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1 Survey of results on the invertibility of boundary
integral operators

To begin with, I mention some results by N. Grachev and the author on integral equa-
tions of the potential theory on smooth surfaces with isolated conic vertices obtained
in [GM1], [GM3], [GM4], where, as in [M1] (see also [M2]), the study of integral equa-
tions is reduced to the study of certain auxiliary boundary value problems. We found
representations for inverse operators of these equations in terms of inverse operators
of the interior and exterior Dirichlet and Neumann problems. Using estimates for the
fundamental solutions of these boundary value problems, we arrived at estimates for
kernels of inverse operators of integral equations. Such estimates lead to theorems
on the invertibility of integral equations in various function spaces. In particular, the
solvability in the space of continuous functions C for the integral equation associated
with the Dirichlet problem could be stated without any assumptions on openings of
the cones with smooth generatrices.

For a fairly large class of surfaces, the solvability of the boundary integral equation
in the space C was proved by Burago and Maz’ya [BM] and Kral [K], whose approach
requires that the essential norm |T | of the double layer potential T is less than 1.
This condition can be formulated in geometrical terms. However, it does not hold
even for all cones with smooth generatrices. Angell, Kleinman, Kral [AKK] and
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Kral and Wendland [KW] succeeded in compelling the inequality |T | < 1 to hold by
replacing the usual norm in C with some equivalent weighted norm. The polyhedral
surfaces considered in [KW] are formed by a finite number of rectangles parallel to
the coordinate planes.

Since in the papers [GM1], [GM4] the solvability of the above mentioned integral
equation on surfaces with a finite number of conic vertices in the space C was proved
without any additional geometric assumptions, it became plausible that the use of the
essential norm has been unnecessary and appeared only in the method of proof. We
[GM6], and independently Rathsfeld [R], extended the result in [GM4] to arbitrary
polyhedra using different methods. In [R], a proof based on the Mellin transform was
used. By the same approach, Elschner [E] studied the invertibility and the Fredholm
property of a similar integral operator with a complex parameter on a polyhedral
surface in certain weighted L2-Sobolev spaces.

Now I pass to a description of results obtained by Grachev and the author in
[GM6]. We denote by Γ the boundary of a compact polyhedron in R3. By G+ we
denote the interior of the polyhedron and by G− its exterior. Consider two problems
for the Laplace operator

∆u = 0 on G+, u = f on Γ, (1.1)

∆v = 0 on G−, ∂v/∂n = g on Γ\M. (1.2)

Here M is the set of singularities of the polyhedron, i.e. the union of edges and
vertices, and ∂/∂n stands for the derivative in the direction of the outer normal to
Γ\M .

Let O1, O2, . . . , Om be the vertices of the polyhedron, let M1,M2, . . . ,Mk be the
edges and let

ri(x) = dist(x,Mi) =, r(x) = min
1≤i≤k

ri(x),

ρi(x) = dist(x,Oi) ρ(x) = min
1≤i≤m

ρi(x).

By ωi, i = 1, 2, . . . , k we denote the opening of the dihedral angle with the edge Mi

coinciding with G+ near Mi and let

λ+
i = π/ωi, λ−i = π/(2π − ωi), λ = min{λ+

i , λ
−
i }.

Let Ki, i = 1, 2, . . . ,m, be the cone with the vertex Oi which coincides with G+

near the point Oi. The open set that the cone Ki cuts from the unit sphere S2

centered at Oi is denoted by Ω+ and the set S2\Ω+ is denoted by Ω−.

Let δi and νi be positive numbers such that δi(δi + 1) and νi(νi + 1) are the first
positive eigenvalues of the Dirichlet problem in Ω+ and the Neumann problem in Ω−

for the Laplace-Beltrami operator on S2. We also set

κi = min{δi, νi, 1}.

Let Wψ denote the classical double layer potential with the density ψ:

(Wψ) =
1

4π

∫
Γ

∂

∂nξ

( 1

|x− ξ|

)
ψ(ξ) dsξ, x ∈ G±.

We are looking for a solution of the equation (1.1) in the form of a double potential.
It is known that the density ψ satisfies the integral equation

(1 + T )ψ = 2 f. (1.3)
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Here T is the operator on Γ defined by the equation

(Tψ)(x) = 2W0ψ(x) + (1− d(x))ψ(x),

where d(x) = 1 for x ∈ Ω\M , d(x) = ωi/π for x ∈Mi, d(x) = meas Ω+
i /2π for x ∈ Oi,

and W0ψ is the direct value on Γ of the double layer potential.

Now we formulate the main result for the integral equation associated with the
Dirichlet problem.

Theorem 1 Let κ = min
i

κi, λ = min
i
λi. If

p > 2/(1 + κ), p > 1/λ (1.4)

then the integral operator
1 + T : Lp(Γ)→ Lp(Γ)

and the operator
1 + T : C(Γ)→ C(Γ)

perform the isomorphisms. The inverse operator admits the representation

(1 + T )−1f = (1 + L+M) f, (1.5)

where L and M are integral operators on Γ with the kernels L(x, y) and M(x, y)
admiting the following estimates:

If Mj is the nearest edge to the point y and Oi is the nearest vertex to y, then

|M(x, y)| ≤ c ρ(y)κi−1−ε
( r(y)

ρ(y)

)λj−1−ε
. (1.6)

The kernel L(x, y) is different from zero only if the point x lies near the point y.
Suppose that x and y lie in a neighbourhood of a vertex Oi, i = 1, 2, . . . ,m and this
neighbourhood contains no vertices of the polyhedron other than Oi. If Mj and Ml

are the nearest edges to y and x, then

|L(x, y)| ≤ c ρ(y)−2
( r(y)

ρ(y)

)λj−1−ε
,

+c
(
r(y) + |x− y|

)−2
( r(x)

r(x) + |x− y|

)λl−ε( r(y)

r(y) + |x− y|

)λj−1−ε
(1.7)

for ρ(x)/2 < ρ(y) < 2ρ(x), and

|L(x, y)| ≤ c ρ(y)−1
(
ρ(x) + ρ(y)

)−1
(min{ρ(x), ρ(y)}

ρ(x) + ρ(y)

)κi−ε( r(y)

ρ(y)

)λj−1−ε
(1.8)

in the opposite case. Here ε is any small positive number.

Remark 1. A similar theorem holds for the integral equation

(1 + T ∗)ψ = −2 g, (1.9)

associated with the Neumann problem, where T ∗ is the operator formally adjoint to
T . In that case it is sufficient to replace (1.4) by the estimates

1 ≤ p < 2/(1− κ), p < 1/(1− λ)
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and to replace x by y and vice versa in the estimates (1.6) - (1.8). However, the
invertibility in the space C(Γ) should not be mentioned.

Here is a brief description of our method. First we consider the interior Dirichlet
problem and the exterior Neumann problem in some weighted Hölder spaces with the
weight ρβ rγ , where β and γ are real. It is known (see [MP1]), that there exists a
unique solution satisfying (1.1) and that the representation

u(x) =

∫
Γ

P+(x, ξ) f(ξ) dsξ (1.10)

holds with derivatives of the kernel P+(x, ξ) admiting the following estimates:

Suppose that the points x and ξ lie in a neighbourhood of a vertex Oi, i =
1, 2, . . . ,m, and Mj and Ml are the nearest edges to x and ξ. If either 2 ρ(ξ) < ρ(x)
or ρ(ξ) > 2 ρ(x), then

|∂σx∂τξP+(x, ξ)| ≤ cσ,τ ρ(x)−|σ|ρ(ξ)−1−|τ |(ρ(x) + ρ(ξ)
)−1

×
(min{ρ(x), ρ(ξ)}

ρ(x) + ρ(ξ)

)δi−ε( r(x)

ρ(x)

)λj−|σ|−ε( r(ξ)
ρ(ξ)

)λl−|τ |−1−ε
.

In the zone ρ(ξ) < 2 ρ(x) < 4 ρ(ξ), the estimates have the form

|∂σx∂τξP+(x, ξ)| ≤ cσ,τ |x− ξ|−2−|σ|−|τ |

×
( r(x)

r(x) + |x− ξ|

)λj−|σ|−ε( r(ξ)

r(ξ) + |x− ξ|

)λl−1−|τ |−ε
.

In the case x ∈ Ui, ξ ∈ Uq, where Ui and Uq are small neighbourhoods of the
vertices Oi and Oq with i 6= q, the estimates take the form

|∂σx∂τξP+(x, ξ)| ≤ cσ,τ ρ(x)δi−|σ|−ερ(ξ)δq−|τ |−ε
( r(x)

ρ(x)

)λj−|σ|−ε( r(ξ)
ρ(ξ)

)λl−|τ |−1−ε
.

