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1 Introduction

We consider boundary integral equations of linear isotropic elasticity on surfaces which
are smooth everywhere except for a finite number of conic points. Here, similarly
to [M1] (see also [M2]) the study of the integral equations is reduced to the study
of some auxiliary boundary value problems. Representations for inverse operators
of these equations are obtained in terms of inverse operators of the Dirichlet and
Neumann problems in the interior and exterior of the surface. Using estimates for
fundamental soutions of these boundary value problems, we arrive at estimates for
kernels of inverse operators of integral operators in question.

The system of integral equations under consideration contains the boundary inte-
gral equations for the Laplace operator as a special case.

We describe the main results. Let G+ be a simply connected region in R3 with
compact closure. We put Γ = ∂G+ and let 0 ∈ Γ. Further we assume that Γ\{0} is a
smooth surface and that near the origin G+ coincides with the cone K+ excising an
open set Ω+ on the unit sphere S2. Let G− = R3\G+ and Ω− = S2\Ω+.

1



In what follows, by κ we denote a real number depending on the shape of the
cone K+ and the boundary conditions. It can be expressed in terms of eihenvalues
of some boundary value problems with complex parameter in Ω+ and Ω−. In the
case of harmonic potentials κ is positive, being equal to the minimum of δ+ and ν−,
where δ+ and ν− are positive numbers such that δ+(δ+) and ν−(ν−+ 1) are the first
eigenvalues of the Dirichlet ptoblem in Ω+ and the Neumann problem in Ω− for the
Beltrami operator. It follows from [KM] that κ is positive for integral equations of
elasticity if the cone K+ can be explicitly described in a Cartesian coordinate system.

Given any β ∈ R, α ∈ (0, 1) and any nonnegative integer l, by N l,α
β (S) we denote

the space of functions u on S with the norm

sup
x,y∈S\0

|rβ(x)∇lu(x)− rβ(y)∇lu(y)|
|x− y|α

+
∑

0≤j≤l

rβ−l−α+j(x)|∇ju(x)|.

We assume that the double layer potential Wϕ is generated by the so-called
pseudo-stress operator (see [M2]). The case of the double layer potential generated
by the stress operator will be considered elsewhere.

Let W0ϕ stand for the direct value of Wϕ on S\0 and let T be the integral operator
defined by the equality

Tϕ = 2W0ϕ.

It is known that the system of three boundary integral equations of the first boundary
value problem for the Lamé equations has the form

(1 + T )ϕ = f. (1.1)

Note that in the case of a smooth boundary the kernel of T has a weak singularity.

Let 0 < β − α < 1, l ≥ 1. Then system (1.1) is uniquely solvable in the space

N l,α
β+l(S) for all f ∈ N l,α

β+l(S) and

(1 + T )−1f = (1 + L) f. (1.2)

Here L is an integral operator with kernel L(x, y) satisfying the inequalities

|L(x, y)| ≤≤


c |y|−2(|x|/|y|)κ−ε + c |y|κ−1−ε, |x| < |y|/2
c |y|−1|x− y|−1, |y|/2 < |x| < 2|y|,
c |x|−1|y|−1(|y|/|x|)κ−ε, |x| > 2|y|,

where ε is a sufficiently small positive number,

|L| = max
1≤i≤3,1≤j≤3

|Lij |,

and Lij are elements of the matrix L.

Let T ∗ be the operator formally adjoint of T . If 1 < β−α < 2, then the system of
equations (1+T ∗)ψ = g is uniquely solvable in the space N l,α

β+l(S) for all g ∈ N l,α
β+l(S)

and
(1 + T ∗)−1g = (1 +M) g, (1.3)

where the kernel M(x, y) of M satyisfies the estimates

|M(x, y)| ≤


c |y|−2(|x|/|y|)κ−ε, |x| < |y|/2
c |y|−1|x− y|−1, |y|/2 < |x| < 2|y|,
c |x|−1|y|−1(|y|/|x|)κ−ε + c |y|κ−1−ε, |x| > 2|y|.

The paper consists of three sections. In Section 2 we obtain representations for the
operators (1 + T )−1 and (1 + T ∗)−1. Sections 3 and 4 concern pointwaise estimates
for the kernels of the operators (1 + T )−1 and (1 + T ∗)−1.
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2 Representations for inverse operators
of boundary integral equations

2.1 Spaces of functions

We use the notations G+, G−, and N l,α
β explained in Introduction. It is easily seen

that the space N l,α
β (G+) can be supplied with the norm

‖u‖N l,αβ (G+) = sup
x∈F+

|x|β [u]l+αB(|x|/2,x)∩G+ + sup
x∈G+

|x|β−l−α|u(x)|, (2.1)

where B(r, x) is an open ball of radius r centered at x,

[u]ρE = sup
x,y∈E

∑
|σ|=[ρ]

|x− y|[ρ]−ρ|∂σxu(x)− ∂σy u(y)|,

where E is a subset of R3, ρ is a positive noninteger, [ρ] is the integer part of ρ, σ =
(σ1, σ2, σ3) is a multiindex of order |σ| = σ1 + σ2 + σ3, and ∂σx = ∂|σ|/∂xσ1

1 ∂xσ2
2 ∂xσ3

3 .

Besides, one can directly verify (see [MP3]) that the norm (2.2) is equivalent to
the norm

sup
x,y∈G+

|x− y|−α
∑

0≤|σ|≤l

| |x|β−l+|σ|∂σxu(x)− |y|β−l+|σ|∂σy u(y) |

+ sup
x∈G+

∑
0≤|σ|≤l

|x|β−l−α+|σ||∂σxu(x)|.

For 0 < β < l+α we define the space Cl,αβ (G+) of functions on G+ with the norm

‖u‖Cl,αβ (G+) = sup
x∈G+

|x|β [u]l+αB(|x|/2,x)∩G+ + sup
x∈G+

∑
l+α−β<|σ|≤l

|x|β−l−α+|σ||∂σxu(x)|

+[u]l+α−βG+ +
∑

0≤|σ|<l+α−β

sup
x∈G+

|∂σxu(x)|. (2.2)

Similar spaces N l,α
β (G−) and Cl,αβ (G−) are defined for the domain G−. Suppose

that the ball B(R, 0) contains G+. Let χ denote a function in the space C∞(R3) equal
to one on B(R, 0) and to zero on R3\B(R + 1, 0). A function u in G− belongs to

N l,α
β (G−) (resp. Cl,αβ (G−)) if and only if the norm (2.2) (resp. (2.2)) of the function

uχ and the norm

sup
x∈G−

|x|l+1+α[v]l+αB(|x|/2,x) + sup
x∈G−

|x| |v(x)|

of v = (1− χ)u are finite.

The spaces of traces on Γ of functions from Cl,αβ (G+) and N l,α
β (G+) are denoted

by N l,α
β (Γ) and N l,α

β (Γ).

Finally, let N l,α
β (G+)and Cl,αβ (G) refer to spaces of functions u in G = G+ ∪ G−

whose restrictions u± on G± belong to N l,α
β (G±) and Cl,αβ (G±), respectively, and

‖u‖N l,αβ (G) =
∑
±
‖u±‖N l,αβ (G±), ‖u‖Cl,αβ (G) =

∑
±
‖u±‖Cl,αβ (G±).
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2.2 Boundary value problems

We consider the interior first boundary value problem for the three-dimensional Lamé
equation of the linear isotropic elasticity theory

∆∗u = 0 in G+, u = 0 on Γ. (2.3)

Here u(x) = (u1(x), u2(x), u3(x))T and f(x) = (f1(x), f2(x), f3(x))T are the displace-
ment vectors in G+ and on Γ, the notation T stands for the transposition of a matrix,

∆∗ = µ∆ + (λ+ µ)∇ div

and λ, µ are the Lamé constants.

We introduce the auxiliary problem

∆∗v = 0 in G−, N v = g on Γ\0, (2.4)

where v and g are vector-valued functions with three components, N = N (∂x, nx) is
the matrix differential operator with elements

N (∂x, nx) = µδij∂/∂nx + (λ+ µ)ni(x)∂/∂xj

+µ(λ+ µ)(nj(x)∂/∂xi − ni(x)∂/∂xj)/(λ+ 3µ),

which is called the pseudo-stress operator. Here nx = (n1(x), n2(x), n3(x)) is the
normal vector of length 3 to the surface Γ directed outward with respect to G+, δij
is the Kroneker delta and ∂/∂nx is the normal derivative.

Let Ω+ and Ω− be the domains on the unit sphere defined in Introduction. In order
to formulate solvability theorems it is necessary to consider certain boundary value
problems in Ω+ and Ω− depending on a complex parameter γ (see [K], [MP2], [MP5]).
These problems can be obtained by substitution of the vector-valued functions

u(x) = |x|γϕ(x/|x|) and v(x) = |x|γψ(x/|x|)

into equations (2.3) and (2.4) with f = 0 and g = 0. In what follows these problems
will be denoted by p(γ) and q(γ).

Theorem 1 (see [MP4]) Let δ+ be the largest number such that the strip |<γ+1/2| <
1/2 + δ+ contains no eigenvalues of problem p(γ). If

l ≥ 1, |β − α− 1/2| < 1/2 + δ+,

then there exists a unique solution u ∈ N l,α
β (G+) of problem (2.3) for all f ∈ N l,α

β (Γ).
This solution can be written in the form

u(x) =

∫
Γ

P+(x, ξ) f(ξ)dsξ. (2.5)

The operator
P+ : N l,α

β+l(Γ) 3 f → u ∈ N l,α
β+l(G

+),

defined by (2.5) is bounded. The derivatives of the kernel P+(x, ξ) obey the estimates

|∂σx∂τξP+(x, ξ)| ≤


c |x|δ+−|σ|−ε|ξ|−2−δ+−|τ |+ε, |x| < d |ξ|,
c |x− ξ|−|τ |−|σ|−2, d |ξ| < |x| < d−1|ξ|,
c |x|−δ+−|σ|−1−ε|ξ|δ+−|τ |−1−ε, |x| > d−1|ξ|,

(2.6)

Here d is a fixed number from (0, 1), τ and σ are arbitrary multi-indices, ε is any
sufficiently small posiitive number, and |A| means max |Aij |, where Aij are elements
of the matrix A.

