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Abstract. The present paper establishes boundedness of
[
m − n

2 + 1
2

]
derivatives for the solutions

to the polyharmonic equation of order 2m in arbitrary bounded open sets of Rn, 2 ≤ n ≤ 2m + 1,
without any restrictions on the geometry of the underlying domain. It is shown that this result is
sharp and cannot be improved in general domains. Moreover, it is accompanied by sharp estimates
on the polyharmonic Green function.
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1. Introduction

Higher order differential operators are important in physics and in engineering [34] and have
been integrated in many areas of mathematics, including conformal geometry (Paneitz operator,
Q-curvature [8], [9]), free boundary problems [1], non-linear elasticity [50], [10], [5], to mention
just a few. Unfortunately, in spite of evident demand, the properties of higher order PDEs on gen-
eral domains remained largely beyond reach. Their investigation brought challenging hypotheses
and surprising counterexamples, and few general positive results. For instance, Hadamard’s 1908
conjecture regarding positivity of the biharmonic Green function [16] was actually refuted in 1949
(see [14], [15], [45]), and later on the weak maximum principle was proved to fail as well, at least
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in high dimensions [32], [44]. Another curious feature is a paradox of passage to the limit for
solutions under approximation of a smooth domain by polygons [6], [28].

For a long time, almost all results for higher order PDEs pertained to piecewise smooth domains
(see, e.g., [19], [20], [33]). The recent two decades have witnessed a great burst of activity in the
study of boundary value problems on Lipschitz domains, which brought some powerful and deli-
cate estimates for the bi-Laplacian and for the polyharmonic operator due to B. Dahlberg, C. Kenig,
J. Pipher, G. Verchota, Z. Shen, M. Mitrea, and others ([11], [53], [40], [41], [42], [17], [44], [43],
[54], [12], [2], [55], [46], [47], [48], [49], [35], [27], [56], [18], [36]). Unfortunately, none of these
results could be extended to domains of more complicated geometry.

The present paper establishes sharp pointwise estimates on the solutions to the polyharmonic
equation and their derivatives in arbitrary bounded open sets, without any restrictions on the
geometry of the underlying domain. It is shown that these estimates are sharp and can not be
improved.

Let us recall the second order case. One of the fundamental results of elliptic theory is the
maximum principle for harmonic functions. It holds in arbitrary domains and guarantees that
every solution to the Dirichlet problem for the Laplace’s equation, with bounded data, is bounded.
A similar statement is valid for a broad class of second order elliptic operators.

In 1960 an appropriate, weak, version of the maximum principle was obtained for higher order
equations on smooth domains ([3], see also [37], [38]). Roughly speaking, it amounts to the
estimate

(1.1) ‖∇m−1u‖L∞(Ω) ≤ C‖∇m−1u‖L∞(∂Ω),

where u is a solution of an elliptic differential equation of order 2m such that |∇m−1u| is continuous
up to the boundary, ∇m−1u = {∂αu}|α|=m−1 is a vector of all partial derivatives of u of order m−1 and
we adopt the usual convention that the zeroth order derivative of u is u itself. The formulation in
non-smooth domains is somewhat trickier (see, e.g., [39]). However, in any setting, the weak max-
imum principle would always guarantee that the solution with “nice” data has bounded derivatives
of order m−1. In the early 1990s, (1.1) was extended to three-dimensional domains diffeomorphic
to a polyhedron ([20], [31]) or having a Lipschitz boundary ([42], [44]). In general domains, no
direct analog of the maximum principle exists (see Problem 4.3, p. 275, in Nečas’s book [39]).

Moreover, it turns out that for every elliptic operator of order greater than two the maximum
principle can be violated, in a four-dimensional cone ([32], see also [29], [41], [44]). It has been
shown, in particular, that in dimensions n ≥ 4 there are solutions to the polyharmonic equation with
unbounded (m − 1)-st derivatives (cf. (1.1)). This phenomenon raises two fundamental questions:
whether the boundedness of the (m − 1)-st derivatives remains valid in dimensions n ≤ 3, and
whether there are some other, possibly lower-order, estimates that characterize the solutions when
n ≥ 4. The main result of the present paper is as follows.

Theorem 1.1. Let Ω be a bounded domain in Rn, 2 ≤ n ≤ 2m + 1, and

(1.2) (−∆)mu = f in Ω, f ∈ C∞0 (Ω), u ∈ W̊m,2(Ω).
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Then the solution to the boundary value problem (1.2) satisfies

(1.3) ∇m−n/2+1/2u ∈ L∞(Ω) when n is odd and ∇m−n/2u ∈ L∞(Ω) when n is even.

In particular,

(1.4) ∇m−1u ∈ L∞(Ω) when n = 2, 3.

Here the space W̊m,2(Ω), is, as usually, a completion of C∞0 (Ω) in the norm given by ‖u‖W̊m,2(Ω) =

‖∇mu‖L2(Ω). We note that W̊m,2(Ω) embeds into Ck(Ω) only when k is strictly smaller than m − n
2 ,

n < 2m. Thus, whether the dimension is even or odd, Theorem 1.1 gains one derivative over the
outcome of Sobolev embedding.

The results of Theorem 1.1 are sharp, in the sense that the solutions do not exhibit higher smooth-
ness than warranted by (1.3)–(1.4) in general domains. Indeed, assume that n ∈ [3, 2m + 1] ∩ N is
odd and let Ω ⊂ Rn be the punctured unit ball B1 \ {O}, where Br = {x ∈ Rn : |x| < r}. Consider a
function η ∈ C∞0 (B1/2) such that η = 1 on B1/4. Then let

(1.5) u(x) := η(x) ∂m− n
2−

1
2

x (|x|2m−n), x ∈ B1 \ {O},

where ∂x stands for a derivative in the direction of xi for some i = 1, ..., n. It is straightforward to
check that u ∈ W̊m,2(Ω) and (−∆)mu ∈ C∞0 (Ω). While ∇m− n

2 + 1
2 u is bounded, the derivatives of the

order m − n
2 + 3

2 are not, and moreover, ∇m− n
2 + 1

2 u is not continuous at the origin. Therefore, the
estimates (1.3)–(1.4) are optimal in general domains.

As for the case when n is even, the results in [20, Section 10.4] demonstrate that in an exterior
of a ray there is an m-harmonic function behaving as |x|m−

n
2 + 1

2 . Thus, upon truncation by the
aforementioned cut-off η, one obtains a solution to (1.2) in B1 \ {x1 = 0, ..., xn−1 = 0, 0 ≤ xn < 1},
whose derivatives of order m − n

2 + 1 are not bounded. Therefore, in even dimensions (1.3) is a
sharp property as well.

Furthermore, Theorem 1.1 has several quantitative manifestations, providing specific estimates
on the solutions to (1.2). Most importantly, we establish sharp pointwise estimates on Green’s
function of the polyharmonic operator and its derivatives, once again without any restrictions on
the geometry of the domain. The full list of the estimates is quite extended. For the purposes of
the introduction, let us just highlight the highest order case.

As customary, we denote by G(x, y), x, y ∈ Ω, Green’s function for the polyharmonic equation
and by Γ its fundamental solution, so that, in particular, G(x, y) − Γ(x − y), x, y ∈ Ω, is the regular
part of the Green function. By definition, for every fixed y ∈ Ω the function G(·, y) satisfies

(1.6) (−∆x)mG(x, y) = δ(x − y), x ∈ Ω,

in the space W̊m,2(Ω). Here ∆x stands for the Laplacian in x variable, and similarly we use the
notation ∆y, ∇y, ∇x for the Laplacian and gradient in y, and gradient in x, respectively. By d(x) we
denote the distance from x ∈ Ω to ∂Ω.

