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Abstract. The system of boundary integral equations of linear isotropic elasticity,
with the double layer potential generated by the preudo-stress operator, is considered
on surfaces with a finite number of conic points. The solvability of the system is
established in various function spaces. Representation for the inverse operator of the
system in question is obtained in terms of inverse operators of some boundary value
problems. Pointwise estimates for the kernel of the inverse operator of the system
and their derivatives of any order are derived together with ‘quasilocal” estimates
for solutions of the integral equations. The Laplace operator is contained here as a
special case.
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1 Introduction

This paper is a developement of our article [MG]. Here we study boundary integral
equations corresponding to the system of linear isotropic elasticity

AU+ (A + p) Vdive =0

in the case when the double layer potential is generated by the pseudo-stress operator.
The integral equations are considered on a closed bounded two-dimensional surface
which is smooth outside a finite number of conic vertices.

In Section 2 the so called quasilocal estimates for solutions of boundary integral
equations are obtained. Using these estimates and pointwise estimates for kernels
of inverse operators obtained in [MG], we prove theorems on invertibility for the
above mentioned integral equations in various function spaces and obtain pointwise
estimates for derivatives of kernels of corresponding inverse operators. Some of the



results relating the harmonic, elastic, and hydrodynamic potentials were stated in
[M1] and [M2], Sect. 1.6. Solvability of boundary integral equations of elasticity
theory on Lipschitz surfaces in L,, 1 < p < oo, was independently established in
[DKV] by a different method.

We describe main results of the article. Let I' be the boundary of a closed simply
connected region GT in R3 which coincides with an open cone K+ near the origin.
We assume T'\0 to be a smooth (of the class C*) surface. Let K~ = R3\ K+ and
OF = {x € K* : || = 1}. The notations used in [MG] have the same meaning in the
present paper.

We consider the system of integral equations associated with the first boundary
value problem of linear isotropic elasticity in G*

1+T)p=f (1.1)

where 1 is the identity matrix and T' = 2 W, with Wyo being the direct value of the
double layer potential on I' generated by the pseudo-stress operator (see [KM]).

First we formulate our results on the solvability of system (1.1) in spaces sz’ 5()
and Né’a(I‘), where 1 < p < 00, @ € (0,1), B € R, and [ = 0,1,.... The spaces are
defined as follows.

Given a function u supported by an arbitrary coordinate neighbourhood on I'\0,
the norm of u in Vpl’ﬁ(F) is defined by

> Pl s
0<y<i

where r(z) = |z| and V; is the vector of all derivatives of order j. Similarly, the norm
in Né’o‘(r) is introduced as

B _ B
sup Tﬁ*lfa(x) |u(1,)| + sup |7" ({E)VZU(SL') Ta(y)vlu(y)|
z€l'\0 z,y€T\0 |30 -yl

The operator 1 + T in (1.1) is an isomorphism of the space ‘/ZJH(F) onto itself
for all p, t, and | such that

l<p<oo, O0<t+2/p<l+sx, 1=0,1,... (1.2)

Here s is a real number depending on the shape of the cone KT. In the case of
harmonic potentials s is positive, being equal to the minimum of 6™ and v, where
0% and v~ are positive numbers such that 67 (67 + 1) and v~ (v~ + 1) are the first
eigenvalues of the Dirichlet ptoblem in Q7 and the Neumann problem in Q~ for the
Beltrami operator. It follows from [KM] that s is positive for integral equations of
elasticity if the cone KT can be explicitly described in a Cartesian coordinate system.

A similar assertion is valid for the space Néfl(I‘) with (1.2) replaced by

0<s—a<l+sx,  ac(01), 1=0,1,...

We show also that the operators 1 +T and (1+T)~! are continuous in the spaces
C(T), C%*(T) with 0 < a < 5, L14(T) for 0 < t+2 < 1+ 5 and Lo +(T) for
0<t <1432

Here C and C%® are the spaces of continuous and Holder continuous functions
and the norm in L, ;(I") is introduced by

el eqry = 17wl -



Along with (1.1) we consider the formally adjoint system
1+T =g (1.3)
and show that the operator 1+T* is an isomorphism of the space Vpl’tH(F) onto itself
if
1<p<oo, 1—2<t+2/p<2, 1=0,1,...
Similarly, the operator 1 +T* is an isomorphism of the space Néfl (") onto itself if
a € (0,1), 1—x<d<?2, 1=0,1,...
Moreover, the operators 1+T* and (14 T*)~" are continuos in the space Ly +(T)
forl—sc<t+2/p<2andin Lo (T) for 1 — s <t <2.
We shall prove that in the case of all above mentioned spaces, the inverse operators
of systems (1.1) and (1.3) can be written as
A+T)'=1+1L, A+T ' =1+L" (1.4)

Here L is an integral operator on I' with the kernel L(x,y) satisfying the estimates

cla| 1Ny 72 1 (| |yl * == + elyl*t 720, 202] < |yl

IL(z,y)] < S cly| o —y|~ o=l ly| < 2|z| < 4]yl
cla| =1y ==yl /|2 e, lz| > 2|y,

where & and T are multiindeces of orders |o| and |7|, 8] is the Kronecker index, and
€ ia a sufficiently small positive number.

2 Quasilocal estimates for solutions of integral equa-
tions and theorems on isomorphisms

Let K1 be an open cone in R3 with vertex at the origin, bounded by the surface 9K .
We assume that K+ can be explicitly described in a Cartesian coordinate system. We
also suppose that the subset QT = {z € Kt : |z| = 1} of the unit sphere has smooth
boundary.

In what follows, by {U;}1<;<n we denote a finite covering of 9K \0 by open sets
U; C 9K *\0 such that
1. for each U; there exists a homeomorphism 7; onto a plane angle V; and

vj(tz) = tvyj(x) forallx € Uj, t € R,

2. if U; NU; = (), then the mapping v, o v; "

vi(U; NU;) = v;(U;NU;) s infinitely differentiable.

Moreover, we assume that |z| = |vy;z| for all z € U;, j = 1,..., N, where | - |
on the left-hand side means the norm in R?® and the same symbol on the right-
hand side means the norm in R?. Let {{;}1<j<n be a partition of unity on K \0
subordinate to the covering {U;}i<j<n. Suppose that the functions &; are smooth

and positive homogeneous of order 0. We let v;},ﬁ(aKﬂo), with 1 < p < oo, B €R,
and [ =0,1,..., stand for the space of functions with the norm

>(x/

1<G<N o<jo|<t /R

1/p
2P 97w (@) pdr )



where
u; = &uo v; on Vj

and u; = 0 in the exterior of V;. Using an equivalent atlas and another partition of
unity, we arrive at an equivalent norm.

