {6; —1+2/p}+1—2/p,
where {x} stands for the fractional part of x. We set

k k
S=m;—142/p+v, B=B+> 6;—1—-2+3/p—> &+1/2+p.

j=1 j=1

Here v is a positive number such that 53. < 1 and p is so small that the closed interval
with end points

k
1+2-3/p—B-> & Fpu
j=1

contains no poles of the operator-function 2~!(y). We assume that yu is positive for
n < j and negative otherwise.

We introduce the function h defined by h(z) = f(2"x). By Hardy’s inequality,
there is a positive constant ¢ such that

”hHW/‘jfy(K) <c ||h||W[’;%(K)

for all h supported in U;. Returning to the function f, we obtain

k
1A lwos o) < 2 Wl 0 =1= D (0 =) (2.10)
! =
By Holder’s inequality,
k k 5
7. /_ —’Y
||fHW§?,25/<K) < HPB H 7";')[' f”Lp(K) ”Pﬂ g H r;’ ”Lz,,/(p,z)(Un)'
j=1 j=1

The choice of the indices 5; shows that the second factor on the right-hand side is

bounded. Besides, clearly, this norm is equal to ¢’2"(#*=7) From this and (2.10) we
conclude that f € WO,’,Q(;(K ) and

I lwoz, ey < €2 1 lwtn ) - (2.11)

By Lemma 4, there is a constant ¢ such that
: Py < fllyin 271 || jul|yyr2, 2.12
”XJUHWZ;:? (K) = C(”wjf”Wé’é(K) + HwJU’HWE/?S/(K)) (2.12)

forall j =0,£2,....

Theorem 2 implies
liullwzz, ey < cllullwez, i) < elfllwez, k) (2.13)
By inequalities (2.11) - (2.13),
Hx]-uHWétsz,p(K) < C2M(n_j)||f||wé’§(l()‘

We made use of the fact that the first term on the right-hand side of (2.12) vanishes
for |n — j| > 2. The lemma is proved.

Proof of Theorem 4. Let ¢ = 0. 1) The existence of a solution u € Wét;z’p(K)
of the problem (2.3) and the estimate

Fellw gz < €Ml

12



follow directly from Lemma 4 and from Lemma 1.1. in [MP2].

Now we prove the uniqueness of the solution. Let v € W;’?’p (K) be a solution
of (2.3) for f = 0. Consider the function v, g defined by v. r = (1 — 7:)nrv, where
ne(z) = n(|z|/e) and 7 is a function of the class C§°(R™) which is equal to 1 on
{t : 0 <t <1/2} and vanishing on {¢ : t > 1}. The argument used in the proof of
estimate (2.11) shows that v, g € WQ;?(;, (K) for

k
8 =0—1+2/p)+v, B =B+ (6;—0;)—1-3/2+3/p
=1

and that there is a positive constant ¢, independent of € and R, such that
||U8’RHW/32;,25/(K) <c ||U||Wé-f—62,p(K).

We pass to the limit in the last inequality as € — 0 and R — oco. Thus, v € W;g(K)
and hence v = 0 by Theorem 3.

2) The arguments in the part 1) show that the inclusions

WEZP(K) € W22(K), WL (&) c W22 (K) (2.14)

hold for

-

Vi =10 —1+2/p}+v, s=0+) (6; =) —1—-3/2+3/p,

j=1

k
V=8 —142/pt+1, =8+ (5 —7)) -1 —-3/2+3/p.
j=1

From the first inclusion in (2.14) we have u € W22(K). Hence, by Theorem 2,
u € Wf,’fy/(K ). By part 1) of this theorem, the problem (2.3) is uniquely solvable in
the spaces Wél,t;%’p/ (K) and Wf,%y (K). Thus, the second inclusion in (2.14) leads to
the second assertion of the theorem.

To obtain the result for any ¢ it is sufficient to refer to the following theorem.

