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1 Introduction

This article is closely related to our papers [GM1], [GM3], [GM4] in which integral
equations of the harmonic and elastic potential theory on surfaces with conic vertices
were considered. Here we investigate the integral equation generated by the Dirich-
let problem for the Laplace equation in a 3-dimensional polyhedron, which is not
necessarily a Lipschitz graph domain.

We use the method proposed by one of the authors [M1] -[M4] which reduces the
analysis of boundary integral equations to the study of some auxiliary boundary value
problems. Different applications of the method can be found in [MZ1], [MZ2], [Z1],
[Z2], [LM], [GM2], [GM7], [MS].

By estimates for the fundamental solutions of the Dirichlet and Neumann problems
[MP1], [GM5] (see [M5] for detailed exposition), we arrive at the estimates for the
kernel of the inverse operator of the integral equation in question. Such estimates
lead to theorems on the solvability of this equation in various function spaces and, in
particular, in the space C of continuous functions.

The question of the validity of the last result was stated long ago. The solvability
of the boundary integral eqution in the space C over surfaces of a fairly wide class
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was established in the multi-dimensional case by Burago, Maz’ya [BM] and Kral [K]
under the requirement that the esssential norm |T | of the double layer potential T is
less than 1. This condition can be formulated in geometric terms. However, it does
not always hold even for sufficiently simple cones. Angell, Kleinman, Kral [AKK]
and Kral, Wendland [KW] succeded in compelling the inequality |T | < 1 for certain
3-dimensional polyhedra to hold by replacing the usual norm in C with an equivalent
weighted norm. The polyhedral surfaces considered in [AKK] are constituted by a
finite number of rectangles parallel to the coordinate planes.

The soilvability in the space C for the above mentioned integral equation on sur-
faces in Rn with a finite number of conical points was proved by Grachev and Maz’ya
[GM1], [GM3], [GM4] without any complementary geometric assumptions. Thus, it
was shown that the use of the esssential norm had been unnecessary and dictated
only by the method of proof. We, and independently Rathsfeld [R], extended this
result to arbitrary polyhedra. A direct approach based on the Mellin transform was
used in [R]. Some of the results of the present paper were announced in the lecture
[G1] and in the preliminary publication [GM6].

Now we briefly describe our results. We assume that Γ is a polyhedron in the
three-dimensional Euclidean space. By G+ we denote the interior of this polyhedron
and consider the Dirichlet problem

∆u = 0 on G+, u = f on Γ. (1.1)

Let O1, . . . , Om be the vertices of the polyhedron and let M1, . . . ,Mk be its edges.
We denote by ωj the opening of the dihedral angle with the edge Mj from the side
of G+ and we put λj = π/ωj . We use the notation

rj(x) = dist(x,Mj), ρi(x) = dist(x,Oi),

r(x) = min
1≤j≤k

{rj(x)}, ρ(x) = min
1≤i≤m

{ρi(x)}.

Let Ki, k = 1, 2, . . . ,m, be the cone with vertex Oi which coincides with G+ near
the point Oi. The open set cut by the cone Ki out of the unit sphere S2 centered at

Oi is denoted by Ω+
i and the set S2\Ω+

i by Ω−i . Let δi and νi be positive numbers
such that δi(δi+ 1) and νi(νi+ 1) are the first eigenvalues of the Dirichlet problem on
Ω+
i and the Neumann problem on Ω−i for the Beltrami operator. Further, we denote

by κi the minimum of δi, νi, and 1.

Let Wψ denote the classical double layer potential with the density ψ:

(Wψ) =
1

4π

∫
Γ

∂

∂nξ

( 1

|x− ξ|

)
ψ(ξ) dsξ, x ∈ G±.

We are looking for a solution of the equation (1.1) in the form of a double potential.
It is known that the density ψ satisfies the integral equation

(1 + T )ψ = 2 f.

Here T is the operator on Γ defined by the equation

(Tψ)(x) = 2W0ψ(x) + (1− d(x))ψ(x),

where d(x) = 1 for x ∈ Ω\Mj , d(x) = ωj/π for x ∈ Mj , d(x) = meas Ω+
i /2π for

x ∈ Oi, and W0ψ is the direct value on Γ of the double layer potential.

The following two theorems are our main results.
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Theorem 1 The operator
1 + T : C(Γ)→ C(Γ)

performs an isomorphism. The inverse operator admits the representation

(1 + T )−1f = (1 + L+M)f,

where L and M are integral operators on Γ with kernels L(x, y) and M(x, y) edmitting
the following estimates:

If Mj is the edge nearest to the point y and Oi is the vertex nearest to y, then

|M(x, y)| ≤ c ρ(y)κi−1−ε
( r(y)

ρ(y)

)λj−1−ε
.

If the points x and y lie in a neighbourhood of a vertex Oi, i = 1, 2, . . . ,m, this
neighbourhood contains no vertices of the polyhedron Oi and if Mj, Ml are the edges
nearest to the points y and x respectively, then

|L(x, y)| ≤ c ρ(y)−2
(
r(y)/ρ(y)

)λj−1−ε

+c
(
r(y) + |x− y|

)−2
( r(x)

r(x) + |x− y|

)λl−ε( r(y)

r(y) + |x− y|

)λj−1−ε

for ρ(x)/2 < ρ(y) < 2ρ(x) and

|L(x, y)| ≤ c ρ(y)−1
(
ρ(x) + ρ(y)

)−1
(min{ρ(x), ρ(y)}

ρ(x) + ρ(y)

)κi−ε( r(y)

ρ(y)

)λj−1−ε

in the opposite case. Here ε is an arbitrary positive number.

The next theorem concerns the operator defined by

Tψ = 2W0ψ a.e. on Γ

as an operator in the weighted Lp-space Lpβ,γ(Γ) endowed with the norm

‖u‖Lpβ,γ(Γ) = ‖ρβ rγ u‖Lp(Γ).

Theorem 2 Let
κ = min{κi}, λ = min{λj}.

If
1 ≤ p <∞, 0 < β + γ + 2/p < 1 + κ, 0 < γ + 1/p < λ

or
p =∞, 0 ≤ β + γ < 1 + κ, 0 ≤ γ < λ,

then the operator
1 + T : Lpβ,γ(Γ)→ Lpβ,γ(Γ)

performs an isomorphism.

In Section 2 we collect some preliminary information on boundary value problems
and find a representation for the inverse operator of the integral equation in question
stated in terms of the inverse operators of boundary value problems. Estimates for
L(x, y) and M(x, y) in Theorem 1 are obtained in Section 3. Finally, in Section 4
we prove theorems on the unique solvability of the integral equation in spaces C and
Lpβ,γ .
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2 Representation for the inverse operator of the
boundary integral equation

2.1 Preliminary information

We shall use the notation from Introduction. Besides, let G− = R3\G+ and B(r, x) =
{y ∈ R3 : |x− y| < r}.

We define some weighted Hölder spaces. For simplicity we introduce the same
weight rγ for all edges and the same weight ρβ for all vertices. We denote by N l,α

β,γ(G+)

the space of functions on G+ with the finite norm

‖u‖N l,αβ,γ(G+) = sup
x∈F+

ρ(x)βr(x)γ [u]l+αB(r/2,x)∩G+ + sup
x∈G+

ρ(x)βr(x)γ − l − α|u(x)|. (2.1)

Here β, γ are real numbers, α ∈ (0, 1), l is an integer, l ≥ 0, and

[u]ρE = sup
x,y∈E

∑
|σ|=[ρ]

|x− y|[ρ]−ρ|∂σxu(x)− ∂σy u(y)|,

where E is a subset of R3, ρ is a positive noninteger, [ρ] is the integer part of ρ.