4



Remark (see [MP4]) Let ω(ω+ 1) be the first eigenvalue of the Dirichlet problem
for the Beltrami operator on Ω+, ω > 0. Then

δ+ > ω(3µ+ λ)/(ω(λ+ µ) + 2(3µ+ 2λ)).

Lemma 1 If 0 < α − β < 1, α − β < δ+, l = 1, 2, . . ., then the function u defined
by (2.5) is a unique solution of (2.3) in the space Cl,αβ+l(G

+) for all f ∈ Cl,αβ+l(Γ).
Moreover,

‖u‖Cl,αβ+l(G
+) ≤ C ‖f‖Cl,αβ+l(Γ).

Proof. It easily seen (compare with [MP7]), that the function u ∈ Cl,αβ+l(G
+),

with 0 < α− β, admits the representation

u = u(0) + v, v ∈ N l,α
β+l(G

+)

and that the norm of u in N l,α
β+l(G

+) is equivalent to the norm

|u(0)|+ ‖u− u[0]‖N l,αβ+l(G
+).

A similar representation holds for functions from the space Cl,αβ+l(G
+).

Thus, the existence of the solution u ∈ Cl,αβ+l(G
+) follows from Theorem 1 and

from the fact that u = c is a solution of (2.3) for f = c, where c is a constant vector.

The uniqueness of the solution u ∈ Cl,αβ+l(G
+) is the consequence of the inclusion

Cl,αβ+l(G
+) ⊂ N l,α

β+l(G
+) and of the uniqueness of the solution of (2.3) in the space

N l,α
β+l(G

+) by Theorem 1. The lemma is proved.

The following assertion is essentially contained in [MP6].

Theorem 2 Let ν− be the largest number such that the strip |<γ + 1/2| < 1/2 + ν−

contains no eigenvalues of problem q(γ), except for γ = 0 and γ = −1. If

|β − α− 1/2| < 1/2 + min{0, ν−}, l = 1, 2, . . . ,

then there exists a unique solution v ∈ N l,α
β+l(G

−) of problem (2.4) for any vector-

valued function g ∈ N l−1,α
β+l (Γ). This solution admits the representation

v(x) =

∫
Γ

Q−(x, ξ) g(ξ)ds(ξ). (2.7)

The operator
Q− : N l−1,α

β+l (Γ) 3 g → v ∈ N l,α
β+l(G

−),

defined by (2.7) is bounded. The derivatives of the kernel Q−(x, ξ) obey the estimates

|∂σx∂τξQ−(x, ξ)| ≤


c |x|−|σ||ξ|−1−|τ |(|x|/|ξ|)ν−ε, |x| < d |ξ|,
c |x− ξ|−1−|τ |−|σ|, d |ξ| < |x| < d−1|ξ|,
c |x|−1−|σ||ξ|−|τ |(|ξ|/|x|)ν−ε, |x| > d−1|ξ|,

(2.8)

if the points x and ξ lie in a neighborhood of the vertex 0 and ν = min{0, ν−}.

We note that −1/2 < ν− < 1. The left inequality follows from the solvability of
problem (2.4) in the energy space. The right inequality is the consequence of the fact
that the rigid displacement vector is the solution of the homogeneous problem (2.4).
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Lemma 2 (see [KM]) or Theorem 4.3.1 in [KMR] Let Γ be defined by the equation
x3 = h(x1, x2) near the vertex of the cone with h being a positive homogeneous function
of order 1, smooth on R2\{0}. Then there are only two eigenvalues γ0 = 0 and
γ1 = −1 of the problem q(γ) in the strip −1 ≤ <γ ≤ 0. These eigenvalues have
multiplicity 3 and the Jordan chains for q(γ), corresponding to them, consist only of
eigenfunctions.

The vector-valued functions w = const are the only eigenfunctions associated with
the eigenvalue γ0.

In fact, Lemma 2 is proved in [KM] and [KMR] for the Neumann problem generated
by the stress operator but the proof holds for the pseudo-stress operator with obvious
changes.

Lemma 2 enables one to give a more precise description of behaviour of the kernel
Q−(x, ξ).

Theorem 3 Let the surface Γ satisfy the assumptions in Lemme 2. Then

Q−(x, ξ) = Q−(0, ξ) +R−(x, ξ), |x| < d |ξ|, (2.9)

Q−(x, ξ) = Q−(x, 0) + (R−(ξ, x))T , |x| > d−1|ξ|,
Q−(x, 0) = (Q−(0, x))T = |x|−1A−(x/|x|)B− + C−(x), (2.10)

if the points x and y lie in a neighbourhood of 0. Here A−(x/|x|) is a matrix whose
columns are eigenfunctions corresponding to the eigenvalue γ = −1, B− is a constant
matrix and the matrices R−(x, ξ) and C−(x) satisfy

|∂σx∂τξR−(x, ξ)| ≤ c |x|−|σ||ξ|−1−|τ |(|x|/|ξ|)ν
−−ε, (2.11)

|∂σxC−(x)| ≤ c |x|ν
−−|σ|−ε. (2.12)

Lemma 3 The columns of the matrix |x|−1A−(x/|x|) are linear combinations of
columns of the matrix Φ(x, 0), where Φ(x, ξ) is the Kelvin-Somigliana matrix with
elements

Φkj(x, ξ) =
λ+ 3µ

2µ(λ+ 2µ

( δkj
|x− ξ|

+
λ+ µ

λ+ 3µ

(xk − ξk)(xj − ξj)
|x− ξ|3

)
.

Proof. Since the columns of the matrix Φ(x, 0) are solutions of the homogeneous
problem (2.4) in an infinite cone (see [Ku], [KGBB]), it follows that the colomns of
the matrix |x|Φ(x/|x|, 0) are eigenfunctions of of problem q(γ) corresponding to the
eigenvalue γ = −1. It remains to notice that the columns of the matrix |x|Φ(x, 0)
form a basis in the eigenspace by Lemma 2. The lemma is proved.

Lemma 4 Let 0 < α − β < ν− and let l be a positive integer. If g ∈ N l−1,α
β+l (Γ),

then the function (2.7) is a unique solution of problem (2.4) in the space Cl,αβ+l(G
−).

Moreover,
‖v‖Cl,αβ+l(G

−) ≤ c ‖f‖N l−1,α
β+l (Γ).

Proof. Since 0 < β + 1− α < 1, the uniqueness of the solution v ∈ Cl,αβ+l(G
−) of

problem (2.4) follows from the inclusion Cl,αβ+l(G
−) ⊂ N l,α

β+l(G
−) and from Theorem 2.

Let us prove the existence of the solution v ∈ Cl,αβ+l(G
−). Suppose that g ∈ N l−1,α

β+l (Γ).

It is clear that g ∈ N l−1,α
β+1+l(Γ). By Theorem 2 there exists a solution v ∈ Cl,αβ+1+l(G

−)
of (2.4) and

‖v‖N l,αβ+1+l(G
−) ≤ c ‖g‖N l−1,α

β+1+l(Γ).
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From the asymptotic representation of v near the conic point (see [MP1]) it follows
that

v = v(0)η + w, w ∈ N l,α
β+l(G

−)

and
|v(0)|+ ‖w‖N l,αβ+l(G

−) ≤ c ‖g‖N l−1,α
β+1+l(Γ).

Here η ∈ C∞0 (R3) and η = 1 in a neighbourhood of the point 0. Thus v ∈ Cl,αβ+l(G
−).

The lemma is proved.

2.3 Representation of the inverse operators of the integral
equations

Let V ϕ and Wψ denote the single and double layer potentials with densities ϕ and
ψ defined by

(V ϕ)(x) =
1

4π

∫
Γ

Ψ(x, ξ)ϕ(ξ)dsξ, x ∈ R3,

(2.13)

(Wψ)(x) = − 1

4π

∫
Γ

(N (∂ξ, nξ)Ψ(x, ξ))Tψ(ξ)dsξ, x ∈ G.

Lemma 5 Let 0 < β − α < 2 and let l be a positive integer. If ψ ∈ N l,α
β+l(Γ), then

Wψ ∈ N l,α
β+l(G) and the equalities

(Wψ)± = W0ψ ± ψ/2, (NWψ)+ = (NWψ)− (2.14)

hold on Γ\0, where W0 is the direct value of the double layer potential on Γ and the
symbols ± mean the traces on Γ\0 of functions defined on G±.

Proof. It can be verified directly that

sup
x∈B(1,0)

|x|β−α|(Wψ)(x)| ≤ c sup
x∈Γ
|x|β−α|ψ(x)|. (2.15)

Consider the problem

∆∗u = 0 in G, u+ − u− = ψ on Γ, (2.16)

(Nu)+ − (Nu)− = 0 on Γ\0.

It follows from properties of the double layer potential on smooth surfaces that the
vector-valued function Wψ belongs to the class Cl,αloc (G±\0) and it solves problem
(2.16).

We introduce the sets

Uk = {ξ : 1/2 < 2k ‖ξ| < 2}, Vk = {ξ : 1/4 < 2k ‖ξ| < 4}

for all k = 1, 2, . . .. It is known that solutions of (2.16) obey the estimate

2−k(l+α)[u]l+αUk∩G± ≤ c
(
2−k(l+α)[ψ]l+αVk∩Γ + sup

x∈Vk∩Γ
|u(x)|

)
.

From this and (2.15) we conclude that Wψ ∈ N l,α
β+l(G).

The relations (2.14) follow directly from similar relations valid in the case of
smooth surfaces (see [Ku], [KGBB]). The lemma is proved.
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Lemma 6 Let 0 < β − α < 1 and let l be a positive integer. If ϕ ∈ N l−1,α
β+l (Γ), then

V ϕ ∈ N l,α
β+l(G) and the equalities

(NV ψ)± = −W ∗0 ϕ± ϕ/2, (V ϕ)+ = (V ϕ)− (2.17)

hold on Γ\0, where W ∗0 is an integral operator on Γ\0, formally adjoint of W0.