Here σ and τ are arbitrary multi-indices, ε is a sufficiently small positive number.

A similar representation

u(x) =

∫
Γ

Q−(x, ξ) g(ξ) dsξ (1.11)

holds for the solution of the Neumann problem (1.2) and the kernel Q−(x, ξ) obeys
the following relations (see [GM4] and Part 2 of the book [MR]):

Suppose that the points x and ξ lie in a neighbourhood of the vertex Oi, i =
1, 2, . . . ,m, and Mj and Ml are the nearest edges to x and ξ. If either 2 ρ(x) < ρ(ξ)
or ρ(x) > 2 ρ(ξ), then

Q−(x, ξ) = Q−(0, ξ) +R−(x, ξ) for 2 ρ(x) < ρ(ξ),

Q−(x, ξ) = Q−(x, 0) +R−(ξ, x) for 2 ρ(ξ) < ρ(x),

where

Q−(0, ξ) = Q−(ξ, 0) = a−i /ρ(ξ) + b−i + d−i (ξ), a−i = 1/meas Ω−i .

4



For R(x, ξ) and d−i (ξ) one has the estimates

|∂σξ d−i (ξ)| ≤ cσ ρ(x)νi−|σ|−ε
( r(ξ)
ρ(ξ)

)λlσε
,

|∂σx∂τξR−(x, ξ)| ≤ cσ,τ ρ(x)νi−|σ|−ερ(ξ)−1−νi−|τ |−ε
( r(x)

ρ(x)

)λjσε( r(ξ)
ρ(ξ)

)λlσε
.

In the intermediate zone ρ(x) < 2 ρ(ξ) < 4 ρ(x), the estimate takes the form

|∂σx∂τξQ−(x, ξ)| ≤ cστ
|x− ξ|1+|σ|+|τ |

( r(x)

r(x) + |x− ξ|

)λjσε( r(ξ)

r(ξ) + |x− ξ|

)λlτε
.

In the case x ∈ Ui, ξ ∈ Uq, where Ui and Uq are small neighbourhoods of the
vertices Oi and Oq with i 6= q, we have

|∂σx∂τξQ−(x, ξ)| ≤ cσ,τ ρ(x)νσεiρ(ξ)ν
q
τε

( r(x)

ρ(x)

)λjσε( r(ξ)
ρ(ξ)

)λlτε
.

Here we use the notation

λjσε = min{0, λj − |σ| − ε}, λjτε = min{0, λl − |τ | − ε},

νiσε = min{0, νi − |σ| − ε}, νqτε = min{0, νq − |τ | − ε}.

One can show that the representation

(1 + T )−1 =
1

2

(
1−Q− ∂

∂n
P+
)

(1.12)

for the inverse operator of the integral equation associated with the Dirichlet problem
holds in the space of traces on Γ of functions from the weighted Hölder space men-
tioned above. Here P+ and Q− are the integral operators defined by the equalities
(1.10) and (1.11).

The estimates for derivatives of the kernels P+(x, ξ), Q−(x, ξ) and the equality
(1.12) allow to establish the representation (1.5) in Hölder spaces and to obtain es-
timates (1.6) - (1.8) for the kernels L(x, y) and M(x, y). With the help of these
estimates one can show that the operator (1 + T )−1 is continuous in the space of
continuous functions as well as in an appropriate Lp space and can extend the repre-
sentation (1.5) to these spaces.

Remark 2. The inverse to the integral operator in (1.9) has the form

(1 + T ∗)−1 =
1

2

(
1− ∂

∂n
P+Q−

)
.

2 Properties of the Neumann problem in a polyhe-
dral cone

The results in this section are borrowed from preprint [GM5]. We consider the Neu-
mann problem in a polyhedral cone. Its solvability in certain weighted Hölder and
Sobolev spaces is shown and estimates for the fundamental solution are obtained. In
Subsection 2.1 the problem is studied in some weighted Hilbert spaces. Subsection
2.2 is devoted to a generalization of previous results to the Lp norm with p > 2 which
enables one to prove the existence of Green’s function and to obtain estimates both
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for this function and its derivatives (Subsection 2.3). With the help of such esti-
mates, the solvability of the Neumann problem in various function spaces is proved
in Subsection 2.4.

Our estimates for Green’s function of the Neumann problem are similar to those
obtained in the case of the Dirichlet problem in [MP1]. The Neumann and mixed
boundary value problems for a class of elliptic systems are treated in Part 2 of the
book [MR].

2.1 Solvability of the Neumann problem in a polyhedral cone.
The case of weighted Hilbert spaces

1. Function spaces. Let K be an open polyhedral cone in R3 with the vertex O and
the edges Mj , j = 1, 2, . . . , k. The faces ∂Kj , j = 1, 2, . . . , k, of the cone are plane
sectors. By M we denote the set of singularities of K, i.e. M = ∪1≤j≤lMj , and by
ωj the opening of the dihedral angle coinciding with K in a neighbourhood of intMj .
Suppose that O is the origin of some Cartesian system.

Let β ∈ R, 1 < p <∞, let l be integer, l ≥ 0, and let δ be a vector (δ1, δ2, . . . , δk),

δj ∈ R. We introduce the space W l,p
β,δ(K) of functions u in K with the finite norm

‖u‖W l,p
β,δ(K) =

( l∑
i=1

∫
K

|x|(β−l+i)p
k∏
j=i

r
pδj
j |∇iu|

pdx
)1/p

.

Here rj(x) = dist(x,Mj) and ∇j = {∂j/∂xα1
1 ∂xα2

2 ∂xα3
3 }.

In what follows by Lpβ,δ(K) we denote the space W 0,p
β,δ(K).

We also need the space of traces on ∂Kj for functions from W l,p
β,δ(K) denoted by

W
l−1/p,p
β,δ (∂Kj). Let W

l−1/p,p
β,δ (∂K) refer to the space of functions u on ∂K whose

restrictions uj on ∂Kj belong to W
l−1/p,p
β,δ (∂Kj) and let

‖u‖
W
l−1/p,p
β,δ (∂K)

=

k∑
j=1

‖u‖
W
l−1/p,p
β,δ (∂Kj)

.

2. The model boundary value problem in a plane infinite sector. By Q we denote
an infinite sector with opening ω and the vertex O. Let ∂Q± be the sides of this
sector and let ∂Q be the boundary of Q, i.e. ∂Q = ∂Q+ ∪ ∂Q− ∪ {0}.

Given any δ ∈ R and any nonnegative integer l, we introduce the space W l
δ(Q) of

functions in Q for which the norm

‖u‖W l
δ(Q) =

( l∑
j=0

‖rδ∇ju‖2L2(Q)

)1/2

is finite. Here r = r(x) is the distance from the point x to the vertex O.

The space of traces on ∂Q+ of functions fromW l
δ(Q) will be denoted byW

l−1/2
δ (∂Q±).

It is well-known (see [MP1]) that the norm in W
l−1/2
δ (∂Q±) can be defined by the

formula

‖u‖2
W
l−1/2
δ (∂Q±)

=

l−1∑
j=0

‖rδ u(j)‖2L2(∂Q±)+

∫ ∞
0

r2δdr

∫ r

0

τ−2|u(l−1)(r+τ)−u(l−1)(r)|2dτ.
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Furthermore, for any positive t, we introduce the norm ‖u‖W l
δ(Q,t)

defined by

‖u‖W l
δ(Q,t)

=
( l∑
j=0

t2(l−j)‖rδ∇ju‖2L2(Q)

)1/2

.

Similarly, one can define the norm depending on a positive parameter t in the space
of traces on ∂Q±:

‖u‖2
W
l−1/2
δ (∂Q±,t)

=

l−1∑
j=0

t2(l−j)−1‖rδu(j)‖2L2(∂Q±)

+

∫ ∞
0

r2δdr

∫ r

0

τ−2|u(l−1)(r + τ)− u(l−1)(r)|2dτ.

Consider the boundary value problem depending on the complex parameter γ

∂2u

∂x2
+
∂2u

∂y2
+ γ2u = f in Q,

∂u

∂n
= g on ∂Q\0, (2.1)

where ∂/∂n is the derivative in the direction of outer normal.

Lemma 1 [ZS],[GM2] Let A(γ) be the operator of the problem (2.1). If

0 < 1− δ < min{1, π/ω},

then the operator

A(1) : W 2
δ (Q)→W 0

δ (Q)×
∏
±
W

1/2
δ (∂Q±)

performs an isomorphism.

