Estimates for kernels of inverse operators of integral
equations of elasticity on surfaces with conic points

NikoLAl GRACHEV

Department of Mathematics
Technical University
180680 Pskov, Russia

VLADIMIR MAZ'YA

Department of Mathematical Sciences
University of Liverpool, M&O Building
Liverpool, L.69 3BX, UK

Department of Mathematics
Link6ping University
SE-58183 Linkoping, Sweden

Abstract. Boundary integral equations of linear isotropic elasticity, with the
double layer potential generated by the preudo-stress operator, are considered on sur-
faces with a finite number of conic points. Representations for solutions are obtained
in terms of inverse operators of the Dirichlet and Neumann problems in the interior
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solutions of those boundary value problems. The Laplace operator is contained here
as a special case.
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1 Introduction

We consider boundary integral equations of linear isotropic elasticity on surfaces which
are smooth everywhere except for a finite number of conic points. Here, similarly
to [M1] (see also [M2]) the study of the integral equations is reduced to the study
of some auxiliary boundary value problems. Representations for inverse operators
of these equations are obtained in terms of inverse operators of the Dirichlet and
Neumann problems in the interior and exterior of the surface. Using estimates for
fundamental soutions of these boundary value problems, we arrive at estimates for
kernels of inverse operators of integral operators in question.

The system of integral equations under consideration contains the boundary inte-
gral equations for the Laplace operator as a special case.

We describe the main results. Let Gt be a simply connected region in R? with
compact closure. We put I' = G and let 0 € T. Further we assume that I'\{0} is a
smooth surface and that near the origin G* coincides with the cone K excising an
open set QF on the unit sphere S2. Let G~ = R3\G+ and O~ = S?\QT.



In what follows, by s we denote a real number depending on the shape of the
cone KT and the boundary conditions. It can be expressed in terms of eihenvalues
of some boundary value problems with complex parameter in QT and Q. In the
case of harmonic potentials s is positive, being equal to the minimum of §* and v,
where 0+ and v~ are positive numbers such that §*(6%) and v~ (v~ +1) are the first
eigenvalues of the Dirichlet ptoblem in Q% and the Neumann problem in Q™ for the
Beltrami operator. It follows from [KM] that s is positive for integral equations of
elasticity if the cone K™ can be explicitly described in a Cartesian coordinate system.

Given any 8 € R, a € (0,1) and any nonnegative integer [, by Né’a(S) we denote
the space of functions w on S with the norm

B B
rP(z2)Viu(z) — rP (y)Viu(y
sup | ( ) l ( ) a( l + Z B—1— a+] ‘V u( )|
z,y€S\0 |$ - y| 0<j<I
We assume that the double layer potential Wy is generated by the so-called

pseudo-stress operator (see [M2]). The case of the double layer potential generated
by the stress operator will be considered elsewhere.

Let Wy stand for the direct value of W on S\0 and let T' be the integral operator
defined by the equality
Ty =2Wye.
It is known that the system of three boundary integral equations of the first boundary
value problem for the Lamé equations has the form

1+T)p = f. (1.1)
Note that in the case of a smooth boundary the kernel of T" has a weak singularity.
Let 0 < 8 —a < 1,1 > 1. Then system (1.1) is uniquely solvable in the space
NGT(S) for all f e Ngﬁl(S) and
1+T)"'f=01+1L)f. (1.2)
Here L is an integral operator with kernel £(z,y) satisfying the inequalities
clyl =2 (l=l/[y) == + eyl 7=, =] < |yl/2
[L(z,y)l << elyl o -yl lyl/2 <z <2lyl,
c o[y~ (yl/lah) e, |z > 2[yl,
where ¢ is a sufficiently small positive number,

L] = 1<z<3 1<g<3 L5,

and L;; are elements of the matrix L.

Let T™* be the operator formally adjoint of T'. If 1 < § — « < 2, then the system of
equations (14 T7*)y = g is uniquely solvable in the space Néjﬁl(S’) forall g € Néﬁl(S)
and

1+T*)'g=(1+M)g, (1.3)
where the kernel M(z,y) of M satyisfies the estimates
clyl=2(ll/lyl)*~*, lz| < lyl/2
Mz, y)l < § elyl™Ha -yl lyl/2 < lal < 2Jyl,

cla| =yl 7 (yl/lz))7 = + eyl ] > 2yl.

The paper consists of three sections. In Section 2 we obtain representations for the
operators (1 + T)~! and (1 + T*)~!. Sections 3 and 4 concern pointwaise estimates
for the kernels of the operators (1 +T)~! and (1 +T*)"!



2 Representations for inverse operators
of boundary integral equations

2.1 Spaces of functions

We use the notations G*, G~, and Né’a explained in Introduction. It is easily seen
that the space N é’o‘(Gﬂ can be supplied with the norm

lull yi.e vy = Sup. 2P [ 5 e + sup, |~ u (), (2.1)
kS

S

where B(r,z) is an open ball of radius r centered at z,

[ulfy = sup > [~y P107u(z) - duly)l,
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where E is a subset of R?, p is a positive noninteger, [p] is the integer part of p, o =
(01,02,03) is a multiindex of order |o| = oy + 02 + 03, and 97 = 97! 0z 025> 0x3°.

Besides, one can directly verify (see [MP3]) that the norm (2.2) is equivalent to
the norm

sup [z =y~ Y |fal* 07 u(a) — [y|P 0T u(y) |
zyeat 0<]o|<t

+osup Y e ().

e€GT 10 1<

For 0 < 8 < I+ « we define the space Cé’a (GT) of functions on Gt with the norm

||UHCla(G+) = sup |2 [u ]+(‘z|/2 ng+ T Sup Z |z 1ot ol |97y (2) |
2€GT |\ g<lol<l

+[u]lgf_5+ Z sup |[0%u(z)]. (2.2)
0<o|<l+a—p TG

Similar spaces Né’a(G_) and C’lB’a(G_) are defined for the domain G~. Suppose

that the ball B(R,0) contains GT. Let y denote a function in the space C°°(R3) equal
to one on B(R,0) and to zero on R*\B(R + 1,0). A function u in G~ belongs to
Né’a(G_) (resp. Cé’“(G_)) if and only if the norm (2.2) (resp. (2.2)) of the function
ux and the norm

l l
sup [zl o+ sup o] (@)
rzeG— rzeG—

of v = (1 — x)u are finite.
The spaces of traces on I' of functions from Clﬁ’a (G*) and Né’o‘(Gﬂ are denoted
l, l,
by NBO‘(F) and NBQ(F).
Finally, let NZ;O‘ (G*)and Cé;a(G) refer to spaces of functions v in G = Gt UG~
whose restrictions u* on G* belong to N, é’a (G*) and C’ZB’O‘(Gi), respectively, and

Jull e Z L %: [ eepers



2.2 Boundary value problems

We consider the interior first boundary value problem for the three-dimensional Lamé
equation of the linear isotropic elasticity theory

A*v=0 inGT, u=0 onl. (2.3)

Here u(x) = (u1 (2), uz(2), ua(2))” and f(z) = (f1(2), fa(x), fa())T are the displace-
ment vectors in G and on I', the notation T stands for the transposition of a matrix,

A" = pA+ (A + p)Vdiv
and A, p are the Lamé constants.