Theorem 5 Let | and 6;, i = 1,...,k, satisfy the conditions (a) in Theorem 4. If

Y€ Wét;lfl/p’p(aK), then there exists a function u € Wé;Q’p(K) such that Ou/On =
© on OK\M and

sz ey < 10lyr-sms orey
One can choose the operator ¢ — u independent of p, &, and I.
Proof. Let suppp C {z € 0K : 1/2 < |z| < 2}. By Theorem 3, there exists a

function
u € WE;Q”’(K), suppu C {z € K : 1/4 < |z| < 4}

satisfying the conditions of the present theorem.

The case suppp C {z € K : 2771 < |z| < 29*1} can be reduces to the case
considered above using the transformation x — 27x.

13



Let ¢ be an arbitrary function from I/VH_1 1/, P(0K). By u; we denote functions
from Wéﬁf’p( ) with suppu; C {z € K : 23 2 < |z| < 2772} and such that Qu;/On =
X;¢ and

luslly ez ey < elXselly s o)

Here x; are the functions introduced before Lemma 4. Thus, the function u =
Eiooo u; is the required one.

2.3 Estimates for Green’s function of the Neumann problem

1. Augziliary assertions. From Theorem 4, in a standard manner (see [MP2], [GM2]),
we obtain the following local estimates.

Lemma 5 Let p > 0 and let | be integer, | > 0. Suppose that B and § satisfy the
conditions (a) and (b) of Theorem 4. By 6 and ( we denote functions with compact

support in R3 such that 0C = 0. Ifu is a function satisfying the homogeneous equation
(2.3) on K Nsupp ¢ and (u € Ly(K), then Qu € Wéﬁf’p(K) and the estimate

Haunwéffvp(}() <c ||CU’HL2
holds.

Lemma 6 Letu € WéJ:;Q’p(K). The derivatives of u of order || <1 —3/p admit the
poitwise estimates

t /1,] o
21 Hn 0%u(@)| < cllullyrs )
where
k k
t+Y py =B+ 8 +lal—1+3/p,
j=1 j=1
pj = max{0,d; + |a| =1+ 3/p},  6; + || =14 3/p#0,
and r(z) = dist(x, M).
Proof. First we consider a function w defined in the interior D of a dihedral
angle. Let u € Wé’p(D) and let suppu C {z : r(z) < 1/2}. It is well-known

that for any u there exists a function @ € Wé?’p(Rs\M) such that & = u on D,
supp@ C {x : r(z) < 1} and

||ﬁ||wévP(R3\M) <c |‘“||W§vp(p)'

In what follows we assume that the function u is defined on R*\ M and that suppu C
{z : r(x) < 1}. By K, we denote the rotational cone with the opening 7/2 whose
axis is orthogonal to the edge M.

By the Sobolev integral representation,

‘aau(x” < C/ ‘vlu(y”dy

K, |l‘ — y|3—l+|0¢\

1/p dy 1/q
<c / r(y)?°|ViulPdy / . (2.15)
( K ) ( {yeK :|lz—y|<1} r(y)qé‘m - y|(3+|a\—l)q)

x

14



Using spherical coordinates with center at x, we obtain that the second factor in the
right-hand side of (2.15) does not exceed

' de 1/ 1 prp L pfdp NV
C( BHal-D ) SC( 5 G—THlal—Dq G I1]al 1) )
0P U(r(z) + p)a r(z) Jo p T @) P e

z)l1el=0=3/p ] |a| =5 -3/p<0
l—|a|=0-3/p>0 (2.16)
c|log7“ l—]a|—6-3/p=0.

). By B, we denote the ball of radius |z|/2 with center

Suppose that u € éa
.15) and (2.16) imply

at z. The estimates (2

k

T @)o™u( |<c2/ TT % () Vsut)lPdy

Jj=1 Ij 1
for all z with |z| = 1.

Let |z| = p. We introduce the function v by v(y) = u(py), y = =/p. Applying the
last inequality to v and returning to the function u, we arrive at the desired estimate.
The lemma is proved.

Consider the Neumann problem in the dihedral angle D of opening w with the
edge M

Au=f in D, ? =0 on OD\M. (2.17)
n
The next assertion is borrowed from [ZS].