Theorem 1.2. Let Ω ⊂ Rn be an arbitrary bounded domain. If n ∈ [3, 2m + 1] ∩ N is odd then

(1.7)
∣∣∣∣∇m− n

2 + 1
2

x ∇
m− n

2 + 1
2

y (G(x, y) − Γ(x − y))
∣∣∣∣ ≤ C

max{d(x), d(y), |x − y|}
, for every x, y ∈ Ω,
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and, in particular,

(1.8)
∣∣∣∣∇m− n

2 + 1
2

x ∇
m− n

2 + 1
2

y G(x, y)
∣∣∣∣ ≤ C
|x − y|

, for every x, y ∈ Ω.

If n ∈ [2, 2m] ∩ N is even, then

(1.9)
∣∣∣∣∇m− n

2
x ∇

m− n
2

y (G(x, y) − Γ(x − y))
∣∣∣∣ ≤ C log

(
1 +

diam Ω

max{d(x), d(y), |x − y|}

)
, for every x, y ∈ Ω,

and

(1.10)
∣∣∣∣∇m− n

2
x ∇

m− n
2

y G(x, y)
∣∣∣∣ ≤ C log

(
1 +

min{d(x), d(y)}
|x − y|

)
, for every x, y ∈ Ω.

The constant C in (1.7)–(1.10) depends on m and n only. In particular, it does not depend on the
size or the geometry of the domain Ω.

We mention that the pointwise bounds on the absolute value of Green’s function itself have been
treated previously in dimensions 2m + 1 and 2m + 2 for m > 2 and dimensions 5, 6, 7 for m = 2 in
[25, Section 10] (see also [24]). Also, as for the solutions, there exist results in smooth domains
[13], [21], [51], [52], in conical domains [30], [20], and in polyhedra [31]. The estimates on the
derivatives of Green’s function in arbitrary bounded domains, provided by Theorem 1.2, are new.

Furthermore, using standard techniques, the Green’s function estimates can be employed to
establish the bounds on the solution to (1.2) for general classes of data f , such as Lp for a certain
range of p, Lorentz spaces etc. We defer the detailed discussion of those to the body of the paper.

Here we just would like to point out that until recently, the properties stated in Theorems 1.1–
1.2 seemed accessible exclusively under heavy restrictions on the geometry of the domain (see the
references above). The present paper rests on a new method, based on some intricate weighted
integral identities. The biggest challenge, and the core idea, is the proper choice of the weight
function w. It is very subtle and finely tuned to the underlying elliptic operator in such a way
that the positivity, or, rather, suitable bounds from below, could be obtained for expressions akin
to

∫
Ω

(−∆)mu(x)u(x) w(x) dx. When such integrals have been considered before (in particular, we
have established the three-dimensional biharmonic version of the results of this paper earlier in
[22]), the difficulties of handling general m and n seemed insurmountable. One of the main tech-
nical achievement of this paper is the novel systematic construction of the weight leading to sharp
bounds for the solutions. It invokes numerous new aspects: employing induction in eigenvalues
of the Laplace-Beltrami operator on the sphere, preservation of some positivity properties under
a change of underlying higher order operator, exploiting delicate peculiarities of (−∆)m depend-
ing on the parity of m, n,m − n/2, and others. The construction appears for the first time in this
manuscript and is likely to be applicable to general classes of elliptic equations.

Acknowledgements. We are greatly indebted to Marcel Filoche for the idea relating certain
positivity properties of one-dimensional differential operators to particular configurations of the
roots of associated polynomials. It has been reflected in Section 3 and it has ultimately significantly
influenced our technique.
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2. Integral inequalities and global estimate: the case of odd dimension. Part I: power weight

Let us start with a list of notation and conventions used throughout the paper.
For any domain Ω ⊂ Rn a function u ∈ C∞0 (Ω) can be extended by zero to Rn and we will write

u ∈ C∞0 (Rn) whenever convenient. Similarly, the functions in W̊m
2 (Ω), m ∈ N, will be extended by

zero and treated as functions on Rn or other open sets containing Ω without further comments.
The symbols Br(Q) and S r(Q) denote, respectively, the ball and the sphere with radius r centered

at Q and Cr,R(Q) = BR(Q) \ Br(Q). When the center is at the origin, we write Br in place of Br(O),
and similarly S r := S r(O) and Cr,R := Cr,R(O).

Let (r, ω) be spherical coordinates in Rn, n ≥ 2, i.e. r = |x| ∈ (0,∞) and ω = x/|x| is a point
of the unit sphere S n−1. In fact, it will be more convenient to use e−t, t ∈ R, in place of r, so that
t = log r−1 = log |x|−1. Then by κ we denote the mapping

(2.1) Rn 3 x
κ
−→ (t, ω) ∈ R × S n−1, n ≥ 2.

The symbols δω and ∇ω refer, respectively, to the Laplace-Beltrami operator and the gradient on
S n−1.

Finally, by C, c, Ci and ci, i ∈ N, we generally denote some constants, possibly depending on
the order of operator m and the dimension n but not on any other variables and not on the domain,
unless explicitly stated otherwise. Their exact values are of no importance and can change from
line to line. Also, we write A ≈ B, if C−1 A ≤ B ≤ C A for some C > 0.

Theorem 2.1. Assume that m ∈ N and n ∈ [3, 2m + 1] ∩ N is odd. Let Ω be a bounded domain in
Rn, O ∈ Rn \Ω, u ∈ C∞0 (Ω) and v = e(m− n

2 + 1
2 )t(u ◦ κ−1). Then∫

Rn
(−∆)mu(x) u(x)|x|−1 dx

≥ C
m∑

k=1

∫
R

∫
S n−1

(
∂k

t v
)2

dωdt + C
∫
R

∫
S n−1

v
m− n

2 + 1
2∏

p=− n
2 + 3

2

(−δω − p (p + n − 2)) v dωdt,(2.2)

where C > 0 is some constant depending on m and n only.

Proof. Step I. In the system of coordinates (t, ω) the polyharmonic operator can be written as

(2.3) (−∆)m = (−1)me2mt
m−1∏
j=0

(
(−∂t − 2 j)(−∂t − 2 j + n − 2) + δω

)
.

Then

(2.4)
∫
Rn

(−∆)mu(x) u(x)|x|−1 dx =

∫
R

∫
S n−1
Lm,n(∂t, δω)v(t, ω) v(t, ω) dωdt,

with

(2.5) Lm,n(∂t, δω) = (−1)m
m−1∏
j=0

((
−∂t + m −

n
2

+
1
2
− 2 j

)(
−∂t + m +

n
2
−

3
2
− 2 j

)
+ δω

)
.
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Denote by vpl the coefficients of the expansion of v into spherical harmonics:

(2.6) v(t, ω) =

∞∑
p=0

p∑
l=−p

vpl(t)Y
p
l (ω), t ∈ R, ω ∈ S n−1.

Then we can write the expression on the right-hand side of (2.4) as

(2.7)
∞∑

p=0

p∑
l=−p

∫
R

Lm,n(∂t,−p (p + n − 2))vpl(t) vpl(t) dt.

As usually, denote by v̂ the Fourier transform of v, i.e.

(2.8) v̂(γ) =
1
√

2π

∫
R

e−iγ tv(t) dt, γ ∈ R.