We also introduce the space Cl,αβ,γ(G+) (0 < γ < l + α, l + α− γ is not integer) of

functions u in G+ with the finite norm

‖u‖Cl,αβ,γ(K) = sup
x∈G+

ρ(x)βr(x)γ
[
u
]l+α
G+∩B(r/2,x)

+ sup
x∈G+

ρ(x)β
[
u
]l+α−γ
G+∩B(ρ/2,x)

+ sup
x∈G+

ρ(x)β+γ−l−α|u(x)|. (2.2)

For the domain G− we define similar spaces N l,α
β,γ(G−) and Cl,αβ,γ(G−). Suppose

that the ball B(R, 0) contains G+. We denote by χ a function from the space C∞(R3)
equal to one on B(R, 0) and to zero on R3\B(R + 1, 0). A function u in G− belongs

to N l,α
β,γ(G−) and respectively to Cl,αβ,γ(G−) if and only if the norm (2.1), respectively

(2.2), of uχ and the norm

sup
x∈G−

|x|l+α+1
[
v
]l+α
B(|x|/2,x)

+ sup
x∈G−

|x| |v(x)|

of the function v = (1− χ)u are finite.

Let Γi denote a face of the polyhedron Γ. We denote by N l,α
β,γ(Γi) the space of

traces on Γi of functions from N l,α
β,γ(G+) or from N l,α

β,γ(G−). We say that u belongs

to N l,α
β,γ(Γ) if and only if the restriction ui on each Γi is in N l,α

β,γ(Γi) and we introduce
the norm

‖u‖N l,αβ,γ(Γ) =
∑
i

‖u‖N l,αβ,γ(Γi)
.

The space of traces on Γ of functions from Cl,αβ,γ(G+) or from Cl,αβ,γ(G−) will be

denoted by Cl,αβ,γ(Γ).

Consider the interior Dirichlet problem and the exterior Neumann problem for the
Laplace equation

∆u = 0 on G+, u = f on Γ, (2.3)

∆v = 0 on G−, ∂v/∂n = g on Γ\M. (2.4)
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Here ∂/∂n stands for the derivative in the direction of the outer normal to

Γ\M =
⋃

1≤i≤k

Mi.

Now we formulate estimates for the fundamental solutions of the problems (2.3)
and (2.4). Let Ki, i = 1, 2, . . . ,m, be the cone with the vertex Oi which coincides
with G+ near the point Oi. The open set that the cone Ki cuts from the unit sphere
S2 centered at Oi is denoted by Ω+ and the set S2\Ω+ is denoted by Ω−. Let δi
and νi be positive numbers such that δi(δi + 1) and νi(νi + 1) are the first positive
eigenvalues of the Dirichlet problem in Ω+ and the Neumann problem in Ω− for the
Laplace-Beltrami operator on S2. The result formulated here is contained in [MP1].

Theorem 3 Let
δ+ = min

1≤j≤
δi, λ+ = min

1≤i≤k
π/ωi,

and let l be a positive integer. If

−δ+ < β + γ − α < 1 + δ+, 0 < α− γ < min{1, λ+},

then for any f ∈ Cl,αβ,γ+l(Γ) there exists a unique solution u ∈ Cl,αβ,γ+l(G
+) of the

Dirichlet problem (2.3) and the solution admits the representation

u(x) =

∫
Γ

P+(x, ξ) f(ξ) dsξ (2.5)

Suppose that the points x and ξ lie in a neighbourhood of a vertex Oi, i =
1, 2, . . . ,m,. If either 2 ρ(ξ) < ρ(x) or ρ(ξ) > 2 ρ(x), then

|∂σx∂τξP+(x, ξ)| ≤ cσ,τ ρ(x)−|σ|ρ(ξ)−1−|τ |(ρ(x) + ρ(ξ)
)−1

×
(min{ρ(x), ρ(ξ)}

ρ(x) + ρ(ξ)

)δ+−ε( r(x)

ρ(x)

)λ+−|σ|−ε( r(ξ)
ρ(ξ)

)λ+−|τ |−1−ε
.

In the zone ρ(ξ) < 2 ρ(x) < 4 ρ(ξ), the estimates have the form

|∂σx∂τξP+(x, ξ)| ≤ cσ,τ |x− ξ|−2−|σ|−|τ |

×
( r(x)

r(x) + |x− ξ|

)λ+−|σ|−ε( r(ξ)

r(ξ) + |x− ξ|

)λ+−1−|τ |−ε
.

In the case x ∈ Ui, ξ ∈ Uq, where Ui and Uq are small neighbourhoods of the
vertices Oi and Oq with i 6= q, the estimates take the form

|∂σx∂τξP+(x, ξ)| ≤ cσ,τ ρ(x)δ
+−|σ|−ερ(ξ)δ

+−|τ |−1−ε
( r(x)

ρ(x)

)λ+−|σ|−ε( r(ξ)
ρ(ξ)

)λ+−|τ |−1−ε
.

Here σ and τ are arbitrary multi-indices, ε is a sufficiently small positive number.

The next result is essentially proved in [GM5].

Theorem 4 Let

ν− = min
1≤i≤m

νi, λ− = min
1≤j≤k

{π/(2π − ωj)}.
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and let l be a positive integer. If

0 < β + γ − α < 1, 0 < α− γ < min{1, λ−}

then for any g ∈ N l,α
β,γ+l(Γ) there exists a unique solution v ∈ Cl,αβ,γ+l(G

−) of the
Neumann problem (2.4) and

v(x) =

∫
Γ

Q−(x, ξ) g(ξ) dsξ. (2.6)

Suppose that the points x and ξ lie in a neighbourhood of the vertex Oi, i =
1, 2, . . . ,m,. If either 2 ρ(x) < ρ(ξ) or ρ(x) > 2 ρ(ξ), then

Q−(x, ξ) = Q−(0, ξ) +R−(x, ξ) for 2 ρ(x) < ρ(ξ), (2.7)

Q−(x, ξ) = Q−(x, 0) +R−(ξ, x) for 2 ρ(ξ) < ρ(x), (2.8)

where
Q−(0, ξ) = Q−(ξ, 0) = a−i /ρ(ξ) + b−i + d−i (ξ) (2.9)

and
a−i = 1/meas(Ω−i ), b−i = const.

For R−(x, ξ) and d−i (ξ) one has the estimates

|∂σξ d−i (ξ)| ≤ cσ ρ(x)ν
−−|α|−ε

( r(ξ)
ρ(ξ)

)λ−σε
,

|∂σx∂τξR−(x, ξ)| ≤ cσ,τ ρ(x)ν
−−|σ|−ερ(ξ)−1−ν−−|τ |+ε

( r(x)

ρ(x)

)λ−σε( r(ξ)
ρ(ξ)

)λ−σε
.

In the intermediate zone ρ(x) < 2 ρ(ξ) < 4 ρ(x), the estimate takes the form

|∂σx∂τξQ−(x, ξ)| ≤ cστ
|x− ξ|1+|σ|+|τ |

( r(x)

r(x) + |x− ξ|

)λ−σε( r(ξ)

r(ξ) + |x− ξ|

)λ−τε
.