Lemma 2 Suppose that 0 < 1 − δ < min{1, π/ω}. If γ belons to the line Reγ = c1,
then there exists a posiitive number c2 such that the problem (2.1) has the unique
solution u ∈ W 2

δ (Q, |γ|) for every γ with |Imγ| > c2, and for any f ∈ W 0
δ (Q),

g± ∈W 1/2
δ (∂Q±, |γ|). The solution admits the estimate

‖u‖W 2
δ (Q,|γ|) ≤ c

(
‖f‖W 0

δ (Q) +
∑
±
‖g±‖

W
1/2
δ (∂Q±,|γ|)

)
, (2.2)

where the constant c > 0 is the same for all γ with |Imγ| > c2 and f ∈ W 0
δ (Q),

g± ∈W 1/2
δ (∂Q±, |γ|).

Proof. Let γ = a + ib, −∞ < b < ∞. It suffices to consider the case a = 0. We
introduce the function v(x) = u(|b|x). Then the existence of the solution of (2.1) and
the estimate (2.2) follow from Lemma 1 applied to the function v.

3. The Neumann problem in a cone. Let Ω be a spherical polygon, i.e. Ω = K∩S2,
where S2 is the unit sphere centered at O. We introduce the notation

Ej = Mj ∩ S2, ∂Ωj = ∂Kj ∩ S2

Since K is a polyhedral cone, it follows that in a neighbourhood Uj of each point Ej ,
j = 1, 2, . . . , k, there exists a diffeomorphism κj mapping Uj into a plane sector Qj .
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Suppose that the differential of κj is identical at Ej . We define the space W l
δ(Ω),

δ = (δ1, δ2, . . . , δk). We say that a function u on Ω with support in Uj belongs to this
space if κj u ∈W l

δj
(Qj). If a function u vanishes near all angle points then u ∈W l

δ(Ω)

if and only if u ∈W l
2(Ω). The case of a function with arbitrary support is considered

in a standard manner with the help of partition of unity.

The space of traces on ∂Ωi of functions from W l
δ(Ω), l ≥ 1, will be denoted

by W
l−1/2
δ (∂Ωi). We say that u ∈ W

l−1/2
δ (∂Ω) if the restriction ui of u to every

component ∂Ωi is in W
l−1/2
δ (∂Ωi) and

‖u‖
W
l−1/2
δ (∂Ω)

=

k∑
i=1

‖u‖
W
l−1/2
δ (∂Ωi)

.

Further, replacing W l
δj

(Qj) by W l
δj

(Qj , t) in the definition of the W l
δ(Ω)-norm, we

introduce the norm ‖u‖W l
δ(Ω,t) for any positive t. Similarly, one can define the norm

‖u‖
W
l−1/2
δ (∂Ω,t)

, also depending on the parameter t.

Consider the Neumann problem

∆u = f in K,
∂u

∂n
= ϕ on ∂K\M. (2.3)

We assume that f ∈ L2
β,δ(K), ϕ ∈ W 1/2

β,δ (∂K). We are looking for a set of indices β,

δ for which the problem (2.1) is solvable in W 2,2
β,δ(K). Let ρ = |x| and let ∆′ be the

Lapalace-Beltrami operator on S2. We rewrite the problem (2.3) in the form((ρ ∂
∂ρ

)2

+ ρ
∂

ρ
+ ∆′

)
u = ρ2f in K,

∂u

∂n
= ρϕ on ∂Ω\E, (2.4)

where E = ∪jUj . Using the Mellin transform

ũ(γ, ·) = (2π)−1/2

∫ ∞
0

ρ−γ−1u(ρ, ·) dρ,

we can formally write the system (2.4) as the following system with the complex
parameter γ

(γ2 + γ + ∆′)ũ = F̃ in Ω,
∂ũ

∂n
= Φ̃ on ∂Ω, (2.5)

where F̃ = f̃(γ − 2), Φ̃(γ) = ϕ̃(γ − 1).

Let A(γ) stand for the operator of the problem (2.5).

Theorem 2 Suppose that

γ =
1

2
− β −

k∑
j=1

δj

is not an eigenvalue of the operator pencil A(γ). Let 0 < δj < 1 and 1 − δj < π/ωj.
Then

(i) Given f ∈ L2
β,δ(K) and ϕ ∈ W

1/2
β,δ (∂K), there exists a unique solution u ∈

W 2,2
β,δ(K) satisfying the problem (2.3) and there is a positive constant c depending

only on K such that

‖u‖W 2,2
β,δ(K) ≤ c

(
‖f‖L2

β,δ(K) + ‖ϕ‖
W

1/2
β,δ (∂K)

)
. (2.6)
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(ii) Let

f ∈ L2
β,δ(K) ∩ L2

β′,δ′(K), ϕ ∈W 1/2
β,δ (∂K) ∩W 1/2

β′,δ′(∂K),

where β′ ∈ R and δ′ is a vector with components δ′j, 0 < 1 − δ′j < min{1, π/ω},
j = 1, 2, . . . , k. Suppose that the numbers

1

2
− β −

k∑
j=1

δj and
1

2
− β′ −

k∑
j=1

δ′j

are not eigenvalues of A(γ) and that the eigenvalues γ1, . . . , γs of the operator pencil
A(γ) lie in the interval

1

2
− β −

k∑
j=1

δj < γj <
1

2
− β′ −

k∑
j=1

δ′j .

If u is a solution of the problem (2.3) from the space W 2,2
β,δ(K), then

u(x) =

s∑
i=1

kj∑
j=1

cijr
γjϕij(ω) +R(x). (2.7)

Here ϕij, j = 1, . . . , ki are eigenfunctions of the Laplace-Beltrami operator ∆′ corre-
sponding to the eigenvalues γ2

i + γj, cij are certain constants, and R is a solution of

the problem (2.3) from the space W 2,2
β,δ(K).

Proof. Let Aj(γ) denote the operator of the problem (2.1) in the sector Qj and
let Aj(γ) stand for the transformation of A(γ) under the diffeomorphism κj . Let ηε
be a smooth function identically equal to 1 in the ball Bε of radius ε with center at
the vertex of the sector Qj and vanishing outside the ball B2ε. From (2.5) it follows
that the norm of the operator

ηε
(
Aj(γ)−Aj(γ)

)
: W 2

β (Qj , |γ|) → W 0
β (Qj)×

∏
±
W

1/2
δ (∂Q±j , |γ|)

is small for small ε and large |γ|. Hence, by Lemma 2, the solvability of the problem
(2.5) in W 2

β (Qj , |γ|) and the estimate

‖ũ‖W 2
β(Ω,|γ|) ≤ c

(
‖F̃‖W 0

β(Ω) + ‖Φ̃‖
W

1/2
β (∂Ω,|γ|)

)
are established by a standard argument (see [AV]).

The properties of the Mellin transform imply the equalities∫
Reγ=l−β−

∑k
j=1 δj−3/2

‖ũ‖2W l
δ(Ω,|γ|)dγ = ‖u‖2

W l,2
β,δ(K)

,

∫
Reγ=l−β−

∑k
j=1 δj−3/2

‖ϕ̃‖2
W
l−1/2
δ (∂Ω,|γ|)

dγ = ‖u‖2
W
l−1/2,2
β,δ (∂K)

.

Hence the function

u(ρ, ·) = (2π)−1/2

∫
Reγ=1/2−β−

∑k
j=1 δj

ργA−1(γ)[F̃ , ϕ̃]dγ (2.8)

belongs to W 2,2
β,δ(K), satisfies the problem (2.3) and obeys the estimate (2.6).

Replacing the line of integration in (2.8) by the line Reγ = 1/2 − β′ −
∑k
j=1 δ

′
j ,

we arrive at (2.7) (see [Ko]).
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2.2 Solvability of the Neumann problem in a polyhedral cone.
The case of weighted Sobolev spaces

1. The Neumann problem in a dihedral angle. Let D be an open dihedral angle in
R3 with opening ω ∈ (0, 2π), ω 6= π, and let ∂D± be its sides. By Llp,β(D) we denote

the completion of C∞0 (D) in the norm(
‖rδ∇lu‖pLp(D) + ‖u‖pLp(B)

)1/p

.

Here r(x) is the distance from the point x to the edge M of D, B is a ball with radius
1, B ⊂ D.