By the Plancherel’s identity (2.7) is equal to

∞∑
p=0

p∑
l=−p

∫
R

Lm,n(iγ,−p (p + n − 2))
∣∣∣v̂pl(γ)

∣∣∣2 dγ

=

∞∑
p=0

p∑
l=−p

∫
R

<eLm,n(iγ,−p (p + n − 2))
∣∣∣v̂pl(γ)

∣∣∣2 dγ.(2.9)

Indeed, the imaginary part of the polynomial Lm,n(iγ,−p (p + n − 2)) is odd, while v̂pl is even for
any real-valued function vpl, hence the imaginary part of the first integral above is equal to zero.

From now we shall carry out all calculations for n = 3 (Steps II-VII) and then show that the
general case can be reduced to the three-dimensional one (Step VIII). For brevity, Lm,3 will be
denoted Lm.

Step II. We claim that Lm, m ∈ N, satisfy the following relations:

(2.10) Lm(iγ,−p (p + 1)) = ap + i bp,

where

a0 =

m−1∏
k=0

(
γ2 + k2

)
,(2.11)

a1 = (γ2 + m2 + 1)
m−2∏
k=0

(
γ2 + k2

)
,(2.12)

ap =
(2p − 1)ap−1 +

(
γ2 + (p − 1 + m)2

)
ap−2

γ2 + (m − p)2 , p ≥ 2,(2.13)



REGULARITY OF SOLUTIONS TO THE POLYHARMONIC EQUATION 7

and

b0 = γm
m−1∏
k=1

(
γ2 + k2

)
,(2.14)

b1 = γm(γ2 + m2 − 1)
m−2∏
k=1

(
γ2 + k2

)
,(2.15)

bp =
−(2p − 1)bp−1 +

(
γ2 + (p − 1 + m)2

)
bp−2

γ2 + (m − p)2 , p ≥ 2.(2.16)

When p = m and γ = 0, the expressions in (2.13) and (2.16) should be understood in the sense of
the corresponding limits. Formulas (2.11)–(2.16) show that each of the polynomials am−1, am, bm−1,
bm contains the factor γ2, hence the aforementioned limits are finite. Below we shall not consider
separately the case p = m, γ = 0, as all arguments can be justified for this case by a simple limiting
procedure.

Let us denote Lm(iγ,−p (p + 1)) by Lp throughout this argument. According to (2.5)

Lp = (−1)m
m−1∏
j=0

(
(−iγ + m − 1 − 2 j)(−iγ + m − 2 j) − p (p + 1)

)

= (−1)m
m−1∏
j=0

(−iγ + m − 1 − 2 j − p)(−iγ + m − 2 j + p).(2.17)

It remains to show that the polynomials above satisfy (2.10)–(2.16). First,

L0 = (−1)m
m−1∏
j=0

(−iγ + m − 1 − 2 j)(−iγ + m − 2 j) = (−1)m
m∏

k=−m+1

(−iγ + k)

= (−1)m (−iγ)(m − iγ)
m−1∏
k=1

(−iγ + k)(−iγ − k) = (γ2 + iγm)
m−1∏
k=1

(γ2 + k2)(2.18)

and

L1 = (−1)m
m−1∏
j=0

(−iγ + m − 2 − 2 j)(−iγ + m − 2 j + 1)

= (−1)m (m + 1 − iγ)(m − 1 − iγ)(−iγ)(−m − iγ)
m−2∏
k=1

(−iγ + k)(−iγ − k)

= (m2 − 2miγ − γ2 − 1)(miγ − γ2)
m−2∏
k=1

(γ2 + k2)
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=
(
γ2(γ2 + m2 + 1) + miγ(γ2 + m2 − 1)

) m−2∏
k=1

(γ2 + k2),(2.19)

as desired. As for p ≥ 2, we have to show that

Lp =
1

γ2 + (m − p)2

(
(2p − 1)(ap−1 − ibp−1) +

(
γ2 + (p − 1 + m)2

)
(ap−2 + ibp−2)

)
=

1
γ2 + (m − p)2

(
(2p − 1)Lp−1 +

(
γ2 + (p − 1 + m)2

)
Lp−2

)
.(2.20)

It follows from (2.17) that

Lp−1 = (−1)m
m−1∏
j=0

(iγ + m − 2 j − p)(iγ + m − 2 j + p − 1)

= (−1)m
m−1∏
j=0

(iγ + m − 2(m − 1 − j) − p)(iγ + m − 2(m − 1 − j) + p − 1)

= (−1)m
m−1∏
j=0

(m − 2 j − iγ − p − 1)(m − 2 j − iγ + p − 2),(2.21)

and

Lp−2 = (−1)m
m−1∏
j=0

(−iγ + m − 2 j − p + 1)(−iγ + m − 2 j + p − 2)

= (−1)m
m−1∏
j=0

(−iγ + m − 2 j + p − 2)
m−2∏
k=−1

(−iγ + m − 2k − p − 1).(2.22)

Hence,
1

γ2 + (m − p)2

(
(2p − 1)Lp−1 +

(
γ2 + (p − 1 + m)2

)
Lp−2

)
=

1
γ2 + (m − p)2 (−1)m

m−1∏
j=0

(−iγ + m − 2 j + p − 2)
m−2∏
k=0

(−iγ + m − 2k − p − 1) ×

×
(
(2p − 1)(−m + 1 − iγ − p) +

(
γ2 + (p − 1 + m)2

)
(m + 1 − iγ − p)

)
=

1
γ2 + (m − p)2 (−1)m

m∏
k=1

(−iγ + m − 2k + p)
m−2∏
k=0

(−iγ + m − 2k − p − 1) ×

×(−m + 1 − iγ − p)
(
(2p − 1) − (m − 1 − iγ + p)(m + 1 − iγ − p)

)
.(2.23)



REGULARITY OF SOLUTIONS TO THE POLYHARMONIC EQUATION 9

The latter expression is equal to

Lp
1

γ2 + (m − p)2

(−iγ − m + p)
(−iγ + m + p)

1
(−m + 1 − iγ − p)

×

×(−m + 1 − iγ − p)(−1)(−iγ + m + p)(−iγ + m − p) = Lp.(2.24)

This finishes the proof of (2.10)–(2.16), in particular, we have

(2.25) <eLm(iγ,−p (p + 1)) = ap for every p ∈ N ∪ {0},

and hence

(2.26)
∫
R3

(−∆)mu(x) u(x)|x|−1 dx =

∞∑
p=0

p∑
l=−p

∫
R

ap(γ)
∣∣∣v̂pl(γ)

∣∣∣2 dγ.

Step III. In order to prove (2.2) for n = 3 one has to show that

(2.27) aq(γ) ≥ C
m∑

k=1

γ2k + C
m−1∏
p=0

(
q(q + 1) − p (p + 1)

)
for every q ∈ N ∪ {0}, γ ∈ R,

with some constant C > 0 independent of q and γ. Indeed, if (2.27) is satisfied, then
∞∑

q=0

q∑
l=−q

∫
R

aq(γ)
∣∣∣v̂ql(γ)

∣∣∣2 dγ

≥ C
∞∑

q=0

q∑
l=−q

∫
R

 m∑
k=1

∣∣∣(iγ)k v̂ql(γ)
∣∣∣2 + v̂ql(γ)

m−1∏
p=0

(
q(q + 1) − p (p + 1)

)
v̂ql(γ)

 dt

= C
∞∑

q=0

q∑
l=−q

∫
R

 m∑
k=1

(
∂k

t vql(t)
)2

+ vql(t)
m−1∏
p=0

(
q(q + 1) − p (p + 1)

)
vql(t)

 dt

= C
∫
R

∫
S 2

 m∑
k=1

(
∂k

t v(t, ω)
)2

+ v(t, ω)
m−1∏
p=0

(
−δω − p (p + 1)

)
v(t, ω)

 dt(2.28)

which combined with (2.26) gives (2.2) for n = 3. Let us now concentrate on (2.27).