In the case x ∈ Ui, ξ ∈ Uq, where Ui and Uq are small neighbourhoods of the
vertices Oi and Oq with i 6= q, we have

|∂σx∂τξQ−(x, ξ)| ≤ cσ,τ ρ(x)ν
−
σερ(ξ)ν

−
τε

( r(x)

ρ(x)

)λ−σε( r(ξ)
ρ(ξ)

)λ−τε
.

Here we use the notation

λ−σε = min{0, λ− − |σ| − ε}, λ−τε = min{0, λ− − |τ | − ε},

ν−σε = min{0, ν− − |σ| − ε}, νqτε = min{0, ν− − |τ | − ε}.

In what follows we need some estimates for the fundamental solutions of the Dirich-
let and Neumann problems in a dihedral angle. Let D+ be the interior of the angle
with opening ω and let D− = R3\D+. We denote by F+ and F− the sides of D+, by
M the edge and by F the boundary, i.e. F = F+ ∪ F− ∪M.

We introduce the space N l,α
γ (D+) with the norm

‖u‖N l,αγ (D+) = sup
x∈D+

r(x)γ
[
u
]l+α
D+∩B(r/2,x)

+ sup
x∈D+

r(x)γ−l−α|u(x)|.
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and the space Cl,αγ (D+), l + α− γ > 0, with the norm

‖u‖Cl,αγ (D+) = sup
x∈D+

r(x)γ
[
u
]l+α
D+∩B(r/2,x)

+ ‖u‖
Cl+α−γ(D+)

.

Here Cs(D+) is the Hölder space of order s and r(x) = dist(x,M).

We denote by N l,α
γ (F±) the space of traces on F± of functions from N l,α

γ (D+) or

from N l,α
β,γ(G−). We say that u belongs to N l,α

γ (F ) if and only if the restriction u±

to F± is in N l,α
γ (F±) and we introduce the norm

‖u‖N l,αγ (F ) =
∑
±
‖u‖N l,αγ (F±).

The space of traces on F of functions from Cl,αγ (D+) is denoted by Cl,αγ (F ).

Similarly, one defines spaces of functions on D−.

Consider two boundary value problems

∆u = 0 in D+, u = f on F, (2.10)

∆v = 0 in D−, ∂v/∂n = g on F\M. (2.11)

The following theorem was proved in [MP1].

Theorem 5 Let 0 < α − γ < min{1, π/ω} and let l be a positive integer. Then for

any f ∈ Cl,αβ,γ+l(F ) there exists a unique solution u ∈ Cl,αβ,γ+l(D
+) of the Dirichlet

problem (2.10). It admits the representation

u(x) =

∫
F

P+(x, ξ) f(ξ) dsξ, (2.12)

where

|∂σx∂τξP+(x, ξ)| ≤ cσ,τ |x− ξ|−2−|σ|−|τ |

×
( r(x)

r(x) + |x− ξ|

)π/ω−|σ|−ε( r(ξ)

r(ξ) + |x− ξ|

)π/ω−1−|τ |−ε
.

Now we formulate an analogous result for the Neumann problem obtained in
[GM5].

Theorem 6 Let 0 < α − γ < λ−, λ− = min{1, π/(2π − ω)} and let l be a positive

integer. Then for any g ∈ Cl,αβ,γ+l(F ) there exists a unique solution v ∈ Cl,αβ,γ+l(D
−)

of the Dirichlet problem (2.11). It admits the representation

v(x) =

∫
F

Q−(x, ξ) g(ξ) dsξ, (2.13)

where

|∂σx∂τξ
(
Q−(x, ξ)− a/|x− ξ|

)
| ≤ cσ,τ |x− ξ|−1−|σ|−|τ |

×
( r(x)

r(x) + |x− ξ|

)λ−−|σ|−ε( r(ξ)

r(ξ) + |x− ξ|

)λ−−|τ |−ε
.

Here a = 1/meas(S2 ∩D−) and S2 is the unit sphere with center at x ∈M.
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2.2 Representations for the inverse operators

We denote by V ψ and Wψ the single and double layer potentials:

(V ψ) =
1

4π

∫
Γ

1

|x− ξ|
ϕ(ξ) dsξ, x ∈ R3.

(Wψ) =
1

4π

∫
Γ

∂

∂nξ

( 1

|x− ξ|

)
ψ(ξ) dsξ, x ∈ G±.

In what follows we denote by (·)+ and (·)− the interior and exterior limit values with
respect to G+. By W0ψ we mean the direct values of the double layer potential Wψ
on Γ. Let the operator T be defined by the equality

(Tψ)(x) = 2W0ψ(x) + (1− d(x))ψ(x),

where
d(x) = lim

δ→0+
(meas(G+ ∩B(δ, x))/measB(δ, x).

Lemma 1 Let 0 < β + γ − α < 2, 0 < α − γ < 1 and let l be a positive integer. If
ψ ∈ Cl,αβ,γ+l(Γ), then W0ψ ∈ Cl,αβ,γ+l(Γ) and

(Wψ)± = W0ψ ± ψ/2,
(∂(Wψ)

∂n

)+

=
(∂(Wψ)

∂n

)−
(2.14)

holds on Γ\M.

Proof. Let the number δ be so small that the ball B(2δ,Oi) contains no vertices
except Oi. One verifies directly the estimate

sup
x∈B(δ,Oi)

ρ(x)β+γ−α |(Wψ)(x)| ≤ c sup
x∈Γ

ρ(x)β+γ−α |ψ(x)|. (2.15)

We consider the following transmission problem

∆u = 0 in G+ ∪G−, u+ − u− = ψ on Γ,(∂u
∂n

)+

−
(∂u
∂n

)−
= 0 on Γ\M (2.16)

which is satisfied by Wψ ∈ Cl,αloc (G±\M). We introduce the sets

Uk = {ξ : 1/2 < 2k |ξ| < 2}, Vk = {ξ : 1/4 < 2k |ξ| < 4}

for k = 1, 2, . . ..

Well-known local Schauder estimate for solutions of (2.16) leads to the inequality

2−k(l+β) sup
Uk∩G±

r(x)γ [u]l+αB(r/2,x)∩G± + 2−k(l+β)[u]l+α−γUk∩G±

≤ c
(
2−k(l+β) sup

Vk∩Γ
r(x)γ [ψ]l+αB(r/2,x)∩Γ + 2−k(l+β)[ψ]l+α−γVk∩Γ

+2−k(β+γ−α) sup
Vk∩Γ

|ψ(x)|+ 2−k(β+γ−α) sup
x∈Vk∩Γ

|u(x)|
)
.

From this inequality and from (2.15) we conclude that Wψ ∈ Cl,αβ,γ+l(G
±).

The relations (2.14) follow from similar relations for domains with smooth bound-
aries.
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Lemma 2 Let 0 < β + γ − α < 1, 0 < α − γ < 1 and let l be a positive integer. If
ϕ ∈ N l−1,α

β,γ+l (Γ), then V ϕ ∈ N l,α
β,γ+l(Γ

±) and(∂(V ϕ)

∂n

)±
= −W ∗0 ϕ± ϕ/2, (V ϕ)+ = (V ϕ)−

hold on Γ\M. Here W ∗0 is the operator formally adjoint of W0.