Let L
l−1/p
p,δ (∂D±) stand for the space of traces on ∂D± of functions from Llp,β(D)

and L
l−1/p
p,β (∂D) for the space of functions u whose restrictions u± to ∂D± are in

L
l−1/p
p,δ (∂D±). We set

‖u‖l−1/p
p,δ (∂D) =

∑
±
‖u±‖l−1/p

p,δ (∂D±).

Consider the Neumann problem

∆u = f in D,
∂u

∂n
= ϕ on ∂D\M. (2.9)

The following result is well-known (see [GM2], [ZS]).

Theorem 3 Let 0 < 1− β < min{1/2, π/ω}. Then

(i) The operator of the Neumann problem (2.9) performs an isomorphism

L2
2,β(D) ≈ L0

2,β(D)× L1/2
2,β (∂D).

(ii) Let p > 1, δ > −2/p, let l be an integer, l > 0, 0 < l− δ+ 2− 2/p < π/ω, and

let f ∈ Ll2,δ(D), ϕ ∈ Ll+1−1/p
p,δ (∂D). If u ∈ Ll2,β(D) is a solution of the problem (2.9),

then u ∈ Ll+2
p,δ (D) and the exists a positive constant c depending only on D such that

‖u‖Ll+2
p,δ (D) ≤ c

(
‖f‖Ll2,δ(D) + ‖ϕ‖

L
l+1−1/p
p,δ (∂D)

+ ‖u‖L2
2,β(D)

)
.

By W l
p,β(D) we denote the space of functions u with the finite norm

‖u‖W l
p,β(D) =

( l∑
j=0

‖rδ∇ju‖pLp(D)

)1/p

.

We also introduce the space W
l−1/p
p,β (∂D) whose definition is obtained from the defi-

nition of the space L
l−1/p
p,β (∂D) after replacing L by W .

Theorem 3 leads directly to the following assertion.

Lemma 3 Let θ and ζ be functions from C∞0 (D) such that θζ = θ. Suppose that
0 < 1− β < min{1, π/ω} and δ > −2/p, 0 < l − δ + 2− 2/p < π/ω.

If u is a solution of the problem (2.9) and ζf ∈W l
p,δ(D), ζϕ ∈W l+1−1/p

p,δ (∂D), and

ζu ∈W 2
2,β(D), then θu ∈W l+2

p,δ (D) and there exists a positive constant c independent
of f and ϕ such that

‖θu‖W l+2
p,δ (D) ≤ c

(
‖ζf‖W l

p,δ(D) + ‖ζϕ‖
W
l+1−1/p
p,δ (∂D)

+ ‖ζu‖W 2
2,β(D)

)
.
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2. The Neumann problem in a cone. We prove the following theorem.

Theorem 4 Let l be a nonnegative integer, p ≥ 2, and let the components δj of a
vector δ satisfy the inequalities

(a) δj > 1− 2/p, 0 < l + 2− δj − 2/p < π/ωj .

(b) Assume that the number

l + 2− 3/p− β −
k∑
j=1

δj

is not an eigenvalue of A(γ). Then

(i) The operator of the problem (2.9) performs an isomorphism

W l+2,p
β,δ (K) ≈W l,p

β,δ(K)×W l+1−1/p,p
β,δ (∂K).

(ii) Suppose that

f ∈W l,p
β,δ(K) ∩W l′,p′

β′,δ′(K), ϕ ∈W l+1−1/p,p
β,δ (∂K) ∩W l′+1−1/p′,p′

β′,δ′ (∂K),

where β, δ′, l′, and p′ satisfy the conditions (a) (b), and suppose that the closed
interval with end points

l + 2− 3/p− β −
k∑
j=1

δj and l′ + 2− 3/p′ − β′ −
k∑
j=1

δ′j

contains no eigenvalues of A(γ).

If u is a solution of the problem (2.3) from the space W l+2,p
β,δ (K), then u ∈

W l′+2,p′

β′,δ′ (K).

First we prove an auxiliary assertion. We introduce the sets Uj = {x ∈ K : 2j−1 <
|x| < 2j+1}, j = ±1, . . ., and by χj , ψj we denote the functions in the class C∞0 (R3)
such that

(1) suppχj ⊂ {x : 2j−1 < |x| < 2j+1}, suppψj ⊂ {x : 2j−2 < |x| < 2j+2}

(2) χj(x)ψj(x) = χj(x),
∑
j

χj(x) = 1 for all x ∈ K\0

(3) |x||α||∂αχj(x)| ≤ cα, |x||α|∂αψj(x)| ≤ cα for all multiindices α.

Lemma 4 Let p ≥ 2 and let β, δ satisfy the conditions (a), (b). If ϕ = 0, f ∈
W l,p
β,δ(K) and supp f ⊂ Un, then there exists a solution of the problem (2.3) such that

χju ∈W l+2,p
β,δ (K) for all j = 0,±1, . . . and the estimate

‖χju‖W l+2,p
β,δ (K) ≤ c 2−ε|n−j|‖f‖W l,p

β,δ(K)

holds, where ε and c are positive constants.
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Proof. By γ we denote the vector with components γj = {δj−1+2/p}+1−2/p,
where {x} stands for the fractional part of x. We set

δ′j = γj − 1 + 2/p+ ν, β′ = β +

k∑
j=1

δj − l − 2 + 3/p−
k∑
j=1

δ′j + 1/2 + µ.

Here ν is a positive number such that δ′j < 1 and µ is so small that the closed interval
with end points

l + 2− 3/p− β −
k∑
j=1

δj ∓ µ

contains no poles of the operator-function A−1(γ). We assume that µ is positive for
n < j and negative otherwise.

We introduce the function h defined by h(x) = f(2nx). By Hardy’s inequality,
there is a positive constant c such that

‖h‖W 0,p
β,γ(K) ≤ c ‖h‖W l,p

β,δ(K)

for all h supported in U1. Returning to the function f , we obtain

‖f‖W 0,p
β,γ(K) ≤ c 2nσ‖f‖W l,p

β,δ(K), σ = l −
k∑
j=1

(δj − γj). (2.10)

By Hölder’s inequality,

‖f‖W 0,2

β′,δ′ (K) ≤ ‖ρ
β

k∏
j=1

r
γj
j f‖Lp(K) ‖ρβ

′−β
k∏
j=1

r
β′j−γ
j ‖L2p/(p−2)(Un).

The choice of the indices δ′j shows that the second factor on the right-hand side is

bounded. Besides, clearly, this norm is equal to c′2n(µ−σ). From this and (2.10) we
conclude that f ∈W 0,2

β′,δ(K) and

‖f‖W 0,2

β′,δ(K) ≤ c 2µn‖f‖W l,p
β,δ(K). (2.11)

By Lemma 4, there is a constant c such that

‖χju‖W l+2,p
β,δ (K) ≤ c

(
‖ψjf‖W l,p

β,δ(K) + 2−µj‖ψju‖W 2,2

β′δ′ (K)

)
(2.12)

for all j = 0,±2, . . . .

Theorem 2 implies

‖ψju‖W 2,2

β′δ′ (K) ≤ c ‖u‖W 2,2

β′δ′ (K) ≤ c ‖f‖W 0,2

β′δ′ (K). (2.13)

By inequalities (2.11) - (2.13),

‖χju‖W l+2,p
β,δ (K) ≤ c 2µ(n−j)‖f‖W l,p

β,δ(K).

We made use of the fact that the first term on the right-hand side of (2.12) vanishes
for |n− j| > 2. The lemma is proved.

Proof of Theorem 4. Let ϕ = 0. 1) The existence of a solution u ∈W l+2,p
β,δ (K)

of the problem (2.3) and the estimate

‖u‖W l+2,p
β,δ (K) ≤ c ‖f‖W l,p

β,δ(K)
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follow directly from Lemma 4 and from Lemma 1.1. in [MP2].

Now we prove the uniqueness of the solution. Let v ∈ W l+2,p
β,δ (K) be a solution

of (2.3) for f = 0. Consider the function vε,R defined by vε,R = (1 − ηε)ηRv, where
ηε(x) = η(|x|/ε) and η is a function of the class C∞0 (R+) which is equal to 1 on
{t : 0 < t ≤ 1/2} and vanishing on {t : t ≥ 1}. The argument used in the proof of
estimate (2.11) shows that vε,R ∈W 2,2

β′,δ′(K) for

δ′j = (δj − 1 + 2/p) + ν, β′ = β +

k∑
j=1

(δj − δ′j)− l − 3/2 + 3/p

and that there is a positive constant c, independent of ε and R, such that

‖vε,R‖W 2,2

β′,δ′ (K) ≤ c ‖v‖W l+2,p
β,δ (K).