Theorem 6 There exists Green’s function G(x,y) of the problem (2.17), i.e. a unique
solution of the boundary value problem

AG(x,y) =d(x —y), x,y €D,
(2.18)

0
angﬂg(x,y)—O, x € 90D\M, ye D

such that the function x — (1 —n(|lz — y|/r(y))G(z,y) is in the space Lj 4(D), 0 <
1 =0 < min{l/2,7/w} for every fized y € D. Here n € C*[0,00), n(t) = 1 for
0<t<1/2,n(t)=0 fort>1, and r(z) = dist(z, M).
Equation (2.18) is understood in the sense that
ov
y) = | G(z,y)Av(x)ds — G(x,y)=—(z)ds
D oD on
for all v € C§°(D). Green’s function G admits the estimates
0207G (2, y)| < caolw —y| 711"
if |z —y| < r(z)/2 and
aaaay < Coolr — 1—|a|—|o| ( ) Vae T‘(y) Voe
0507 G(w,y)| < casle —y|” (o) ()

in the opposite case. Here v,. = min{0, 7/w — ¢ — ||}, Vpe = min{0,7/w — e — |o|},
and ¢ is a sufficiently small positive number.

2. Green’s function of the problem (2.3). Let n be the function from Theorem 6.

15



Theorem 7 If the interval (¢1,c2) contains no points of the spectrum of the pencil
A(y) corresponding to the problem (2.5), then

(i) There exists a unique solution G(x,y) of the boundary problem (2.17), i.e. a
solution of the problem

Y (2,9) =0 x € OK\M, y € K (2.19)

Am ) =4 5 5 K7
G(z,y) =6(x,y) z,y € o

such that the function x — (1 —n(|lz — y|/r(v)))G(z,y), for any fivred y € K, belongs
to the space Wétsz’p(K) with 1 =0,1,...,

k
(Sj>].*2/pa 0<l+27(5j72/p<7r/wj, Cl<l+2725j7673/p<02.
j=1

(ii) The function G is infinitely differentiable with respect to x,y € K\M, x # y.
If |z| < |y| < 2|z, then

10507 G(x,y)| < caglz —y|~H 171 (2.20)

for |z —y| <r(z)/2 and

k 3 v
92077 G(2,y)| < Caglz —y| Il ri(@) yee ( 1ily) e 221
| (,y)| < caclz —y| jl_[1(|x—y|) (\x—yl) 221

in the opposite case. Here r;(z) = dist(x, M;), r(z) = dist(z, M),

vl =min{0,7/w; —e —|a|}, vi.=min{0,7/w; —e - |o|}

and € s a sufficiently small positive number.
(#ii) The function G is a unique solution of the boundary value problem

oG
AyG(z,y) =0(x,y), =,y €K, aT(amy) =0yedK\M, z€ K (2.22)
y

such that the function x — (1—n(|x—y|/r(y)))G(z,y) belongs to the space Wél,tf,apl (K),

k
0 >1=2/p', 0<U'4+2-0;-2/p' <7/wj, 1+c1 < 6/—1—2 05 —1'=243/p" < 1+cy,
j=1
1=0,1,..., for any fired x € K.
Equations (2.19) and (2.22) should be understood in the sense that

ov

v(y) = /KG(:C,y)AU(a:)dx ~ | G(x,y)a—n(x) dsy; (2.23)
ow

w(z) = /KG(x,y)Aw(y)dy — - G(m,y)%(y) dsy; (2.24)

for any v,w € C§°(K\0).

Proof. (i) The uniqueness of G(z, y) follows from Theorem 4, Since the operators
in (1.3.5) are homogeneous, we have the relation G(tz,ty) = t~1G(z,y) for every
positive ¢. Therefore, without loss of generality we may assume that |y| = 1.
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We prove the existence of G(x,y). let y be a fixed point in K with |y| = 1. By
M, we denote the edge nearest to the point y and by D, the dihedral angle which
coincides with K in a neighbourhood of intM,. By Theorem 6, there exists Green’s
function G(z,y) of the problem (2.17) for D,,.

We define the function G by the equality

G(z,y) =n(lz —y|/7)G(x,y) — R(z,y), (2.25)

where 7) is the same as in Theorem 6, 7 is a small positive number such that supp n(jz—
y|/7) N (M\M,) =0 and R is a solution of the Dirichlet problem

ALR = 2V,0VG + GA,p in K, 2B g
ong ong

on OK\M (2.26)

from the space Wé}Q’p (K). The existence of G is proved.