We introduce the auxiliary problem
A*'v=0 in G, Nv=g onT\0, (2.4)

where v and g are vector-valued functions with three components, N' = N (9, n,) is
the matrix differential operator with elements

N0z, na) = 16i;0/0ns + (A + p)ni(x)9/0;
FpA A+ ) (n(2)0/ i — ni(2)9/ ;) /(A + 3p),

which is called the pseudo-stress operator. Here n, = (ni(z),na2(z),n3(z)) is the
normal vector of length 3 to the surface ' directed outward with respect to G, &,
is the Kroneker delta and 9/0n, is the normal derivative.

Let QT and Q™ be the domains on the unit sphere defined in Introduction. In order
to formulate solvability theorems it is necessary to consider certain boundary value
problems in Q1 and Q~ depending on a complex parameter v (see K], [MP2], [MP5]).
These problems can be obtained by substitution of the vector-valued functions

w(@) = lz"p(z/|z])  and  v(z) = [z["¢(z/|z])
into equations (2.3) and (2.4) with f = 0 and g = 0. In what follows these problems
will be denoted by p(v) and ¢(v).

Theorem 1 (see [MP4]) Let 6T be the largest number such that the strip |Ry+1/2] <
1/2 4 8% contains no eigenvalues of problem p(v). If

1>1, |B—a—1/2/<1/2+6",

then there exists a unique solution u € N/é’a(GJr) of problem (2.3) for all f € Né’a(I‘).
This solution can be written in the form

ulz) = / PHa,€) 1(€)dse. (2.5)

The operator
Lo L,
PTNGH (D)3 [ — ue NgTy(GF),

defined by (2.5) is bounded. The derivatives of the kernel P*(x,£) obey the estimates

claf?THlelmelg[ 20Tl ] < de],
070:PH (2,8)] < q el —¢|7ITmlol=2, dlg| <lz] <d7'f¢],  (2.6)
] 0TI T T ] > d g,
Here d is a fized number from (0,1), 7 and o are arbitrary multi-indices, € is any

sufficiently small posiitive number, and |A| means max |A;;|, where A;; are elements
of the matriz A.



Remark (see [MP4]) Let w(w+ 1) be the first eigenvalue of the Dirichlet problem
for the Beltrami operator on 27, w > 0. Then

T > w@Bu+ N /(W + p) +2(3u + 2X)).

Lemmal If0<a-8<1,a—8<d",1=1,2,..., then the function u defined
by (2.5) is a unique solution of (2.3) in the space C’lﬁ’il(Gﬂ for all f € C’lﬁ’il(r).
Moreover,

||UHcgj:l((;+) <C ”f”ng:l(F)'

Proof. It easily seen (compare with [MP7]), that the function u € Cé’il(G“‘),
with 0 < a — 3, admits the representation

u=u(0) + v, vE Né’il(G+)
and that the norm of u in N é’il(GJr) is equivalent to the norm
|U(O)| + ||u - U’[O]”Né‘fl(g+y

A similar representation holds for functions from the space Clﬁ’ﬁl(GJ’).

Thus, the existence of the solution u € Cé;f‘rl(G"’) follows from Theorem 1 and
from the fact that u = ¢ is a solution of (2.3) for f = ¢, where ¢ is a constant vector.

The uniqueness of the solution u € C’é’il(GJr) is the consequence of the inclusion
Cé’j:l(Gﬂ C Né’fl(G"‘) and of the uniqueness of the solution of (2.3) in the space
Né’il(GJr) by Theorem 1. The lemma is proved.

The following assertion is essentially contained in [MP6].

Theorem 2 Let v~ be the largest number such that the strip Ry +1/2| < 1/2+ v~
contains no eigenvalues of problem q(vy), except for v =0 and v = —1. If

|8 —a—1/2] <1/2 4+ min{0,v" }, l=12,...,

then there exists a unique solution v € Né’zl(G*) of problem (2.4) for any wvector-
valued function g € Né_ﬁ’a(lj). This solution admits the representation

o) = [ @ (.6 9is(©) (27)
The operator
Q™ Ny (1) 39— ve NG,
defined by (2.7) is bounded. The derivatives of the kernel Q~ (x,€) obey the estimates
clz[7lole[ =2l f1€) e, el < d g,
0707 Q™ (2,8 < { cla — ¢~ 17I=le, dlg| <z < d7tg], (2.8)
clz[7llg =gl |2 E, el > d el

if the points x and & lie in a neighborhood of the vertex 0 and v = min{0, v~ }.

We note that —1/2 < v~ < 1. The left inequality follows from the solvability of
problem (2.4) in the energy space. The right inequality is the consequence of the fact
that the rigid displacement vector is the solution of the homogeneous problem (2.4).



Lemma 2 (see [KM]) or Theorem 4.3.1 in [KMR] Let T be defined by the equation
x3 = h(x1,x2) near the vertex of the cone with h being a positive homogeneous function
of order 1, smooth on R*\{0}. Then there are only two eigenvalues vo = 0 and
v1 = —1 of the problem q(v) in the strip —1 < Ry < 0. These eigenvalues have
multiplicity 8 and the Jordan chains for q(v), corresponding to them, consist only of
etgenfunctions.

The vector-valued functions w = const are the only eigenfunctions associated with
the eigenvalue vq.

In fact, Lemma 2 is proved in [KM] and [KMR] for the Neumann problem generated
by the stress operator but the proof holds for the pseudo-stress operator with obvious
changes.

Lemma 2 enables one to give a more precise description of behaviour of the kernel

Q™ (2,8).

Theorem 3 Let the surface I' satisfy the assumptions in Lemme 2. Then

Q (2,§) = Q7 (0,§) + R (x,¢), x| < dlg], (2.9)
Qi(xag) = Qf(g%()) + (Ri(&x))T’ |1‘| > d71|§|7
Q (x,0) = (Q(0,2))" = || 'A™ (a/[x]) B~ +C (x), (2.10)

if the points © and y lie in a neighbourhood of 0. Here A~ (z/|x|) is a matriz whose
columns are eigenfunctions corresponding to the eigenvalue v = —1, B~ is a constant
matriz and the matrices R~ (z,§) and C~ () satisfy

070TR™ (w,&)] < c o717 g (|l /1), (2.11)
89 ()| < x|V ~lol=e. (2.12)

Lemma 3 The columns of the matriz |z|~' A~ (z/|x|) are linear combinations of
columns of the matriz ®(x,0), where ®(x,&) is the Kelvin-Somigliana matriz with
elements

A+ 3p ( Oj | Atp (rk—ék)(xj—fj))

@ . =

Proof. Since the columns of the matrix ®(z,0) are solutions of the homogeneous
problem (2.4) in an infinite cone (see [Ku], [KGBB]), it follows that the colomns of
the matrix |z|®(z/|x|,0) are eigenfunctions of of problem ¢(v) corresponding to the
eigenvalue v = —1. It remains to notice that the columns of the matrix |z|®(z,0)
form a basis in the eigenspace by Lemma 2. The lemma is proved.

Lemma 4 Let 0 < a — f < v~ and let | be a positive integer. If g € Né;%’o‘(F),

then the function (2.7) is a unique solution of problem (2.4) in the space Clﬁ’il(G_).
Moreover,

Pleys, o) < Mmoo

Proof. Since 0 < f+ 1 — a < 1, the uniqueness of the solution v € Cé’il(G_) of
problem (2.4) follows from the inclusion C’é’_’il(G’) CN é’j_‘l(G*) and from Theorem 2.
Let us prove the existence of the solution v € Clﬁ’il(G_). Suppose that g € Néj;“ (T).
It is clear that g € Né:_llj_‘l(I‘) By Theorem 2 there exists a solution v € C’lﬁ’ilﬂ(G*)
of (2.4) and

[[0]] ;e

gr141(G7) <c ”gHNl—l,al(F).