Step IV. The formulas (2.11)–(2.13) show that all aq are nonnegative. Moreover, since

(2.29) (q − 1 + m)2 > (m − q)2 for every q ∈ N and m ∈ N,

we have aq ≥ aq−2 for all q ≥ 2, and therefore,

(2.30) aq(γ) ≥ min{a0(γ), a1(γ)} ≥
m−1∏
k=0

(γ2 + k2) for every q ∈ N ∪ {0}, γ ∈ R.
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Hence,

aq(γ) ≥
m∑

k=1

γ2k for every q ∈ N ∪ {0}, γ ∈ R.(2.31)

Step V. As for the second term on the right hand side of (2.27), it is clear that

(2.32) aq(γ) ≥
m−1∏
p=0

(
q(q + 1) − p (p + 1)

)
for q = 0, 1, ...,m − 1, γ ∈ R,

since for such q the product in (2.32) is equal to 0. Now assume that q ≥ m. If |γ| ≥ q + 1, then by
(2.30)

(2.33) aq(γ) ≥
m−1∏
k=0

(
(q + 1)2 + k2

)
≥

m−1∏
p=0

(
q(q + 1) − p (p + 1)

)
,

and it remains to consider |γ| ≤ q + 1, q ≥ m.

Step VI. By definition

aq(γ) = (−1)m<e
m−1∏
j=0

(−iγ + m − 1 − 2 j − q)(−iγ + m − 2 j + q)

= <e
m−1∏
j=0

(
γ2 + (−m + 1 + 2 j + q)(m − 2 j + q) + iγ(2m − 4 j − 1)

)
.(2.34)

Since q ≥ m, we have (−m + 1 + 2 j + q) > 0 and (m − 2 j + q) > 0. Therefore,

aq(γ) =

m−1∏
j=0

(
γ2 + (−m + 1 + 2 j + q)(m − 2 j + q)

)

×<e
m−1∏
j=0

(
1 + iγ

(2m − 4 j − 1)
γ2 + (−m + 1 + 2 j + q)(m − 2 j + q)

)
.(2.35)

Let us show that there exists C(m) ≥ m such that for every q ≥ C(m) and |γ| ≤ q + 1

(2.36) <e
m−1∏
j=0

(
1 + iγ

(2m − 4 j − 1)
γ2 + (−m + 1 + 2 j + q)(m − 2 j + q)

)
≥

1
2
.

A general idea is that the expression above can be written as 1 + <e R, where |R| is sufficiently
small when q is large. Indeed, R is a sum of at most 2m − 1 terms, each of those being a product of
(at least one, at most m) elements

(2.37) c j := iγ
(2m − 4 j − 1)

γ2 + (−m + 1 + 2 j + q)(m − 2 j + q)
, j = 0, ...,m − 1.
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If q ≥ 2m, then |2 j − m| ≤ q/2 and

(2.38)
∣∣∣c j

∣∣∣ ≤ (q + 1)
2m

(q/2 + 1)(q/2)
≤

8m
q
.

Moreover, if q > 8m, the expression above is less than 1. Hence,

(2.39) |<e R| ≤ |R| ≤ (2m − 1)
8m
q
.

Set now C(m) := 2m+4m. Then |<eR| ≤ 1/2 for every q ≥ C(m), and hence (2.36) holds for such
q. Combining this with (2.35), we deduce that

aq(γ) ≥
1
2

m−1∏
j=0

(
γ2 + (−m + 1 + 2 j + q)(m − 2 j + q)

)

≥
1
2

m−1∏
j=0

(−m + 1 + 2 j + q)(m − 2 j + q) ≥
1
2

(
(q + 2)q

4

)m

≥
1

22m+1

m−1∏
p=0

(
q(q + 1) − p (p + 1)

)
(2.40)

whenever |γ| ≤ q + 1, q ≥ 2m+4m.

Step VII. Finally, we claim that there exists D(m) > 0 such that

(2.41) aq(γ) ≥ D(m)
m−1∏
p=0

(
q(q + 1) − p (p + 1)

)
if m ≤ q ≤ 2m+4m and |γ| ≤ q + 1.

Since aq ≥ aq−2 for q ≥ 2, it is enough to show that for some D > 0

(2.42) min{am(γ), am+1(γ)} ≥ D, |γ| ≤ q + 1,

as (2.42) implies (2.41) with

(2.43) D(m) = D

m−1∏
p=0

(
2m+4m(2m+4m + 1) − p (p + 1)

)
−1

.

However, the formula (2.17) implies

(2.44) am(0) =

m−1∏
j=0

(1 + 2 j)(2m − 2 j) ≥ 2 and am+1(0) =

m−1∏
j=0

(2 + 2 j)(2m + 1 − 2 j) ≥ 2,
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so that for some ε0 = ε0(m) > 0 we have min{am(γ), am+1(γ)} ≥ 1 when |γ| < ε0. On the other
hand, by (2.30)

(2.45) aq(γ) ≥
m−1∏
k=0

(ε2
0 + k2) for every q ∈ N ∪ {0}, |γ| > ε0.

Hence, (2.42) holds with D given by the minimum of 1 and the right hand side of (2.45). This
concludes the proof of (2.41) and the proof of the Theorem for the case n = 3.

Step VIII. Let us now consider any odd n ≥ 3. Similarly to (2.27)–(2.28) in order to prove (2.2)
one has to show that

(2.46) <eLm,n(iγ,−q(q + n − 2)) ≥ C
m∑

k=1

γ2k + C
m− n

2 + 1
2∏

p=− n
2 + 3

2

(
q(q + n − 2) − p (p + n − 2)

)
for every q ∈ N ∪ {0}, γ ∈ R. However,

Lm,n(iγ,−q (q + n − 2))

= (−1)m
m−1∏
j=0

(
−iγ + m −

n
2

+
1
2
− 2 j − q

)(
−iγ + m +

n
2
−

3
2
− 2 j + q

)

= (−1)m
m−1∏
j=0

(−iγ + m − 1 − 2 j − p)(−iγ + m − 2 j + p)

= Lm,3(iγ,−p (p + 1)),(2.47)

for p = q + n
2 −

3
2 . Hence,

<eLm,n(iγ,−q (q + n − 2)) = aq+ n
2−

3
2
(γ)

≥ C
m∑

k=1

γ2k + C
m−1∏
p=0

((
q +

n
2
−

3
2

)(
q +

n
2
−

1
2

)
− p (p + 1)

)

= C
m∑

k=1

γ2k + C
m− n

2 + 1
2∏

s=− n
2 + 3

2

((
q +

n
2
−

3
2

)(
q +

n
2
−

1
2

)
−

(
s +

n
2
−

3
2

)(
s +

n
2
−

1
2

))

= C
m∑

k=1

γ2k + C
m− n

2 + 1
2∏

s=− n
2 + 3

2

(
q(q + n − 2) − s(s + n − 2)

)
(2.48)
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where we used (2.27) and substitution s := p − n
2 + 3

2 . As in (2.27) the constant C > 0 above is
independent of q and γ. Now (2.48) leads to (2.46) and finishes the argument. �

3. Preservation of positivity for solutions of differential operators

Proposition 3.1. 1 Assume that m ∈ N and n ∈ [3, 2m + 1]∩N is odd. Let us define h as the unique
solution of

Lm,n (−∂t, 0) h = δ,(3.1)

which is bounded and vanishes at +∞. Then,

(3.2) Lm,n (−∂t,−p(p + n − 2)) h ≥ 0,

for all p ∈ [0,m − n/2 + 1/2].