Proof. It can be verified directly that

sup
x∈B(1,0)

|x|β−α|(V ϕ)(x)| ≤ c sup
x∈Γ
|x|β−α+1|ϕ(x)|. (2.18)

Consider the problem

∆∗v = 0 in G, v+ − v− = 0 on Γ, (2.19)

(N v)+ − (N v)− = ϕ on Γ\0.
It follows from properties of the single layer potential on smooth surfaces that the
vector-valued function V ϕ belongs to the class Cl,αloc (G±\0) and it solves problem
(2.19). Let Uk and Vk be the sets introduced in the proof of Lemma 5. Then the local
estimate

2−k(l+α)[v]l+αUk∩G± ≤ c
(
2−k(l+α)[ϕ]l−1+α

Vk∩Γ + sup
x∈Vk∩Γ

|v(x)|
)

holds for the solution of (2.19). This and (2.18) imply that V ϕ ∈ N l,α
β+l(G).

The relations (2.17) follow directly from similar relations valid in the case of
smooth surfaces (see [Ku], [KGBB]). The lemma is proved.

Lemma 7 Let 0 < β − α < 1. If u ∈ N1,α
β+1(G) and ∆∗u = 0 in G, then

u = V ((Nu)+ − (Nu)−) +W (u+ − u−). (2.20)

Proof. It is known (cf. [Ku], [KGBB]) that the equalities

u(x) = (V (Nu)+)(x) + (Wu+)(x), x ∈ G+, (2.21)

0 = (V (Nu)+)(x) + (Wu+)(x), x ∈ G−, (2.22)

0 = −(V (Nu)−)(x)− (Wu−)(x), x ∈ G+, (2.23)

u(x) = −(V (Nu)−)(x)− (Wu−)(x), x ∈ G−, (2.24)

hold for all vector-valued functions u in G such that

u± ∈ C∞(G±), u− = O(|x|−1) as x→∞ and ∆∗u = 0.

Here u± is the restriction of the function u to G±. We show that equalities (2.21)
- (2.24) can be extended to functions u of the class N1,α

β+1(G) satisfying the system

∆∗u = 0 in G. Let {vn}∞n=1 stands for a sequence of vector-valued functions in G+

of the class C∞(G+) which converge to u in the norm of the space N1,α−ε
β+1 (G), where

ε is a small positive number such that β − α+ ε < 1. As shown in [Ku], [KGBB], we
have the relations

vn(x) = −
∫
G+

Φ(x, y)∆∗vn(y) dy + (Wvn)(x) + (VN vn)(x), x ∈ G+

for all n. Integrating by parts and passing to the limit as n→∞, we get (2.21). The
equalities (2.22) - (2.24) are proved in a similar manner.

Adding the equalities (2.21), (2.23) and then (2.22), (2.24), we arrive at represen-
tation (2.20). The lemma is proved.
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Theorem 4 Let T = 2W0,

|β − α− 1/2| < 1/2 + min{0, ν−},

and let l be a positive integer. If f ∈ N l,α
β+l(Γ), then the equation

(1 + T )ϕ = f (2.25)

is uniquely solvable in the space N l,α
β+l(Γ) and

(1 + T )−1f =
1

2
(1−Q−NP+)f, (2.26)

where P+ and Q− are defined by (2.5) and (2.7).

Proof. From Theorems 1 and 2 it follows that the vector-valued function ϕ defined
by

ϕ = 1/2(1−Q−NP+)f

belongs to the space N l,α
β+l(Γ). We show that ϕ is a solution of the equation (2.25).

Consider the vector-valued function u ∈ N l,α
β+l(G) which solves the problem

∆∗u = 0 in G, u+ = f on Γ, (Nu)+ − (Nu)− = 0 on Γ\0.

It is clear that u− = Q−NP+f . Hence ϕ = (u+ − u−)/2. By this and Lemmas 3, 5
we arrive at the chain of equalities

(1 + T )ϕ = 2(Wϕ)+ = (W (u+ − u−))+ = u+ = f.

It remains to verify the uniqueness of a solution of (2.25). Let ϕ0 ∈ N l,α
β+l(Γ)

satisfy (1 + T )ϕ0 = 0. Consider the vector-valued function u = Wϕ0. Since u is a
solution of (2.3) with zero boundary conditions, it follows that u = 0 in G− by the
uniqueness property of (2.3). Using

(NWϕ0)+ = (NWϕ0)− on Γ\0

and that (2.4) is uniquely solvable, we conclude that Wϕ0 = 0 in G−. Thus,

ϕ0 = (Wϕ0)+ − (Wϕ0)− = 0,

which completes the proof.

Theorem 5 Let T ∗ = 2W ∗0 ,

|β − α− 1/2| < 1/2 + min{0, ν−},

and let l be a positive integer. Then the equation

(1 + T ∗)ψ = g (2.27)

is uniquely solvable in the space N l−1,α
β+l (Γ) for all g ∈ N l−1,α

β+l (Γ) and

(1 + T ∗)−1g =
1

2
(1−NP+Q−) g. (2.28)

9



Proof. From Theorems 1 and 2 it follows that

ψ = 1/2(1−NP+Q−) g ∈ N l−1,α
β+l (Γ).

Let v be a solution of the problem

∆∗v = 0 in G, v+ − v− = 0 on Γ, (N v)− = g on Γ\0

from the class N l,α
β+l(G). It is clear that

(N v)+ = NP+Q− g on Γ\0

and
ψ = 1/2((N v)− − (N v)+).

Thus, by Lemmas 4 and 5 we get

(1 + T ∗)ψ = −2(NV ψ)− = (NV ((N v)+ − (N v)−))− = (N v)− = g.

It remains to verify the uniqueness of a solution of (2.27). Let ψ0 ∈ N l−1,α
β+l (Γ)

satisfy the equation (1 + T ∗)ψ0 = 0. Since v = V ψ0 solves (2.4) for g = 0, it
follows that v = 0 in G−. From the equality (V ψ0)∗ = (V ψ0)− and from the unique
solvability of (2.3) we conclude that v = 0 in G+. Thus,

ψ0 = (NV ψ0)+ − (NV ψ0)− = 0.

The proof is complete.

Lemma 8 Let |β−α− 1/2| < 1/2 + min{0, ν−} and let l be a positive integer. Then

the operators (1 + T )−1 and (1 + T ∗)−1 are continuous in the spaces N l,α
β+l(Γ) and

N l−1,α
β+l (Γ), respectively.

The assertions of this lemma are corollaries of representations (2.26), (2.28) and
Theorems 1 and 2.

Lemma 9 Let the cone K+ be explicitly described in a Cartesian coordinate system.
If 0 < α − β < min{δ+, ν−}, then the operators (1 + T )−1 and (1 + T ∗)−1 are

continuous in the spaces Cl,αβ+l(Γ) and N l−1,α
β+l (Γ), respectively.

The assertion of this lemma is a corollary of representations (2.26), (2.28) and of
Lemmas 1 and 4.

3 Estimates for the kernel of the operator (1 + T )−1

In what follows we assume that the cone K+ admits an explicit description in a
Cartesian coordinate system. The purpose of this section is to prove the following
assertion.

Theorem 6 Let 0 < β − α < 1 and let l be a positive integer. Then

(1 + T )−1f = (1 + L)f, f ∈ N l,α
β+l(Γ). (3.1)

Here L is an integral operator on Γ\0 with a kernel L(x, y) satisfying the estimates

|L(x, y)| ≤


c |y|−2(|x|/|y|)κ−ε + c |y|κ−1−ε, |x| < |y|/2,
c |y|−1|x− y|−1, |y|/2 < |x| < 2|y|,
c |x|−1|y|−1(|y|/|x|)κ−ε, |x| > 2 |y|,

(3.2)

where κ = min{δ+, ν−} and ε is any sufficiently small positive number.
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In what follows by {χk}3k=1, η1, η2, and ζ
(j)
ε we mean functions in C∞([0,∞))

such that

(1)
∑

1≤k≤3

χk = 1, suppχ1 ⊂ [0, 5/8), suppχ2 ⊂ (1/2, 2), χ3 ⊂ (8/5,∞);

(2) η1(t) = 1 for t < 1/8 and η1(t) = 0 for t ≥ 1/4;

(3) η2(t) = 1 for t < 5/6 and η2(t) = 0 for t ≥ 6/7;

(4) ζ(j)
ε (t) = 1 for (2 + jε)−1 < t < 2 + jε and ζ(j)

ε (t) = 0

outside of the set (2 + (j + 1)ε)−1 < t < 2 + (j + 1)ε.

3.1 Estimates for the kernel L(x, y) with |y| < 5|x|/8
Given x ∈ Γ\0, consider the Dirichlet problem

∆∗yR+(y, x) = 0 in G+

(3.3)

R+(y, x) = η2(|y|/|x|)R−(y, x) on Γ.

Lemma 10 Let |δ−α− 1/2| < 1/2 +κ and let l be a positive integer. Then problem

(3.3) is uniquely solvable in the space N l,α
δ+l(Γ) for each x ∈ Γ\0 and

|∂τyR+(y, x)| ≤ cτ |x|−1|y|−|τ |(|y|/|x|)κ−ε. (3.4)

Proof. We set x = |x|X, y = |x|Y and let G|x| and Γ|x| be the images of the sets
G+ and Γ under the mapping y → Y . The function

Y → R|x|(Y,X) = |x|R+(|x|Y, |x|X)

is the solution of the problem

∆∗YR|x|(Y,X) = 0 in G|x|

(3.5)

R|x|(Y,X) = |x|η2(|Y |/|X|)R−(|x|Y, |x|X) on Γ|x|.

for all X with |X| = 1.

By (2.11) we have

|∂τY (|x|η2(|Y |/|X|)R−(|x|Y, |x|X) ≤ c |Y |κ−|τ |−ε/2,

with a constant c independent of x. Thus

‖ |x|η2R−‖N l,αl+α−κ+ε(Γ|x|)
≤ C.