Further, let Né’a(8K+), with @ € (0,1), 6 € R, I = 0,1,..., be the space of
functions with the finite norm

> (sup lellus iy + sp [l (@),
1<j<N z€ER? zER?
where B(r,z) is an open ball of radius r centered at x,

ulg, = sup Z |z — y [P |07 u(x) — O u(y),

PYEL g1

[p] is the integer part of p, o = (01,02) is a multiindex of order |o| = o1 + 09, and

07 = 1ol /0x 0232

Let I be a simply connected domain in R? with compact closure. We assume that
0 € T and that I'\0 is a smooth surface. Moreover, let I' coincide with K™ in the
ball B, of radius ¢ centered at 0.

We note that the spaces V;i 5(I') and Né’a(F), defined in Introduction, admit equiv-
alent with norms

||u||vplﬁ(r) = ”nuHVIfﬁ(aKﬂ + (X = n)ullwir s, )

el ooy = lll oo o+ 1L = Dullernry .

where 7 is a function in the class C>°(R?) such that =1 in B, /3 and 1 = 0 outside
B..

2.1 Quasilocal estimates

Let %T be the operator of the direct value of the elastic double layer potential on I"
(see [KM]), defined for almost all x € T by

z) = / T (,€) $(€)de.

Here ¢ € L1 (T') and T (z, &) is the matrix with elements
O 6l do—el) o 1
(9& 851 877,5 |l’ — f| ’

where X and p are the Lamé constants, 0/0ne is the normal derivative with respect
to the outward normal to T'\O at &.

(T(@,€))i5 = (200 +3(A+n)

-1
2r(A+3p)

It is easily verified that for ¢ € C(I") the last integral is a continuous function on
I'\0. Moreover, for 1) € C(T") there exists the limit

lim T(x,8) P(8)dse

m\032—0 Jp

- / T(0.9) (¢~ vO)dsc+ Jim [ T(r.€) dsew(0)

Mo0sz—0

(- /F T(0.)dsc )v(0) + /F T(0,€) $(€)dse,



where 1 is the identity matrix.

So, in the case 1 € C(I') we shall use the following definition of (7%)(x) for all
z el

[ T v, rero,
(T0)(@) =
(1 —/FT(O,ﬁ) d85)¢(0) +/F7'(0,§)1/J(§)ds§, —

Defined in this way, the operator T' maps the space C(T") continuously into itself.

Let ¢ and y stand for nonnegative functions in the class C°°(R?) which are equal
to 1 in the ring {z : p < 2|z| < 4p} for some p > 0 and vanishing outside the ring
{z : p < 4|z| < 16p}. Besides, we assume the following two properties to hold:

(i) [0¢(x)| < Coplol, |89x(2)| < Cp p 1]

(i7) one of the inequalities |z| < d || or |¢] < d|z| with some d € (0,1)

are valid on the support of the function
(2,6) = (@) (1 = x(¢))-

Lemma 1 Let 1 < p < oo. If u € W/(I'\0,loc) N L1 (T) is a solution of the equation
(14+T)u = @, then

ICully ) < c(”xga”vzf,l(p) + (/F< A mdsg)pd%)w).

Proof. Let p be so small that T’ coincides with 9K ™ on the ring {z : p < 4]z| <
16p}. For any j = 0,1,...,1, let ¢, ; stand for functions in the class C*°(R?) such
that for each pair (, j, (5 j+1 the properties (i) and (i) are valid. Multiplying the
equality (1 +T)u = ¢ by (, 0, we obtain

Co,0t + CpoT'Cpru = pp, (2.1)
where
©p =G0 — CoT (1 —(p1)u
Putting
z=pX, oX)=u(pX),  ¥(@)=p(pX)
and using (2.1), we conclude that the vector-valued function h(X) = v(X) (1,0(X)
satisfies the equation

h+Tih =+ (Ty G0 — CoT1) 1o (2.2)

on I';. Here I'y is a smooth surface without boundary, coinciding with 0K+ in the
spherical layer {z : 1 < 4|z| < 16}, and 37T} is the operator of the direct value of the
double layer potential on I';.

From the explicit formula for the kernel 77 (z,y) of T} one obtains the estimate:
107, 0y Ti(w,y)| < clz —y| 727171717 (2.3)

Hence
10, 05, K1 (2,9)| < clw —y|~ 71717,



where Ky (x,y) is the kernel of

[T1,C10l =T1 G0 — Cro Th-
Here and in what follows, the symbol 97, means the derivative of order |o| in a local
coordinate system (2’ is the coordinate of the point x).
Using the Calderon-Zygmund theorem on the continuity of a singular operator in
the space L,, we conclude that the mapping
WE(T1) > ¢ — [T1, ol € WH(TY) (2.4)
is continuous for all £k = 0,1,.... Here W}f is the Sobolev space of functions whose
derivatives up to order k are in L.

This and the fact that (1+7;)~! continuously maps W;f(l"l) onto itself imply the
estimate

IPllwacey < C(lhwiey + Iaaelwre,), =12,

for solutions of (2.2). Returning back to the variable x = p X, we arrive at the
inequality

ool ) < C(Iepllvy oy + lpaulizs 1 )-

If | > 1, we subsequently multiply (1 + T)u = ¢ by the functions ¢, ;, j =

1,2,...,1—1, and use similar arguments. Then, after [ — 1 steps, we obtain
1Co.0tllve (v
(2.5)
< C(l6aellv ) + IGpaull,m + X 160 T = Goisullyis o)
0<j<i-1 o

If [z| < d[¢], d € (0,1), then [z — & > |¢] — 2| > (1 —d) [¢].
Thus, the estimate
[z =& > (1 —d)(|=[ +[£])/2
holds on the set
{(z,€) « =] <de]} U A{(,€) : €] <dlxl}.

Estimating the last sum on the right-hand side of (2.5) by (2.3), we complete the
proof of lemma.

Lemma 2 If u € CH*(T\0,loc) is a solution of the equation (1 + T)u = ¢, then

I ullyre oy < e(IX@lyte iy + / (14 p(Ig] + ) ™) [ul€)] dse ).