We pass to the limit in the last inequality as ε→ 0 and R→∞. Thus, v ∈W 2,2
β,δ(K)

and hence v = 0 by Theorem 3.

2) The arguments in the part 1) show that the inclusions

W l+2,p
β,δ (K) ⊂W 2,2

s,γ (K), W l′+2,p′

β′,δ (K) ⊂W 2,2
s′,γ(K) (2.14)

hold for

γj = {δj − 1 + 2/p}+ ν, s = β +

k∑
j=1

(δj − γj)− l − 3/2 + 3/p,

γ′j = {δ′j − 1 + 2/p}+ ν′, s′ = β′ +

k∑
j=1

(δ′j − γ′j)− l′ − 3/2 + 3/p′.

From the first inclusion in (2.14) we have u ∈ W 2,2
s,γ (K). Hence, by Theorem 2,

u ∈ W 2,2
s′,γ′(K). By part 1) of this theorem, the problem (2.3) is uniquely solvable in

the spaces W l′+2,p′

β′,δ′ (K) and W 2,2
s′,γ(K). Thus, the second inclusion in (2.14) leads to

the second assertion of the theorem.

To obtain the result for any ϕ it is sufficient to refer to the following theorem.

Theorem 5 Let l and δi, i = 1, . . . , k, satisfy the conditions (a) in Theorem 4. If

ϕ ∈W l+1−1/p,p
β,δ (∂K), then there exists a function u ∈W l+2,p

β,δ (K) such that ∂u/∂n =
ϕ on ∂K\M and

‖u‖W l+2,p
β,δ (K) ≤ c ‖ϕ‖W l+1−1/p,p

β,δ (∂K)
.

One can choose the operator ϕ→ u independent of ρ, δ, and l.

Proof. Let suppϕ ⊂ {x ∈ ∂K : 1/2 < |x| < 2}. By Theorem 3, there exists a
function

u ∈W l+2,p
β,δ (K), suppu ⊂ {x ∈ K : 1/4 < |x| < 4}

satisfying the conditions of the present theorem.

The case suppϕ ⊂ {x ∈ ∂K : 2j−1 < |x| < 2j+1} can be reduces to the case
considered above using the transformation x→ 2jx.
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Let ϕ be an arbitrary function from W
l+1−1/p,p
β,δ (∂K). By uj we denote functions

from W l+2,p
β,δ (K) with suppuj ⊂ {x ∈ K : 2j−2 < |x| < 2j+2} and such that ∂uj/∂n =

χjϕ and
‖uj‖W l+2,p

β,δ (K) ≤ c ‖χjϕ‖W l+1−1/p,p
β,δ (∂K)

.

Here χj are the functions introduced before Lemma 4. Thus, the function u =∑∞
−∞ uj is the required one.

2.3 Estimates for Green’s function of the Neumann problem

1. Auxiliary assertions. From Theorem 4, in a standard manner (see [MP2], [GM2]),
we obtain the following local estimates.

Lemma 5 Let ρ ≥ 0 and let l be integer, l ≥ 0. Suppose that β and δ satisfy the
conditions (a) and (b) of Theorem 4. By θ and ζ we denote functions with compact
support in R3 such that θζ = θ. If u is a function satisfying the homogeneous equation
(2.3) on K ∩ supp ζ and ζu ∈ L2(K), then θu ∈W l+2,p

β,δ (K) and the estimate

‖θu‖W l+2,p
β,δ (K) ≤ c ‖ζu‖L2

holds.

Lemma 6 Let u ∈W l+2,p
β,δ (K). The derivatives of u of order |α| < l− 3/p admit the

poitwise estimates

|x|t
k∏
j=1

rj(x)µj |∂αu(x)| ≤ c ‖u‖W l,p
β,δ(K),

where

t+

k∑
j=1

µj = β +

k∑
j=1

δj + |α| − l + 3/p,

µj ≥ max{0, δj + |α| − l + 3/p}, δj + |α| − l + 3/p 6= 0,

and r(x) = dist(x,M).

Proof. First we consider a function u defined in the interior D of a dihedral
angle. Let u ∈ W l,p

δ (D) and let suppu ⊂ {x : r(x) < 1/2}. It is well-known

that for any u there exists a function ũ ∈ W l+2,p
β,δ (R3\M) such that ũ = u on D,

supp ũ ⊂ {x : r(x) < 1} and

‖ũ‖W l,p
β (R3\M) ≤ c ‖u‖W l,p

δ (D).

In what follows we assume that the function u is defined on R3\M and that suppu ⊂
{x : r(x) < 1}. By Kx we denote the rotational cone with the opening π/2 whose
axis is orthogonal to the edge M .

By the Sobolev integral representation,

|∂αu(x)| ≤ c
∫
Kx

|∇lu(y)| dy
|x− y|3−l+|α|

≤ c
(∫

Kx

r(y)pδ|∇lu|pdy
)1/p(∫

{y∈Kx:|x−y|<1}

dy

r(y)qδ|x− y|(3+|α|−l)q

)1/q

. (2.15)
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Using spherical coordinates with center at x, we obtain that the second factor in the
right-hand side of (2.15) does not exceed

c
(∫ 1

0

ρ2dρ

ρ(3+|α|−l)q(r(x) + ρ)qδ

)1/q

≤ c
( 1

rqδ(x)

∫ r(x)

0

ρ2dρ

ρ(3−l+|α|−l)q+

∫ 1

r(x)

ρ2dρ

ρ(3−l+|α|+δ)q

)1/q

≤


c r(x)l−|α|−δ−3/p, l − |α| − δ − 3/p < 0

c, l − |α| − δ − 3/p > 0

c | log r(x)|, l − |α| − δ − 3/p = 0.

(2.16)

Suppose that u ∈W l,p
β,δ(K). By Bx we denote the ball of radius |x|/2 with center

at x. The estimates (2.15) and (2.16) imply

k∏
j=1

rµj (x)|∂αu(x)| ≤ c
l∑
i=0

∫
K∩Bx

k∏
j=1

r
pδj
j (y)|∇iu(y)|pdy

for all x with |x| = 1.

Let |x| = ρ. We introduce the function v by v(y) = u(ρy), y = x/ρ. Applying the
last inequality to v and returning to the function u, we arrive at the desired estimate.
The lemma is proved.

Consider the Neumann problem in the dihedral angle D of opening ω with the
edge M

∆u = f in D,
∂u

∂n
= 0 on ∂D\M. (2.17)

The next assertion is borrowed from [ZS].

Theorem 6 There exists Green’s function G(x, y) of the problem (2.17), i.e. a unique
solution of the boundary value problem

∆xG(x, y) = δ(x− y), x, y ∈ D,
(2.18)

∂

∂nx
G(x, y) = 0, x ∈ ∂D\M, y ∈ D

such that the function x → (1 − η(|x − y|/r(y))G(x, y) is in the space L2
2,β(D), 0 <

1 − β < min{1/2, π/ω} for every fixed y ∈ D. Here η ∈ C∞[0,∞), η(t) = 1 for
0 ≤ t ≤ 1/2, η(t) = 0 for t ≥ 1, and r(x) = dist(x,M).

Equation (2.18) is understood in the sense that

v(y) =

∫
D

G(x, y)∆v(x)ds−
∫
∂D

G(x, y)
∂v

∂n
(x)ds

for all v ∈ C∞0 (D). Green’s function G admits the estimates

|∂αx ∂σyG(x, y)| ≤ cασ|x− y|−1−|α|−|σ|

if |x− y| < r(x)/2 and

|∂αx ∂σyG(x, y)| ≤ cασ|x− y|−1−|α|−|σ|
( r(x)

|x− y|

)ναε( r(y)

|x− y|

)νσε
in the opposite case. Here ναε = min{0, π/ω − ε− |α|}, νσε = min{0, π/ω − ε− |σ|},
and ε is a sufficiently small positive number.

2. Green’s function of the problem (2.3). Let η be the function from Theorem 6.
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Theorem 7 If the interval (c1, c2) contains no points of the spectrum of the pencil
A(γ) corresponding to the problem (2.5), then

(i) There exists a unique solution G(x, y) of the boundary problem (2.17), i.e. a
solution of the problem

∆xG(x, y) = δ(x, y) x, y ∈ K, ∂G

∂nx
(x, y) = 0 x ∈ ∂K\M, y ∈ K (2.19)

such that the function x→ (1− η(|x− y|/r(y)))G(x, y), for any fixed y ∈ K, belongs

to the space W l+2,p
β,δ (K) with l = 0, 1, . . .,

δj > 1− 2/p, 0 < l + 2− δj − 2/p < π/ωj , c1 < l + 2−
k∑
j=1

δj − β − 3/p < c2.