Applying Theorem 1 to problem (3.5), we get

‖R|x|(·, X)‖N l,αl+α−κ+ε(G
+
|x|)
≤ C.

Hence
|∂τYR|x|(Y,X)| ≤ cτ |Y |κ−|τ |−ε.

Returning back to the variables x and y, we arrive at (3.4). The lemma is proved.
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Lemma 11 Let |β − α − 1/2| < 1/2 and let l be a positive integer. For any ϕ ∈
N l,α
β+l(Γ) the representation∫

Γ

Q−(x, ξ)
(
N (∂ξ, nξ)

∫
Γ

P+(ξ, y)χ1(|y|/|x|)ϕ(y)dsy
)
dsξ

(3.6)

=

∫
Γ

L(x, y)χ1(|y|/|x|)ϕ(y)dsy

is valid, where x ∈ Γ\0 and

|L(x, y)| ≤ c |x|−1|y|−1(|y|/|x|)κ−ε. (3.7)

Proof. Setting

v(ξ) =

∫
Γ

P+(ξ, y)χ1(|y|/|x|)ϕ(y)dsy

and substituting the solution of (3.3) into (2.9), we rewrite the left-hand side of (3.6)
in the form ∫

Γ

(η2(|ξ|/|x|)Q−(0, x)TN v(ξ)dsξ +

∫
Γ

(R+(ξ, x))TN v(ξ)dsξ

+

∫
Γ

(1− η2(|ξ|/|x|)Q−(x, ξ)N v(ξ)dxξ.

Applying the Betti formula∫
G+

(
(∆∗u)T v − uT∆∗v

)
dx =

∫
Γ

(
(Nu)T v − uTN v

)
ds

to the first and second integrals, we arrive at representation (3.6) with

L(x, y) =
∑

1≤k≤3

Lk(x, y), (3.8)

where

L1(x, y) = (N (∂y, ny)R+(y, x))T ,

L2(x, y) = −
∫
G+

(∆∗ξη2(|ξ|/|x|)Q−(0, x))TP+(ξ, y)dξ,

L3(x, y) = −
∫

Γ

(1− η2(|ξ|/|x|))Q−(x, ξ)N (∂ξ, nξ)P+(ξ, y)dξ.

Here we used the relations

∆∗v = 0 in G+, v(ξ) = χ1(|ξ|/|x|)ϕ(ξ) for ξ ∈ Γ

and the fact that χ1(|ξ|/|x|) = 0 on the support of the function

ξ → N (∂ξ, nξ)η2(|ξ|/|x|).

Next we estimate each term in (3.8). Inequality (3.7) for L1(x, y) follows directly
from Lemma 10. Let us estimate L2(x, y). It is clear that |ξ| > 5/6|x| on the support
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of the function ξ → ∆∗ξη2(|ξ|/|x|). From this and from the inequality |y| < 5/8|x| we
conclude that |ξ| > 4/3|y|. Hence, by estimates (2.6) and by (2.10) we have

|L2(x, y)| ≤ c
∫
ξ∈G+:|ξ|>5/6|x|

|ξ|−3|x|−1|y|−1(|y|/|ξ|)δ
+−εdξ

≤ c|x|−1|y|−1(|y|/|x|)δ
+−ε.

Finally, in order to obtain the required estimate for L3(x, y), we write it as the
sum of two integrals over the sets

Γ1 = {ξ ∈ Γ : |ξ| < 2 |x|} and Γ2 = {ξ ∈ Γ : |ξ| > 2 |x|}.

It remains to use (2.6), (2.8) and representation (2.10) to get:

|L3(x, y)| ≤ c
∫
ξ∈Γ:|ξ|>5/6|x|
|x−ξ|<3|x|

|x− ξ|−1|ξ|−2|y|−1(|y|/|ξ|)δ
+−εdsξ

+c

∫
ξ∈Γ:|ξ|>2|x|

|ξ|−3|y|−1(|y|/|ξ|)δ
+−εdsξ ≤ c |x|−1|y|−1(|y|/|x|)δ

+−ε.

The lemma is proved.

3.2 Estimates for the kernel L(x, y) with |y| > 8|x|/5
Consider two Dirichlet problems

∆∗yR+(y, x) = 0 in G+ R+(y, x) = η2(|x|/|y|)(R−(y, x))T on Γ, (3.9)

∆∗C+ = 0 in G+ C+ = C− on Γ, (3.10)

where x is a fixed point on Γ.

Lemma 12 Let |δ−α−1/2| < 1/2+κ and let l be a positive integer. Then problems

(3.9) and (3.10) are uniquely solvable in the space N l,α
δ+l(G

+) for each x ∈ Γ and

|∂σyR+(y, x)| ≤ cσ |y|−1−|σ|(|x|/|y|)κ−ε, (3.11)

|∂σy C+(y)| ≤ cσ |y|κ−|σ|−ε. (3.12)

Proof. Inequality (3.12) is an immediate corollary of Theorem 1 and inequality
(3.11) is proved in a similar manner as Lemma 10.

Lemma 13 Let 0 < β − α < 1 and let l be a positive integer. For any ϕ ∈ N l,α
β+l(Γ)∫

Γ

Q−(x, ξ)
(
N (∂ξ, nξ)

∫
Γ

P+(ξ, y)χ3(|y|/|x|)ϕ(y)dsy
)
dsξ

(3.13)

=

∫
Γ

L(x, y)χ3(|y|/|x|)ϕ(y)dsy,

where x ∈ Γ\0 and

|L(x, y)| ≤ c (|y|κ−1−ε + |y|−2(|x|/|y|)κ−ε). (3.14)
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Proof. Setting
v(ξ) = P+(ξ, y)χ3(|y|/|x|)ϕ(y)dsy

and substituting the solutions of (3.9), (3.10) into (2.9), (2.10), we write the left-hand
side of (3.13) in the form∫

Γ

(η2(|x|/|ξ|)
(
|ξ|−1A−(ξ/|ξ|) + B− +D+(ξ)

)TN v(ξ)dsξ

+

∫
Γ

(R+(ξ, x))TN v(ξ)dsξ +

∫
Γ

(1− η2(|x|/|ξ|)Q−(x, ξ)N v(ξ)dxξ.

By Lemma 3, the expression |ξ|−1A−(ξ/|ξ|) is defined in G+. Applying Betti’s
formula, we arrive at representation (3.13) with

L(x, y) =
∑

1≤k≤4

Lk(x, y), (3.15)

where

L1(x, y) = η2

( |x|
|y|

)
N (∂y, ny)

(
|y|−1A−

( y
|y|

)
+D+(y)

)T
,

L2(x, y) = −
∫
G+

(∆∗ξη2

( |x|
|ξ|

)(
|ξ|−1A−

( ξ
|ξ|

)
+ B− +D+(ξ)

)T
P+(ξ, y)dξ,

L3(x, y) = (N (∂y, ny)R+(y, x))T ,

L4(x, y) = −
∫

Γ

(
1− η2

( |x|
|ξ|

))
Q−(x, ξ)N (∂ξ, nξ)P+(ξ, y)dsξ.

In order to prove the assertion of Lemma, it suffices to show that (3.14) holds for
each Lk(x, y). From Lemma 3 it follows that

N (∂y, ny)
(
|y|−1A−(y/|y|) = 0

at the boundary of the cone K+, y 6= 0. This and (3.12) imply (3.14) for L1(x, y).

Furthermore, since

∆∗
(
|ξ|−1A−(ξ/|ξ|) + B− +D+(ξ)

)
= 0

for ξ ∈ G+ and since |y| > 4/3 on the domain of integration of L2(x, y), it follows by
(2.6) that

|L3(x, y)| ≤ c
∫
ξ∈Γ:7|x|/6<|ξ|<6|x|/5

|ξ|−3|y|−2(|ξ|/|y|)δ
+−εdξ

≤ c|y|−2(|x|/|y|)δ
+−ε.

The required estimate for L3(x, y) is a direct corollary of (3.11).

Dividing the domain of integration of L4(x, y) onto the sets

Γ1 = {ξ ∈ Γ : |x|/2 < |ξ| < 6|x|/5} and Γ2 = {ξ ∈ Γ : |ξ < |x|/2}

and taking into account that |y| > 4|ξ|/3 on Γ1 ∩ Γ2, using (2.6), (2.8) and represen-
tations (2.5), (2.10), we arrive at

|L4(x, y)| ≤ c
∫

Γ1

|x− ξ|−1|y|−2|ξ|−1
( |ξ|
|y|

)δ+−ε
dsξ

+

∫
Γ2

|ξ|−2|y|−2
( |ξ|
|y|

)δ+−ε
dsξ ≤ c |y|−2|ξ|−1

( |x|
|y|

)δ+−ε
.

The result follows.
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3.3 Estimates for the kernel L with |y|/2 < |x| < 2|y|
The purpose of this subsection is to prove the following assertion.

Lemma 14 Let 0 < β − α < 1 and let l be a positive integer. For any ϕ ∈ N l,α
β+l(Γ)∫

Γ

Q−(x, ξ)
(
N (∂ξ, nξ)

∫
Γ

P+(ξ, y)χ2(|y|/|x|)ϕ(y)dsy
)
dsξ

(3.16)

= −ϕ(x) +

∫
Γ

L(x, y)ζ
(8)
1 (|y|/|x|)ϕ(y)dsy,

where x ∈ Γ\0 and
|L(x, y)| ≤ c |y|−1|x− y|−1. (3.17)

First we prove several auxiliary assertions. Let D+ be a bounded open set in R3

with smooth boundary Γ+ which coincides with the cone K+ for 1/18 < |x| < 18. We
assume that 0 /∈ Γ+ and that D+ ⊂ G+. Let D+

ρ denote the set {x ∈ R3 : x/ρ ∈ D+},
ρ > 0, and let Γρ be the boundary of D+

ρ . We introduce the operator Tρ in the space
C(Γρ) of continuous functions defined by the equality Tρϕ = 2W0ϕ, where W0ϕ is
the direct value of the double layer potential with density ϕ on the surface Γρ.