Proof. One verifies directly the estimates

sup
x∈B(δ,Oi)

ρ(x)β+γ−α |(V ϕ)(x)| ≤ c sup
x∈Γ

ρ(x)βr(x)γ−α+1 |ϕ(x)|, i = 1, 2, . . . ,m,

where δ is the same as in (2.15). To get the result, it is sufficient to apply the same
argument as in the proof of Lemma 1 to the transmission problem

∆v = 0 on G+ ∪G−, v+ − v− = 0 on Γ,( ∂v
∂n

)+

−
( ∂v
∂n

)−
= ϕ on Γ\M.

Lemma 3 Let 0 < β+ γ−α < 1, 0 < α− γ < 1 and let l be a positive integer. Then
the representation

u = V
((∂u

∂n

)+

−
(∂u
∂n

)−)
+W (u+ − u−)

holds on G+ ∪ G− for all functions u ∈ Cl,αβ,γ+l(G
+ ∪ G−) satisfying the equation

∆u = 0 on G+ ∪ G−. Here Cl,αβ,γ(G+ ∪ G−) is the space of functions u in G+ ∪ G−

whose restrictions to G± belong to Cl,αβ,γ(G±).

Proof. We use the following classic relations

u(x) = (V (∂u/∂n)+)(x) + (Wu+)(x), x ∈ G+,

0 = (V (∂u/∂n)+)(x) + (Wu+)(x), x ∈ G−,
0 = −(V (∂u/∂n)−)(x)− (Wu−)(x), x ∈ G+,

u(x) = −(V (∂u/∂n)−)(x)− (Wu−)(x), x ∈ G−,

hold for all functions u such that

u ∈ C∞(G±), u = O(|x|−1) as x→∞ and ∆u = 0 on G+ ∪G−.

One shows, using Lemmas 1, 2, that these relations extend to all u ∈ Cl,αβ,γ+l(G
+∪G−),

harmonic on G+ ∪G−.

Theorem 7 Let 0 < α − γ < min{λ+, λ−}, 0 < β + γ − α < min{δ+, ν−, 1}, and

let l be a positive integer. If f ∈ Cl,αβ,γ+l(Γ), then there exists a unique solution ϕ ∈
Cl,αβ,γ+l(Γ) of the integral equation (1 + T )ϕ = f and this solution can be represented
in the form

(1 + T )−1f =
1

2

(
1−Q− ∂

∂n
P+
)
f. (2.17)

Here P+ and Q− are the inverse operators of the boundary value problems (2.3) and
(2.4) (see Theorems 3 and 4).
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Proof. By Theorems 3 and 4, the function

ϕ =
1

2

(
1−Q− ∂

∂n
P+
)
f

is in the space Cl,αβ,γ+l(Γ). We shall prove that ϕ is the solution of the equation

(1 + T )ϕ = f . We introduce the function u ∈ Cl,αβ,γ+l(G
+ ∪G−) which is a solution of

the boundary value problem

∆u = 0 on G+ ∪G−, u+ = f on Γ,(∂u
∂n

)+

−
(∂u
∂n

)−
= 0 on Γ\M.

It is clear that u− = Q− ∂
∂nP

+f . Hence ϕ = (u+ − u−)/2. By this and Lemmas 1, 3
we arrive at the chain of equalities(

(1 + T )ϕ
)
(x) = 2(Wϕ)+(x) = (W (u+ − u−))+(x) = u+(x) = f(x) (2.18)

for x ∈ Γ\M. Since (W01)(x) is the solid angle under which the surface Γ is seen
from x, we conclude that Tϕ ∈ C(Γ) for ϕ ∈ C(Γ) and that the relations (2.18) hold
for all x ∈ Γ.

It remains to verify the uniqueness of the solution. Let ϕ0 ∈ Cl,αβ,γ+l(Γ) satisfy
(1 + T )ϕ0 = 0. Consider the function u = Wϕ0. By Lemma 1, u is a solution of
(2.3) with f = 0. In view of the uniqueness of the solution of (2.3) we conclude that
Wϕ0 = 0 on G+. Since(∂(Wϕ0)

∂n

)−
=
(∂(Wϕ0)

∂n

)+

= 0 on Γ\M

and since (2.4) is uniquely solvable, we conclude that Wϕ0 = 0 in G−. Thus,

ϕ0 = (Wϕ0)+ − (Wϕ0)− = 0,

which completes the proof.

3 Estimates for the kernel of the inverse operator

In what follows we use the notations

κ = min{δ+, ν−, 1}, λ = min{λ+, λ−}.

The aim of this section is to prove the following assertion

Theorem 8 Let 0 < α − γ < λ, 0 < β + γ − α < 1, and let l be a positive integer.
Then

(1 + T )−1f = (1 + L+M)f, f ∈ Cl,αβ,γ+l(Γ). (3.1)

where L and M are integral operators on Γ. The kernel M(x, y) of the operator M
admits the estimate

|M(x, y)| ≤ c ρ(y)κ−1−ε
( r(y)

ρ(y)

)λ−1−ε
.

The kernel L(x, y) of L equals zero if dist(x, y) ≥ δ, where δ is a sufficiently small
positive number.
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If the points x and y lie in a neighbourhood of a vertex Oi, i = 1, 2, . . . ,m, and this
neighbourhood contains no vertices of the polyhedron other than Oi, then the kernel
L(x, y) satisfies

|L(x, y)| ≤ c ρ(y)−2
( r(y)

ρ(y)

)λ−1−ε

+c
(
r(y) + |x− y|

)−2
( r(x)

r(x) + |x− y|

)λ−ε( r(y)

r(y) + |x− y|

)λ−1−ε

provided ρ(x)/2 < ρ(y) < 2ρ(x) and

|L(x, y)| ≤ c ρ(y)−1
(
ρ(x) + ρ(y)

)−1
(min{ρ(x), ρ(y)}

ρ(x) + ρ(y)

)κ−ε( r(y)

ρ(y)

)λ−1−ε

in the opposite case. Here ε is an arbitrary positive number.

In what follows by {χk}3k=1, η1and, η2 we mean functions in C∞([0,∞)) such that

(1)
∑

1≤k≤3

χk = 1, suppχ1 ⊂ [0, 5/8), suppχ2 ⊂ (1/2, 2), χ3 ⊂ (8/5,∞);

(2) η1(t) = 1 for t < 1/8 and η1(t) = 0 for t ≥ 1/4;

(3) η2(t) = 1 for t < 5/6 and η2(t) = 0 for t ≥ 6/7.

We assume that the points x and y lie in a neighbourhood Ui of the vertex Oi,
i = 1, 2, . . . ,m and that Ui contains no other vertices than Oi. Let the origin coincide
with Oi.

3.1 Estimates for the kernels L(x, y) and M(x, y) for |y| < 5|x|/8
Given x ∈ Γ\M, consider the Dirichlet problem

∆yR
+(y, x) = 0, y ∈ G+

(3.2)

R+(y, x) = η2(|y|/|x|)R−(y, x), y ∈ Γ.

Lemma 4 Let 0 < −α − γ < λ, −κ < β + γ − α < 1 + κ and let l be a positive
integer. Then there exists a unique solution R+(·, x) ∈ Cl,αβ,γ+l(G

+) of the problem
(3.2) for all x ∈ Ui ∩ (Γ\Oi) and

|∂τyR+(y, x)| ≤ cτ |x|−1|y|−|τ |
( |y|
|x|

)κ−ε(r(y)

|y|

)λτε
, (3.3)

where λτε = min{0, λ− |τ | − ε} and y ∈ Ui ∩G+.