Let us start with the operators of the second order.
Let a, b, c, and d four real numbers such that b < 0 ≤ a and d < 0 ≤ c and let f be a (tempered)

distribution on R. We define h as a solution of

(3.3) (∂t − a) (∂t − b) h = f ,

and let the distribution g be given by

(3.4) g := (∂t − c) (∂t − d) h

We want to investigate under what condition on a, b, c, and d the positivity of f entails the positivity
of g.

First, one has to pick a suitable solution (clearly, by subtracting some solution of a homogeneous
equation one can always destroy positivity). Also, f has to be reasonable in order for a solution to
exist.

To keep the discussion at full generality and, at the same time, ensure existence and uniqueness,
in the preliminary results of this section we simply explicitly assume that the solution is obtained
by convolution with the bounded fundamental solution vanishing at +∞ (and, in particular, that f
is such that the convolution integral converges), and later we will check that this hypothesis fits the
argument proving Proposition 3.1.

Also, we record a few conventions. As usually, a distribution f has the singular support at
0 if f ∈ C∞(R \ {0}). Furthermore, we say that such an f has an exponential decay at +∞ if
| f (t)| ≤ Ce−αt, t > 0, for some α,C > 0, and similarly, f has an exponential decay at −∞ if
| f (t)| ≤ Ceβt, t < 0 for some β,C > 0. Within this section all distributions of interest are bounded
in a punctured neighborhood of 0 and thus, there is no loss of generality in considering all t > 0
(or, respectively, t < 0) in the definitions above.

Proposition 3.2. Fix a, b, c, d ∈ R such that b < 0 ≤ a and d < 0 ≤ c. Let f and h be two
distributions on R such that h is a convolution of f with the bounded fundamental solution of the
operator (∂t − a) (∂t − b), which vanishes at +∞. In particular,

(∂t − a) (∂t − b) h = f .(3.5)

1The idea of the proof has been suggested by Marcel Filoche.
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Assume that f is positive. If [b, a] ⊂ [d, c], then

g := (∂t − c) (∂t − d) h(3.6)

is also a positive distribution.
Furthermore, if f has the singular support at 0 and exponential decay at +∞ and −∞, then

g also has the singular support at 0 and exponential decay at +∞ and −∞ provided that either
a, c , 0 or a = c = 0.

Proof. Let us start with the case f = δ. Problem (3.5) therefore writes

(∂t − a) (∂t − b) h = δ.(3.7)

The solution of (3.7) which is bounded and vanishes at +∞ is given by

h0(t) = κ

eat if t ≤ 0
ebt if t > 0

with κ =
1

b − a
.(3.8)

This solution is unique because any other bounded solution vanishing at +∞, h1, would be such
that h1 − h0 solves the homogeneous problem corresponding to (3.5). Thus, h1 − h0 would have an
exponential growth at −∞ and/or violate the assumption of vanishing at +∞.

Applying the operator in (3.6) to this solution h0 yields

g0(t) = δ +

κ (a − c)(a − d) eat if t ≤ 0,
κ (b − c)(b − d) ebt if t > 0,

(3.9)

i.e., g0 is the sum of the Dirac delta function, coming from the second derivative appearing in (3.6),
and a piecewise continuous function. The constant κ being always negative, it follows immediately
that g0 will be positive if and only if (a − c)(a − d) and (b − c)(b − d) are both non-positive, i.e., if
both a and b belong to the interval [d, c]. On the contrary, due to the Dirac distribution present in
g0, if either a or b is outside the interval [d, c] then g0 has no specific sign.

We now turn back to the initial problem (3.5). As per our assumptions, we consider the solution
of this problem obtained from a convolution product of f with the fundamental solution h0 defined
in (3.8), that is,

h(t) =

∫
R

f (u) h0(t − u) du.(3.10)

Applying the operator in (3.6) to this h yields

g(t) =

∫
R

f (u) g0(t − u) du(3.11)

We see here that the positivity of g for any positive f follows from the positivity of g0, hence a and
b belonging to the interval [d, c]. Given that b < 0 ≤ a, this amounts to [b, a] ⊂ [d, c].

Furthermore, if f has an exponential decay at both +∞ and −∞ and either a, c , 0 or a = c = 0
then, due to formula (3.9), g0 also has an exponential decay at both +∞ and −∞, and hence, so
does their convolution in (3.11), as desired. �
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Corollary 3.3. Let P and Q be two polynomials of order 2m, with all their roots real and their
higher order coefficient equal to 1. Therefore P and Q write

P(x) =

m−1∏
i=0

(x − ai)(x − bi) and Q(x) =

m−1∏
i=0

(x − ci)(x − di).(3.12)

Let us assume further that both P and Q have m non-negative roots, noted respectively (ai) and
(ci) (0 ≤ i ≤ m − 1), and m negative roots, noted respectively (b j) and (d j) (1 ≤ j ≤ m), such that
∀i ∈ [0,m − 1], [bi, ai] ⊂ [di, ci]. Moreover, either none of the roots of both polynomials is zero, or
both P and Q have exactly one zero root a0 = c0 = 0.

Let f be a positive distribution with the singular support at 0 and exponential decay at +∞ and
−∞, and h be the unique bounded solution of

P(∂t) h = f ,(3.13)

which vanishes at +∞. Then

g := Q(∂t) h,(3.14)

is also a positive distribution with the singular support at 0 and exponential decay at +∞ and −∞.

Remark. The gist of this Proposition, as well as Proposition 3.2, is preservation of the positivity
under appropriate change of a differential operator, or more precisely, under the change that widens
the distances between the roots. The exponential decay is not a necessary condition, but rather a
convenient restriction that ensures the choice of a suitable solution at each step.

Proof. First of all, let us mention that there exists a solution h of (3.13) which is bounded and
vanishes at +∞. It is the solution obtained by the convolution of f with the fundamental solution
of the operator P(∂t) which is bounded and vanishes at +∞.

The Corollary will be obtained by successively applying Proposition 3.2 for all pairs [bi, ai]. The
function f0 is defined as f0 = f , and fi+1 is deduced from fi by

fi+1 := (∂t − ci) (∂t − di) hi,(3.15)

where hi is the solution of

(∂t − ai) (∂t − bi) hi = fi,(3.16)

obtained by convolution with the bounded fundamental solution vanishing at +∞, following Propo-
sition 3.2. Then it is immediate to see that, by Proposition 3.2, all fi are positive distributions with
the singular support at 0 and exponential decay at +∞ and −∞.

We claim that

(3.17) hi =

i−1∏
j=0

(∂t − c j)(∂t − d j)
m−1∏
j=i+1

(∂t − a j)(∂t − b j)h, i = 1, ...,m − 1,

and

(3.18) fi+1 =

i∏
j=0

(∂t − c j)(∂t − d j)
m−1∏
j=i+1

(∂t − a j)(∂t − b j)h, i = 0, ...,m − 1,
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where in the definitions of h0, hm−1, fm one of the products is void.
First of all, letting f0 = f , we see that

(3.19) h′0 :=
m−1∏
j=1

(∂t − a j)(∂t − b j)h, i = 1, ...,m − 2,

satisfies equation (3.16). The only question is whether it is the same solution as h0. However,
much as for the operators of the second order in Proposition 3.2, h′0 is bounded and vanishes at
+∞ for a particular h that we are working with (see the beginning of the proof). Clearly, the same
is true for h0 obtained from (3.16) by convolution of f with the bounded fundamental solution
of (∂t − a0) (∂t − b0) which vanishes at +∞. However, then the difference h0 − h′0 must solve the
homogeneous equation for the operator (∂t − a0) (∂t − b0) and at the same time, h0 − h′0 must be
bounded and vanish at +∞, hence, h0−h′0 = 0. Note, further, that f1 can now be defined equivalently
by (3.18) and (3.15) and, moreover, f1 has an exponential decay at both +∞ and −∞. The latter
follows from (3.15)–(3.16) and the last statement of Proposition 3.2.