Lemma 15 Let ρ be a positive number such that the domain G+ coincides with the
cone K+ for |x| < 18ρ. Then

|∂σx∂τy (P+(x, y)− P+
ρ (x, y)| ≤ cστρ−2−|τ |−|σ|, (3.18)

|∂σx∂τy (Q−(x, y)−Q−ρ (x, y)| ≤ cστρ−1−|τ |−|σ|, (3.19)

with ρ/16 < |x| < 16ρ, ρ/16 < |y| < 16ρ, where P+
ρ (x, y) and Q−ρ (x, y) are kernels of

the integral operators P+
ρ and Q−ρ on Γρ such that the vector-valued function u = P+

ρ f
and v = Q−ρ g are solutions of the boundary value problems

∆∗u = 0 in D+
ρ , u = f on Γρ, (3.20)

∆∗u = 0 in R3\D+
ρ , N v = g on Γρ. (3.21)

Proof. Since inequalities (3.18) and (3.19) are proved in a similar way, we limit
ourselves to (3.18). Let G(x, y) be Green’s kernel of the operator (2.3), i.e. it solves
the problem

δ∗xG(x, y) = δ(x− y) 1, x, y ∈ G+,

(3.22)

G(x, y) = 0, x ∈ Γ, y ∈ G+.

Here δ(x, y) is the Dirac measure concentrated at the point y and 1 is the unit matrix
of order 3. Inequalities (3.22) are understood in the sense that for all vector-valued

functions v ∈ N l,α
β+l(G

+) we have

v(y) =

∫
G+

(G(x, y))T∆∗v(x)dx+

∫
Γ

(
N (∂x, nx)G(x, y)

)T
v(x)dsx.

We write G(x, y) in the form

G(x, y) = ζ
(15)
i (|x|/ρ)Gρ(x, y) + G̃(x, y), (3.23)
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where Gρ(x, y) is Green’s kernel of problem (3.20).

We put x = ρX, y = ρY and let G+
ρ stand for the image of the set G+ under

the mapping x → X. Further, let Γρ be the boundary of G+. It is clear that
Gρ(x, y) = ρ−1G1(X,Y ). It follows from (3.23) that the function wρ defined by

wρ(X,Y ) = ∂σY (ρ G̃(ρX, ρY )),

is a solution of the boundary value problem

∆∗xwρ(X,Y ) = ψ(X,Y ), X ∈ Gρ,
(3.24)

wρ(X,Y ) = f(X,Y ), X ∈ Γρ

for Y ∈ G+
ρ , 1/16 < |Y | < 16, where f and ψ are smooth functions with support in

{x : 1/18 < |x| < 18}.
From [ADN] it follows that a solution of (3.24) obeys the estimate

|∂τXwρ(X,Y )| ≤ cτ .

It is clear that this inequality is equivalent to

|∂τx∂σy G̃(x, y)| ≤ cστ ρ−1−|τ |−|σ|.

Hence, using (3.23) and the relations

P+(x, y) =
(
N (∂y, ny)G(y, x)

)T
, P+

ρ (x, y) =
(
N (∂y, ny)Gρ(y, x)

)T
,

we arrive at (3.18).

Lemma 16 Let ϕ ∈ C(Γρ). Then

(1 + Tρ)
−1ϕ = (1 +Hρ)ϕ, (3.25)

where Hρ is an integral operator on Γρ with the kernel Hρ(x, y) satisfying the estimate

|Hρ(x, y)| ≤ c ρ−1|x− y|−1.

Proof. Let ρ = 1. It is known (see [Ku], [KGBB]) that the kernel T1(x, y) of the
operatorT1 obeys the estimate

|T1(x, y)| ≤ c |x− y|−1.

Hence the kernel of the integral operator T 3
1 is bounded. Noting that the solution

u of the equation (1 + T1)u = ϕ is a solution of the equation (1 + T 3
1 )u = ψ with

ψ = (1 − T1 + T 2
1 )ϕ and using the fact that γ = −1 is not in the spectrum of T 3

1 ,
we arrive at the assertion of the present lemma for ρ = 1. The estimate (3.25) for an
arbitrary ρ > 0 follows directly from the estimate for H1(x, y) and the equality

Hρ(x, y) = ρ−2H1(x/ρ, y/ρ).

Corollary 1 Let ϕ ∈ C1(Γρ). Then

Q−ρ NP+
ρ ϕ = −(1 + 2Hρ)ϕ.
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Proof. The argument used in the proof of Theorem 4 shows that the equality

(1 + Tρ)
−1ϕ = 1/2(1−Q−ρ NP+

ρ )ϕ

holds for all ϕ ∈ C1(Γρ). Here we have used the classic solvability theorems for
problems (3.20) and (3.21) (see [Ku], [KGBB]). Comparing the above equality with
(3.24), we arrive at the required assertion.

Lemma 17 Let x ∈ Γ ∩ Uk, Uk = {ξ : 1/2 < 2k|ξ| < 2}. Suppose that the domain
G+ coincides with the cone K+ for all ξ with |ξ| < 18ρ, ρ = 2−k. Then the problem

∆∗yψ
+(x, y) = 0 in G+,

ψ+(x, y) = ζ
(1)
1 (|x|/|y|)

(
Q−(x, y)−Q−ρ (x, y)

)T
on Γ

is uniquely solvable in N l,α
δ+l(G

+) for

|δ − α− 1/2| < 1/2 + δ+, l = 1, 2, . . .

and the estimate
|∂σyψ+(x, y)| ≤ cσ ρ−1−|σ| (3.26)

holds for all y with d |x| < |y| < d−1|x|, d ∈ (0, 1).

Proof. It is obvious that ρ/8 < |y| < 8ρ on the support of the function y →
ζ

(1)
1 (|x|/|y|). The argument used in the proof of Lemma 15 shows that (3.26) follows

from (3.19) and from local estimates of solutions to boundary value problems for
elliptic differential equations near a smooth part of the boundary.

Proof of Lemma 14. Let x ∈ Uk ∩ Γ, where Uk = {ξ : 1/2 < 2k|ξ| < 2}. We
assume that the number k is so large that the domain G+ coincides with the cone K+

for all x with |x| < 18ρ, ρ = 2−k. We write the left-hand side of (3.16) in the form∫
Γ

ζ
(1)
1 (|x|/|y|)Q−ρ (x, ξ)N v(ξ) dsξ +

∫
Γ

(
ψ+(x, ξ)

)TN v(ξ) dsξ

(3.27)

+

∫
Γ

(1− ζ(1)
1 (|x|/|ξ|))Q−(x, ξ)N v(ξ) dsξ,

where

v(ξ) =

∫
Γ

P+(ξ, y)χ2(|y|/|x|)ϕ(y) dsy.

Noting that the equality

η1

( |ξ − y|
|y|

)
ζ

(1)
1

( |x|
|ξ|

)
= η1

( |ξ − y|
|y|

)
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holds on the support of the function y → χ2(|y|/|x|) and applying Betti’s formula to
the second integral in (3.27), we express (3.27) in the form∫

Γ

Q−ρ (x, ξ)N (∂ξ, nξ)

∫
Γ

P+
ρ (ξ, y) η1

( |y − ξ|
|y|

)
χ2

( |y|
|x|

)
ϕ(y) dsy dsξ

+

∫
Γ

Q−ρ (x, ξ)N (∂ξ, nξ)

∫
Γ

(P+
ρ (ξ, y)− P+

ρ (ξ, y)) η1

( |y − ξ|
|y|

)
χ2

( |y|
|x|

)
ϕ(y) dsy dsξ

+

∫
Γ

ζ
(1)
1

( |x|
|ξ|

)
Q−ρ (x, ξ)N (∂ξ, nξ)

∫
Γ

P+(ξ, y)
(

1− η1

( |y − ξ|
|y|

))
χ2

( |y|
|x|

)
ϕ(y) dsydsξ

+

∫
Γ

(
N (∂ξ, nξ)ψ

+(x, ξ)
)T
χ2

( |ξ|
|x|

)
ϕ(ξ) dsξ (3.28)

+

∫
Γ

∫
Γ

(
1− ζ(1)

1

( |x|
|ξ|

))
Q−(x, ξ)N (∂ξ, nξ)P+(ξ, y)χ2

( |y|
|x|

)
ϕ(y) dsy dsξ.

Since

χ2

( |y|
|x|

)
ζ

(2)
1

( |y|
ρ

)
= χ2

( |y|
|x|

)
,

we write the first integral in (3.28) as∫
Γρ

Q−ρ (x, ξ)N (∂ξ, nξ)

∫
Γρ

P+
ρ (ξ, y) ζ

(2)
1

( |y|
ρ

)
ϕ(y) dsy dsξ

−
∫

Γρ

Q−ρ (x, ξ)N (∂ξ, nξ)

∫
Γ

P+
ρ (ξ, y)

(
1− η1

( |y − ξ|
|y|

))
ζ

(2)
1

( |y|
ρ

)
ϕ(y) dsy dsξ

(3.29)

−
∫

Γ

Q−ρ (x, ξ)N (∂ξ, nξ)

∫
Γ

P+
ρ (ξ, y) η1

( |y − ξ|
|y|

)(
1− χ2

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
ϕ(y) dsydsξ

Given any x ∈ Uk ∩ Γ, let Q+
ρ be a solution of the problem

∆∗ξQ+
ρ (x, ξ) = 0 in Dρ, Q+

ρ (x, ξ) =
(

1− η1

( |x− ξ|
|x|

))(
Q−ρ (x, ξ)

)T
on Γ.