Proof. We set x = |x|X, y = |x|Y and let G|x| and Γ|x| be the images of the sets
G+ and Γ under the mapping y → Y . The problem (3.2) can be written in the form

∆YR|x|(Y,X) = 0 Y ∈ G|x|
(3.4)

R|x|(Y,X) = Hx(y), Y ∈ Γ|x|

11



where
R|x|(Y,X) = |x|R+(|x|Y, |x|X), |X| = 1

and in view of the inequalities for ∂σx∂
τ
ξR
−(x, ξ) from Theorem 4

‖Hx‖Cl,αβ,γ+l(G
+
|x|)
≤ c.

Applying Theorem 3 to the solution of the problem (3.4), we get

‖R|x|(·, X)‖Cl,αβ,l+γ(G+
|x|)
≤ c.

Setting γ = α− λ+ ε, β = −κ − γ + α+ ε, we find

|∂τYR|x|(Y,X)| ≤ cτ |Y |κ−|τ |−ε
(r(Y )

|Y |

)λτε
.

Returning back to the function R+(y, x), we arrive at (3.3). The lemma is proved.

Lemma 5 Let 0 < α− γ < λ, 0 < β + γ − α < 1 and let l be a positive integer. For
any ϕ ∈ Cl,αβ,l+γ(Γ) the representation∫

Γ

Q−(x, ξ)
∂

∂nξ

∫
Γ

P+(ξ, y)χ1

( |y|
|x|
)
ϕ(y)dsydsξ

(3.5)

=

∫
Γ

L(x, y)χ1

( |y|
|x|

)
ϕ(y)dsy, x ∈ Γ ∩ Ui

is valid, where

|L(x, y)| ≤ c |x|−1|y|−1
( |y|
|x|

)κ−ε(r(y)

|y|

)λ−1−ε
. (3.6)

Proof. Setting

v(ξ) =

∫
Γ

P+(ξ, y)χ1

( |y|
|x|

)
ϕ(y)dsy

and using (2.8), we rewrite the left-hand side of (3.5) in the form∫
Γ

(η2

( |ξ|
|x|

)
Q−(0, x)

∂

∂nξ
v(ξ)dsξ +

∫
Γ

R+(ξ, x)
∂

∂nξ
v(ξ)dsξ

+

∫
Γ

(1− η2

( |ξ|
|x|

)
Q−(x, ξ)

∂

∂nξ
v(ξ)dsξ,

where R+ is the solution of (3.2)

Applying Green’s formula to the first and second integrals, we arrive at the rep-
resentation (3.5) with

L(x, y) =
∑

1≤k≤3

Lk(x, y), (3.7)

where

L1(x, y) =
∂

∂ny
R+(y, x),

L2(x, y) = −
∫
G+

(
∆ξη2

( |ξ|
|x|

)
Q−(0, x)

)
P+(ξ, y)dsξ,

L3(x, y) = −
∫

Γ

(
1− η2

( |ξ|
|x|

))
Q−(x, ξ)

∂

∂nξ
P+(ξ, y)dsξ.
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We estimate each term in (3.7). Inequality (3.6) for L1(x, y) follows directly from
(3.3). Let us estimate L2(x, y). It is clear that 6|ξ| > 5|x| on the support of the
function ξ → ∆ξη2(|ξ|/|x|). From this and from the inequality 8|y| < 5|x| we conclude
that 3|ξ| > 4|y|. Hence, by Theorems 3 and 4 we have

|L2(x, y)| ≤ c
∫
ξ∈G+:6|ξ|>5|x|

|ξ|−3|x|−1|y|−1
( |y|
|ξ|

)δ+−ε(r(y)

|y|

)λ+−1−ε
dξ

≤ c|x|−1|y|−1
( |y|
|x|

)δ+−ε(r(y)

|y|

)λ+−1−ε
.

Finally, to obtain the required estimate for L3(x, y), we write it as the sum of two
integrals over the sets

Γ1 = {ξ ∈ Γ : |ξ| < 2 |x|} and Γ2 = {ξ ∈ Γ : |ξ| > 2 |x|}.

By Theorems 3 and 4,

|L3(x, y)| ≤ c
∫
ξ∈Γ:6|ξ|>5|x|
|x−ξ|<3|x|

|x− ξ|−1|ξ|−2K(y, ξ)dsξ

+c

∫
ξ∈Γ:|ξ|>2|x|

(
|ξ|−3 + ρ(ξ)δ

+−1−ε)K(y, ξ)dsξ

≤ c |x|−1|y|−1
( |y|
|x|

)δ+−ε(r(y)

|y|

)λ−1−ε
.

Here we used the notation

K(y, ξ) = |y|−1(|y|/|ξ|)δ
+−ε

(r(y)

|y|

)λ+−1−ε( r(ξ)
ρ(ξ)

)λ+−1−ε
.

The lemma is proved.

3.2 Estimates for the kernels L(x, y) and M(x, y) for 5|y| > 8|x|
Let x ∈ Γ ∩ Ui. Consider the following boundary value problems

∆yR
+(y, x) = 0, y ∈ G+ R+(y, x) = η2

( |x|
|y|

)
R−(y, x), y ∈ Γ, (3.8)

∆d+(y) = 0, y ∈ G+ d+(y) = d−(y), y ∈ Γ. (3.9)

Lemma 6 Let 0 < α − γ < λ, −κ < β + γ − α < 1 + κ and let l be a positive
integer. Then problems (3.8) and (3.9) have unique solutions R+(·, x) ∈ Cl,αβ,γ+l(G

+),

respectively, d+ ∈ Cl,αβ,γ+l(G
+) for all x ∈ Ui ∩ (Γ\Oi) and

|∂τyR+(y, x)| ≤ cτ |y|−1−|τ |
( |x|
|y|

)κ−ε(r(y)

|y|

)λτε
, y ∈ G+ ∩Oi, (3.10)

|∂τyd+(y)| ≤ cτ ρ(y)κ−|τ |−ε
( r(y)

ρ(y)

)λτε
, y ∈ G+ ∩Oi. (3.11)

Proof. Inequality (3.11) is a direct corollary of Theorem 3 and inequality (3.11)
is proved in a similar manner as Lemma 4.
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Lemma 7 Let 0 < α− γ < λ, 0 < β + γ − α < 1, and let l be a positive integer. For
any ϕ ∈ Cl,αβ+l(Γ) ∫

Γ

Q−(x, ξ)
∂

∂nξ

∫
Γ

P+(ξ, y)χ3

( |y|
|x|

)
ϕ(y)dsy

)
dsξ

(3.12)

=

∫
Γ

(
M(x, y) + L(x, y)

)
χ3

( |y|
|x|

)
ϕ(y)dsy, x ∈ Γ\M,

where y ∈ Γ ∩Oi and

|M(x, y)| ≤ c |y|κ−1−ε
(r(y)

|y|

)λ−1−ε
, (3.13)

|L(x, y)| ≤ c |y|−2(|x|/|y|)κ−ε)
(r(y)

|y|

)λ−1−ε
. (3.14)

Proof. Setting
v(ξ) = P+(ξ, y)χ3(|y|/|x|)ϕ(y)dsy

and using (2.7), (2.9), we write the left-hand side of (3.12) in the form∫
Γ

(η2(|x|/|ξ|)
(a−i
|ξ|

+ b−i + d+(ξ)
) ∂

∂nξ
v(ξ)dsξ

+

∫
Γ

R+(ξ, x)
∂

∂nξ
v(ξ)dsξ +

∫
Γ

(1− η2

( |x|
|ξ|

)
Q−(x, ξ)

∂

∂nξ
v(ξ)dsξ.