Proof. It is similar to that of Lemma 1. The only difference is that one should
use the continuity of the mappings

CH(y) 3 ¢ — [T1,Ci0] @ € CFFL(TY),

C(T1) 3¢ — [T1, 0] ¢ € CO(T1)



instead of (2.4). The inequality

1G0T = Gpsulges oy < ¢ [ (L p €+ o)) ()] dse
follows from (2.3) and the estimate
T(2, ) < C(1+2]€]7%) on {(z,€) € I': 2Jz| < J¢]}. (2.6)
The last estimate results from
| cos(ny, =z —y)| < |sin(y,z —y)| = |sin(z, y)| |2] & — y| 7" < Ja| o —y| 7",

where z € K*, y € K™, and n,, is the normal vector to 9K at y. The lemma is
proved.

In what follows, * denotes the passage to the formally adjoint operator.
Lemma 3 Let1 <p<oo. Ifu € W;(I‘\O, loc) is a solution of the equation
(1+T")v =1,

then
I6vlhg e < (el o+ ( ([ Ix@e] + 16D 2otelase)"as.) ™).

This assertion can be proved similarly to the proof of Lemma 1 with T replaced
by T*.

Lemma 4 If u € CH*(T'\0,loc) is a solution of the equation (1 +T*)v = 1, then

¢ ol ) < C(IxE Iyt oy + / (1€l + )"21o(E)] dse )

The proof of this lemma is similar to that of Lemma 3.

2.2 Invertibility theorems for 1 +7 and 1+ T*

Let L, .(T') be the space defined in Introduction.
Lemma 5 The operators T and T* are continuous in the space Ly, 4(T) for all p and

t such that
1< p<oo, 0<t+2/p<2.

Moreover, the operator T is continuous in Lo (T).

Proof. We write the operator T' defined by

(To)@) = [ T(w.€)o(6) dsc. (27)
as the sum of three integrals T, k = 1,2, 3, over the sets ['y:

Fy={¢el: 20 <l|af}, To={¢eT :[z[ <2[¢] <4z}, Ts={{el:[¢]>2]}.



By the definition of T (x, ) we have

clél=2, 2x] < ¢,
T (@, O < clal o — &7 8] <2z < 4[], (2.8)
clz|72, |z > 2],

We prove the continuity of each Tj. Clearly, it suffices to show that

1Tkellr, .(ro) < Cll@llL, .(ro)s k=1,2,3, (2.9)

for ¢ supported by I'g =T NIK ™.
Let ,
F(r):/ f(t)dt for a < —1/p,
0
and
oo
F(r) :/ f(t)dt for o> —1/p.

Then Hardy’s inequality

IFNL, &ty < ClUfllL, o) (2.10)

is valid. Let v = 0K T N S?, where S? is the unit sphere in R? centered at the origin.
We introduce the function @ on R}‘_ by

w:Lw(ry) dly.

Setting
F(r) = / ()| dr,
0

by (2.8) we have
ITyellL, . ro) S CIFlL, , op)p@L)-
Together with (2.10) this implies (2.9) for k=1,¢ < 2 —2/p.

In a similar way, setting

r) - | () dr

and using (2.8) and (2.10), we arrive at (2.9) for k=3, t > —2/p.

Since |z| < 2[¢| < 4|z| on Iy, the operator with the kernel |z|~!T3(x,£) [€]* is
continuous in L,(T") for all ¢, where Ta(z, &) is the kernel of T5. Hence the operator
T is continuous in L, (T") for 1 <p < o0, 0 <t+2/p < 2.

Replacing T by T* in the above argument and using (2.8) for the kernel 7*(z, §),
we conclude that T is continuous in Ly, 4(T') for 0 < ¢t +2/p < 2.

We showed that for p = oo, t = 0 the estimate (2.9) holds for k = 1 and k = 2. By
(2.6) this estimate is valid for k¥ = 3. Thus, the operator T is continuous in L. (T").
The proof is complete.

Now we present estimates for the kernels of (1 + 7)1 and (1 +7*)~! obtained in
[MG] to be used henceforth.



Theorem 1 (see [MG]) Let 0 < 8 < 1 and let | be a positive integer. It f € Né’fl(F)
and g € Né,j’a(l"), then
1+ 'f=Q0+L)f, (1+T'g=(1+M)g. (2.11)

Here L and M are integral operators on I'\O with the kernels L(z,y) and M(x,y)
obeying the estimates

clyl2(2l/ly) == +clyl*=1 75, 2z <|y|

Lz, y)| < Qelyl™Hz -y, ly| < 2|z| < 4]y|, (2.12)
el =Myl = (yl/l=]) e, 2| > 2[yl,
and
clyl=2(J=l/[yl) =<, 2lz| < [yl
IM(z,y)| < < clylHa —y 7, ly| < 2z < 4]y,  (2.13)

cla[ 7y Tyl /a7 + eyl e ol > 20yl

where s is a number in (0,1] depending on the shape of the cone KT and ¢ is a
sufficiently small positive number.

Theorem 2 Let 1 <p<o0, 0<t+2/p<l+x 1—3x<B+2/p<2. Then the
operators (1+T)~! and (1+T*)~! are continuous in the spaces Ly (') and Ly, 5(T')
respectively. The representations (2.11) can be extended to all functions f € Ly (I")
and g € Ly, 5(Q). Moreover, the operator (1+T)™1 is continuous in Lo (') and C(T).

Proof. By (2.12), the arguments used in the proof of Lemma 5 show that the
operator L in (2.11) is continuous in Lo (I") and L, (') for 0 <t +2/p < 1+ 5.

Since the space C5°(I'\0) is dense in L, ;(I") for p < oo, the first representation
in (2.11) extends to all f € L,(T) for 0 < t+2/p < 1+ 3. For f € Ly (') with
0 <t <1+ s the same representation is valid by the embedding

Lm7t(F) C L2,t71+s(1—‘)7 g = (1 + 2 — t)/2

Thus, (1 +T)~! is continuous in L, +(I") and L (T).

Let f be the restriction of an arbitrary function from C°°(R3) to I' and let ¢ =
(1+T)~1f. Using the identity T(f(0)) = f(0), we obtain

o= (1+T)7(f = F(0) + 5(0)

By (2.11),
o=+ L(f — F(0) ~ 57(0)

which along with (2.12) and f(y) — f(0) = O(|y|) shows that ¢ is continuous at the
point 0. Since (1 +7)~! is a bounded operator in L (I") and since it maps a dense
subset of C'(T") into C(I), it follows that (1 +7)~! is a bounded operator in C(T).