Clearly,
|∂σξQ+

ρ (x, ξ)| ≤ cσρ−1−|σ|. (3.30)

Since η1(|x− ξ|/|x|) = 0 on the support of the function

ξ → η1

( |y − ξ|
|y|

)(
1− χ

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
,

we can replace Q−ρ (x, ξ) in the last term of (3.29) by
(
Q+
ρ (x, ξ)

)T
. Applying Betti’s

formula to this term and using Corollary 1, we write (3.29) in the form

−ϕ(x)− 2

∫
Γ

H(x, y)ζ
(1)
1

( |y|
ρ

)
ϕ(y) dsy

−
∫

Γ

∫
Γρ

Q−ρ (x, ξ)N (∂ξ, nξ)P+
ρ (ξ, y)

(
1− η1

( |y − ξ|
|y|

))
ζ

(2)
1 (|y|/ρ)ϕ(y) dsy dsξ

−
∫

Γ

(
N (∂ξ, nξ)Q− + ρ(x, ξ)

)T(
1− χ2

( |ξ|
|x|

))
ζ

(2)
1 (|ξ|/ρ)ϕ(ξ) dsξ

−
∫
G+

(
Q+
ρ (x, ξ)

)T
∆∗ξ

∫
Γ

P+
ρ (ξ, y)η1

( |y − ξ|
|y|

)(
1− χ2

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
ϕ(y)dsydsξ.
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Combining this with (3.28) and using the equality

ζ
(8)
1

( |y|
|x|

)
ζ

(2)
1

( |y|
ρ

)
= ζ

(2)
1

( |y|
ρ

)
,

valid for x ∈ Uk ∪ Γ, we arrive at (3.15), where

L(x, y) =

8∑
k=1

Lk(x, y) (3.31)

L1(x, y) = −2Hρ(x, y)ζ
(2)
1

( |y|
ρ

)
,

L2(x, y) = −
∫

Γρ

Q−ρ (x, ξ)N (∂ξ, nξ)P+
ρ (ξ, y)

(
1− η1

( |y − ξ|
|y|

))
ζ

(2)
1

( |y|
ρ

)
dsξ

L3(x, y) = −
(
N (∂ξ, nξ)Q− + ρ(x, ξ)

)T(
1− χ2

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
L4(x, y) = −

∫
G+

(
Q+
ρ (x, ξ)

)T
∆∗ξP+

ρ (ξ, y)η1

( |y − ξ|
|y|

)(
1− χ2

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
dsξ

L5(x, y) = −
∫

Γ

Q−ρ (x, ξ)N (∂ξ, nξ)
(
P+(ξ, y)− P+

ρ (ξ, y)
)
η1

( |y − ξ|
|y|

)
χ2

( |y|
|x|

)
dsξ

L6(x, y) =
(
N (∂ξ, nξ)ψ

+(x, y)
)T
χ2

( |y|
|x|

)
L7(x, y) =

∫
Γ

ζ
(1)
1

( |x|
|ξ|

)
Q−ρ (x, ξ)N (∂ξ, nξ)P+(ξ, y)

(
1− η1

( |y − ξ|
|y|

))
χ2

( |y|
|x|

)
dsξ

L8(x, y) =

∫
Γ

(
1− ζ(1)

1

( |x|
|ξ|

))
Q−ρ (x, ξ)N (∂ξ, nξ)P+(ξ, y)χ2

( |y|
|x|

)
dsξ

To complete the proof it is sufficient to obtain estimate (3.17) for each term
Lk(x, y). The required estimate for L1(x, y) is a direct corollary of (3.25). For L2(x, y)
we have

|L2(x, y)| ≤ c ρ−2. (3.32)

In fact, we put
x = ρX, y = ρ Y, ξ = ρΞ.

It is obvious that

−
∫

Γ1

Q−1 (X,Ξ)N (∂Ξ, nΞ)P+
1 (Ξ, Y )

(
1− η1

( |Y − Ξ|
|Y |

))
ζ

(2)
1 (|Y |) dsΞ ≤ C.

Returning to the variables x, y, ξ, we arrive at (3.32).

By (3.30), (3.18), and (3.26), the same holds for L3(x, y), L5(x, y), and L6(x, y).

Noting that ∆∗ξP+
ρ (ξ, y) = 0 on the set of integration of L4(x, y) and that the

inequality |y−ξ| > |y|/8 is valid on the support of the function ξ → ∇ξη1(|y−ξ|/|y|),
we arrive at the estimate (3.32) for L4(x, y).

In order to obtain the estimate for L7(x, y), we write it as the sum of two integrals
over the sets

Γ1 = {ξ ∈ Γ : |ξ| < |y|}, Γ2 = {ξ ∈ Γ : |ξ| > |y|}
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and use estimates (2.6) and (2.8). Then

|L7(x, y)| ≤ c
∫

Γ1

|x− ξ|−1|ξ|−1|y|−2(|ξ|/|y|)δ
+−εdsξ

+c

∫
Γ2

|x− ξ|−1|ξ|−2|y|−1(|y|/|ξ|)δ
+−εdsξ ≤ c ρ−2.

Finally, dividing the domain of integration of L8(x, y) into two sets

Γ3 = {ξ ∈ Γ : |ξ| > |x|}, Γ4 = {ξ ∈ Γ : |ξ| < |x|/3}

and noting that |ξ| > 3/2|y| and |ξ| < 2/3|y| on Γ3 and Γ4, resepectively, we arrive
at estimate (3.32) for the last integral.

The case x ∈ Γ, |x| ≥ ε > 0 can be considered in a similar manner and is even
simpler. The lemma is proved.

Thus, Lemmas 11, 13, and 14 together with Theorem 4 imply Theorem 6.

4 Estimates for the kernel of the operator (1 + T )−1

The purpose of this section is to obtain the following result.

Theorem 7 Let 0 < β−α < 1 and let l be a positive integer. For any ψ ∈ N l−1,α
β+l (Γ)

(1 + T ∗)−1ψ = (1 +M)ψ, (4.1)

where M is an integral operator with the kernel M(x, y) satisfying the estimates

|M(x, y)| ≤


c |x|−1 |y|−1(|x|/|y|)κ−ε, |x| < |y|/2,
c |x|−1|x− y|−1, |y|/2 < |x| < 2|y|,
c |x|−2(|y|/|x|)κ−ε + c |x|κ−1−ε, |x| > 2 |y|,

(4.2)

where κ = min{δ+, ν−} and ε is any sufficiently small positive number.

4.1 Estimates for the kernel M(x, y) with |y| < 5|x|/8
In this subsection we prove the following assertion with notations for the cut-off

functions χk, ηj , ζ
(j)
ε introduced at the beginning of Sect. 2.

Lemma 18 Let ψ ∈ N l−1,α
β+l (Γ). Then

N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

Q−(ξ, y)χ1(|y|/|x|)ψ(y)dsy dsξ

(4.3)

=

∫
M(x, y)χ1(4|y|/5|x|)ψ(y)dsy, x ∈ Γ\0,

where
|M(x, y)| ≤ c

(
|x|κ−1−ε + |x|−2(|y|/|x|)κ−ε

)
. (4.4)

First we prove some auxiliary assertions.
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Lemma 19 The following relations hold

lim
x→x0

∫
Γ

P+(x, ξ)η1(|x− ξ|/|x|) dsξ = 1, x0 ∈ Γ\0, x ∈ G+, (4.5)

∣∣∣N (∂x, nx)

∫
Γ

P+(x, ξ) η1(|x− ξ|/|x|) dsξ
∣∣∣ ≤ c |x|−1, x ∈ Γ\0. (4.6)

Proof. The identity (4.5) is a corollary of the equality

P+(x0, ξ)η1(|x0 − ξ|/|x0|) = 0

for x0, ξ ∈ Γ\0 and the identity

lim
x→x0

∫
Γ

G+(x, ξ) dsξ = 1,

which holds by the uniqueness of solution of problem (2.3) .

Now we prove (4.6). Since

N (∂x, nx)

∫
Γ

P+(x, ξ)dsξ = 0,

it is sufficient to obtain the inequality∣∣N (∂x, nx)

∫
Γ

P+(x, ξ)(1− η1(|x− ξ|/|x|) dsξ
∣∣ ≤ c |x|−1, x ∈ Γ\0,

which follows from (2.6). The proof is complete.

Lemma 20 The following relations hold∣∣∣∫
Γ

P+(x, ξ)η1(|x− ξ|/|x|) (xj − ξj) dsξ
∣∣∣ ≤ c |x|, x ∈ G+, j = 1, 2, 3, (4.7)

∣∣∣N (∂x, nx)

∫
Γ

P+(x, ξ) η1(|x− ξ|/|x|) (xj − ξj) dsξ
∣∣∣ ≤ c. (4.8)

Proof. It is obvious that (4.7) is a corollary of estimate (2.6).

We prove (4.8). Let x ∈ G+. By

P+(x, ξ) =
(
N (∂ξ, nξ)G(ξ, x)

)T
,

where G(ξ, x) =
(
G(x, ξ)

)T
is Green’s matrix of problem (2.3) (see (3.22)), and us-

ing the property G(ξ, x) = 0 for ξ ∈ Γ together with Betti’s formula, we write the
expression on the left-hand side of (4.8) in the form∣∣∣N (∂x, nx)

∫
∂B(ε,x)

G(x, ξ)N (∂ξ, nξ)η1(|x− ξ|/|x|) (xj − ξj)(xj − ξj) dsξ

−N (∂x, nx)

∫
∂B(ε,x)

P+(x, ξ)η1(|x− ξ|/|x|) (xj − ξj)(xj − ξj) dsξ

−
∫
G+∩B(ε,x)

G(x, ξ)∆∗ξ
(
η1(|x− ξ|/|x|)

)
(xj − ξj)(xj − ξj) dξ

∣∣∣,
where ∂B(ε, x) is the two-dimensional sphere of radius ε centered at x.
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Hence, using the inequality

|∂σx∂τξ G(x, ξ)| ≤ cστε−1−|σ|−|τ |

valid on the sphere ∂B(ε, x) together with the relations 3/4|x| < |ξ| < 5/4|x|| which
hold on the support of the function

ξ → ∇ξ η1(|x− ξ|/|x|),

we arrive at (4.7). The proof is complete.