(ii) The smoothness of G(z,y) for = # y, z,y € K\M and the estimates (2.20),
(2.21) follow directly from the construction of G(z,y), Theeorem 4 and the homo-
geneity of G(z,y).

(iii) Since the space C§°(K\0) is dense in WBZ,’QJ,(K), it follows that the equation
(2.23) holds for all v € W3, (K).

By (2.5) we have that both v and 1 —+ belong to the spectrum of the pencil G(v).

Let 3, 8 and f’, &' satisfy the conditions (i) and (iii) of the theorem for [ = 0, p = 2
and for I’ =0, p’ = 2. Let

k k
B+B+> 8+> 6=2
j=1 j=1

Let H(x,y) stand for the solution of the problem (2.22) which exists by the first part
of the theorem and let H,(z,z) be the mean value of H(x,z) with respect to the
variable z over the ball of radius 7. We substitute the function

v(z) = (n(lz — yl/R) = n(|lx — 2|/2)) H(z, 2) + Hy (2, 2)n(|l2 — 2|/¢)

into (2.23) and then pass to the limit as R — oo and 7 — 0. We have € > 0 so small
that the ball {£ : | — x| < 2¢} lies in K and does not contain the point y. Hence we
arrive at the equality H(z,y) = G(z,y). The theorem is proved.

Corollary 1 The solution u € Wé}z’p(K) of the problem (2.3) admits the represen-
tation

u(z) = / Gla,y) fy)dy — | Clay) oly) ds,.
K oK

Theorem 8 Let the interval (c1,ca) contain no points of the spectrum of the operator
pencil G(7y) corresponding to the problem (2.5).

(1) If x| < lyl/2, then

||c2lel—e ﬁ (rj(x)>'/ia (Tj(y> )”is
[y|eatitlol=e 22N ] [l ’

j=1

|0507G(z,9)| < oo

where . ‘
vl =min{0,7/w; —e —|al}, vl =min{0,7/w; —ec —|o|},
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and € is a sufficiently small positive number.

(i) If |x| > 2|y|, then

‘76171+|a‘78

. ly S () Ve (75(y)\ e
107077 G(z,y)| < cao |z[~ei+loT—< H( J|x| ) <j|y| ) '

Proof. (i) Let |y| = 2, |x| < 1. Consider the function

v(&) = n(4lg — =)0, G (&, y)-

Lemmas 5 and 6 imply

/
|x|tHr*‘7 205Gl < o [ rPule-ahogeenia) . e

where

k

k
t+> =B+ di+lol—1-2+3/p, ;>0 +lal—1-2+3/p, p; >0.
— =

We introduce the solution w € Wé?’p (K) of the Neumann problem

Aw(z) = 9, G(z,y)n(2lz — z|), 2z € K, (6’9%<Z) =0, z € OK\M.
By Lemmas 5 and 6,
1/2
Hr“] No-w(@emyl < o [ ez —uDlw)faz) " (228)

where yi; > 6; + [o| =1 —2+3/p, pj > 0. The right-hand side of (2.28) does not
exceed

2 lea 2 1/2
clulwzgi < e [ 10z - wlog6tzPaz) "
K
Here

k
1/2<q <1, e1<1/2=) ¢j—s<ca
j=1
The left-hand side is equal to

k
H ) [ 105G nPn(zle — o)) de

Therefore, (2.28) leads to the estimate

k ' ) 1/2
[1+ ([ oscemPaele - i) < const.
j=1
From this and (2.27) we get

|z|* H B y)|07 0y G(x,y)| < const.
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Setting

k
6 =1+2-2/p—mjw;+e/2, B+3.0,=1+2-3/p+eate p>2/e
j=1
we have
9%9° < co—|a|—e u Tj(x) Vae vi.
0205 G(,y)| < caola] [I(%7) 7w

j=1
Using the homogeneity of 939y G (z,y), we arrive at the desired estimate for all y € K
in the case |z| < |y|/2.

(2) Considering the problem (2.22) instead of (2.19), we arrive at the estimate for
0207 G(z,y) in the case |z| > |y|/2. The theorem is proved.