By Theorem 1 we see that the second formula in (2.11) extends to g € L, g(I")
and the operator (14 7*)~! is continuous in L, s(I'). The proof is complete.

Lemma 6 The operators T and T* are continuous in the space Vpl,[i+l(r) for 1 <

p<oo,0<B+4+2/p<2,1=12...and in the space NéfHa(F) for 0 <6 < 2,
a€e(0,1),l=1,2,....



Proof. Let {(j}_ococj<oo be a partition of unity on R3*\0 subbordinate to the
covering U;, where U; = {z : 2971 < |z| < 271} and let x; be a function supported
by {z:2972 < |z| < 29%2} such that ¢; x; = ;. Suppose that

07¢5] +107x;] < Cp 2771

for all multiindices o. Moreover, we assume that one of two inequalities |z| < d [€] or
|€] < d|x|, where d is a number in the interval (0, 1), is valid on the support of the
function

(z,8) = G(z)(1 —x;(6)-
We write the function (;T¢ as
GTe = Txj o+ GT(A —x5) ¢

Since the operator of the direct value of the double layer potential on smooth surface
is continuous in Sobolev spaces, we have

”CjT@”Z\)/pl,l(p)
(2.14)

< (I el oy + / ( / @)l (lel + €D 72 fu(€) | dse ) ds.).

Let N be so large that the ball of radius 2"V centered at 0 contains I'. Multiplying
inequalities (2.14) by 2/P# and adding them for all j = —oo0,..., N, we obtain

14
el
(2.15)

<oy, o+ [ (12 [ el + 1D 2ol dsc) as.)

To obtain the continuity of 7" in V! 5, (I") with 0 < 8+ 2/p < 2, it remains to show
that the right-hand side of (2.15) is estimated by C ”rﬂ‘PHi,(F)'

Clearly, it suffices to prove that

P
(1P [ ol + i 2@ dse) dss < Cllels, oy (210
Iy Iy

holds for functions supported by I'o = TN K. Let

#(r) = [ wlro)d,

gl
where v = 0K N S2. The left-hand side of (2.16) is majorized by
oo
0

¢ [T ([T e+ ) ear)ar

<C / 2 ( / rlp(r)dr ) dr +C / o ( / () dr ) dr.
0 0 0

T

Using Hardy’s inequality (2.10), we arrive at (2.16).

10



In the case of Holder spaces, inequality (2.14) takes the form

HCJ’TSO”N;;:’Q(F)
(2.17)

< (I ¢l iy + / (142701 +2))7*) lp(©) dse ).
Multiplying both sides by 27° and estimating the last integral in (2.17), we arrive at

IGT el oy < C(InG @laee iy + 10l sir)

for 0 < § < 2. Combining this with Lemma 5, we conclude that 7" is continuous in

the spaces Nll+aa+6( ) for 0 <§ < 2.

The continuity of T is proved in a similar way.

Theorem 3 Let 1 < p < oco. Then the operators (1 + T)~! and (1 + T*)~! are
continuous in the space VlﬁJrl( Ywith0 < f+2/p<l+sxandl—»<f+2/p<2,

respectively, as well as in Nl+a+5(l") with 0 <6 <2 and 1 — 3 < § < 2, respectively.

Proof. The arguments used in the proof of Lemma 6 show that the assertions of
the theorem follow from quasilocal estimates (see Lemmas 1 -4) and the continuity of
(14+T7)~! and (1 +7*)~! in the space L, (') (see Theorem 2).

2.3 Invertibility theorem for the operator 1 + 7' in weighted
Holder spaces with nonhomogeneous norms

Let G be a domain with compact closure G+ bounded by I'. We denote by C’lﬁ’a(G“‘)7
O<l4+a—-p<1,1=1,2,..., the space of functions with continuous derivatives up
to order [ in GT\0 endowed with the norm

||UHola (G+) = SUP 2| [u }B(m/g )NG+
(2.18)

1—
+ sup |x|'8 ot § |07 u(w)| + ||“Hcl+a B(GT)
rzeGt lo|=1

Here B(r,z) is the open ball in R? of radius r centered at z,

ufy = sup Y |z —y|1|0gu(x) — ogu(y)l,
z,y€Q
lo=[e]
[p] is the integer part of p, 0 = (01,02, 03) is a multiindex of order |o| = o1 + 02 + 073,
and 97 = 9171 /9x ] 023> Dx3° .

Similarly, for G~ = R3\G+ we introduce the space CZB’O‘(G’). We say that a
function supported near 0 belongs to this space if the norm obtained from (2.18) after
replacement of GT0 by G~ is finite. If dist(suppu,0) > 1, the function u belongs to
CZB’G(G_) if and only if the norm

l
sup [zl 4 sup [a] [u(a)
zeG— zeG—

11



is finite. For an arbitrary function. the norm is obtained with the help of a partition
of unity.

The space of traces on I'\0 for functions in C[g"a (G¥) is denoted by Cé’a(F).

Further, let Clﬂ’a(G) be the space of functions in G = GT NG~ whose restrictions
u® to G* belong to C’lﬁ’a(Gi) and

_ +
||UHC;;Q(G) - Z:t: Hu ||C}3>O'(Gi).

Consider the transmission problem

A*u=0 in G,
(2.19)
ut —u" =¢ on T, (Nu)t — (Nu)™ = on T'\0.

Here
A" = p A+ (A4 p)Vdiv,

N = N(d.,n,) is the pseudostress operator, u* is the limit value of u on T' as the
point z € G* approaches z¢ € I

Lemma 7 Let 0 < o — 3 < 1 and let | be a positive integer. If ¢ € Cé’il(F) and
(NS Né:j’a(F), then there exists only one solution u € C[lg’il(G) of (2.19) and

lulose, < € (Iellors,ay + Il )-

B+l

Proof. The homogeneous problem (2.19) (i.e. ¢ =0, ¢ = 0) is equivalent to the
equation
A*u=0  in R3\0. (2.20)

Consider the operator pencil on the unit sphere S? defined by
(5,0)(0) = 17 P2A Y u(0),

where v is a vector-valued function on S2. It is known that eigenvalues of s, are
integer. Moreover, the multiplicity of the eigenvalue v = 0 is equal to 3 and the
Jordan chains corresponding to v = 0 consist of the only eigenfunction v = const.
Using the fact that problem (2.19) is solvable in weighted spaces with homogeneous
norms together with the asymptotic representation of the solution of (2.19) near the
conic point (see [MP]), we complete the proof of the lemma.