B+1+



From the asymptotic representation of v near the conic point (see [MP1]) it follows
that

v =v(0)n + w, w e Né’j_‘l(G_)
and

lv(0)| + ”wHN[gvj:l(Gf) < C”g”Néjrllfl(r)‘

Here n € C§°(R3) and 1 = 1 in a neighbourhood of the point 0. Thus v € Cé;j‘_l(G_).
The lemma is proved.

2.3 Representation of the inverse operators of the integral
equations

Let V¢ and W1 denote the single and double layer potentials with densities ¢ and
1 defined by

1

(Vo)) = 3= [ V(o pldse v R,

(2.13)
1

(Wy)(z) = - F(N(f)&,nf)‘lf(xaf))Tw(f)dss, z€G.

Lemma 5 Let 0 < — «a < 2 and let | be a positive integer. If i € Né’j_‘l(F), then
Wiy e Né’fl(G) and the equalities

(Wep)* = Worp £ /2, NW)t = (NWy)~ (2.14)

hold on T\O, where Wy is the direct value of the double layer potential on T’ and the
symbols + mean the traces on T'\O of functions defined on G*.

Proof. It can be verified directly that

sup [z|""|(Wy)(x)| < csup |z°~* ¢ (). (2.15)
z€B(1,0) zel

Consider the problem
A*u=0 1in G, ut —u” =% onT, (2.16)
(Nu)™ — (Nu)” =0 on I'\0.

It follows from properties of the double layer potential on smooth surfaces that the
vector-valued function W) belongs to the class Cp:%(GF\0) and it solves problem
(2.16).

We introduce the sets
Upe={6:1/2<2% ¢l <2}, Ve={&:1/4<2% ¢l <4}
for all k =1,2,.... It is known that solutions of (2.16) obey the estimate

9—k(l+a) [U]l[jﬁgi < C(ka(lm) WJ]I‘;;%F + :3%F|u(x)|)_
xeVy

From this and (2.15) we conclude that W1 € N[lg"(jl(G).
The relations (2.14) follow directly from similar relations valid in the case of
smooth surfaces (see [Ku], [KGBB]). The lemma is proved.



Lemma 6 Let 0 < 8 — a <1 and let ] be a positive integer. If p € Né;%’a(F), then
Ve e Né’fl(G) and the equalities

WVP)T = -Wepxp/2,  (Vo)© = (V)™ (2.17)
hold on T\0, where W{ is an integral operator on T\0, formally adjoint of Wy.
Proof. It can be verified directly that

sup [z]”"|(Ve)(x)] < esup |a]? =T p(x)]. (2.18)
z€B(1,0) xel

Consider the problem
A*v =0 in G, vF—v~ =0 onT, (2.19)
(Nv)T — (Nv)” = on T'\0.

It follows from properties of the single layer potential on smooth surfaces that the
vector-valued function V¢ belongs to the class Cll(’)‘z‘ (GE\0) and it solves problem
(2.19). Let Uy, and Vj, be the sets introduced in the proof of Lemma 5. Then the local
estimate

27k(l+a) [v]l(}:?\Gi < C(Q*k(lJra)[(P]lv—k%-&I:a + xes‘l/ll‘%r |’U(l’)|)
holds for the solution of (2.19). This and (2.18) imply that Vi € Né’j:l(G).
The relations (2.17) follow directly from similar relations valid in the case of

smooth surfaces (see [Ku], [KGBB]). The lemma is proved.

Lemma 7 Let 0 < f—a<1. Ifue Néfl(G) and A*u =0 in G, then

w=V(Nu)" — (Nu)")+ W™ —u). (2.20)
Proof. It is known (cf. [Ku], [KGBB]) that the equalities

u(x) = (V(Nu)")(z) + (Wuh)(2), re Gt (2.21)
0 = (VINu) ) (2) + (Wu')(x), reqG, (2.22)
0 =-(VWNu)")(z) = (Wu)(z), e Gt (2.23)
u(x) = —(V(Nu)")(z) — (Wu")(x), xeG, (2.24)

hold for all vector-valued functions « in G such that
ut € C=(GF), u” =0(z|™") asz — oo and A*u=0.

Here u* is the restriction of the function u to G*. We show that equalities (2.21)
- (2.24) can be extended to functions u of the class N éfl(G) satisfying the system
A*u =0in G. Let {v,}>; stands for a sequence of vector-valued functions in G*
of the class C°°(GT) which converge to u in the norm of the space N gf{e(G), where
e is a small positive number such that § — a+¢e < 1. As shown in [Ku], [KGBB], we

have the relations
vp(z) = —/ (z,y) A v (y) dy + (Won)(x) + (VNv,)(2), z=eGT
G+

for all n. Integrating by parts and passing to the limit as n — oo, we get (2.21). The
equalities (2.22) - (2.24) are proved in a similar manner.

Adding the equalities (2.21), (2.23) and then (2.22), (2.24), we arrive at represen-
tation (2.20). The lemma is proved.



Theorem 4 Let T = 2W),
|8 —a—1/2] <1/2 + min{0,v™},
and let 1 be a positive integer. If f € Né’f:l(l"), then the equation
1+T)p=f (2.25)

is uniquely solvable in the space Né’_’il(f‘) and

1+7)'f= %(1 - Q NPT, (2.26)
where PT and Q= are defined by (2.5) and (2.7).

Proof. From Theorems 1 and 2 it follows that the vector-valued function ¢ defined
by
¢ =1/21-Q NPF)f
belongs to the space Né’il(F). We show that ¢ is a solution of the equation (2.25).
Consider the vector-valued function v € N éfl(G) which solves the problem

A*u=0 inG, uv"=fonl, (Nu)t—(Nu)” =0 onT\0.

It is clear that u= = QNPT f. Hence p = (u™ — u~)/2. By this and Lemmas 3, 5
we arrive at the chain of equalities

L+T)p=2We)" = (W' —u )" =u" =

It remains to verify the uniqueness of a solution of (2.25). Let ¢y € N, éi‘l(l")
satisfy (1 4+ T)¢o = 0. Consider the vector-valued function u = Wg. Since u is a
solution of (2.3) with zero boundary conditions, it follows that v = 0 in G~ by the
uniqueness property of (2.3). Using

(NWpo)t = (N W)™ on T\0
and that (2.4) is uniquely solvable, we conclude that W¢y =0 in G~. Thus,
wo = (Wpo)" — (W)~ =0,
which completes the proof.
Theorem 5 Let T* = 2Wy,
|6 —a—1/2| <1/2 + min{0,v™ },
and let I be a positive integer. Then the equation
14+T W=y (2.27)

is uniquely solvable in the space Néj’o‘(f‘) for all g € Néjj’a(l“) and

1+T") g = %(1—NP+Q_)9. (2.28)



Proof. From Theorems 1 and 2 it follows that
¥ =1/201-NPTQ ) ge Ny ().
Let v be a solution of the problem
A*v=0 inG, vF—v =0onl, (Nv)" =g onT\0
from the class N/é’_'il(G). It is clear that
Nt =NPTQ g on T\0

and
¥ =1/2(Nv)” = (Nv)*).
Thus, by Lemmas 4 and 5 we get

1+ T = —2WNVY)™ = NV(No)* = (Nv)7))” = (Nv)~ =g.