Following the same lines, we verify (3.17)–(3.18) identifying them with functions in (3.15)–
(3.16) as the unique solutions of the corresponding differential equations satisfying aforementioned
decay properties.

As we already pointed out, by virtue of Proposition 3.2, all fi are positive distributions with the
singular support at 0 and exponential decay at +∞ and −∞. It is now clear from (3.18) that fm = g.
This finishes the proof of the Corollary. �

Proof of Proposition 3.1. We now focus on the following differential operator

Lm,n(−∂t,−p(p + n − 2)) :=

(−1)m
m−1∏
j=0

(
∂t + m −

n
2

+
1
2
− 2 j − p

) (
∂t + m +

n
2
−

3
2
− 2 j + p

)
.(3.20)

Let us introduce the numbers

c j = 2 j −
(
m −

n − 1
2

)
, 0 ≤ j ≤ m − 1.(3.21)

Note that
m +

n
2
−

3
2
− 2 j + p = −m +

n
2

+
1
2

+ 2(m − 1 − j) + p.

The operator Lm,n thus writes

Lm,n (−∂t,−p(p + n − 2)) = (−1)m
m−1∏
j=0

(
∂t − c j − p

) (
∂t + c j + 1 + p

)
.(3.22)

The roots of the corresponding polynomial are c j + p and −c j − 1 − p, j = 0, ...,m − 1.

Consider an integer p such that 0 ≤ p ≤ m −
n − 1

2
=: k and let us examine the following set of

roots:

S 0 = {c j} ∪ {−c j − 1} ={−k,−k − 2, ..., 2(m − 1) − k}(3.23)
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∪ {−2(m − 1) + k − 1,−2(m − 1) + k + 1, ..., k − 1}.(3.24)

This set contains 2m elements. The largest of the {c j} is larger than the largest of the {−c j − 1}:

2(m − 1) − k > k − 1 because 2(m − 1) ≥ 2k > 2k − 1.(3.25)

Similarly, the smallest of the {−c j − 1} is smaller than the smallest of the {c j}:

−2(m − 1) + k − 1 < −k because 2(m − 1) ≥ 2k > 2k − 1.(3.26)

Moreover, the {c j} and the {−c j − 1} have different parities. So when these two subsets of roots
overlap, the overlap covers all integers, odd and even. Hence, one can rewrite the set S as the union
of 3 sets, the center interval and two “lateral” sets, these two being respectively composed of only
negative and positive numbers:

S 0 ={−2(m − 1) + k − 1, ...,−k − 5,−k − 3} ∪(3.27) (
[−k − 1, k] ∩ Z

)
∪(3.28)

{k + 2, k + 4, ..., 2(m − 1) − k}.(3.29)

The first and the third set might possibly be empty.
Next, the set of roots S p = {c j + p} ∪ {−c j − p − 1} can be described in similar terms replacing k

by k − p:

S p ={−2(m − 1) + k − p − 1, ...,−k + p − 5,−k + p − 3}∪(3.30) (
[−k + p − 1, k − p] ∩ Z

)
∪(3.31)

{k − p + 2, k − p + 4, ..., 2(m − 1) − k + p}.(3.32)

To compare S 0 and S p, one rewrites S 0 in the following way

S 0 ={−2(m − 1) + k − 1, ...,−k − 5,−k − 3} ∪
(
[−k − 1,−k + p − 2] ∩ Z

)
(3.33) (

[−k + p − 1, k − p] ∩ Z
)
∪(3.34) (

[k − p + 1, k] ∩ Z
)
∪ {k + 2, k + 4, ..., 2(m − 1) − k}.(3.35)

Now the center interval is identical in both sets and composed of consecutive integers, k − p + 1
negative numbers and k − p + 1 non negative numbers. In particular, this interval always contains
{−1, 0}. Also, compared one-by-one, the roots in the first subset of S p (3.30), are smaller than the
roots in the first subset of S 0 (3.33), and similarly, the roots in the last subset of S p (3.32), are
larger than the roots in the last subset of S 0 (3.35).

We now can name the sequence of roots of S 0 (in the order they appear in (3.33)–(3.35))

(3.36) bm−1 < bm−2 < ... < b0 = −1 < a0 = 0 < a1 < ... < am,

and, respectively, the roots of S p (in the order of appearance in (3.30)–(3.32))

(3.37) dm−1 < dm−2 < ... < d0 = −1 < c0 = 0 < c1 < ... < cm.



18 SVITLANA MAYBORODA AND VLADIMIR MAZ’YA

Then [bi, ai] ⊂ [di, ci] for all i = 0, ...,m − 1, and moreover, a0 = c0 = 0 are the only zero roots.
Thus, we are in the setting of Corollary 3.3, which finishes the argument. (Note that when m is
odd, we apply Corollary 3.3 with −h in place of h). �

4. Integral inequalities and global estimate: the case of odd dimension. Part II: weight g

Incorporating the results of Section 3, in this section we introduce a new weight function g.
Together with the inequalities in Section 2, this yields further improvement of the key integral esti-
mates and ultimately, improved pointwise estimates on the solution of the polyharmonic equation.

We start with the following auxiliary result which provides an explicit formula for the solution
of (3.1).

Lemma 4.1. Assume that m ∈ N and n ∈ [3, 2m + 1] ∩ N is odd. Consider the equation

(4.1) Lm,n(−∂t, 0) h = δ,

where δ stands for the Dirac delta function. A unique solution to (4.1) which is bounded and
vanishes at +∞ has a form

(4.2) h(t) =


∑m

j=1 ν j e−α jt, t > 0,∑m
j=1 µ j eβ jt, t < 0.

Here α j > 0, j = 1, 2, ...,m, β j > 0 for j = 2, ...,m and β1 = 0 are such that

(4.3) {−α j}
m
j=1

⋃
{β j}

m
j=1 =

{
−m +

n
2
−

1
2

+ 2 j
}m−1

j=0
∪

{
−

n
2
−

1
2

+ m − 2 j
}m−1

j=0
,

and with the notation

(4.4) ~γ = (−α1, ...,−αm, β1, ..., βm), ~κ = (ν1, ..., νm,−µ1, ...,−µm)

the coefficients ν j, µ j ∈ R satisfy

(4.5) κi = (−1)m+1
(∏

j,i

(γ j − γi)
)−1
.

Proof. Recall the representation formula (3.22) and let p = 0. Similarly to the analysis in the proof
of Proposition 3.1, one can see that the characteristic polynomial of the differential equation (4.1)
has 2m distinct roots given by

(4.6) c j := −m +
n
2
−

1
2

+ 2 j, j = 0, 1, ...,m − 1,

and

(4.7) −
n
2
−

1
2

+ m − 2 j = −1 −
(
−m +

n
2
−

1
2

+ 2 j
)

= −1 − c j, j = 0, 1, ...,m − 1.