Theorem 4 Let o € (0,1) and let | be a positive integer. The operators T and
(1+T)~! are continuous in the space C;B’_T‘_I(F) with) <a—pF<land0 < a—p < x,
respectively.

Proof. Let u € C’é’j“rl(G) be a solution of (2.19) foe ¢ = 0 and ¢ € C’lﬁ’il(F). By
Lemma 7,

lullote @y = Cllelleye, iy (2.21)

By Lemma 7 from [MG] we can represent « in the form

u=W(ut—u")=We,
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where W ¢ is the double layer potential. Using this together with (2.21) and the
relation T = 2(W¢)* — ¢ (see Lemma 5 of [MG]), we conclude that the operator T
is continuous in Clﬁ’i‘l(l") for0<a—-8<1

The continuity of the operator (1 + 7)~! is an immediate corollary of the repre-
sentation of (1 +7)~! in terms of inverse operators of boundary value problems (see
Theorem 4 in [MG]) and the continuity of these operators (see Lemmas 1 and 4 in
[MG)).

3 Pointwise estimates for derivatives of the kernels
of the operators (1+7)~! and (1+7*)"!. Continuity
of (1+T)7! in the Holder space C%*(T)
3.1 Pointwise estimates for derivatives of the kernels L(z,y)
and M(z,y) of operators L and M in (2.11)

Lemma 8 If z # y, then .
L(z,y) = (M(y,2))", (3.1)

where M* is the ajoint matriz of M.

Proof. Let
@ € Lo (), e Ly 4(I), —-1<t<osm

We substitute the functions
u=(1+L)p, v=(0+M)y

into the equality
(14 T)u,v) . = (u, A+ T*)),
where (-, -)r is the scalar product in Ly(T").
Combining this with the identities
A+D)A+LDp=¢, A+T7)A+ M) =1,

which follow from Theorem 2, we arrive at
(¢, Myp)r = (Lo, ¥)r-
By Fubini’s theorem, one can write the last equality as
(o, Kp)r =0,  p€Log(l), ¢ € Ly(I), (3.2)
where K is the integral operator with the kernel
K(z,y) = M(z,y) = L*(y,z).

By Theorem 2, the kernel |z|~*K(z,y)|y|" generates a linear functional on Lo(T) x
Ly(T). Therefore, it follows from (3.2) that K(x,y) = 0 almost everywhere on " x T'.

The representations for the kernels £(z,y) and M(x,y) obtained in [MG] show
that the functions (z,y) — L(z,y) and (x,y) = M(z,y) are continuous on the set

{(z,y) € (\O) x (I\0) : = # y}.
Thus, K(z,y) = 0 for « # y. The lemma is proved.
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Corollary 1 Let y be a fized point in T\O. Then the functions x — L(x,y) and
x — M(z,y) are solutions of the equations

A+T)L(,y) = =T(v), (3.3)
A+TH)M(y) = =T (), (3.4)

which are equivalent to the relations
/FE*(x,y)((l +T*)) () ds, = /T* z,y) (x) dsy,
/F./\/l*(a:,y)((l +T)p)(x)ds, = /T z,y) (x) dsy,
foro € Lyt (T), v € Ly _4(T"), —1 <t < sz
Proof. By Theorem 2 we have the equality

(L M)(1+ T = ¢

which can be written as

/WWJMPHﬂw@M%:*/T@wWMm
T r

Using (3.1) and the identity 7*(y,x) = T (x,y), we arrive at (3.3).
Analogously, (3.4) is a corollary of the identity
1+L)14+T)p=0.

Theorem 5 Let x and y lie in the same coordinate neighbouthood. Then

¢ | lotrmly|=2lrl=xe 1 g0 |ypemi=lri=z, o] < Iy
107,05 Lz, y)| < 4 ||~z —y| 717171, lyl < 2|z| < 4fyl,

cla|Hololmete |y T iribete, || > 2yl

(3.5)

where € is an arbitrary small positive number, ¥’ and y' are local coordinates of © and
Y.

First we prove an auxiliary assertion, where the prime denotes the passage to local
coordinates.

Lemma 9 LetI'y be a smooth surface and let %Tl be the operator of the direct value of
the double layer potential on I'y. If x and y lie in the same coordinate neighbouthood,
then

107,05 Ha (2, y)| < Cla -y~ 7171717, (3.6)

where Hi(x,y) is the kernel of the operator Hy in the representation
A4+7T)'=1+H,.

Proof. We estimate

0y Hi(z,y), |7] =L

Let B(p,y) be the open ball in R? with radius p and center at y. Further, let Uy,p
and V, , stand for the sets

I mB(p/27y) and Iy ﬂB(p,y),
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where p = |z — y|/2.

We introduce the functions ngg, j =0,1,...,1 + 1 of the class C°*°(R?) which

satisfy

(a) n{) =1 on B(p/2,y), nY) =0 outside B(p,y),

(b) 107nF)(2)] < Co p~ 17,

(¢) the inequality |z| < d ||, d € (0,1),is valid on the support of the function

(2:6) = ) (z) (1= D (€).

The same argument as in the proof of inequality (2.5) leads to the estimate

pe l+a ol o
+ ;p o |070(2))|
< c(p“a[w]”“ + swp W) (P TR s [69(:)))
o =0 Z€Vyp
for solutions of the equation (1 + T7)v = 4, where
o = ()
By Lemma 7 in [MG], the kernel H;(z,y) obeys the estimate
[Hi(z,y)] < Ol —y[7"
Unifying this with (3.7) and the fact that the function
z = Hi(z,x) = (7—[1(1:,2))*
is a solution of the problem
I+ T Hi () = =T (),
we conclude that
05 Ha (2, )] < Clo —y| 7171,

Now we estimate

87,05 i (x,y), ol =k, |r]=1L.

Let p = |z — y|/4. Consider the equation (14 T1)u = ¢ instead of (1 + T7)v =

From (3.7) we obtain

POl + Y plol sup [0gu(9)]

Uy,p
o<k §€Uzp

< C( sup [ ()] + p" ]yt
EEVL,p 1
k

(AR s [0(E)1)).