Lemma 21 Let |y| < 5/8|x|. Then∣∣∣N (∂x, nx)

∫
Γ

P+(x, ξ)
(
|ξ|−1A(ξ/|ξ|) + B−

)
η2(|y|/|ξ|)dsξ

∣∣∣
(4.9)

≤ c
(
1 + |x|−2(|y|/|x|)κ−ε

)
.

Proof. Let y ∈ Γ\0. Consider the function which solves the boundary value
problem

∆∗xu(x, y) = 0 in G+

(4.10)

u(x, y) =
(
|x|−1A(x/|x|) + B−

)
η2(|y|/|x|) for x ∈ Γ

in the space N l,α
δ+l(G

+), 1 < δ−α < 1+δ+. By Theorem 1, u admits the representation

u(x, y) =

∫
Γ

P+(x, ξ)
(
|ξ|−1A(ξ/|ξ|) + B−

)
η2(|y|/|ξ|)dsξ. (4.11)

We are looking for a solution of problem (4.10) in the form

u(x, y) =
(
|x|−1A(x/|x|) + B−

)
η2(|y|/|x|) + w(x, y). (4.12)

Then, for each y ∈ Γ\0, the function w solves the Dirichlet problem

∆∗xw(x, y) = f(x, y) in G+, w(x, y) = 0 on Γ,

where the support of f lies in the spherical layer 7/6|y| < |x| < 6/5|y| and

|∂σxf(x, y)| ≤ cσ |y|−1−|σ|.

We put x = |y|X, y = |y|Y and by Γ|y| denote the image of the surface Γ under
the mapping x→ X. The same argument as in the proof of Lemma 10 shows that

‖w|y|(X,Y )‖N l,α
l+α+1+δ+−ε

(Γ|y|)
≤ c

with |Y | = 1, which implies

|∂δXw|y|(X,Y )| ≤ cσ |X|−1−|σ−δ++ε.

Returning to the variables x and y, we obtain

|∂σxw(x, y)| ≤ cσ|x|−1−|σ|(|y|/|x|)δ+−ε
.
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Taking into account that

N (∂x, nx)
(
|x|−1A(x/|x|) + B−

)
= 0

at the boundary of the cone (x 6= 0), from (4.11) and (4.12) we arrive at (4.9).

Proof of Lemma 18. Using (2.5) and (2.10), we write the left-hand side of (4.3)
in the form

N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

(
R−(y, ξ)

)T
η2

( |y|
|x|

)
ψ(y) dsy dsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

(
|ξ|A−

( ξ
|ξ|

)
+ B

)
η2

( |y|
|x|

)
χ1

( |y|
|x|

)
ψ(y) dsy dsξ

(4.13)

+N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

C−(ξ)η2

( |y|
|x|

)
χ1

( |y|
|x|

)
ψ(y) dsy dsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

Q−(ξ, y)
(

1− η2

( |y|
|x|

))
χ1

( |y|
|x|

)
ψ(y) dsy dsξ

Let ∂K+ stand for the boundary of the cone K+. By N we denote a number
such that for all x ∈ ∂K+ with |x| = 1 there exists a diffeomorphism Zx which
maps K+ ∩ B((2N)−1, x) onto a subset Fx of the half space R3

+, while the surface
∂K+∩B((2N)−1, x) is mapped onto a sunset of a plane, and the derivatives of order
l ≥ 1 of the matrices (Zx)′ and (Z−1

x )′ are bounded on K+ ∩ B((2N)−1, x) and on
Fx by some constant cl independent of x.

For other points x ∈ ∂K+ with |x| = ρ > 0 the mapping Zx : K+∩B((2N)−1, x)→
Fx is defined by th equality

Zxξ = ρZx/ρ(ξ/ρ).

Obviously, for b = Zxξ,

|∂σξ b| ≤ cσ |x|1−|σ|, |∂τb ξ| ≤ cτ |x|1−|τ |. (4.14)

Let x ∈ Γ ∩ B(|x0|/4N, x0), where x0 is a point on Γ\0. We assume that x0

is plkaced so close to the origin that the surface Γ coincides with ∂K+ in the ball
B(|x0|/2N, x0). For each point y ∈ Γ we define the function b→ R(b, y), b ∈ Fx0

by

R(b, y) = R+(Z−1
x0

(b), y),

where R+(ξ, y) is a solution of problem (3.9). By Taylor’s formula we have

R(b, y) = R(a, y) +
∑
|σ|=1

(b− a)σ∂σbR(a, y) +
1

2

∑
|σ|=2

(b− a)σ∂σbR(c, y),

where a = (a1, a2, a3) and b = (b1, b2, b3) are images of the points

x ∈ G+ ∩B(|x0|/4N, x0), ξ ∈ Γ ∩B(|x0|/4N, x0)

and c is a point lying on the segment with end points a and b,

(b− a)σ =
∏

1≤k≤3

(bk − ak)σk .
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Thus, we can represent the first term of (4.13) as

1

2
N (∂x, nx)

∫
Γ

P+(x, ξ)η1

(N |x− ξ|
|x|

)∫
Γ

∑
|σ|=2

(b− a)σ∂σbR(c, y)χ1

( |y|
|x|

)
ψ(y)dxydsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)η1

(N |x− ξ|
|x|

)∫
Γ

R+(x, y)χ1

( |y|
|x|

)
ψ(y)dxydsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)η1

(N |x− ξ|
|x|

)∫
Γ

∑
|σ|=1

(b− a)σ∂σbR(a, y)χ1

( |y|
|x|

)
ψ(y)dxydsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)
(

1− η1

(N |x− ξ|
|x|

))∫
Γ

R+(ξ, y)χ1

( |y|
|x|

)
ψ(y)dxydsξ.

Combining this with (4.13) and using

χ1(t)χ(4t/5) = χ1(t),

we arrive at (4.3), where

M(x, y) =
∑

1≤k≤7

Mk(x, y),

and

M1 =
1

2
N (∂x, nx)

∫
Γ

P+(x, ξ)η1

(N |x− ξ|
|x|

)∑
|σ|=2

(b− a)σ∂σbR(c, y)χ1

( |y|
|x|

)
dsξ

M2 = N (∂x, nx)

∫
Γ

P+(x, ξ)η1

(N |x− ξ|
|x|

)
R+(x, y)χ1

( |y|
|x|

)
dsξ

M3 = N (∂x, nx)

∫
Γ

P+(x, ξ)η1

(N |x− ξ|
|x|

)∑
|σ|=1

(b− a)σ∂σbR(a, y)χ1

( |y|
|x|

)
dsξ

M4 = N (∂x, nx)

∫
Γ

P+(x, ξ)
(

1− η1

(N |x− ξ|
|x|

))
R+(ξ, y)χ1

( |y|
|x|

)
dsξ

M5 = N (∂x, nx)

∫
Γ

P+(x, ξ)
(
|ξ|A−(ξ/|ξ|) + B

)
η2

( |y|
|ξ|

)
χ1

( |y|
|x|

)
dsξ

M6 = N (∂x, nx)

∫
Γ

P+(x, ξ)C−(ξ)χ1

( |y|
|x|

)
dsξ

M7 = N (∂x, nx)

∫
Γ

P+(x, ξ)
(
Q−(ξ, y)− C−(ξ)

)(
1− η2

( |y|
|ξ|

))
χ1

( |y|
|x|

)
dsξ,

Now we obtain estimates for each Mk. Let z = Z−1
x c. Since |y| < 5|x|/8 and

|z − x| < |x|/4, we have |z| > 3|x|/4 and |z| > 6|y|/5. Hence, using estimates (4.14),
(3.11), and (2.6), we conclude that

|M1(x, y)| ≤ c |x|−2(|y|/|x|)κ−ε. (4.15)

Noting that

bk − ak = (ξj − xj)
∂(Zx0)k
∂ξj

(x) +O(|ξ − x|2),

by Lemmas 19, 20 and estimates (4.14), (3.11), (2.6) we arrive at (4.15) forM2(x, y)
and M3(x, y).

The same estimate forM4(x, y) andM7(x, y) is an immediate corollary of Theo-
rems 1 and 3.
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By Lemma 21 estimate (4.8) holds for M5(x, y).

Finally, the inequality
|M6(x, y)| ≤ c |y|κ−1−ε

follows directly from (3.2) since the function

u(x) =

∫
Γ

P+(x, ξ)C−(ξ) dsξ

is a solution of problem (3.10).

The case x0 ∈ Γ, |x0| ≥ ε, where ε is a fixed positive number, may be considered
in a similar manner and even simpler. The proof is complete.

4.2 Estimates for the kernel M(x, y) with |y| > 8|x|/5

Lemma 22 Let ψ ∈ N l−1,α
β+l (Γ). Then

N (∂x, nx)

∫
Γ

P+(x, ξ)Q−(ξ, y)χ3(|y|/|x|)ψ(y) dsy dsξ

(4.16)

=

∫
Γ

M(x, y)χ3(5|y|/4|x|)ψ(y) dsy, x ∈ Γ\0,

where
|M(x, y)| ≤ c |x|−1|y|−1(|x|/|y|)κ−ε.

Proof. By (2.9) we can write the left-hand side of (4.13) as

N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

Q−(0, y)η
( |ξ|
|y|

)
χ3

( |y|
|x|

)
dsy dsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

R−(ξ, y)η
( |ξ|
|y|

)
χ3

( |y|
|x|

)
dsy dsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

Q−(ξ, y)
(

1− η
( |ξ|
|y|

))
χ3

( |y|
|x|

)
dsy dsξ.