(ii) The function G is infinitely differentiable with respect to x, y ∈ K\M , x 6= y.
If |x| < |y| < 2|x|, then

|∂αx ∂σyG(x, y)| ≤ cασ|x− y|−1−|α|−|σ| (2.20)

for |x− y| < r(x)/2 and

|∂αx ∂σyG(x, y)| ≤ cασ|x− y|−1−|α|−|σ|
k∏
j=1

( rj(x)

|x− y|

)νjαε( rj(y)

|x− y|

)νjσε
(2.21)

in the opposite case. Here rj(x) = dist(x,Mj), r(x) = dist(x,M),

νjαε = min{0, π/ωj − ε− |α|}, νjσε = min{0, π/ωj − ε− |σ|}

and ε is a sufficiently small positive number.

(iii) The function G is a unique solution of the boundary value problem

∆yG(x, y) = δ(x, y), x, y ∈ K, ∂G

∂ny
(x, y) = 0 y ∈ ∂K\M, x ∈ K (2.22)

such that the function x→ (1−η(|x−y|/r(y)))G(x, y) belongs to the space W l′+2,p′

β′,δ′ (K),

δ′j > 1−2/p′, 0 < l′+2−δ′j−2/p′ < π/ωj , 1+c1 < β′+

k∑
j=1

δ′j−l′−2+3/p′ < 1+c2,

l = 0, 1, . . ., for any fixed x ∈ K.

Equations (2.19) and (2.22) should be understood in the sense that

v(y) =

∫
K

G(x, y)∆v(x)dx−
∫
∂K

G(x, y)
∂v

∂n
(x) dsx; (2.23)

w(x) =

∫
K

G(x, y)∆w(y)dy −
∫
∂K

G(x, y)
∂w

∂n
(y) dsy; (2.24)

for any v, w ∈ C∞0 (K\0).

Proof. (i) The uniqueness of G(x, y) follows from Theorem 4, Since the operators
in (1.3.5) are homogeneous, we have the relation G(tx, ty) = t−1G(x, y) for every
positive t. Therefore, without loss of generality we may assume that |y| = 1.

16



We prove the existence of G(x, y). let y be a fixed point in K with |y| = 1. By
My we denote the edge nearest to the point y and by Dy the dihedral angle which
coincides with K in a neighbourhood of intMy. By Theorem 6, there exists Green’s
function G(x, y) of the problem (2.17) for Dy.

We define the function G by the equality

G(x, y) = η(|x− y|/τ)G(x, y)−R(x, y), (2.25)

where η is the same as in Theorem 6, τ is a small positive number such that supp η(|x−
y|/τ) ∩ (M\My) = ∅ and R is a solution of the Dirichlet problem

∆xR = 2∇xη∇G + G∆xη in K,
∂R

∂nx
= G ∂η

∂nx
on ∂K\M (2.26)

from the space W l+2,p
β,δ (K). The existence of G is proved.

(ii) The smoothness of G(x, y) for x 6= y, x, y ∈ K\M and the estimates (2.20),
(2.21) follow directly from the construction of G(x, y), Theeorem 4 and the homo-
geneity of G(x, y).

(iii) Since the space C∞0 (K\0) is dense in W 2,2
β′,δ′(K), it follows that the equation

(2.23) holds for all v ∈W 2,2
β′,δ′(K).

By (2.5) we have that both γ and 1−γ belong to the spectrum of the pencil G(γ).
Let β, δ and β′, δ′ satisfy the conditions (i) and (iii) of the theorem for l = 0, p = 2
and for l′ = 0, p′ = 2. Let

β′ + β +

k∑
j=1

δ′j +

k∑
j=1

δj = 2.

Let H(x, y) stand for the solution of the problem (2.22) which exists by the first part
of the theorem and let Hτ (x, z) be the mean value of H(x, z) with respect to the
variable z over the ball of radius τ . We substitute the function

v(z) =
(
η(|x− y|/R)− η(|x− z|/ε)

)
H(x, z) +Hτ (x, z)η(|x− z|/ε)

into (2.23) and then pass to the limit as R→∞ and τ → 0. We have ε > 0 so small
that the ball {ξ : |ξ − x| ≤ 2ε} lies in K and does not contain the point y. Hence we
arrive at the equality H(x, y) = G(x, y). The theorem is proved.

Corollary 1 The solution u ∈ W l+2,p
β,δ (K) of the problem (2.3) admits the represen-

tation

u(x) =

∫
K

G(x, y) f(y)dy −
∫
∂K

G(x, y)ϕ(y) dsy.

Theorem 8 Let the interval (c1, c2) contain no points of the spectrum of the operator
pencil G(γ) corresponding to the problem (2.5).

(i) If |x| < |y|/2, then

|∂αx ∂σyG(x, y)| ≤ cασ
|x|c2−|α|−ε

|y|c2+1+|σ|−ε

k∏
j=1

(rj(x)

|x|

)νjαε(rj(y)

|y|

)νjσε
,

where
νjαε = min{0, π/ωj − ε− |α|}, νjσε = min{0, π/ωj − ε− |σ|},
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and ε is a sufficiently small positive number.

(ii) If |x| > 2|y|, then

|∂αx ∂σyG(x, y)| ≤ cασ
|y|−c1−1+|α|−ε

|x|−c1+|σ|−ε

k∏
j=1

(rj(x)

|x|

)νjαε(rj(y)

|y|

)νjσε
.

Proof. (i) Let |y| = 2, |x| < 1. Consider the function

v(ξ) = η(4|ξ − x|)∂yG(ξ, y).

Lemmas 5 and 6 imply

|x|t
k∏
j=1

r
µj
j (x)|∂αx ∂σyG(x, y)| ≤ c

(∫
K

η2(4|ξ − x|)|∂σyG(ξ, y)|2dξ
)1/2

, (2.27)

where

t+

k∑
j=1

µj = β +

k∑
j=1

δj + |α| − l − 2 + 3/p, µj > δj + |α| − l − 2 + 3/p, µj ≥ 0.

We introduce the solution w ∈W l+2,p
β,δ (K) of the Neumann problem

∆w(z) = ∂σyG(x, y)η(2|x− z|), z ∈ K, ∂w

∂n
(z) = 0, z ∈ ∂K\M.

By Lemmas 5 and 6,

k∏
j=1

r
µ′j
j (y)|∂zw(z)|z=y| ≤ c

(∫
K

η2(2|z − y|)|w(z)|2dz
)1/2

, (2.28)

where µ′j > δj + |σ| − l − 2 + 3/p, µ′j ≥ 0. The right-hand side of (2.28) does not
exceed

c ‖w‖W 2,2
s,q (K) ≤ c

(∫
K

η2(|z − y|)|∂σyG(z, y)|2dz
)1/2

.

Here

1/2 < qj < 1, c1 < 1/2−
k∑
j=1

qj − s < c2.

The left-hand side is equal to

k∏
j=1

r
µ′j
j (y)

∫
K

|∂σyG(ξ, y)|2η(2 |ξ − x|) dξ.

Therefore, (2.28) leads to the estimate

k∏
j=1

r
µ′j
j (y)

(∫
K

|∂σyG(ξ, y)|2η(2 |ξ − x|)dξ
)1/2

≤ const.

From this and (2.27) we get

|x|t
k∏
j=1

r
µj
j (x)r

µ′j
j (y)|∂αx ∂σyG(x, y)| ≤ const.
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Setting

δj = l + 2− 2/p− π/ωj + ε/2, β +

k∑
j=1

δj = l + 2− 3/p+ c2 + ε, p > 2/ε,

we have

|∂αx ∂σyG(x, y)| ≤ cασ|x|c2−|α|−ε
k∏
j=1

(rj(x)

|x|

)νjαε
r
νjσε
j (y).

Using the homogeneity of ∂αx ∂
σ
yG(x, y), we arrive at the desired estimate for all y ∈ K

in the case |x| < |y|/2.

(2) Considering the problem (2.22) instead of (2.19), we arrive at the estimate for
∂αx ∂

σ
yG(x, y) in the case |x| > |y|/2. The theorem is proved.

Corollary 2 Let γ1 be the first positive eigenvalue of A(γ), i.e. γ1 = (−1+
√

1 + 4λ1/2,
where λ1 is the first positive eigenvalue of the Neumann problem on Ω for the spherical
part of the Laplace operator.