Corollary 2 Let v, be the first positive eigenvalue of A(7), i.e. v1 = (=141 + 4\ /2,
where \1 is the first positive eigenvalue of the Neumann problem on § for the spherical
part of the Laplace operator.

Let G(z,y) denote Green’s function from Theorem 8, where ¢y = —1, co = 0. Then

G(z,y) = Gly,x) and
11

Cot) =~ sty

+ R(z,y)

for |x| < |y|/2, where R is a function satisfying the estimate

k ) .
oo |z —lel—e rj(@)\vae (1;(y)\vee
10705 R(@,y)| < caq y[IF T2 H( |z] ) ( vl ) ' (2.29)
j=1
Here 4 .
vl =min{0,7/w; — |a| — €}, vl =min{0,7/w; — |o| — €},

and ¢ is a sufficiently small positive number.

Proof. The equality G(z,y) = G(y,z) is an immediate corollary of part (iii) of
Theorem 7 and the uniqueness of G(z, y).

Let G1(z,y) be Green’s function from Theorem 8 with ¢; =0, co = 1. By (2.25)
and (2.7) for solutions of (2.26),

G(z,y) = G(0,y) + G1(z,y).

Since by Theorem 8 the estimate (2.29) for G1(z,y) holds for |z| < |y|/2, it remains
to prove the equality
~1
G(0,y) = —(meas Qy|) .

We fix y € K and set the function
v(z) = n(z)w,(z) + (1 = n(z))]e| ™

into (2.23). Here w,(z) is the mean value of |z|~! over the ball of radius 7, 7 is a
cut-off function such that n = 1 near the origin and n(y) = 0. Then

1 ov(x)
—f/KG(:E,y)Av(:c)dzf/ G(x,y)wdsz. (2.30)

|y 0K
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Let B. be the ball of radius € centered at 0 and let Q. = 90B. N K, I'. = B.NJK.
Using Green’s formula, we rewrite (2.29) in the form

2a) % (e y)ola)ds,

1
o= G @, -

/(r)K\FE G(z,y) on (z)dsy +/K\BE G(z,y)Av(x)dz.

Q. 67’1@

Passing to the limit as 7 — 0, we get

1 1/ 1 oG
—=—= G(z,y)dsy — —
T Sl

Q. ony,

(x,y)ds,.
To complete the proof we pass to the limit as € — 0.

2.4 Solvability in weighted Holder and Sobolev spaces

Here we prove the solvability of the problem (2.3) in certain weighted Holder spaces
and formulate a similar result wor weighted Sobolev spaces.

1. Function spaces in the cone. Consider the cone K as the union of sets
Ui<j<i K, where K; = {z € K : rj(z) < 2r(z)}, r(z) = mini<j<prj(x). Let [
be a nonnegative integer, let « € (0,1), 8 € R, and let 7 be a vector (y1,72,-- -5, Vk)s
v; € R. We introduce the space C’fﬁy (K) of functions u in K with the finite norm

k
. 4+«
||UHc;;f;(K) = 522 1_[1 rj()7 [u] KNB(r/2,z)
j=

B3 [] e Bl 1o {Ta‘(l") ]
+ e, sup el [ g 20 S0P o ER
lta—v; >0} J J
Here

[ufe = sup Y fo =yl 0107 u(z) — 9 uly)l,

JyeK
TYEE Jo)=[p]

[p] is the integer part of p, B(r, ) is the open ball in R? of radius r with center at z,
Yl = 2275, 0 = max{0,v; — 1 — a}.

By Clﬁ””‘v(@[( j) we mean the space of traces on 0K of functions from Cé’ff/(K ). We
say that u belongs to C/é,’ffy(aK ) if and only if the restriction u; to each component
0K belongs to ngy(aKj). We introduce the norm

||UHcg’ij(K) = zj: ||uj||cg;¥y(az{j)-

2. The Neumann problem in the dihedral angle. let D be the inetrior of a dihedral
angle of opening w. By D' and D~ we denote the sides of the dihedral angle. Let
M stand for the edge and 8D for the boundary of D, i.e. 8D = DT UdOD~ U M.