Here R+(ξ, x) and d+
i (ξ) are solutions of (3.8) and (3.9). Applying Green’s formula,

we arrive at (3.12), where

L(x, y) +M(x, y) =
∂

∂ny
R+(y, x) +

∂

∂ny

(
η2

( |x|
|y|

)(a−i
|y|

+ b−i + d+(y)
))

−
∫
G+

∆ξ

(
η2

( |x|
|ξ|

)(a−i
|ξ|

+ b−i + d+(ξ)
))
P+(ξ, y) dsξ

+

∫
Γ

(
1− η2

( |x|
|ξ|

))
Q−(x, ξ)

∂

∂nξ
P+(ξ, y) dsξ.

To obtain estimates (3.13), (3.14), it is sufficient to use Theorems 3, 4, and Lemma
6 (see the proof of Lemma 5).

3.3 Estimates for the kernel L(x, y) for |y|/2 < |x| < 2|y|
The purpose of this subsection is to prove the following assertion.

Lemma 8 Let 0 < α− γ < λ, 0 < β + γ − α < 1, and let l be a positive integer. For
any ϕ ∈ Cl,αβ,l+γ(Γ) ∫

Γ

Q−(x, ξ)
∂

∂nξ

∫
Γ

P+(ξ, y)χ2

( |y|
|x|

)
ϕ(y)dsy dsξ

(3.15)

= −ϕ(x) +

∫
Γ

L(x, y)χ2

( |y|
|x|

)
ϕ(y)dsy,
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where
|L(x, y)| ≤ c (r(y))−2 if |x− y| < r(x)/2,

and

|L(x, y)| ≤ c

|x− y|2
( r(x)

|x− y|

)λ−ε( r(y)

|x− y|

)λ−1−ε
+

c

|y|2
(r(y)

|y|

)λ−1−ε

otherwise.

First we formulate an auxiliary assertion. Suppose that the point x ∈ Γ\Oi lies
in a neighbourhood of the edge Mj together with the ball B(δ|x|, x) of radius δ|x|,
where δ is a sufficiently small positive number. We denote by D+

j and D−j the interior

and the exterior of the dihedral angle which coincides with G+ near the edge Mj . In
what follows we omit the index j in D±j and use the notations for the diherdral angle

D± introduced in Subsection 1.2.

Lemma 9 The following estimates hold on the set {y ∈ Γ : |x|/2 < |y| < 2|x|}:

|∂σx∂τy (P+(x, y)− P+(x, y)| ≤ cστ |x|−2−|τ |−|σ|,

|∂σx∂τy (Q−(x, y)−Q−(x, y)| ≤ cστ |x|−1−|τ |−|σ|
(r(x)

|x|

)λ−σε(r(y)

|y|

)λ−τε
,

where P+(x, y), Q−(x, y) are the kernels of the operators (2.12), (2.13), and

λ−σε = min{0, λ− − |σ| − ε}, λ−τε = min{0, λ− − |τ | − ε}.

The proof is similar to that of Lemma 2.6 in [GM3]. The only difference is that
one has to use theorems on the solvability of the Dirichlet and Neumann problems in
domains with edges (see [MP1], [?]) instead of similar assertions for smooth bound-
aries.

Let x ∈ Γ\Oi. Consider the following problem

∆R+(x, y) = 0, y ∈ G+,

R+(x, y) = χ2

( |x|
|y|

)(
Q−(x, y)−Q−(x, y)

)
, y ∈ Γ.

It follows essentially from Theorem 3 that the estimate

|∂τyR+(x, y)| ≤ cτ |x|−1−|τ |
(r(y)

|y|

)λτε
(3.16)

holds for all y with |x|/2 < |y| < 2|x|, where λτε = min{0, λ− |τ | − ε}.

Proof of Lemma 8. We write the left-hand side of (3.16) as∫
Γ

χ2

( |x|
|y|

)
Q−(x, ξ)

∂

∂nξ
v(ξ) dsξ +

∫
Γ

R+(x, ξ)
∂

∂nξ
v(ξ) dsξ

(3.17)

+

∫
Γ

(1− χ2

( |x|
|ξ|

)
)Q−(x, ξ)

∂

∂nξ
v(ξ) dsξ,

where

v(ξ) =

∫
Γ

P+(ξ, y)χ2

( |y|
|x|

)
ϕ(y) dsy.
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Replacing P+(x, ξ) by P+(x, ξ) in the first term and applying Green’s formula to the
second term, we write (3.17) in the form∫

Γ

Q−(x, ξ)
∂

∂nξ

∫
Γ

P+(ξ, y) η1

( |y − x|
δ|x|

)
ϕ(y) dsy dsξ

+

∫
Γ

L′(x, y)χ2

( |y|
|x|

)
ϕ(y) dsy, (3.18)

where

L′(x, y) =
∂

∂nξ
R+(x, y)

−
∫

Γ

Q−(x, ξ)
∂

∂nξ
P+(ξ, y)

(
η1

( |y − ξ|
δ|x|

)
− 1
)
η1

( |y − x|
δ|x|

)
ϕ(y) dsξ

+

∫
Γ

χ2

( |x|
|ξ|

)
Q−(x, ξ)

∂

∂nξ
P+(ξ, y)

(
1− η1

( |y − x|
δ|x|

))
dsξ

+

∫
Γ

Q−χ (x, ξ)
∂

∂nξ
P+(ξ, y)

(
1− η1

( |y − ξ|
δ|x|

))
η1

( |y − x|
δ|x|

)
dsξ

+

∫
Γ

Q−χ (x, ξ)
∂

∂nξ

(
P+(ξ, y)− P+(ξ, y)

)
η1

( |y − ξ|
δ|x|

)
η1

( |y − x|
δ|x|

)
dsξ

+

∫
Γ

(
1− χ2

( |x|
|ξ|

))
Q−(x, ξ)

∂

∂nξ
P+(ξ, y) dsξ.

Here Q− = Q−χ (x, ξ) = χ2

(
|x|
|ξ|

)
Q−(x, ξ). Estimating each term with the help of

Theorems 3, 4 and Lemma 9, we arrive at the inequality

|L′(x, y)| ≤ c |x|−2
(r(y)

|y|

)λ−1−ε
.

We set x′ = x/|x|, ξ′ = ξ/|x|, y′ = y/|x|. Since the functions Q−(x, y) and
P+(x, y) are homogeneous, the first term in (3.18) takes the form∫

Γ

Q−(x′, ξ′)
∂

∂nξ

∫
Γ

P+(ξ′, y′) η1

( |y′ − x′|
δ

)
ϕ(y) dsy′ dsξ′ .

To complete the proof, it is sufficient to refer the following assertion.