It remains to verify the uniqueness of a solution of (2.27). Let ¢y € N, éja(F)

satisfy the equation (1 + T*)yy = 0. Since v = Vg solves (2.4) for g = 0, it
follows that v = 0 in G~. From the equality (Vi)g)* = (V)g)~ and from the unique
solvability of (2.3) we conclude that v = 0 in GT. Thus,

Yo = (NVo)* — (NViy)™ =0.
The proof is complete.

Lemma 8 Let |3—a—1/2| <1/2+min{0,v~} and let | be a positive integer. Then

the operators (1 +T)~! and (1 + T*)~! are continuous in the spaces Né‘i‘l(F) and

Néj;’o‘(f‘), respectively.

The assertions of this lemma are corollaries of representations (2.26), (2.28) and
Theorems 1 and 2.

Lemma 9 Let the cone K be explicitly described in a Cartesian coordinate system.
If 0 < a— B < min{d*,v=}, then the operators (1 +T)~* and (1 + T*)~! are
continuous in the spaces C’é’il(F) and Néji’a(l“), respectively.

The assertion of this lemma is a corollary of representations (2.26), (2.28) and of
Lemmas 1 and 4.

3 Estimates for the kernel of the operator (1+7)7!

In what follows we assume that the cone KT admits an explicit description in a
Cartesian coordinate system. The purpose of this section is to prove the following
assertion.

Theorem 6 Let 0 < §—a < 1 and let | be a positive integer. Then
L+T) 'f=Q+L)f, feNg(D). (3.1)
Here L is an integral operator on T'\O with a kernel L(x,y) satisfying the estimates

clyl2(z|/lyl)*== + ey, z] < |yl/2,
IL(z,y)| < Celyl e —y| 71, lyl/2 < |z < 2[yl, (3.2)
el =y~ (lyl/|x))= e, | > 2]yl

where 3 = min{d6T, v} and ¢ is any sufficiently small positive number.

10



In what follows by {xx}i_,, m, n2, and Cg(j) we mean functions in C'*°([0,00))

such that

(1) > xx=1, suppxi C[0,5/8), suppxa C (1/2,2), x3 C (8/5,00);
1<k<3

(2) m(t)=1 for t<1/8 and n(t)=0 for ¢t>1/4;
(3) n2(t) =1 for t <5/6 and n2(t) =0 for t>6/7;

4)  Wt)=1 for 2+je) P <t<2+4je and (Y (t)=0
outside of the set (24 (j + 1)) ™' <t <2+ (j + 1)e.

3.1 Estimates for the kernel L(z,y) with |y| < 5|z|/8
Given x € T'\0, consider the Dirichlet problem
AR Y (y,z) =0 in GF
(3.3)
R¥(y, )

n2(lyl/lz )R~ (y, ) on T.

Lemma 10 Let |6 —a—1/2] < 1/2+ 5 and let | be a positive integer. Then problem
(3.8) is uniquely solvable in the space NéfZ(I‘) for each x € T\O and

05 RT (y, )| < e l2| iyl = (lyl/ll) (3-4)

Proof. We set = [z|X, y = [2]Y and let G|, and I'|;| be the images of the sets
G and T under the mapping y — Y. The function

Y = R (Y, X) = |z|RT(|2]Y, || X)
is the solution of the problem

(3.5)
Rz (Y, X)

2 (Y |/IX)R™ (|2]Y, 2] X)  on Iy
for all X with |X|=1.
By (2.11) we have
0% (|22 ([Y [/IXD)R™ (|2]Y 2] X) < e|y]ITI=e/2,
with a constant ¢ independent of z. Thus
H lenQR_"Nll;»aafxﬁ»E(F\m\) S C.

Applying Theorem 1 to problem (3.5), we get

<C.

||R\w|('aX)HNl=” (G\tv\) =

l+a—s3+te

Hence
|05 Rya (Y, X)| < e [V 717172

Returning back to the variables x and y, we arrive at (3.4). The lemma is proved.
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Lemma 11 Let |f — a — 1/2| < 1/2 and let | be a positive integer. For any ¢ €
N[li’f:l(I‘) the representation

/ Q™ (2, €) (N (e, ne) / PHE w)xa (o)1) (y)dsy ) dse
T T

(3.6)
= [ £@aratleets,
is valid, where z € T\0 and
LG, y)] < el y~ (gl )~ (3.7)

Proof. Setting
v(§) = F7’*(5,y)X1(|y\/lwl)<P(y)dSy

and substituting the solution of (3.3) into (2.9), we rewrite the left-hand side of (3.6)
in the form

/ (na(1€1/12)Q™ (0, 2) TN o(€)dse + / (R (€, 2)) T N'o(€)dse
I T

+ / (1= (]| Q" (2, )N (€)dae.
I

Applying the Betti formula

/ (A*u)"v —u" A*v)dz = /((NU)TU —u"Nv)ds
G+

r

to the first and second integrals, we arrive at representation (3.6) with

E(;E,y): Z Ek(xvy)v (38)

S
where

Li(z,y) = (N (8y, ny)RT (y, )",

Latany) == [ (Am(€l/D@(0.2) TP (€. )i

La(,y) = — /F(l —m2([€]/120)) Q" (z, )N (9e, ne) P (€, y)de.

Here we used the relations

Aw=0 inG", w(E)=xi(¢l/lz]) (&) forfeT

and the fact that x1(|€|/|z|) = 0 on the support of the function
§ = N9, ne)ma([€]/]])-

Next we estimate each term in (3.8). Inequality (3.7) for £;(x,y) follows directly
from Lemma 10. Let us estimate Lo(x,y). It is clear that || > 5/6|z| on the support
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of the function § — Afn(|¢]/|z]). From this and from the inequality |y| < 5/8|z| we
conclude that [£| > 4/3|y|. Hence, by estimates (2.6) and by (2.10) we have

caealse | €17~y (ol /€)™ =g

£EGT:|€[>5/6|x]
_ _ +_
< cla| "Myl (yl /1))’

Finally, in order to obtain the required estimate for L£3(z,y), we write it as the
sum of two integrals over the sets

I ={¢el: g <2z} and Iy ={¢ecl: [ > 2|z}

It remains to use (2.6), (2.8) and representation (2.10) to get:

o) <e | = €111 (lyl/1g)”" ~dse

£eT:|€]>5/6|x|
|x—¢&<3|x|

_ _ +_ _ _ +_
+c/ €121yl = (yl/1€D)°" ~2dse < cla| ™y~ (lyl/|=])° =
Eer:|€]>2]z]

The lemma is proved.

3.2 Estimates for the kernel L(z,y) with |y| > 8|z|/5

Consider two Dirichlet problems
AR (y,2) =0 in G*  R¥(y,z) =m(l2l/ly)(R™(y,2))" on T,  (3.9)

A*Ct =0 in G* Ct=C" onT, (3.10)

where z is a fixed point on I'.

Lemma 12 Let |6 —a—1/2| < 1/24 3¢ and let | be a positive integer. Then problems
(3.9) and (3.10) are uniquely solvable in the space N:%(G%) for each x € T and

6+1
0y RT (y, 2)| < eo Iyl 7171 (el /1y ), (3.11)
05CH ()] < co lyl 17175, (3.12)

Proof. Inequality (3.12) is an immediate corollary of Theorem 1 and inequality
(3.11) is proved in a similar manner as Lemma 10.