Let G(x, y) denote Green’s function from Theorem 8, where c1 = −1, c2 = 0. Then
G(x, y) = G(y, x) and

G(x, y) = − 1

meas Ω

1

|y|
+R(x, y)

for |x| < |y|/2, where R is a function satisfying the estimate

|∂αx ∂σyR(x, y)| ≤ cασ
|x|γ1−|α|−ε

|y|1+γ1+|σ|−ε

k∏
j=1

(rj(x)

|x|

)νjαε(rj(y)

|y|

)νjσε
. (2.29)

Here
νjαε = min{0, π/ωj − |α| − ε}, νjσε = min{0, π/ωj − |σ| − ε},

and ε is a sufficiently small positive number.

Proof. The equality G(x, y) = G(y, x) is an immediate corollary of part (iii) of
Theorem 7 and the uniqueness of G(x, y).

Let G1(x, y) be Green’s function from Theorem 8 with c1 = 0, c2 = γ1. By (2.25)
and (2.7) for solutions of (2.26),

G(x, y) = G(0, y) +G1(x, y).

Since by Theorem 8 the estimate (2.29) for G1(x, y) holds for |x| < |y|/2, it remains
to prove the equality

G(0, y) = −
(
meas Ω |y|

)−1
.

We fix y ∈ K and set the function

v(x) = η(x)wτ (x) + (1− η(x))|x|−1

into (2.23). Here wτ (x) is the mean value of |x|−1 over the ball of radius τ , η is a
cut-off function such that η = 1 near the origin and η(y) = 0. Then

1

|y|
=

∫
K

G(x, y)∆v(x)dx−
∫
∂K

G(x, y)
∂v(x)

∂n
dsx. (2.30)
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Let Bε be the ball of radius ε centered at 0 and let Ωε = ∂Bε ∩K, Γε = Bε ∩ ∂K.
Using Green’s formula, we rewrite (2.29) in the form

1

|y|
=

∫
Ωε

G(x, y)
∂v(x)

∂n
(x)dsx −

∫
Ωε

∂G

∂nx
(x, y)v(x)dsx

−
∫
∂K\Γε

G(x, y)
∂v(x)

∂n
(x)dsx +

∫
K\Bε

G(x, y)∆v(x)dx.

Passing to the limit as τ → 0, we get

1

|y|
= − 1

ε2

∫
Ωε

G(x, y)dsx −
1

ε

∫
Ωε

∂G

∂nx
(x, y)dsx.

To complete the proof we pass to the limit as ε→ 0.

2.4 Solvability in weighted Hölder and Sobolev spaces

Here we prove the solvability of the problem (2.3) in certain weighted Hölder spaces
and formulate a similar result wor weighted Sobolev spaces.

1. Function spaces in the cone. Consider the cone K as the union of sets
∪1≤j≤kKj , where Kj = {x ∈ K : rj(x) < 2r(x)}, r(x) = min1≤j≤k rj(x). Let l
be a nonnegative integer, let α ∈ (0, 1), β ∈ R, and let γ be a vector (γ1, γ2, . . . , , γk),

γj ∈ R. We introduce the space Cl,αβ,γ(K) of functions u in K with the finite norm

‖u‖Cl,αβ,γ(K) = sup
x∈K

k∏
j=1

rj(x)γj
[
u
]l+α
K∩B(r/2,x)

+ max
{j:1≤j≤k,
l+α−γj>0}

sup
x∈Kj

|x|β+‖γ‖−γj
[
u
]l+α−γ
Kj∩B(ρ/2,x)

+ max
1≤j≤k

sup
x∈Kj

|x|β+‖γ‖−l−α
[rj(x)

|x|

]σj
|u(x)|.

Here
[u]ρK = sup

x,y∈K

∑
|σ|=[ρ]

|x− y|[ρ]−ρ|∂σxu(x)− ∂σy u(y)|,

[ρ] is the integer part of ρ, B(r, x) is the open ball in R3 of radius r with center at x,
‖γ‖ =

∑
γj , σ = max{0, γj − l − α}.

By Cl,αβ,γ(∂Kj) we mean the space of traces on ∂Kj of functions from Cl,αβ,γ(K). We

say that u belongs to Cl,αβ,γ(∂K) if and only if the restriction uj to each component

∂Kj belongs to Cl,αβ,γ(∂Kj). We introduce the norm

‖u‖Cl,αβ,γ(K) =
∑
j

‖uj‖Cl,αβ,γ(∂Kj)
.

2. The Neumann problem in the dihedral angle. let D be the inetrior of a dihedral
angle of opening ω. By ∂D+ and ∂D− we denote the sides of the dihedral angle. Let
M stand for the edge and ∂D for the boundary of D, i.e. ∂D = ∂D+ ∪ ∂D− ∪M .

We introduce the space N l,α
γ (D) with the norm

‖u‖N l,αγ (D) = sup
x∈D

r(x)γ
[
u
]l+α
D∩B(r/2,x)

+ sup
x∈D

r(x)γ−l−α|u(x)|
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and the space Cl,αγ (D) with the norm

‖u‖Cl,αγ (D) = sup
x∈D

r(x)γ
[
u
]l+α
D∩B(r/2,x)

+ ‖u‖Cl+α−β(D).

Here Cs(D) is the Hölder space and r(x) = dist(x,M).

For γ > l + α we denote N l,α
γ (D) by Cl,αγ (D).

In addition, let Cl,αγ (∂D±) refer to the space of traces on D± of functions in

Cl,αγ (D), that is a function u belongs to Cl,αγ (∂D) if and only if the restriction u± to

each side ∂D± is in Cl,αγ (∂D±). We shall use the norm

‖u‖Cl,αγ (∂D) =
∑
±
‖u±‖Cl,αγ (∂D±).

The following assertion was proved in [ZS].

Theorem 9 Let θ and ζ denote functions from C∞0 (D) such that θζ = θ. Suppose
that γ > 0, 0 < l + 2 + α− γ < π/ω, and α− γ is not integer.

If u is a solution of the Neumann problem (2.9) and ζf ∈ Cl,αγ (D), ζϕ ∈ Cl+1,α
γ (∂D),

then θu ∈ Cl+2,α
γ (D) and there is a positive constant c, independent of f and ϕ, such

that
‖θu‖Cl+2,α

γ (D) ≤ c
(
‖ζf‖Cl,αγ (D) + ‖ζϕ‖Cl+1,α

γ (∂D) + sup
x∈D
|ζ(x)u(x)|

)
.

3. The Neumann problem in a cone.

Theorem 10 Let l be a nonnegative integer and let the components δj of the vector
δ satisfy the conditions

(a) δj > 0, 0 < l + 2 + α− δj < π/ωj ,

(b) l + 2 + α− β −
k∑
j=1

δj is not an eigenvalue of the pencil A(γ).

Then

(i) The operator of the problem (2.9) performs an isomorphism

Cl+2,α
β,δ (K) ≈ Cl,αβ,δ(K)× Cl+1,α

β,δ (∂K).

(ii) Suppose that f ∈ Cl,αβ,δ(K) ∩ Cl
′,α′

β′,δ′(K) and ϕ ∈ Cl+1,α
β,δ (∂K) ∩ Cl

′+1,α′

β′,δ′ (∂K),

where β′, δ′, l′, and α′ satisfy the conditions (a) and (b). Suppose also that the closed
interval with endpoints

l′ + α′ + 2− β′ −
k∑
j=1

δ′j and l + α+ 2− β −
k∑
j=1

δj

contains no poles of the holomorphic operator function A−1(γ). If u is a solution of

the problem (2.3) from the space Cl+2,α
β,δ (K), then u ∈ Cl

′+2,α′

β′,δ′ (K).

First we prove auxiliary assertions. Let G(x, y) be Green’s function in Theorem
8, where c1 and c2 are numbers such that

c1 < l + α+ 2− β −
k∑
j=1

δj , l′ + α′ + 2− β′ −
k∑
j=1

δ′j < c2
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and the interval (c1, c2) contains no points of the spectrum of the pencil A(γ) of the
problem (2.5). By u we denote the same function as in Corollary 1, i.e.

u(x) =

∫
K

G(x, y)f(y)dy −
∫
∂K

G(x, y)ϕ(y)dsy. (2.31)

Lemma 7 If u is a function defined by (2.31), then

sup
x∈K
|x|µ|u(x)| < c

(
sup
x∈K
|x|µ+2

k∏
j=1

[rj(x)

|x|

]1+λj
|f(x)|+ sup

x∈∂K
|x|µ+1

k∏
j=1

[rj(x)

|x|

]λj
|ϕ(x)|

)
with 0 < λj < 1, c1 < −µ < c2.