We introduce the space Né’o‘ (D) with the norm

I+«

|| ptvar oy = sup ()" |u + sup r(z) " u(x
|| ||N£Y (D) oeh ( ) []DmB(r/Q,m) oeD ( ) ‘ ( )|
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and the space Ch*(D) with the norm

I+a
lullee oy = 50 7(2) [u] prp(r 2.0 + lullerso-s @)

Here C*(D) is the Hélder space and r(z) = dist(z, M).
For v > [ 4+ o we denote N#“(D) by C’f/a(D).
In addition, let C,ly’o‘(aDi) refer to the space of traces on DT of functions in

CL(D), that is a function u belongs to C1*(9D) if and only if the restriction u* to
each side D* is in Cf;a(aDi). We shall use the norm

||U||c§«a(ap) = zi: H“i”()ﬁ;‘”(aDi)'

The following assertion was proved in [ZS].

Theorem 9 Let 6 and ¢ denote functions from C§°(D) such that 6C = 6. Suppose
thatyv>0,0<{+24+a—v < 7/w, and o — 7y is not integer.
Ifu is a solution of the Neumann problem (2.9) and {f € ny’o‘(D), Cp € nyﬂ’a(aD),

then Ou € C,ly+2’O‘(D) and there is a positive constant c, independent of f and p, such
that

||9U||c§+2’“(p) < C(HCfHClW,a(D) + HQP”Cljlva(aD) + S‘gg |C(x)u(:c)|)

3. The Neumann problem in a cone.

Theorem 10 Let [ be a nonnegative integer and let the components 6; of the vector
O satisfy the conditions

((L) 5j>0,0<l+2+a—5j<7r/wj,
k
b I+24+a—-p- 25j is not an eigenvalue of the pencil A(7y).
j=1
Then
(i) The operator of the problem (2.9) performs an isomorphism

O (K) = C55(K) x Oy (0K).

(ii) Suppose that f € Céog(K) N Clﬁl,’%,, (K) and ¢ € CEF;’O‘(@K) N Clﬁ/,t;l/al(aK),

where ', &', I, and o' satisfy the conditions (a) and (b). Suppose also that the closed
interval with endpoints

k k
l'+a’+2—ﬁ’—Z(5§- and l+a+2—6—25j
j=1 j=1
contains no poles of the holomorphic operator function A1 (7). If u is a solution of

the problem (2.3) from the space C’ét;z’o‘(K), then u € C’g,;z,’a,(K).

First we prove auxiliary assertions. Let G(x,y) be Green’s function in Theorem
8, where ¢y and co are numbers such that

k k
a<lta+2-8-3 6, U+ad+2-p-> 8 <c

j=1 j=1
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and the interval (c1,cz) contains no points of the spectrum of the pencil () of the
problem (2.5). By u we denote the same function as in Corollary 1, i.e.

- / Gle.y) [y — | Gla.) o(y)ds, (2.31)
K oK

Lemma 7 If u is a function defined by (2.31), then

@ sup s o1 T [222) o)

U

sup ol [u(w)] < e(sup Ja]"*2 H[

rzeK j=1 |3?|
with 0 <\ <1, 1 < —p < ca.

Proof. Clearly, the function

wi = / G(z,y)f(y)dy
K

()| < sup|z|“+2H[ 2l

I

/ G, y)lly| "~ 21_[[ m } Yy, (2.32)

To estimate the integral on the right-hand side of (2.32), we represent it as the sum
of three integrals I; over the sets K;, i = 1,2,3, where K1 = {y € K : |z| < |y|/2},
Ky={yeK:|y|/2 <|z|}, Ks={y € K :|z| > 2|y|}. By Theorem 8,

|| ¢ 2
I1<c/ ||C2+1 5||M H[

forall0 <X <1, u> —co+¢and

|y‘—(,1 1—¢
I —pu—2 I |
3

forall 0 <Aj <1, p<—c; —e.
Similarly, the estimate of G(z,y) in the intermediate zone given by Theorem 7
leads to the same inaquality for I for all 0 < A; < 1.

satisfies

] jdy <clx|™H

] B dy<c|x|_“

The function

wo = G(x,y)p(y)ds,
oK

can be treated in a similar way. The lemma is proved.