=0 z,p

Here _ _
W =T (1 =) u

15

(3.7)

0.

(3.9)



Let A;/ be the finite difference operator of order [. It is clear that the vecto-valued
function

& = AyHa(E,y)

satisfies the equation
(1 + Tl) A;’Hl('v y) = _Afg’ﬂ('a y)

If the shift in the finite difference A;,Hl(z, y) is sufficiently small, then inequalities
(3.8) and (3.9) lead to (3.6). The proof is complete.

Proof of Theorem 5. We put 2 = |y| X, y = [y|Y and denote by I, the image
of T under the mapping © — X. By (3.3), the function

X = Ly (X,Y) = [yPL(»ylX, [y]Y)
satisfies the equation
(L+T,) AV Ly (1Y) = =AL Ty (4 Y) (3.10)

on 'y, for all y € I'\0. Here 3§77, is the operator of the direct value of the double
layer potential on I'j,;, 37,/(X,Y) is its kernel and A;, is the finite difference of order
l=|7|

It suffices to consider the case when the point y € T lies in a neighbourhood of the
vertex of the cone. First we obtain estimates for

070y L, y) for |y| < 2|z| < 4]y|.

Let ¢;, 1 =0,1,...,k+ 1, k = |o| + 2 be functions in C* such that
(a) ¢;=11in1 < 2|¢| < 4, ¢; = 0 outside of the set 1 < 4|¢] < 16,
(b) one of the two inequalities |z| < d|¢] and [¢] < d|z], d € (0, 1), is valid on the
support of the function (z,&) — (2) (1 — ¢+1(§)).

Multiplying (3.10) by (o, we write it as

Co Ay Liy) + o Thy) G A Ly = =Co Ty (1 = C1) Ay Ly (3.11)

Let T'; be a closed surface coinciding with K+ on the set 1 < 4|¢] < 16 (see
Section 2 in [MG] and let %Tl be the operator of the direct value of the double layer
potential on I';. It is clear that a representation similar to (3.11) holds for the kernel
H1(X,Y) of the operator (1+ T7)~! — 1:

AL HL 4+ T G AYH = = AV T — Tl — G) AL H,. (3.12)

We set

Ay Ly + G AV Hy + AL L.

From (3.11) and (3.12) we obtain that the vector-valued fuction

X = v(X) =G Ay.L],(X,Y)

solves the equation

U+T1U=’¢1 —|—(T1 C.O _COTl)Cl AIYI,C/ (313)

[yl

on I';. Here
Y1 =G Ti(1— (1) A Hy — Go Ty (1 — Q)AL L],
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The representations obtained in Section 2 of [MG] and Lemma 9 lead to the estimates

eyl =21 2|/l + e lyl T ITE 202 <y,
03 Lz, y)| < q ely| =y~ lyl <2lz| <4ly[,  (3.14)
el =y~ Iyl /), || > 2]yl

and
|0y (Ly(X,Y) = Hi(X, V)| <C, 1<2|Y| <4, 1<4|X]|<16. (3.15)
By continuity of the operators

(]. +T1)71 : WZk(Fl) — WQIC(Fl),
[T1,Go] = W5 (T1) — WytH(Ty)

equation (3.13) implies
lellwg s < € (lenllwg ey + 16 A £l y))-

It is clear that (3.11) - (3.13) are valid if ¢; is replaced by (;+1. Thus,

k
Ilhwgcesy < O Ibillwsn + 16 A Ly llzacrs) )

=1

where
i = G T = Gigr) Ay Hy — G Ty (1= Gig1) A5 L]y
Combining this with (3.14) , (3.15), we conclude that

||UHW,§(F1) <C.

Hence, by Sobolev’s embedding theorem and Lemma 9, we arrive at the inequality
|0%:0%: L1, (X, Y)| < 0(1 FIX - Y|‘1‘|"|—|T\)

for |7| =1, |o| < 3¢ —3/2,1 < 2|X| <4, |Y|=1. Returning back to variables z and
y, we write the last estimate as

07,0 L, y)| < Clal "o —y| 71171717

for |y| < 2|z| < 4lyl.

Now we turn to the estimate of 07,9;,L(x,y) on the set 2|z < |y|. We multiply
(3.10) by a function n € C*°(IR®) which is equal to 1 in the ball By » = B(1/2,0) and
vanishing in R3\Bg/3.

The function

X = 0(X) =n(X) AV L, (X,Y)

solves the equation (1 + Tj,)v = 1, where
W = =18 Ty + (Tiyn = nTiy) Ay Lyy)-

By Theorem 4,
olloge Tu) < C bl e, (3.16)
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with 0 < @« — 8 < s, k = 1,2,.... We show that the right-hand side on (3.16) is
bounded by a constant independent of y.

Let 0y be a function of the class C*°(R?) such that 6y = 1 for 1 < 4|X| < 3 and
0 =0 outside of {X : 1 < 5|X| < 4}. We write the vector-valued function ¢ as

b= > (3.17)

1<k<4
with

Y1 =—nAV Ty, Y2 =—(1—00)(nT}y — Tiym) Ak Ly,
Y3 = —0o (T} — Tiym) (1 — 00) A% L}y,

Vg = —0o(nT}y| — Tiyn)bo AlY’ﬁly\'

It is clear that
[l grm (Tlyp) < C.

To obtain the same estimate for 15, it suffices to show that

I+1
s (le2(X) + 2 ID%wa(X)] + 3 X2 D% (X)) < €. (3.18)
lyl lo|=1 lo|=1

We can write 15 in the form
$a(X) = (Bo(X) — 1) / T (X, 2)(0(X) — n(Z))\yf? Db L(y|Z. [y[Y )ds . (3.19)
|yl

First consider the case | X| < 1/4. It is clear that the integrand does not vanish for
|Z| > 2|X|. Hence
0% iy (X, Z)| < Co|Z] 727171,

We write 15 as the sum of two functions 1/1%1) and ¢§2) with integration taken over

1
Tl ={z €Ty, 1<2]s| <4}

and @
F|y| = {Z c F‘y‘ : |Z‘ > 2}

instead of I'| in(3.19). Since |Y| = 1, estimates (3.14) lead to the inequality
ool <C [ 1217 s, < 0
r
[yl
for sufficiently small increment of the argument in Aly,£|y|.
The boundedness of |8"1/1§1)| follows from the inequality

A [ WP Y. 12) ¢(2) dsz < C.

|yl
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which is valid for smooth functions on T',|. The last assertion results from (3.15) and
the continuity of the operator

(L+T7) " Wy (L) — Wy (T).