Proof. Clearly, the function

w1 =

∫
K

G(x, y)f(y)dy.

satisfies

|w1(x)| ≤ sup
z∈K
|z|µ+2

k∏
j=1

[rj(z)
|z|

]1+λj
|f(z)|

×
∫
K

|G(x, y)||y|−µ−2
k∏
j=1

[rj(y)

|y|

]−1−λj
dy. (2.32)

To estimate the integral on the right-hand side of (2.32), we represent it as the sum
of three integrals Ii over the sets Ki, i = 1, 2, 3, where K1 = {y ∈ K : |x| < |y|/2},
K2 = {y ∈ K : |y|/2 < |x|}, K3 = {y ∈ K : |x| > 2|y|}. By Theorem 8,

I1 < c

∫
K1

|x|c2−ε

|y|c2+1−ε |y|
−µ−2

k∏
j=1

[rj(y)

|y|

]−1−λj
dy < c|x|−µ

for all 0 < λj < 1, µ > −c2 + ε and

I3 < c

∫
K3

|y|−c1−1−ε

|x|c1−ε
|y|−µ−2

k∏
j=1

[rj(y)

|y|

]−1−λj
dy < c|x|−µ

for all 0 < λj < 1, µ < −c1 − ε.
Similarly, the estimate of G(x, y) in the intermediate zone given by Theorem 7

leads to the same inaquality for I2 for all 0 < λj < 1.

The function

w2 =

∫
∂K

G(x, y)ϕ(y)dsy

can be treated in a similar way. The lemma is proved.

Lemma 8 Let δj > 0 and let

0 < l + 2 + α− δj < π/ωj , c1 < l + 2 + α−
k∑
j=1

δj < c2.

If u admits the representation (2.31) and f ∈ Cl,αβ,δ(K), ϕ ∈ Cl+1,α
β,δ (∂K), then u ∈

Cl+2,α
β,δ (K) and there exists a positive constant c, independent of f and ϕ, such that

‖u‖Cl+2,α
β,δ (K) ≤ c

(
‖f‖Cl,αβ,δ(K) + ‖ϕ‖Cl+1,α

β,δ (∂K)

)
.
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Proof. Let χj and ψj be the functions defined before Lemma 4. By Theorem 9,

‖χju‖Cl+2,α
β,δ (K) ≤ c

(
‖ψ1f‖Cl,αβ,δ(K) + ‖ψ1ϕ‖Cl+1,α

β,δ (∂K) + sup
x∈K
|ψ1(x)u(x)|

)
.

Using the dilation x→ 2jx, we arrive at

‖χju‖Cl+2,α
β,δ (K) ≤ c

(
‖ψjf‖Cl,αβ,δ(K) + ‖ψjϕ‖Cl+1,α

β,δ (∂K) + 2js sup
x∈K
|ψ1(x)u(x)|

)
,

where s = β +
∑k
j=1 δj − l − 2− α. Thus,

‖u‖Cl+2,α
β,δ (K) ≤ c

(
‖f‖Cl,αβ,δ(K) + ‖ϕ‖Cl+1,α

β,δ (∂K) + sup
x∈K
|x|2|u(x)|

)
.

By Corollary 1, the function u ∈ W 2,2
β,δ(K) admits the representation (2.31). To

complete the proof, we refer Lemma 7.

Proof of Theorem 10. It is clear that the operator of the problem (2.3) is a
continuous mapping:

Cl+2,α
β,δ (K)→ Cl,αβ,δ(K)× Cl+1,α

β,δ (∂K).

We prove the existence of a solution of the Neumann problem (2.3). Let f ∈ Cl,αβ,δ(K),

ϕ ∈ Cl+1,α
β,δ (∂K). Consider the functions f± and ϕ± defined by the equalities f+ =

fη, f− = ϕη, f− = f − f+, ϕ− = ϕ − ϕ+, where η is a function introduced in
Theorem 6.

By λ we denote a vector with components (λ1, λ2, . . . , λk), where λj = δj − α −
l − 1 + ε, and ε > 0 is so small that λj < 1. Further, let

β± = β +

k∑
j=1

(δj − λj)− 3/2− α± ε′,

where ε′ > 0 is such that

c1 < 1/2− β± −
k∑
j=1

λj < c2.

One verifies directly that

f± ∈W 0,2
β±,λ(K), ϕ± ∈W 1/2,2

β±,λ (∂K).

Theorem 2 and Corollary 1 imply the existence of the solutions u± ∈ W 2,2
β±,λ(K) to

the problem (2.3) with the data f± and ϕ±:

u±(x) =

∫
K

G(x, y)f±(y)dy −
∫
∂K

G(x, y)ϕ±(y)dsy.

By Lemma 8, u ∈ Cl+2,α
β,δ (K) and

‖u‖Cl+2,α
β,δ (K) ≤ c

(
‖f‖C2,α

β,δ (K) + ‖ϕ‖Cl+1,α
β,δ (∂K)

)
.

It remains to prove the uniqueness of the solution of (2.3).
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Let u ∈ Cl+2,α
β,δ (K) be a solution of (2.3) with f = 0, ϕ = 0. We introduce two

functions u+ = u η and u− = u− u+. Clearly, u± ∈W 2,2
β±,λ(K). By Corollary 1,

u±(x) =

∫
K

G(x, y)∆u±(y)dy −
∫
∂K

G(x, y)
∂u±

∂n
(y)dsy.

Thus,

u(x) =

∫
K

G(x, y)∆u(y)dy −
∫
∂K

G(x, y)
∂u

∂n
(y)dsy = 0.

(ii) The second part of the theorem follows from Lemma 8 and the fact that the
solution admits the representation (2.31). The theorem is proved.

Applying the argument similar to that used in the proof of Theorem 10, we arrive
at the following assertion on the solvability of (2.3) in weighted Sobolev spaces.

Theorem 11 Let p > 1, l be a nonnegative integer, and let the components δj of a
vector δ satisfy the conditions

(a) δj > 0, 0 < l + 2 + α− δj < π/ωj ,

(b) l + 2 + α− β −
k∑
j=1

δj is not an eigenvalue of the pencil A(γ).

Then

(i) The operator of the problem (2.9) performs the isomorphism

W l+2,p
β,δ (K) ≈W l,α

β,δ(K)×W l+1−1/p,p
β,δ (∂K).

(ii) Suppose that

f ∈W l,p
β,δ(K) ∩W l′,p′

β′,δ′(K), ϕ ∈W l+1−1/p,p
β,δ (∂K) ∩ Cl

′+1−1/p′,p′

β′,δ′ (∂K),

where β′, δ′, l′, and p′ satisfy the conditions (a) and (b). Suppose also that the closed
interval with the endpoints

l + 2− 3/p− β −
k∑
j=1

δj and l′ + 2− 3/p′ − β′ −
k∑
j=1

δ′j

contains no poles of the operator holomorphic function A−1(γ). If u is a solution of

the problem (2.3) from the space W l+2,p
β,δ (K), then u ∈W l′+2,p′

β′,δ′ (K).
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polyhedron, Preprint of Linköping University LiTH-MAT-R-91-50, 1–45.

[Ko] Kondratiev, V.A. Boundary value problems for elliptic equations in regions with
conical or angular points, Tr. Mosk. Mat. Ob. 16 (1967), 209–292.

[K] Kral, J. Integral Operators in Potential Theory, Lect. Notes Nath. 823, Springer,
1980.

[KW] Kral, J. , Wendland, W. Some examples concerning applicability of the
Fredholm-Radon method in potential theory, Apl. Mat. 31 (1986), 293–318.

[M1] Maz’ya, V. Boundary integral equations of elasticity in domains with piecewise
smooth boundaries, Equadiff 6, Proc. Int. Conf. Brno 1985, Lect. Notes Math.
1192, 1986, 235–242.

[M2] Maz’ya, V. Boundary integral equations, Encyclopaedia of Math. Sciences, 27
(1991), 127–223.

[MP1] Maz’ya, V., Plamenevsky, B. The first boundary value problem for classical
equations of mathematical physics in domains with piecewise smooth boundaries,
ZAA, 1: 24 (1983), 335–339; 2: 26 (1983), 523–551.

[MP2] Maz’ya, V., Plamenevsky, B. Estimates in Lp and in Hölder classes and the
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