Lemma 8 Let §; > 0 and let

k
O<l+2+a—5j<7r/wj, Cl<l+2+a725j<02.
j=1

If w admits the representation (2.31) and f € Cg%(K), NS C’lﬁfdl’a(aK), then u €

Cl+2 “(K) and there exists a positive constant ¢, independent of f and ¢, such that

||“Hcgt§2=a(1{) < C(”f”clgv";([() + ||@Hcéf51»“(31<))~
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Proof. Let x; and 1; be the functions defined before Lemma 4. By Theorem 9,

Ixjull g gy < el¥nfllcre oy + 1910l cteroom) + Sup |1 (2)u(z)]).

Using the dilation x — 27z, we arrive at

Il g aey < (v flleys ey + 1059l o orey + 27 sup, Y1 (2)u(@)]),
where s = 0+ Zle d; =1 —2— a. Thus,
HUH(;E;&(K) < C(HfHCg%(K) + ||90||c}3f511"(31<) + 23113 |x\2|u(a?)|)

By Corollary 1, the function u € WEE(K) admits the representation (2.31). To
complete the proof, we refer Lemma 7.

Proof of Theorem 10. It is clear that the operator of the problem (2.3) is a
continuous mapping:

Cgffﬂ(f() N Cg;;(K) x Chls *(0K).

We prove the existence of a solution of the Neumann problem (2.3). Let f € C’lﬁ’%(K ),

pE C’lﬂt;l’a (OK). Consider the functions f* and T defined by the equalities f+ =
fn, f-=on f~=f—f" ¢ = p— ", where n is a function introduced in
Theorem 6.

By A we denote a vector with components (A1, Ag, ..., Ag), where \; = 6; —a —
l—1+¢, and € > 0 is so small that A\; < 1. Further, let

k
BE=B+> (6, —N)—3/2—a*e,
=1
where &’ > 0 is such that

k
Cl<1/27ﬂi72)\j<62.

j=1
One verifies directly that
FEeWl (K),  ¢F e WiH(0K).

BEAX A

Theorem 2 and Corollary 1 imply the existence of the solutions u* € ng A\(K) to
the problem (2.3) with the data f* and p*:

v (z) = / Gl ) =Wy — | Gla.y) ¢* (v)ds,.
K oK
By Lemma 8, u € Cé‘j';’a(K) and

lull gtz ey < el fllozg ey + 19Nl cire o)

It remains to prove the uniqueness of the solution of (2.3).
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Let u € C’ét?’o‘(K) be a solution of (2.3) with f = 0, ¢ = 0. We introduce two
functions ut = un and v~ = u — ut. Clearly, u* € WBQEA(K) By Corollary 1,

ou*
U:t xTr) = X ’ll,:t — x —_— Sy-
@ = [ clemactun- [ G G-tds,
Thus, 5
uw) = [ Glemaumiy— [ G GEwis, =0,

(ii) The second part of the theorem follows from Lemma 8 and the fact that the
solution admits the representation (2.31). The theorem is proved.

Applying the argument similar to that used in the proof of Theorem 10, we arrive
at the following assertion on the solvability of (2.3) in weighted Sobolev spaces.

Theorem 11 Let p > 1, | be a nonnegative integer, and let the components 0; of a
vector & satisfy the conditions

(CL) 5j>0,0<l+2+ozf5j<7r/wj,

k
b l+24+a—-p- 25]- is not an eigenvalue of the pencil A(7y).
j=1

Then
(i) The operator of the problem (2.9) performs the isomorphism

«@ I+1— s
Whis () ~ WiG(K) x W57 (0K).
(i) Suppose that

FeWER(E)NWEE(K), ¢ e WEH PP (oK) n ol 7 oK),

where 3, 8, I', and p’ satisfy the conditions (a) and (b). Suppose also that the closed
interval with the endpoints

Jj=1

k k
14+2-3/p—B—> & and U'+2-3/p -8 - 5
j=1

contains no poles of the operator holomorphic function A~1(v). If u is a solution of

the problem (2.3) from the space Wéﬁf’p(K), then u € Wél,tsz,’pl (K).
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