Lemma 10 Let F be the boundary of the dihedral angle with opening ω and let Λ =
π/(π + |π − ω|). If ϕ ∈ Cl,αγ+l(F ), 0 < α − γ < Λ, suppϕ ⊂ B(1, 0), then the
representation∫

Γ

Q−(x, ξ)
∂

∂nξ
P+(ξ, y)ϕ(y) dsy dsξ = −ϕ(x) +

∫
F

L(x, y)ϕ(y) dsy (3.19)

holds for x ∈ F\M. Moreover,

|L(x, y)| ≤ c (r(y))−2 for |x− y| < r(x)/2,

and

|L(x, y)| ≤ c |x− y|−2
( r(x)

|x− y|

)Λ−ε( r(y)

|x− y|

)Λ−1−ε

otherwise.
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Now we formulate an auxiliary assertion. Consider the problem

∆R+(x, y) = 0, y ∈ D+,

R+(x, y) =
(
Q−(x, y)− a

|x− y|

)(
1− η1

( |y − x|
r(x)

))
, y ∈ F, (3.20)

where a, Q−, and r are the same as in Theorem 6.

Lemma 11 Let 0 < α− γ < Λ, Λ = π/(π + |π − ω|), x ∈ B(1, 0). Then there exists
a unique solution of (3.20) and the estimate

|∂σyR+(x, y)| ≤ c |x− y|−1−|σ|
( r(x)

|x− y|

)Λ−ε( r(y)

|x− y|

)Λ−|σ|−ε

holds for |x− y| > r(x).

Proof. Since R+(x, y) is homogeneous, we can assume that |x − y| = 1. We
introduce the function

v(y) = r(x)−Λ+εR+(x, y).

Clearly, v solves the problem

∆v = 0 on D+, v = ψ on F,

where
|∂σyψ| ≤ c r(y)Λ−|σ|−ε.

The required estimate follows from Theorem 5.

Proof of Lemma 10. In what follows, for definiteness, we assume that x lies on
the face F+ of the polyhedron. We represent the left-hand side of (3.19) as the sum
of two terms obtained from the initial expression by replacing ϕ by ϕ1 and by ϕ2,
where

ϕ1 = ϕ− ϕ2, ϕ2(x, y) = ϕ(x, y)η1(|x− y|/r(x)δ)).

Here δ is so small that F− ∩B(δr(x), x) = ∅.
We write the first term in the form∫
F

η1

(4|x− y|
δr(x)

)
Q−(x, ξ)

∂

∂nξ
v(ξ)dsξ +

∫
F

(
1− η1

(4|x− y|
δr(x)

))
Q−(x, ξ)

∂

∂nξ
v(ξ)dsξ,

where

v(ξ) =

∫
F

P+(ξ, y)
(

1− η1

( |x− y|
δr(x)

))
ϕ(y)dsy.

Applying Green’s formula to the second integral and using the solution of (3.20), we
find that it is equal to ∫

F

L+
1 (x, y)

(
1− η1

( |x− y|
δr(x)

))
ϕ(y)dsy,

where

L+
1 (x, y) =

∂

∂ny

(
R+(x, y) +

a

|x− y|

)
−
∫
F

η1

(4|x− ξ|
δr(x)

)
Q−(x, ξ)

∂

∂nξ
P+(ξ, y)dsξ

+

∫
D+

∆ξ

(
R+(x, ξ) +

a

|x− ξ|

)(
1− η1

(4|x− ξ|
δr(x)

)
P+(ξ, y) dξ.
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Since ∣∣∣ ∂
∂ny

1

|x− y|

∣∣∣≤ r(x)

|x− y|3
for |x− y| > r(x),

the estimate

|L1(x, y)| ≤ c |x− y|−2
( r(x)

|x− y|

)Λ−ε( r(y)

|x− y|

)Λ−1−ε

follows from Theorems 5, 6 and from Lemma 11.

Next we need to show that∫
F

Q−(x, ξ)
∂

∂nξ

∫
F

P+(ξ, y)η1

( |x− y|
δr(x)

)
ϕ(y)dsy dξ

= −ϕ(x) +

∫
F

L2(x, y)η1

( |x− y|
δr(x)

)
ϕ(y)dsy, x ∈ Γ\M, (3.21)

where
|L2(x, y)| ≤ c (r(y))−2. (3.22)

We write the left-hand side of (3.21) as the sum of two terms by setting

Q−(x, ξ) = Q1(x, ξ) +Q2(x, ξ),

Q1(x, ξ) = Q−(x, ξ) η1(|x− ξ|/(4δr(x)).

It is clear that the inequality |y − ξ| > s r(y) holds for

|x− ξ| > δ r(x)/2, |x− y| < δ r(x)/4,

where s is a certain positive number. Hence, by Theorems 5, 6, the second term is
the integral operator with a kernel satisfying (3.22).

We denote by P+
0 (x, y) and Q−0 (x, y) the kernels of the inverse operators of the

corresponding boundary value problems in the half-space, that is the problems ob-
tained from (2.10) and (2.11) by replacing D± and F by R3

± and R2, where R2 is
the plane containing F+, R3

+ is the half-space with boundary R2 containing points of
the polyhedron near the origin and R3

− = R3\(R3
+ ∪ R2). It is well known that the

estimates
|∂σξ ∂τy (P+(ξ, y)− P+

0 (ξ, y))| ≤ cστr(x)−2−|τ |−|σ|,

|∂σξ ∂τy (Q−(ξ, y)−Q−0 (ξ, y))| ≤ cστr(x)−1−|τ |−|σ|,

hold for ξ, y ∈ D± ∩B(δr(x), x).

Therefore, to obtain the representation (3.21), it is sufficient to show that the
expression ∫

F+

η1

( |x− ξ|
4δr(x)

)
Q−0 (x, ξ)

∂

∂nξ

∫
F+

P+
0 η1

( |x− ξ|
δr(x)

)
ϕ(y)dsy dsξ

admits a similar representation. The last follows directly from the relation∫
R2

Q−0 (x, ξ)
∂

∂nξ

∫
R2

P+
0 (ξ, y)ϕ(y)dsy dsξ = −ϕ(x).

The lemma is proved.

Proof of Theorem 8. If the point x is placed near y, then the estimates for
the kernels M(x, y), L(x, y) follow from Lemmas 5, 7, 8. In the opposite case such
estimates can be obtained similarly and even simpler.
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Remark 1 Using known results on the asymptotic behaviour of solutions to the Dirich-
let and Neumann problems near boundary singularities, one can improve estimates of
the kernels M(x, y), L(x, y). For example, if the points x, y lie in the neighbourhood
of a vertex Oi which does not contain other vertices and if for a certain edge Mj the
estimates

dist(x,Mj) ≤ cdist(x,Ms), dist(y,Mj) ≤ cdist(y,Ms)

hold for all s : 1 ≤ s ≤ k, s 6= j, then the numbers κ and λ may be replaced by
min{δj , νj} and π/(π + |π − ωj |), where ωj is the opening of the dihedral angle with
the edge Mj.

Remark 2 The following representation holds for the inverse operator of the integral
equation associated with the exterior Neumann problem:

(1 + T ∗)−1g = (1 + L∗ +M∗)g, g ∈ N l−1,α
β,γ+l (Γ),

where the kernels of the operators L∗ and M∗ obey the estimates which can be obtained
from the estimates for the kernels L and M in (3.1) by replacing x by y and vice versa.

4 Solvability of the integral equation

In this section we use our previous notatio. Besides, we denote by Lpβ,γ(Γ) the space
of functions u with the norm

‖u‖Lpβ,γ(Γ) = ‖ρβrγu‖Lp(Γ).