Now let 4|X| > 3. Then the integrand does not vanish for 3|Z| < 2. Hence
0% Ty (X, Z)| < Co|X| 727101,

Since 5|X| < 4 on the support of the function X — V(1 —62(X)), by (3.14) we have

|®wuwgc/ X|~2Wlds, < € |x|-2-17
Z€F|y‘:3|Z‘<2

for | X| > 1. Therefore, (3.18) is valid for | X| > 1. It is clear that the same estimate
holds for 3 < 4|X| < 4.

The estimate (3.18) for 13 is obtained in a similar manner.

Using a property of the commutator [n, T},|], we obtain
!
||7/)4||C§’+‘3;C(F‘y‘) <C ”00AY’£\y| HC’“*l"l(F‘ymsupp 0o)"

Consider a sequence of functions 6;(x), j =1,2,...,k such that
suppﬁj C(O,l), 9j9i+1:0j, j:1,27,k

Multiplying (3.10) by #; and using the same arguments as in the proof of Lemma 2,
we obtain after [ steps that

lallcrsae,) <€

Thus,
!
In Ay Ly, |‘C§‘+‘;(F\y|) =C

Setting 6 = a — s+ ¢, k = |o|, | = |7|, we arrive at
10%07 L1y (X, Y)| < C|X[*7lol= 2|X| <1, |o| > 0.
The last estimate is equivalent to

1070, L(a,y)| < Cla| 717 [y 7271 (|l /ly)) =, 21l < lyl.

It remains to consider the case |z| > 2|y|. Introducing new cut-off functions 7’
and 6}, obtained from n and 6, by replacing X by X/|X|? and using the inequality

lollyes o,y < Clllkaw,y  0<—a<ls

instead of (3.16), we get

l
1AY Ligillyze 0, \B20y < C-

Setting d = a+ 14+ 3% —¢e, k = |o|, | = |7|, we arrive at (3.5) for |z| > 2|y|. The
theorem is proved.
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3.2 Continuity of (1+7)7! in C%*(T)
Lemma 10 The operator T is continuous in C%* for all a € (0,1).
Proof. Let u =T ¢. By Lemma 5,
sup |u(@)] < sup fip(@)].

Next we prove the inequality
[ulf < Clelt (3.20)

Let x,z € T and let r = 2|z — z|. We use the equality

/T(Lf) dse =1
r
valid on I'; where 1 is the 3 x 3 identity matrix, to write
u(z) —u(z) = Z I,
1<k<4
with
D= [ 7@ - pla) dse
I'nB(r,x)
B=-[  T@le - e s,
I'nB(r,xz)
B= [ Tlagdse (o) - o),
I'nB(r,z)
L= [ (T8 - T.9) (6(6) - ola)) dse,
I'NB(r,z)

Since the integral

/ T(2,€)dse
I'nB(r,x)

is bounded, (3.20) follows from the inequalities:

L+ 1] < C o2 / v — €]+ dse < Crofglg
I'NnB(r,x)
and
L < C gt / & — £]~**+dse < Crofglg,
I'nB(r,x)

The lemma is proved.
Theorem 6 The operator (1 +T)~! is continuous in C%% for all o € (0, 5).
First we prove the following auxiliary assertion.

Lemma 11 The inequalities hold:

d

/ D<ol 0<it<2, s4t>2, (3.21)
M\B(ra) 17— EI°[€]

and

dsg 2-s5—t
B oottt 0<t<2, st<?, (3.22)
/FﬁB(r,a:) |J" - £|S|§|t

20



Proof. Let
E,={§eTl: 2]z ¢ <[{}

We write the left-hand side of (3.21) as the sum of two integrals J; and J over the

sets
Iy =T nNE)\B(r,x), 'y =T\(E, UB(r,x)).

Estimate (3.21) for J; is obvious. Since 3|z —&| > r + |£| on 'y, it follows, after
passing to the variable p = [¢|/r, that

|MSch+mr%ng

= C/ [E[* " (r + [€) " dse = CTQ_t_S/ p 1+ p)~Sdp.
0 0

Estimate (3.22) is proved in a similar manner.

Proof of Theorem 6. Representation (2.11) shows that it suffices to prove the
continuity of L in (2.11) in the space C%®(T"). Let v = L. By Theorem 2,

sup [v(2)| < sup [¢(z)|.
zel

zel’

It remains to show that
] < C [W]E. (3.23)

Equality (14 7)1 =1, where 1 is the 3 x 3 identity matrix, and relation (2.11)
imply
—Z/E(x,g) dse =1 on T
r

Let z,z € T and let r = 4 |x — z|. We write

v(z) —v(z) = Z Iy,

1<k<4

with

hz/j £(2,€) ((€) — ¥ (x)) dse,
I'nB(r,x)

b:—/ £(2,€) (H(€) — (=) dse.
'NB(r,z)

&:/ £(z,€) dse (¥(x) — (2)),
I'nB(r,x)

u:/ (L(2,€) — L(2,6)) (B(€) — (=) dse.
I'nB(r,x)

Making estimates (2.12) rougher, we obtain

_ g2 2
cy < [elomd el <2,
clel e — g7, Jzl > 2.
Combining this with (3.22), we conclude that
2O [ (le- g e - g dse < Croful. (329)
I'nB(r,x)

21



Estimate (3.24) for I follows in a similar manner. The corresponding inequality for
I3 is a corollary of the boundedness of the integral

/ L(x,&) dse.
I'nB(r,x)

It remains to prove the inequality
[l - el - g dse <O (3.25)
I'NB(r,z)

The case of points z and z lying near the vertex of the cone is the most significant.
Without loss of generality we can assume that z and z lie in the same coordinate
neighbourhood U. We denote by < the coordinate diffeomorphism which naps U
onto a bounded subset of the plane angle in R%. Let £ € U and let (p,6) be polar
coordinates of the point v¢£. Suppose that p = |£| for all £ € U. It is clear that the
proof of (3.25) is reduced to the proof of this estimate for two special cases:

(a) 01 = 0o, (b) p1=p2,

where (p1,61) and (p2,62) are polar coordinates of the points vz and 7 z.