Furthermore, keeping the notation introduced in the proof of Lemma 18 (with the
only difference that here R+(ξ, y) is a solution of problem (3.3) for a fixed y ∈ Γ\0),
in a similar manner we arrive at (4.16) in a neighbourhood of x0 ∈ Γ\0, where

M(x, y) = N (∂x, nx)

∫
Γ

P+(x, ξ)Q−(0, y)χ3

( |y|
|x|

)
dsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)Q−(0, y)
(

1− η2

( |ξ|
|y|

))
χ3

( |y|
|x|

)
dsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)R+(x, y)η1

(N |x− ξ|
|x|

)
χ3

( |y|
|x|

)
dsξ

+N (∂x, nx)

∫
Γ

∑
|σ|=1

P+(x, ξ) η1

(N |x− ξ|
|x|

)
(b− a)σ∂σbR(a, y)χ3

( |y|
|x|

)
dsξ

+

∫
Γ

N (∂x, nx)
∑
|σ|=2

P+(x, ξ)η1

(N |x− ξ|
|x|

)
(b− a)σ∂σbR(c, y)χ3

( |y|
|x|

)
dsξ

+

∫
Γ

N (∂x, nx)P+(x, ξ)
(

1− η1

(N |x− ξ|
|x|

))
R+(ξ, y)χ3

( |y|
|x|

)
dsξ

+

∫
Γ

N (∂x, nx)P+(x, ξ)Q+(ξ, y)
(

1− η2

( |ξ|
|y|

))
χ3

( |y|
|x|

)
dsξ.
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Estimating each term by Lemmas 19, 20, 21, 10 and Theorems 1, 3, we complete the
proof of the lemma.

4.3 Estimates for the kernel M(x, y) with |x|/2 < |y| < 2|x|
We use the notation introduced in Subsection 2.3. Let T ∗ρ be the operator in the
space C(Γρ) of vector-valued functions ψ defined by

T ∗ρψ = 2W0ψ,

where W ∗0 stands for the integral operator on Γρ with the kernel

−N (∂x, nx) Φ(x, ξ)/4π.

Lemma 23 Let ψ ∈ C(Γρ), ρ > 0. Then

NP+
ρ Q−ρ ψ = −(1 + 2H∗ρ )ψ,

where H∗ρ is the integral operator with kernel H∗ρ(x, y) satisfying

|H∗ρ(x, y)| ≤ c ρ−1|x− y|−1. (4.17)

Proof. Using the relation

(1 + T ∗ρ )−1ψ =
1

2
(1−NP+

ρ Q−ρ )ψ

and duplicating the argument in the proof of (3.25), we arrive at the assertion of the
lemma.

Lemma 24 Let ψ ∈ N l−1,α
β+l (Γ). Then

N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

Q−(ξ, y)χ3

( |y|
|x|

)
ψ(y) dsy dsξ

(4.18)

= −ψ(x) +

∫
Γ

M(x, y) ζ
(8)
1

( |y|
|x|

)
ψ(y)dsy, x ∈ Γ\0,

where
|M(x, y)| ≤ c |y|−1|x− y|−1. (4.19)

Proof. Let x ∈ Γ ∩ Uk, ρ = 2−k. We assume that k is a sufficiently large integer.
Since ρ/4 < |y| < 4ρ and ρ/16 < |ξ| < 16ρ on the support of the function

(ξ, y)→ ζ
(1)
1

( |ξ|
|y|

)
χ
( |y|
|x|

)
,

(4.13) can be written in the form

N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

Q−ρ (ξ, x) ζ
(1)
1

( |ξ|
|y|

)
χ2

( |y|
|x|

)
ψ(y) dsy dsξ

+N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

(Q−(ξ, y)−Q−ρ (ξ, y)) ζ
(1)
1

( |ξ|
|y|

)
χ2

( |y|
|x|

)
ψ(y) dsy dsξ

(4.20)

+N (∂x, nx)

∫
Γ

P+(x, ξ)

∫
Γ

Q−(ξ, y)(1− ζ(1)
1

( |ξ|
|y|

)
)χ2

( |y|
|x|

)
ψ(y) dsy dsξ.
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Using

ζ
(1)
1

( |ξ|
|y|

)
η1

( |ξ − x|
|x|

)
= η1

( |ξ − x|
|x|

)
on the support of the function y → χ2(|y|/|x|), we write the first term in (4.20) as
the sum

N (∂x, nx)

∫
Γ

P+(x, ξ) η1

( |ξ − x|
|x|

)∫
Γ

Q−ρ (ξ, y)χ2

( |y|
|x|

)
ψ(y) dsy dsξ

+N (∂x, nx)

∫
Γ

(P+(x, ξ)− P+
ρ (x, ξ))η1

( |ξ − x|
|x|

)∫
Γ

Q−ρ (ξ, x)χ2

( |y|
|x|

)
ψ(y)dsydsξ

(4.21)

+N (∂x, nx)

∫
Γ

P+(x, ξ)
(

1− η1

( |ξ − x|
|x|

))∫
Γ

Q−ρ (ξ, y)ζ
(1)
1

( |ξ|
|y|

)
χ2

( |y|
|x|

)
ψ(y)dsydsξ

Since the identity

χ2

( |y|
|x|

)
ζ

(2)
1

( |y|
ρ

)
= χ2

( |y|
|x|

)
holds for x ∈ Uk, the first integral in (4.21) can be represented in the form

N (∂x, nx)

∫
Γρ

P+
ρ (x, ξ)

∫
Γ

Q−ρ (ξ, y) ζ
(2)
1

( |y|
ρ

)
ψ(y) dsy dsξ

−N (∂x, nx)

∫
Γρ

P+
ρ (x, ξ)

(
1− η1

( |x− ξ|
|x|

))∫
Γ

Q−ρ (ξ, y) ζ
(2)
1

( |y|
ρ

)
ψ(y) dsy dsξ

−N (∂x, nx)

∫
Γρ

P+
ρ (x, ξ)η1

( |x− ξ|
|x|

)∫
Γ

Q−ρ (ξ, y)
(

1− χ2

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
ψ(y) dsy dsξ

Hence, by (4.20), (4.21) and Lemma 23 we arrive at (4.13), where

M(x, y) =
∑

1≤k≤7

Mk(x, y)

and

M1(x, y) = −2H∗ρ(x, y) ζ
(2)
1

( |y|
ρ

)
M2(x, y) = −N (∂x, nx)

∫
Γρ

P+
ρ (x, ξ)

(
1− η1

( |x− ξ|
|x|

))
Q−ρ (ξ, y) ζ

(2)
1

( |y|
ρ

)
ψ(y)dsξ

M3(x, y) = −N (∂x, nx)

∫
Γρ

P+
ρ (x, ξ)η1

( |x− ξ|
|x|

)
Q−ρ (ξ, y)

(
1− χ2

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
dsξ

M4(x, y) = N (∂x, nx)

∫
Γ

P+
ρ (x, ξ)η1

( |x− ξ|
|x|

)
Q−ρ (ξ, y)χ2

( |y|
|x|

)
dsξ

M5(x, y) = N (∂x, nx)

∫
Γ

P+
ρ (x, ξ)

(
1− η1

( |x− ξ|
|x|

))
Q−ρ (ξ, y) ζ

(1)
1

( |ξ
|y|

)
χ2

( |y|
|x|

)
dsξ

M6(x, y) = −N (∂x, nx)

∫
Γ

P+
ρ (x, ξ)(Q−(ξ, y)−Q−ρ (ξ, y)) ζ

(1)
1

( |ξ|
|y|

)
χ2

( |y|
|x|

)
dsξ

M7(x, y) = −N (∂x, nx)

∫
Γ

P+
ρ (x, ξ)(Q−(ξ, y)

(
1− ζ(1)

1

( |ξ|
|y|

))
χ2

( |y|
|x|

)
dsξ.

Now we evaluate each term Mk(x, y). The estimate (4.19) for M1(x, y) is an imme-
diate corollary of (4.17). It is clear that M2(x, y) satisfies the stronger estimate

|M2(x, y)| ≤ c ρ−2. (4.22)
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Since the function ξ → 1− η1(|y − ξ|/|y|) is identically equal to 1 on the support
of the function

ξ → η1(|x− ξ|/|x|)(1− χ2(|y|/|x|)),

we write M3(x, y) in the form

M3(x, y) = −N (∂x, nx)

∫
Γρ

P+
ρ (x, ξ)Q−ρ (ξ, y)

(
1−η1

( |y − ξ|
|y|

))
×
(

1−χ2

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
dsξ

+N (∂x, nx)

∫
Γρ

P+
ρ (x, ξ)

(
1− η1

( |x− ξ|
|x|

))
Q−ρ (ξ, y)

(
1− η1

( |y − ξ|
|y|

))
×
(

1− χ2

( |y|
|x|

))
ζ

(2)
1

( |y|
ρ

)
dsξ.

The validity of (4.22) for the second term is obvious. To obtain the estimate (4.22)
for the first term, it is sufficient to note that the function u defined by

u(x, y) =

∫
Γρ

P+
ρ (x, ξ)Q−ρ (ξ, y)(1− η1(|y − ξ|/|y|))dsξ

is a solution of the boundary value problem

∆∗xu = 0 in Dρ, u(x, y) = Q−ρ (x, y)(1− η1(|y − x|/|y|)) on Γρ

for y ∈ Γ, ρ/5 < |y| < 5ρ.

The estimate (4.22) for M6(x, y) follows from the fact that the function

v(x, y) =

∫
Γ

P+
ρ (x, ξ)(Q−(ξ, y)−Q−ρ (ξ, y)) ζ

(1)
1 (|ξ|/|y|) dsξ

is a solution of the boundary value problem

∆∗xv = 0 in G+, v(x, y) = (Q−(x, y)−Q−ρ (x, y))ζ
(1)
1 (|x|/|y|)

for y ∈ Γ, ρ/4 < |y| < 4ρ and therefore this solution satisfies

|∂σxv(x, y)| ≤ cσρ−1−|σ|

(compare with Lemma 17).

The remaining terms can be estimated in a similar manner as in Lemma 3.5. The
proof is complete.

Thus, Lemmas 18, 22 and 24 together with Theorem 5 lead to Theorem 7.

Remark If we do not require the cone K+ to be described in Cartesian coordi-
nates, Theorems 6 and 7 are valid provided κ is replaced by min{0,κ} and the role
of the inequality 0 < β − α < 1 is played by

|β − α− 1/2| < 1/2 + min{0,κ}.
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