Lemma 13 Let 0 < 8 — a <1 and let | be a positive integer. For any ¢ € Né’i‘l (M

/F Q™ (,€) (N (D%, ne) / PHE p)xs (/| (u)ds, ) dse
(3.13)

- / £z, 9)xs (1) 2 o(w)dsy,
where © € T\0O and

1L, y) < eyl =% + lyl =2 (l/ly)) ). (3.14)

13



Proof. Setting
v(§) = P& y)xslyl/lz)e(y)ds,
and substituting the solutions of (3.9), (3.10) into (2.9), (2.10), we write the left-hand
side of (3.13) in the form

/F (a2l €D (1€ XA~ (E/1€]) + B~ + D () "N o(€)dse

n / (R (€, 2)) T No(€)dse + / (1= m(|al/1€) Q" (2, N () dure.

By Lemma 3, the expression [£|71 A~ (£/[¢]) is defined in G*. Applying Betti’s
formula, we arrive at representation (3.13) with

1<k<4
where

||gyc||)'/\[(ay7 ny) (|y\71A’ (é) i DJF(y))T’

eaten) == [ aem(ig) (6747 () +87+D4©) P,

£3(x,y) = (N(ay,ny)R+(y,.’I,‘))T7

titea) == [ (1-m () @ . ON 9P (€ nise

In order to prove the assertion of Lemma, it suffices to show that (3.14) holds for
each Li(x,y). From Lemma 3 it follows that

N @y, ) (ly| A7 (y/lyl) = 0
at the boundary of the cone KT, y # 0. This and (3.12) imply (3.14) for £y (z,y).
Furthermore, since

Li(x,y) = 772(

AT (g TP AT(E/I1E) + BT+ D)) =0

for £ € G and since |y| > 4/3 on the domain of integration of Ls(z,y), it follows by
(2.6) that

3 - +_
Law) <c [ €Il 2€1/ )"~
ger:7|x|/6<|€|<6]x|/5

_ +_
< clyl ™2l /1yl e
The required estimate for L3(x,y) is a direct corollary of (3.11).
Dividing the domain of integration of L4(z,y) onto the sets

Iy ={€el:|z/2<|¢| <6lz|/5) and To={Eel:|¢<|z|/2}

and taking into account that |y| > 4|£|/3 on 'y N Ty, using (2.6), (2.8) and represen-
tations (2.5), (2.10), we arrive at

L
catel < [ lo—e e () e

# 16l () s < ettt ()

The result follows.
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3.3 Estimates for the kernel £ with |y|/2 < |z| < 2|y

The purpose of this subsection is to prove the following assertion.

Lemma 14 Let 0 < f—a <1 and let | be a positive integer. For any ¢ € Né’il ()

[ 9 @OW @) [ Prealul/lahetds,)dse
T T
(3.16)

= —p(e)+ / £, 9)¢® (/| (w)ds,.

where © € T\0O and
[L(z, )] < clyl ™Mo -y 7" (3.17)

First we prove several auxiliary assertions. Let Dt be a bounded open set in R3
with smooth boundary I'" which coincides with the cone K+ for 1/18 < |z| < 18. We
assume that 0 ¢ TF and that D" C G. Let D/ denote the set {x € R* : z/p € D*},
p >0, and let I', be the boundary of D[T. We introduce the operator T, in the space
C(T'p) of continuous functions defined by the equality T, = 2Wy¢p, where Wy is
the direct value of the double layer potential with density ¢ on the surface I',.

Lemma 15 Let p be a positive number such that the domain G+ coincides with the
cone KT for |z| < 18p. Then

1070 (P (2. y) = P (,y)| < corp™ 2171717, (3.18)

10705(Q (a,y) — Q, (w,y)| < corp™ 7177171, (3.19)

with p/16 < |z| < 16p, p/16 < |y| < 16p, where P, (x,y) and Q; (x,y) are kernels of
the integral operators P; and Q, on T, such that the vector-valued function u = P;f
and v =@, g are solutions of the boundary value problems

A*u=0 in DI u=f on I, (3.20)

p )
A*u=0 in R\DS, Nv=g onT,. (3.21)

Proof. Since inequalities (3.18) and (3.19) are proved in a similar way, we limit
ourselves to (3.18). Let G(z,y) be Green’s kernel of the operator (2.3), i.e. it solves
the problem

5;Q(x,y) :5($*y) ]-a xay€G+,
(3.22)
G(z,y) =0, zel,yeGt.
Here 6(z,y) is the Dirac measure concentrated at the point y and 1 is the unit matrix

of order 3. Inequalities (3.22) are understood in the sense that for all vector-valued
functions v € Né’il(G*‘) we have

o(y) = /G (G y) " A + / (N (02, 1) G, ) "v()dss.

r

We write G(z,y) in the form

G(z,y) = ¢ (|z]/p)Gy(z, y) + G(z,y), (3.23)
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where G,(z,y) is Green’s kernel of problem (3.20).

We put z = pX, y = pY and let Gj stand for the image of the set G under
the mapping z — X. Further, let T', be the boundary of G*. It is clear that
Go(z,y) = p~1G1(X,Y). It follows from (3.23) that the function w, defined by

wy(X,Y) = 85(pG(pX, pY)),
is a solution of the boundary value problem

Afw,(X,Y) =(X,Y), XeG,
(3.24)
wy(X,Y) = f(X,Y), XeT,

for Y € Gf, 1/16 < |Y| < 16, where f and ¢ are smooth functions with support in
{z:1/18 < |z| < 18}.

From [ADN] it follows that a solution of (3.24) obeys the estimate
O, (X.Y)| <c..
It is clear that this inequality is equivalent to
107076 (2, y)| < corp 7711,
Hence, using (3.23) and the relations
PH(x,y) = (N(@yny) G(w.2))" . Pl(ay) = (N(9ymy) Gply.2)
we arrive at (3.18).
Lemma 16 Let ¢ € C(T',). Then
(14+T,) "o =(1+H,)e, (3.25)
where H, is an integral operator on T, with the kernel H,(x,y) satisfying the estimate
Ho(z,y)| < ep™Hao—y[7h

Proof. Let p = 1. It is known (see [Ku], [KGBB]) that the kernel 71 (z,y) of the
operator; obeys the estimate

[Ti(z,y)| <clz—y| ™"

Hence the kernel of the integral operator T is bounded. Noting that the solution
u of the equation (1 4 Tj)u = ¢ is a solution of the equation (1 + T{)u = ¢ with
Y = (1 — Ty + T?)p and using the fact that v = —1 is not in the spectrum of T},
we arrive at the assertion of the present lemma for p = 1. The estimate (3.25) for an
arbitrary p > 0 follows directly from the estimate for H;(z,y) and the equality

Hy(x,y) = p~*Hi(x/p,y/p)-
Corollary 1 Let ¢ € CY(T',). Then

QNP o=—(1+2H,)¢.
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Proof. The argument used in the proof of Theorem 4 shows that the equality
(1+T,) e =1/20-Q,NP)¢

holds for all ¢ € C'(T',). Here we have used the classic solvability theorems for
problems (3.20) and (3.21) (see [Ku], [KGBB]). Comparing the above equality with
(3.24), we arrive at the required assertion.