Following (3.27)–(3.29), (3.33)–(3.35) and (3.36), we conclude that there are m distinct negative
roots, 1 root equal to zero and m−1 distinct positive roots for the characteristic polynomial. Hence,
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a bounded solution vanishing at infinity must have the form (4.2). In addition, h should be such that
that ∂k

t g are continuous for k = 0, 1, ..., 2m − 2 and limt→0+ ∂2m−1
t h(t) − limt→0− ∂

2m−1
t h(t) = (−1)m.

This gives rise to the system of equations
m∑

j=1

ν j(−α j)k −

m∑
j=1

µ j(β j)k = 0, k = 0, 1, ..., 2m − 2,(4.8)

m∑
j=1

ν j(−α j)2m−1 −

m∑
j=1

µ j(β j)2m−1 = (−1)m.(4.9)

With the notation (4.4) and the convention 00 = 1, (4.8)–(4.9) can then be written as A~κ⊥ =

(−1)m(0, ..., 0, 1)⊥, where A is a matrix of elements A ji = γ
j−1
i , i, j = 1, ..., 2m. Now using the

formula for the Vandermonde determinant, we find that the solution is ~κ = (κ j)2m
j=1,

(4.10) κ j = (−1) j+m
∏

i<k, i, j, k, j

(γ j − γi)
(∏

i<k

(γ j − γi)
)−1

= (−1)m+1
(∏

j,i

(γ j − γi)
)−1
.

�

Theorem 4.2. Assume that m ∈ N and n ∈ [3, 2m + 1] ∩ N is odd. Let Ω be a bounded domain in
Rn, O ∈ Rn \Ω, u ∈ C∞0 (Ω) and v = e(m− n

2 + 1
2 )t(u ◦ κ−1). Then for every ξ ∈ Ω and τ = log |ξ|−1

(4.11)
∫

S n−1
v2(τ, ω) dω ≤ C

∫
Rn

(−∆)mu(x) u(x)g(log |x|−1, log |ξ|−1) dx,

with

(4.12) g(t, τ) = et (C1h(t − τ) + C2) , t, τ ∈ R,

and h given by Lemma 4.1. Here C,C1,C2 are some constants depending on m and n only.

Proof. Step I. First of all, let us pass to (t, ω) coordinates. We aim to show that for some positive
constants C and C′∫

S n−1
v2(τ, ω) dω ≤ C

∫
R

∫
S n−1
Lm,n(∂t, δ)v(t, ω) v(t, ω)h(t − τ) dωdt

+C′
∫
R

∫
S n−1
Lm,n(∂t, δ)v(t, ω) v(t, ω) dωdt.(4.13)

Clearly, (4.13) implies (4.11).
For future reference, observe that due to (4.1)

(4.14) Lm,n(−∂t, 0)h(t − τ) = δ(t − τ), t, τ ∈ R.

Step II. Going further, let us concentrate on the first integral on the right-hand side of (4.13):∫
R

∫
S n−1
Lm,n(∂t, δ)v(t, ω) v(t, ω)h(t − τ) dωdt
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=

∫
R

∫
S n−1
Lm,n(0, δ)v(t, ω) v(t, ω)h(t − τ) dωdt

+

∫
R

∫
S n−1

(Lm,n(∂t, δ) − Lm,n(0, δ)) v(t, ω) v(t, ω)h(t − τ) dωdt.(4.15)

All terms of the operator (Lm,n(∂t, δ) − Lm,n(0, δ)) contain ∂k
t for some k ≥ 1, and therefore, we

can write

(4.16) Lm,n(∂t, δ) − Lm,n(0, δ) =
∑

k≥1, i≥0
2i+k≤2m

dik(−δ)i∂k
t , for some dik ∈ R.

Hence,

∫
R

∫
S n−1

(Lm,n(∂t, δ) − Lm,n(0, δ))v(t, ω) v(t, ω)h(t − τ) dωdt

=
∑

k≥1, i≥0
2i+k≤2m

dik

∫
R

∫
S n−1

∂k
t∇

i
ωv(t, ω)∇i

ωv(t, ω)h(t − τ) dωdt.(4.17)

We claim that

(4.18)
∫
R

∂k
t v vh dt =

1
2

∫
R

v2 (−∂t)kh dt +
∑

i≥1, j≥0
2i+ j≤k

bk
i j

∫
R

(∂i
tv)2 ∂

j
t h dt, bk

i j ∈ R,

for any k ≥ 1. This can be proved by induction. For k = 1 and k = 2 we have, respectively,

∫
R

∂tv vh dt =
1
2

∫
R

v2 (−∂t)h dt,∫
R

∂2
t v vh dt =

1
2

∫
R

v2 (−∂t)2h dt −
∫
R

(∂tv)2 h dt.

Let us now assume that (4.18) holds for k = 1, 2, ..., l − 1, and prove it for k = l. First,

(4.19)
∫
R

∂l
tv vh dt = −

∫
R

∂l−2
t (∂tv) (∂tv)h dt −

∫
R

∂l−1
t v v ∂th dt.

Next, using (4.18) for l − 1 and l − 2, we deduce that the expression above is equal to

−
1
2

∫
R

(∂tv)2 (−∂t)l−2h dt −
∑

i≥1, j≥0
2i+ j≤l−2

bl−2
i j

∫
R

(∂i+1
t v)2 ∂

j
t h dt
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+
1
2

∫
R

v2 (−∂t)lh dt +
∑

i≥1, j≥0
2i+ j≤l−1

bl−1
i j

∫
R

(∂i
tv)2 ∂

j+1
t h dt,(4.20)

and (4.20) can be written in the form (4.18) for k = l.
Then, using (4.18) for v and ∇i

ωv, (4.17) leads to the representation∫
R

∫
S n−1

(Lm,n(∂t, δ) − Lm,n(0, δ))v(t, ω) v(t, ω)h(t − τ) dωdt

=
1
2

∑
k≥1, i≥0

2i+k≤2m

dik

∫
R

∫
S n−1

(∇i
ωv(t, ω))2(−∂t)kh(t − τ) dωdt

+
∑

k≥1, i≥0
2i+k≤2m

∑
l≥1, j≥0
2l+ j≤k

bki
l j

∫
R

∫
S n−1

(∂l
t∇

i
ωv)2 ∂

j
t h(t − τ) dωdt =: I1 + I2.(4.21)

Step II. Consider I1 first. Let us decompose v into spherical harmonics. Then

I1 =
1
2

∑
k≥1, i≥0

2i+k≤2m

dik

∫
R

∫
S n−1

(∇i
ωv(t, ω))2(−∂t)kh(t − τ) dωdt

=
1
2

∑
k≥1, i≥0

2i+k≤2m

dik

∞∑
p=0

p∑
l=−p

∫
R

pi(p + n − 2)iv2
pl(t)(−∂t)kh(t − τ) dt

=
1
2

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t)

∑
k≥1, i≥0

2i+k≤2m

dik pi(p + n − 2)i(−∂t)kh(t − τ) dt

=
1
2

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t) (Lm,n(−∂t,−p(p + n − 2)) − Lm,n(0,−p(p + n − 2))) h(t − τ) dt,(4.22)

where we employed (4.16).
Now,

1
2

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t)L

m,n(0,−p(p + n − 2))h(t − τ) dt

=
1
2

∫
R

∫
S n−1
Lm,n(0, δ)v(t, ω)v(t, ω)h(t − τ) dωdt.(4.23)

Also, taking into account (4.14), we see that
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1
2

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t)L

m,n(−∂t, 0)h(t − τ) dωdt =
1
2

∫
S n−1

v2(τ, ω) dω.(4.24)

Hence,

I1 =
1
2

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t) (Lm,n(−∂t,−p(p + n − 2)) − Lm,n(−∂t, 0)) h(t − τ) dt