Let 61 = 02, p1 < p2. We write the left-hand side of (3.25) as the sum of three
integrals uy over I'y, where

My={¢el: 20 <l|af}, To={¢el:|a] <2¢| <4z}, Tz ={ el : ¢ > 2]z}

Consider u;. Let y' = (p,0), p1 < p < p2, and y = v~ 1y/. Since |z| = p1 < |y|, the
inequality
2|y =& <3yl (3.26)

holds for all £ € T';. It is easily seen that
3z —¢ <4ly—¢ <5z —¢ (3.27)
for £ € T\B(r,x). In fact, (3.27) obviously follows from the inequalities
Aly—¢l<dlz—¢ +4ly—a| <dlz—¢l+4]z -z <5lz—¢,
and
Aly—¢lz 4z =& —4ly—a| >4z —¢ 4]z —a| >3z - .

Using the estimates for the kernel L(y, £) obtained in Theorem 5, then estimating
ly| by (3.26), (3.27), and applying Lemma 11, we obtain

P2
I'nB(r,xz) Jp1

P2
<c / / "2 e S dp [ — €| dse
I'nB(r,x) Jp1

0 .
3y 0 ©)|doo — €l dse

< C(p2 — pl)/ | — g7PEr g T dse < O
I'nB(r,x)

Here we used the existence of positive constants ¢; and cp such that

ci &=l < [v& =l <c2|&—n (3.28)

22



for all £, € U, where |£ — 7| stands for the distance between ¢ and n in R® and
|v¢ — | stands for the distance between ¢ and 7 in R2.

We turn to the estimate of uy. Let £ € T\B(r,x). Then || < 2|z| < 2|z| and
4|z <4lz—zx|+4|z| < |z —& +4|z| <5|z|+ & <11[¢].

Thus, 2[¢] < 4]y| < 11[¢] for € € T\B(r,z) and y = v~ 'y, v = (p,6), p1 < p < p2.
Hence, using the estimates obtained in Theorem 5 and (3.27), (3.28), we arrive at

P2
|u?|§/F ” )/ |z — & dpdse < Cre.
NB(r,x) J p1

Finally, consider ug. If £ € T\ B(r, z), we have

8lz| < 8lx| + 8z —z| < 4[|+ 2|z —& <6+ 2|z < T
Hence 7 |¢] > 8 |y| for all £ € T\B(r,z), y =7"", ¥’ = (p,0), pr < p < pa.

Putting € = (3 — «) /2, applying the estimates in Theorem 5 and then estimating
€] using 2|z — €] < 3 |¢], we get

P2
lug| < C / I dp€[ 7P | — €] dse
rnB(r,x) J p1

<clr - [ ol < 0
NB(r,x

Here we also used the elementary estimate
ps =P < (p2—p1)°,  s€(0,1)

It remains to consider the case p1 = py = p, 02 > 61. As before, we write the
left-hand side of (3.25) as the sum of three integrals uy. Let y = v~ ¢/, /' = (p,0),
0, < 0 < 6. Using the identity

0 B
£(’276) - E(‘r7§) = ) %‘C(?hg) do

and estimating the derivatives of the kernel £(y,&) by Theorem 5, we obtain

lur| < Cp (62— 91)/ |z — &2 rEre g me dse < O,
I'nB(r,x)
|uz] Scp(92—91)/ lv — |73 ¥dse < C'r?,
I'nB(r,x)
lug| < Cp” 7 (02 — 91)/ |z — g7 rE s < O
I'nB(r,x)

The theorem is proved.

Remark If the cone KT cannot be prescribed in a Cartesian coordinate sys-
tem, the estimates of the kernel L£(z,y) in Theorem 6 hold if s is replaced by
»' = min{0, »}. Theorems 2 ans 3 take the following form.
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Theorem 7 (i) Let
1< p<oo, ' <B+2/p< 1+

Then the operators (1 +T)~! and (1 + T*)~! are continuous in the spaces L, 5(T)
and L, g+1(T), respectively.
(ii) Let
l<p<oo, —#<B+2/p<l+s, ae(01),
— <5 <1+, l=12,....

T/lzen the operators (1+T)~1 cnlld (1+T*)~1 are continuous in the spaces sz7ﬂ+l(f‘),
NiGois(D), and Vi gy (D), NS5 (D), respectively.

3.3 Integral equations of harmonic potential theory

Since the operators A* and N (9,,n,) coincide with operators 1 A and 1 (Tan for
=1, A+ p =0,

where A is the Laplace operator and 1 is the 3 x 3 identity matrix, it follows that
we can carry over all the results obtained here to boundary integral equations for the
Laplace operator. Note that Lemma 2 from [MG] is valid without any assumption on
the shape of the cone.

Here is a summary of results.

Theorem 8 Let 6 and v~ be positive numbers such that 6T (6T +1) and v= (v~ +1)
are the first eigenvalues of the Dirichlet problem in QF = Kt NS? and the Neumann
problem in Q= = S2\Q+ for the Beltrami operator.

Further, let = min{d*,v=,1}. If p,vb € Lo(T), then the inverse operators
(1+T)~t and (1+T*)~1 of the boundary integral equations associated with the inte-
rior Dirichlet and the exterior Neumann problem for the Laplace operator admit the
representation

I+T) p=(1+Lyp, (1+T) g =(1+LWw.
Here L is the integral operator on T’ with the kernel L(x,y) obeying the estimates

clal 7y 2 (|2l /Iyl =5 + elyl o, 2l < yl,

lo]?
L(z,y)] < c| |71‘x, |7HGHT|
= b
|L(z,y y Yy lyl < 2|z| < 4lyl,
¢ ||y 71T (gl /2] 7, 2| > 2y,

where € is a sufficiently small positive number.
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Theorem 9 (i) The operator (1 + T)~! is continuous in the spaces

V6ga (D) forl<p<oo, 0<B+2/p<l+s, 1=01,...,

L, 5(I) for0<fB+2<1+ 2
Lo s(T) for0 < <1+
C(T) and C%*(T") for 0 < a < s,

Crfs@)  for —x<§<0,1=1,2,...

NSO s(0) for0<d<lse 1=12,...

(ii) The operator (1 + T*)~! is continuous in the spaces

L,s(T) forl<p<oo, 1—x<fB+2/p<2

Vpl,ﬂ+l+1(r) forl<p<oo, 1—x<f+4+2/p<2,i=1,...,

NS 5@ forl—s<86<2,1=01,2,...
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