Lemma 17 Let x € T NUy, Uy = {€ : 1/2 < 2F[¢] < 2}. Suppose that the domain
G* coincides with the cone KT for all & with |¢| < 18p, p = 27%. Then the problem

Aszr(x,y) =0 in GT,
_ _ T
o (2,y) = ¢ (lel/ly)(Q (2,9) — Q; (2y) " on T
is uniquely solvable in Néfl(Gﬂ for
|6 —a—1/2] <1/2+ 6", 1=1,2,...

and the estimate
050" (2, y)| < g p~ ' 1! (3.26)
holds for all y with d|z| < |y| < d~t|z|, d € (0,1).

Proof. It is obvious that p/8 < |y| < 8p on the support of the function y —

Cfl)(|x\/|y|) The argument used in the proof of Lemma 15 shows that (3.26) follows
from (3.19) and from local estimates of solutions to boundary value problems for
elliptic differential equations near a smooth part of the boundary.

Proof of Lemma 14. Let v € Uy N T, where Uy, = {¢ : 1/2 < 2F|¢] < 2}. We
assume that the number % is so large that the domain G coincides with the cone K+
for all x with |z| < 18p, p = 27%. We write the left-hand side of (3.16) in the form

/d”umm <x@Nw@@«54wﬂaomeomg
(3.27)

+/< O]/ IED)Q (2, )N w(€) dse.

where

<@zﬁﬁwmmwmwww@y

Noting that the equality

m(K@w>£DGQ>:”&KQyU
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holds on the support of the function y — x2(|y|/|z|) and applying Betti’s formula to
the second integral in (3.27), we express (3.27) in the form

/Q (2, )N (9¢, ne) /7’+§y 771(|y| §|)><2(|y||) o(y) dsy ds¢

+ [ Qe on@ene) [ Pren -PrEemm(U D e (L) v ds, s

PIARYE
+ 40 (l) @ wemioano [ PHen (1 -m (M) () et
+ / (N (@, ne)ut (z,€) x (|| ||) P(€) dse (3.28)
L= () @ oM@ ngP* e ) ol ds, dse.
Since

. (||y||) <z>(ly|> X2(||xy||)’

we write the first integral in (3.28) as

[ e onione [ Prend(L)ow ds,in

- [ onionne [P s (t-m (M) () o as, i
(3.29)

/Q (2, & )N (O¢, ne) /P+£y |y 5‘)( m(ﬁ‘)) f2)<|z)<ﬂ(y)d8yd55

Given any z € U, N T, let Q; be a solution of the problem

AIQF(2,6) =0 in D, Q;(x,g)(1n1(x|;|5))(gp(x,g))T onT.

Clearly,
10 Q5 (w,6)| < cop™ 7171, (3.30)

Since 1 (|z — £]/|x|) = 0 on the support of the function

(0 () (),

we can replace Q7 (7,§) in the last term of (3.29) by (Q;‘(x,g))T. Applying Betti’s
formula to this term and using Corollary 1, we write (3.29) in the form

—p(x —2/7—[ (1) |y| o(y) dsy

—// Q, (x, N af,nm (s,y>(1—m('y| f'))cﬁu /p) ely) ds, dse

- [ @@ + o) (1= xa([5]))68? el ol6) e

- [ (oo az [ e (U (1 ()6l () s, ise
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Combining this with (3.28) and using the equality

) ) - ()

valid for z € Uy, UT, we arrive at (3.15), where

8
L(z,y) =) Li(z,y) (3.31)
k=1
T,y) = — T (2) M
Lala,y) = 2, 9)0 P (7).

,62(30,34):—/F 9, (2, )N (9e,ne) P (1_’71( Iyl )) (M)

Ly(x,y) = —(N(9e,ne) Q™ + p(a, 5)T< <|y‘>) (M)
citen == [ (@50 aipenm (Po) (1 ()4 ()

Lo(z,y) = - /FQ,:u,@N(am)( te) - P ) m (Lo (1) ase

] ||

Lole.9) = (WO me)o* (o) xa((14)

(o) = [ ¢ ||§|| (2, N (0, ne) P (€,) (1 - 1('y|;|£>>><2(|ayc||)dsf

Ls(z,y) = /F(l - Cll)(lzr))Q;(m?ﬁ) (Oe, ne)PT(E, y)X2(y||> dsg

To complete the proof it is sufficient to obtain estimate (3.17) for each term

L (z,y). The required estimate for £;(x, y) is a direct corollary of (3.25). For Ls(x,y)
we have

|Lo(x,y)| < cp? (3.32)

In fact, we put
r=pX, y=pY, §=pE

It is obvious that

Y — =
Y]

O (X, DN (= n2)Py B V) (1 - m (S ) )P (YD ds= < €

Iy
Returning to the variables z, y, £, we arrive at (3.32).

By (3.30), (3.18), and (3.26), the same holds for L3(x,y), L5(x,y), and Le(z,y).

Noting that A;P;(g,y) = 0 on the set of integration of L4(x,y) and that the
inequality |y —&| > |y|/8 is valid on the support of the function & — Veni(|ly —¢&|/|v|),
we arrive at the estimate (3.32) for L4(z,y).

In order to obtain the estimate for £7(x,y), we write it as the sum of two integrals
over the sets

Iy ={¢el: ¢l <lyl}, Iy ={¢el:[¢]> [y}

19



and use estimates (2.6) and (2.8). Then

L)l <c [ o= el ol 2l 1ul) < dse

Iy
=2 +_ _
b [ o= €7l ol 6D s < e,
I
Finally, dividing the domain of integration of Lg(z,y) into two sets
Ty={¢eT: ¢ >z}, Ta={eT: [ <|z]/3}

and noting that |¢] > 3/2|y| and |§| < 2/3|y| on I's and Ty, resepectively, we arrive
at estimate (3.32) for the last integral.

The case z € T, |z] > ¢ > 0 can be considered in a similar manner and is even
simpler. The lemma is proved.

Thus, Lemmas 11, 13, and 14 together with Theorem 4 imply Theorem 6.

4 Estimates for the kernel of the operator (1+7)"!

The purpose of this section is to obtain the following result.
Theorem 7 Let0 < f—a < 1 and letl be a positive integer. For any ¢ € N};ﬁ“(F)
(1+T*) " = (1+ M), (4.1)

where M is an integral operator with the kernel M(z,y) satisfying the estimates

cla| =yl = (| / Iyl |z <yl/2,
Mz, y)| < §ela|"Ho -y, lyl/2 < la| <2lyl, (4.2)
cla| 72 (|yl/l=)*=F +cla*7175, 2] > 21y,

where 3 = min{d*, v~} and € is any sufficiently small positive number.

4.1 Estimates for the kernel M(z,y) with |y| < 5|z|/8

In this subsection we prove the following assertion with notations for the cut-off
functions x, n;, 5(] ) introduced at the beginning of Sect. 2.

Lemma 18 Let ¢ € Né_ﬁ’a(lj). Then

N (B2, m2) / Pz, €) / Q= (&, y)x1 (Iy1/|2]) (y)ds, dse
(4.3)

- / Mz, 9)xa (4ly|/5l2)) $(y)ds,, € T\D,

where
(M2, y)| < e (|27 + |22 (Jyl/[«])*7°). (4.4)

First we prove some auxiliary assertions.
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Lemma 19 The following relations hold

lim [ PH(x,&)m(lz —&|/|z|)dse =1, x0€T\0, = € GT, (4.5)
z—zo Jp
N Orne) [ PH@&mo—el/lahdse| < clal ™!, wer0. @)

Proof. The identity (4.5) is a corollary of the equality

PH(zo,&)m(Jzo — &|/|zo]) =0

for zg, & € I'\0 and the identity

lim [ Gt (x,8)dse =1,

Tr—rTo T

which holds by the uniqueness of solution of problem (2.3) .
Now we prove (4.6). Since

N(8w7nx)AP+(x,§)ds§ =0,
it is sufficient to obtain the inequality
N @rn) [ P €)1 = mlo =8l lel) dse] < clel 7,z €T\
which follows from (2.6). The proof is complete.