Lemma 12 The operators L and M satisfying the estimates given in Theorem 8 are
continuous in Lpβ,γ(Γ) for

1 ≤ p <∞, 0 < β + γ + 2/p < 1 + κ, 0 < γ + 1/p < λ

and for
p =∞, 0 ≤ β + γ < 1 + κ, 0 ≤ γ < λ.

Proof. Let ϕ ∈ Lpβ,γ(Γ). It is sufficient to show that Lϕ ∈ Lpβ,γ(Γ ∩ U), respec-

tively, Mϕ ∈ Lpβ,γ(Γ∩U), where U is a neighbourhood of a vertex Oi. For convenience
we assume that the point Oi coincides with the origin. We denote by χ a function
from C∞0 (R3) which equals one on U . We also assume that suppχ contains no other
vertices of the polyhedron except Oi.

We shall verify the following inequality for the function ψ = ϕχ

‖Lψ‖Lpβ,γ(Γ∩U) ≤ c ‖ψ‖Lpβ,γ(Γ). (4.1)

The same estimate for the operator M is obvious for 1 ≤ 0 <∞, β + γ + 2/p > 0,
γ + 1/p > 0, and p =∞, β + γ ≥ 0, γ ≥ 0.

We set

Lψ =
∑

1≤i≤3

Liψ =
∑

1≤i≤3

∫
Γi

L(x, y)ψ(y) dsy,

where Γ1 = {ξ ∈ Γ : 2|ξ| < |x|}, Γ2 = {ξ ∈ Γ : |x|/2 < |ξ| < 2|x|}, Γ3 = {ξ ∈ Γ : |ξ| >
2|x|}, and prove (4.1) for each integral Liψ. We shall use the Hardy inequality

‖ραF‖Lp(R1
+) ≤ c ‖ρα+1f‖Lp(R1

+), (4.2)
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where

F (ρ) =

∫ ρ

0

f(t)dt, α < −1/p, and F (ρ) =

∫ ∞
ρ

f(t)dt, α > −1/p.

Let ψ be the function on R1
+ defined by

ψ(ρ) =

∫
`

r(θ)λ−1−ε|ψ(ρθ)| d`θ,

where ` = ∂Ki ∩ S2, S2 is the unit sphere with center at Oi, ∂Ki is the boundary of
the cone Ki which coincides with G+ near trhe point Oi and a positive ε is so small
that λ− ε > γ + 1/p.

We set

F (ρ) =

∫ ρ

0

τκ−εψ(τ) dτ

and in vew of estimates for L(x, y) in Theorem 8 we get

‖ρβ+γL1ψ‖Lp(Γ∩U) ≤ c ‖ρβ+γ−1−κ+ε+1/pF‖Lp(R1
+).

Using (4.2) and taking into account thet λ − ε > γ + 1/p, we arrive at the desired
estimate for L1ψ for β + γ + 2/p < 1 + κ − ε.

The estimate (4.1) for L3ψ is proved similarly. It is sufficient to consider the
function

F (ρ) =

∫ ∞
ρ

τ−1−κ+εψ(τ) dτ

and to apply the inequality (4.2).

In order to obtain (4.1) for L2ψ, we use the following assertion.

Lemma 13 Let F be the boundary of the dihedral angle with edge M and let L be
the integral operator on F with the kernel L(x, y) satisfying the estimate in Lemma
10. Then the operator L is continuous in Lp,t(F ) for 1 ≤ p ≤ ∞, −λ < t+ 1/p < λ,
where Lp,t(F ) is the function space with the norm

‖u‖Lp,t(F ) = ‖rtu‖Lp(F ).

Proof. Let 1 < p < ∞. We denote by Li, i = 1, 2, the operator with the kernel
(Lζi)(x, y), where

ζ1(x, y) =
(

1− η1

( |x− y|
r(x)

))
, ζ2(x, y) = η1

( |x− y|
r(x)

)
.

For the operator L1 we have

‖L1ϕ‖pLp,t(F ) ≤ c
∫
F

r(x)p(t+λ−ε)
(∫

F

r(y)λ−1−ε

|x− y|1+2λ−2ε
ζ1(x, y)ϕ(y)dsy

)p
dsx. (4.3)

By Hölder’s inequality, the interior integral is majorized by(∫
F

r(y)δq

|x− y|2+αq
ζ1dsy

) 1
q
(∫

F

r(y)p(λ−1−ε−δ)

|x− y|2+p(2λ−1−2ε−α)
ζ1|ϕ|pdsy

) 1
p

,

where q = p/(p − 1), p 6= 1. Setting δ > −1/q, α − δ > 0, we conclude that the first
factor in the last expression is estimated by r(x)δ−α.
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Hence

‖L1ϕ‖pLp,t(F ) ≤ c
∫
F

r(y)p(λ−1−ε−δ)|ϕ|p
(∫

F

r(x)p(t+λ−ε+δ−α)

|x− y|2+2(λ−1−2ε−α)p
ζ1(x, y)dsx

)p
dsy.

Suppose that ε, α− δ, δ + 1− 1/p are so small that

λ+ t+ 1/p− ε+ δ − α > 0, λ− 1− ε− δ − t > 0.

The the last inequality leads to the estimate

‖L1ϕ‖Lp,t(F ) ≤ c ‖ϕ‖Lp,t(F ). (4.4)

In order to establish (4.4) for p = 1, it is sufficient to change the order of integration
in the right-hand side of (4.3). In the case p =∞, the estimate (4.4) follows directly
from the estimates for the kernel of thew operator L1.

Using the inequalities

c1r(y) < r(x) < c2r(y), c1, c2 > 9,

for x, y ∈ supp ζ2, we arrive at (4.4) for the operator L2.

Lemma 14 The operator T is continuous in spaces C(Γ) and Lpβ,γ(Γ) for all 1 ≤
p < ∞, 0 < β + γ + 2/p < 2, 0 < γ + 1/p < 1, and for p = ∞, 0 ≤ β + γ < 2,
0 ≤ γ < 1.

Proof. Let the points x, y be placed in a neighbourhood of a vertex Oi. One
verifies directly that the kernel T (x, y) of the operator T admits the estimates

|T (x, y)| ≤ c r(x)

(r(x) + |x− y|)3
+ c

1

ρ(x)2

if ρ(x)/2 < ρ(y) < 2ρ(x), and

|T (x, y)| ≤ c ρ(x)

(ρ(x) + ρ(y))3
+ c

otherwise.

It is known that Tϕ ∈ C(Γ) for ϕ ∈ C(Γ) (see [BM], [K]). Hence, by the above
estimates for T (x, y) all assertions of this lemma follow from Lemma 12.

Using Theorems 7 and Lemmas 12, 14, we arriuve at the following assertion.

Theorem 9 Let 1 ≤ p < ∞, 0 < β + γ + 2/p < 1 + κ, 0 < γ + 1/p < λ, and for
p = ∞, 0 ≤ β + γ < 1 + κ, 0 ≤ γ < λ. Then the inverse operator of the integral
equation associated with the Dirichlet problem is continuous in the spaces C(Γ) and
Lpβ,γ(Γ).

This result along with Lemma 14 shows in particular that the mappings

1 + T : Lp(Γ)→ Lp(Γ), 1 + T ∗ : Lp/(p−1)(Γ)→ Lp/(p−1)(Γ),

where p > 2/(1 + κ) and p > 1/λ, are isomorphic.
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