Lemma 20 The following relations hold

[P omla = €l/la) (0~ §)dse| <clal, we 6T =123 @D

N @en) [ P& mlle = €1/lal) ;= &) de] < (43)

Proof. It is obvious that (4.7) is a corollary of estimate (2.6).
We prove (4.8). Let z € G*. By

PH(r,6) = (M0 ne) G(6.7))
where G(&, ) = (Q(aaf))T is Green’s matrix of problem (2.3) (see (3.22)), and us-

ing the property G(&,2) = 0 for £ € T together with Betti’s formula, we write the
expression on the left-hand side of (4.8) in the form

M@ [ G N @emem (o = €l lal s &)(as &) dse

OB(e,z)

N (D) / PHa, €)m (1w — €1/ )]) (25 — &) (w; — &) dse
dB(e,x)

- / G, )AL (m (1 — €1/12]) (x5 — &) (x5 — &) de.
GtNB(e,x)

where 0B(e, x) is the two-dimensional sphere of radius ¢ centered at x.
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Hence, using the inequality
07086 (x,€)| < cre™ o171

valid on the sphere 0B(e, z) together with the relations 3/4|z| < [€] < 5/4|x|| which
hold on the support of the function

§ = Vem(lz —¢&l/lz)),
we arrive at (4.7). The proof is complete.

Lemma 21 Let |y| < 5/8|x|. Then

[N @rna) [ P )7 A/ 16D + B )ma(ol/€Ddse

(4.9)
< (122 (lyl/[2])*9).

Proof. Let y € T'\O. Consider the function which solves the boundary value
problem

Afu(z,y) =0 in G*
(4.10)
u(z,y) = (Je| Y A(z/|z]) + B )na(lyl/|z]) forz el

in the space Néfl(GJr), 1 < d—a < 1+6". By Theorem 1, v admits the representation

u(z,y) = /FP+($,£)(\€|71«4(£/|§|) +B7)ma(|yl/ €] dse. (4.11)
We are looking for a solution of problem (4.10) in the form
u(z,y) = ([~ Ale/l2]) + B7) n2(lyl/Iz]) + w(z, y). (4.12)
Then, for each y € I'\0, the function w solves the Dirichlet problem
Afw(x,y) = f(x,y) in GT, w(z,y) =0 on T,
where the support of f lies in the spherical layer 7/6]y| < |z| < 6/5|y| and

107 f (@, y)| < eyl 7717,

We put = = |y|X, y = |y|Y and by I}, denote the image of the surface I' under
the mapping x — X. The same argument as in the proof of Lemma 10 shows that

[[w) (X, Y )] yte (T =€

I+at146+T—¢
with |Y| = 1, which implies
|0ty (X, )] < e | X[ 717170042,

Returning to the variables z and y, we obtain

o —1—|o 5t —e
07w ()| < cola 17 (Jyl/2l)”

22



Taking into account that
N (B, n0) (||~ A(x/|2]) + B7) =0
at the boundary of the cone (z # 0), from (4.11) and (4.12) we arrive at (4.9).

Proof of Lemma 18. Using (2.5) and (2.10), we write the left-hand side of (4.3)
in the form

N(0,1n5) /F PH(z,¢) /F (R*(y,g))Tnz(M)w(y) dsy dse

z|
N@erna) [ P20 [ (647 (5) + B) ma( s (1) w0 dsy i
(4.13)
N (s ) /P+ 2,6 /c |y| (m)lﬂ(y) ds, dsg

K@) [ PH@6) [ @ (ew) 1—772<||y||)> ()0 ds, s

Let OK™T stand for the boundary of the cone K*. By N we denote a number
such that for all z € K™ with |z| = 1 there exists a diffeomorphism Z, which
maps K N B((2N)™!,z) onto a subset F, of the half space R3, while the surface
OK +NB((2N)~1,z) is mapped onto a sunset of a plane, and the derivatives of order
I > 1 of the matrices (Z,)" and (Z; ')’ are bounded on K+ N B((2N)~!,x) and on
F, by some constant ¢; independent of x.

For other points z € 9K+ with |x| = p > 0 the mapping Z,, : K*NB((2N)~ !, x) —
F, is defined by th equality

Obviously, for b = Z,¢&,
102b] < ¢ |2*717], 7€ < ey |17 (4.14)

Let z € T'N B(|xo|/4N, xg), where xo is a point on T'\O. We assume that z
is plkaced so close to the origin that the surface I’ coincides with K™ in the ball
B(|zo|/2N, zo). For each point y € I" we define the function b — R(b,y), b € Fy, by

R(b,y) =R (Z;'(b),y),

where RT(£,y) is a solution of problem (3.9). By Taylor’s formula we have

R(b,5) = R(a,9) + 3 (b= a)? O R(ay) + 5 3 (b= a)" G R(e,y),

lo|=1 |o|=2
where a = (a1,as2,a3) and b = (by, by, b3) are images of the points
x € Gt N B(|lzo|/AN,x0), € € TN B(|lzo| /AN, x0)

and c is a point lying on the segment with end points a and b,

(b—a)” = H (bk —ak)"’c.

1<k<3
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Thus, we can represent the first term of (4.13) as

N s [ P n (M) [ Y 0 aregrie () vtdnase

o o
lo|=2
N @sn) [ P m (FE) [ (1) oo
N @) [ P o€ N'xxf' )| X 0= ararriea () sdn,is

lo|=1

80 [ P20 (1= (T R € (1) ey dse

Combining this with (4.13) and using
x(t) x(4t/5) = x1(t),

we arrive at (4.3), where
=3 Miay),
1<k<T7
and

M,y = am,nI/PJf (z, €)1 ( |Tx|_ 5')2 (b—a)”@?R(C,y)X1<|z|) dse

lo|=2

M2=N<am,nm>/rv>+<x,5>m(' DR e (1) s

|| ||

M = N0, n””)/r Pz, )m (N|:c —¢ ) Z (b—a)? 97 R(a,y)x1 (%)dsﬁ

ol 2 |

M4:N(ax,nz)/FPJr(x,é)(l—nl(Nx_g))R+(§,y) (|y|)ds§

|| ||

My = N@esna) [ P (1A €/16D + B) (4 )a (1 s

Mo =N(0,.n2) [ PHa e @ () is

My =N (0,1n0) [ PHa. (@ () - (@) (1= m (1)) () dse

Now we obtain estimates for each My. Let z = Z_lc. Since |y| < 5|z|/8 and
|z — x| < |x|/4, we have |z| > 3|z|/4 and |z| > 6]y|/5. Hence, using estimates (4.14),
(3.11), and (2.6), we conclude that

(M@, y)] < el (lyl/|])**. (4.15)

Noting that
ATl a) + Ol ~ o)
by Lemmas 19, 20 and estimates (4.14), (3.11), (2.6) we arrive at (4.15) for My (z,y)
and Ms(z,y).

The same estimate for My(z,y) and M7(x,y) is an immediate corollary of Theo-
rems 1 and 3.

b — a = (§ — ;)
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By Lemma 21 estimate (4.8) holds for Mjs(z,y).

Finally, the inequality
(Me(z,y)| < cly|*' 7

follows directly from (3.2) since the function

r) = / PHa,£)C (€) dse

is a solution of problem (3.10).
The case xg € T, |z9| > €, where € is a fixed positive number, may be considered
in a similar manner and even simpler. The proof is complete.

4.2 Estimates for the kernel M(z,y) with |y| > 8|z|/5

Lemma 22 Let ) € Néﬁ *(T). Then

N(Bs,ma) / PH(a, €00 (6, 9)xa(yl/|2]) $(y) ds, dse
(4.16)
- / Mz, ) xs(5lul/ 4z () ds,, = € T\D,

where

Mz, )] < el =yl = (|l=1/1y))*
Proof. By (2.9) we can write the left-hand side of (4.1

3) as
N(@T,nT)/Per&/Q (0,) (\ﬁl) (li)dsyd55
N (1) /P+x£/R (&) j) (y|)dsyd§
N@s) [ P2w9) [ @ (1= n(({)) () dsydse

Furthermore, keeping the notation introduced in the proof of Lemma 18 (with the
only difference that here R™(£,y) is a solution of problem (3.3) for a fixed y € T'\0),
in a similar manner we arrive at (4.16) in a neighbourhood of zy € I'\0, where

M) =N (0.m2) [ PHe 0 O ) ds

N @r) [ P 0@ (1= m( ) Jxa((]) s

g (G

N8y, nz) / Z P+ (z,€) nl(N'Ta:| 5') b—a)’ a,y)Xs (i')ds&
lo]=1
/N Oy Nz) Z Pt (x, &) nl(N 7] ) (b—a)?°OfR )Xs(zl)dsg
lo|=2
/N (0, nz)PT (2, €) (1— 1( ))R+(§ Z/)X3(y||>d5£

+/FN<<%,nz>7>+<x,s>@+<f,y>(1m('g'))x (Y .

|yl |z
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Estimating each term by Lemmas 19, 20, 21, 10 and Theorems 1, 3, we complete the
proof of the lemma.
4.3 Estimates for the kernel M(z,y) with |z|/2 < |y| < 2|z|

We use the notation introduced in Subsection 2.3. Let T be the operator in the
space C(I',) of vector-valued functions 1 defined by

o3¢ = 2Woyh,
where W stands for the integral operator on I', with the kernel
N (02 ne) (2, ) /4.
Lemma 23 Let ¢ € C(I',), p > 0. Then
./\/PpJr Q, v =—(1+2H,)p,
where H} is the integral operator with kernel ’H;‘,(:L',y) satisfying
Hy(z,y)| <epHa—y[ (4.17)

Proof. Using the relation
A+T)) = (1—NP+Q ¥

and duplicating the argument in the proof of (3.25), we arrive at the assertion of the
lemma.

Lemma 24 Let ¢ € Ngﬁa( ). Then

j\/’((f?mnm)/FPJ“(x,é)/FQ_(fay)XB(:ﬂ)l/J(y) dsy dsg

(4.18)

0+ [ M (1) vds,. w0

where

Mz, y)| < clyl Mo -y (4.19)

Proof. Let x € T NUy, p = 2~%. We assume that k is a sufficiently large integer.
Since p/4 < |y| < 4p and p/16 < |€| < 16p on the support of the function

oo EN(E)
(4.13) can be written in the form
) [ 7269 [ 2526 (Dt o

X @) [ P9 [(@ (6 - 0 e () na(()) v s, dse
(4.20)

N(@wn) [ P76 [ @61 “)("5')) o () eoty) s, dse.

]
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Using

: (||£|) (§|;|x):”1(|§|;|x|)

on the support of the function y — x2(|y|/|z|), we write the first term in (4.20) as
the sum

N(@s,n,) / P (. €)m (

/Q & y) xQ |y‘ w(y)dsyd%

/Q (& x) X2 |y\ T/J(y)dsydsﬁ
(4.21)

Bx,nx/Perf 1-— 1<|5 id /Q &) (1)(: ) <||y>¢(y)d5yd55

Since the identity
Y
(e (2) - wl)
|z ||

holds for « € Uy, the first integral in (4.21) can be represented in the form
K@) [ P [ 0 (M)t ds, dse
K@) [ Pr@o(i-m(Co ) [erend® (Y)vwas, is
r, P

N e [ 2w (L) / 0, (€ (1= (1))6t? (W) wiw s, de

+N(6x,nm)/(77+(:r &) —Pl(x,€)) 771

Hence, by (4.20), (4.21) and Lemma 23 we arrive at (4.13), where

zy)= Y M(z,y)

1<k<7
and
Maa,y) = =250, ¢ (1)
Mol ) = N wm) [ P (1= (M) € 6 6 () piwpas

Ma(z,y) = N@x,nz/ 7)+9C§)771<| - |§|> ;(ﬁ,y)( (:y||)>§2)(|y|)dsf

Ma(@,y) = N (02, na) /P* a:,fm(lx f|) Q, (&:9) x2 (|y|)d85

|| ||

Mo = @) [ P50 (1= m (U ) @5 € (15 (2
Mg(z,y) = N am,nm/rpj 2,)(Q7(&,y) — Q5 (&) (1)(£||> <y||>
Mitey) = K@) [ 77 0@ 6 (160 () o () e

Now we evaluate each term My(z,y). The estimate (4.19) for M (x,y) is an imme-
diate corollary of (4.17). It is clear that My (x,y) satisfies the stronger estimate

(Ma(z,y)| <cp™. (4.22)
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Since the function & — 1 —n1(ly — £|/|y|) is identically equal to 1 on the support
of the function

&= m(lz = &l/lz) (1 = x2(lyl/]])),

we write M3 (z,y) in the form

Ms(z,y) = —J\/‘(agg,ngg)/F P;(xaﬁ)Q;(ﬁ,y)(l—nl(y|;|£|))
X (1—X2<||Z|)) §2) ('i) ds¢

+/\/(8w,mc)/F Pj(x,g)(l _ m('ﬂ;f')) Q;(g,y)(1 _ m(ly;fl))
(1= ()6l (1) ase

The validity of (4.22) for the second term is obvious. To obtain the estimate (4.22)
for the first term, it is sufficient to note that the function u defined by

ulz,y) = / P, ) Q5 (€,y)(1— muly — €1/Iy]))dse

rp

is a solution of the boundary value problem
Ayu=0 in Dy, u(e,y) = Q, (z,y)(1 —m(ly—zl/ly])) onT,

fory eT, p/5 < |y| < 5p.
The estimate (4.22) for Mg(z,y) follows from the fact that the function

o) = [ PO (€0) - 0 (€0 (el lul) de
is a solution of the boundary value problem

Aw=0 i G* () = (2 (5y) — Q) (@) (l/ly)
for y € T, p/4 < |y| < 4p and therefore this solution satisfies

070(@,y)| < cop™ 717
(compare with Lemma 17).

The remaining terms can be estimated in a similar manner as in Lemma 3.5. The
proof is complete.

Thus, Lemmas 18, 22 and 24 together with Theorem 5 lead to Theorem 7.

Remark If we do not require the cone K to be described in Cartesian coordi-
nates, Theorems 6 and 7 are valid provided s« is replaced by min{0, >} and the role
of the inequality 0 < 8 — a < 1 is played by

|8 —a—1/2] < 1/2 4 min{0, »}.
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