−
1
2

∫
R

∫
S n−1
Lm,n(0, δ)v(t, ω)v(t, ω)h(t − τ) dωdt

+
1
2

∫
S n−1

v2(τ, ω) dω.(4.25)

Let us discuss first in rough terms the bounds on (4.25) and then present the details. The third
term above isolates v2 on the sphere, as desired (cf. (4.13)), and the second term will be combined
with the first integral on the right-hand side of (4.15), and ultimately estimated by (2.2). As for
the first term, we split it into the sum over p ≤ m − n/2 + 1/2 and the complementary one. The
sum over p ≥ m − n/2 + 3/2 will be estimated by (2.2). The sum over p ≤ m − n/2 + 1/2 must be
positive by itself. This amounts to showing that

(4.26) (Lm,n(−∂t,−p(p + n − 2)) − Lm,n(−∂t, 0)) h(t) ≥ 0, for all t , 0, 0 ≤ p ≤ m−
n
2

+
1
2
,

or, equivalently (see (4.14)),

(4.27) Lm,n(−∂t,−p(p + n − 2))h(t) ≥ 0, for all t , 0 and 0 ≤ p ≤ m −
n
2

+
1
2
.

This, however, is exactly the result of Proposition 3.1.

Step III. Combining all of the above, we have∫
R

∫
S n−1
Lm,n(∂t, δ)v(t, ω) v(t, ω)h(t − τ) dωdt

=
1
2

∫
S n−1

v2(τ, ω) dω +
1
2

∫
R

∫
S n−1
Lm,n(0, δ)v(t, ω) v(t, ω)h(t − τ) dωdt

+
1
2

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t) (Lm,n(−∂t,−p(p + n − 2)) − Lm,n(−∂t, 0)) h(t − τ) dt

+
∑

k≥1, i≥0
2i+k≤2m

∑
l≥1, j≥0
2l+ j≤k

bki
l j

∫
R

∫
S n−1

(∂l
t∇

i
ωv)2 ∂

j
t h(t − τ) dωdt

≥
1
2

∫
S n−1

v2(τ, ω) dω +
1
2

∫
R

∫
S n−1
Lm,n(0, δ)v(t, ω) v(t, ω)h(t − τ) dωdt
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+
∑

k≥1, i≥0
2i+k≤2m

∑
l≥1, j≥0
2l+ j≤k

bki
l j

∫
R

∫
S n−1

(∂l
t∇

i
ωv)2 ∂

j
t h(t − τ) dωdt

+
1
2

∞∑
p=m− n

2 + 3
2

p∑
l=−p

∫
R

v2
pl(t) (Lm,n(−∂t,−p(p + n − 2)) − Lm,n(−∂t, 0)) h(t − τ) dt.(4.28)

Note that Lm,n(0, δ) is exactly the operator showing up in the last expression in (2.2). Indeed,

(4.29) Lm,n(0, δ) = (−1)m
m−1∏
j=0

((
m−

n
2

+
1
2
−2 j

)(
m+

n
2
−

3
2
−2 j

)
+δω

)
=

m− n
2 + 1

2∏
p=− n

2 + 3
2

(−δω − p (p + n − 2)) .

Then the absolute value of the second integral on the right-hand side of (4.28) can be majorized by
the right-hand side of (2.2). This is easy to see, for example, after the decomposition into spherical
harmonics: ∣∣∣∣∣∣∣

∞∑
q=0

q∑
l=−q

∫
R

Lm,n(0,−q (q + n − 2))vql(t) vql(t)h(t − τ) dt

∣∣∣∣∣∣∣
≤

∞∑
q=0

q∑
l=−q

∫
R

m− n
2 + 1

2∏
p=− n

2 + 3
2

(q(q + n − 2) − p (p + n − 2)) (vql(t))2 |h(t − τ)| dt

≤ C
∞∑

q=0

q∑
l=−q

∫
R

m− n
2 + 1

2∏
p=− n

2 + 3
2

(q(q + n − 2) − p (p + n − 2)) (vql(t))2 dt

= C
∞∑

q=0

q∑
l=−q

∫
R

Lm,n(0,−q (q + n − 2))vql(t) vql(t) dt,(4.30)

since h is bounded by a constant and the polynomial

(4.31)
m− n

2 + 1
2∏

p=− n
2 + 3

2

(q(q + n − 2) − p (p + n − 2)) ≥ 0 for all q ∈ N ∪ {0}.

Hence, (4.11) follows from (4.28) once we prove that

∑
k≥1, i≥0

2i+k≤2m

∑
l≥1, j≥0
2l+ j≤k

|bki
l j |

∫
R

∫
S n−1

(∂l
t∇

i
ωv)2 |∂

j
t h(t − τ)| dωdt

≤ C
∫
Rn

(−∆)mu(x) u(x)|x|−1 dx(4.32)
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and
∞∑

p=m− n
2 + 3

2

p∑
l=−p

∫
R

v2
pl(t) |(L

m,n(−∂t,−p(p + n − 2)) − Lm,n(−∂t, 0)) h(t − τ)| dt

≤ C
∫
Rn

(−∆)mu(x) u(x)|x|−1 dx(4.33)

for some C > 0.

Step IV. Since all derivatives of h are bounded (see (4.2)),

∑
k≥1, i≥0

2i+k≤2m

∑
l≥1, j≥0
2l+ j≤k

|bki
l j |

∫
R

∫
S n−1

(∂l
t∇

i
ωv)2 |∂

j
t h(t − τ)| dt

≤ C
∑

k≥1, i≥0
i+k≤m

∫
R

∫
S n−1

(∂k
t∇

i
ωv(t, ω))2 dωdt.(4.34)

Furthermore, for all k, i as above

∫
R

∫
S n−1

(∂k
t∇

i
ωv(t, ω))2 dωdt =

∞∑
p=0

p∑
l=−p

(
p (p + n − 2)

)i
∫
R

(∂k
t vpl(t))2 dt.(4.35)

We break down the sum above into two parts, corresponding to the cases p ≤ m − n
2 + 1

2 and
p ≥ m − n

2 + 3
2 , respectively. In the first case,

m− n
2 + 1

2∑
p=0

p∑
l=−p

(
p (p + n − 2)

)i
∫
R

(∂k
t vpl(t))2 dt ≤ Cm,n

m− n
2 + 1

2∑
p=0

p∑
l=−p

∫
R

(∂k
t vpl(t))2 dt

≤ Cm,n

∫
R

∫
S n−1

(∂k
t v(t, ω))2 dωdt ≤ Cm,n

∫
Rn

(−∆)mu(x) u(x)|x|−1 dx,(4.36)

where we used (2.2) for the last inequality (note that k ≥ 1 since we are in the range of (4.35)).
As for p ≥ m − n

2 + 3
2 , we claim that

(4.37)
(
p (p + n − 2)

)m
≤ C

m− n
2 + 1

2∏
s=− n

2 + 3
2

(
p (p + n − 2) − s (s + n − 2)

)
, for every p ≥ m − n

2 + 3
2 ,

where C > 0 depends on m and n only. Indeed, one can choose C such that

(4.38)
1
C
≤

1 −
(
m − n

2 + 1
2

) (
m + n

2 −
3
2

)(
m − n

2 + 3
2

) (
m + n

2 −
1
2

)
m

≤

m− n
2 + 1

2∏
s=− n

2 + 3
2

(
1 −

s (s + n − 2)
p (p + n − 2)

)
,

for every p ≥ m − n
2 + 3

2 .
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However, since i + k ≤ m then by Young’s inequality(
p (p + n − 2)

)i
∫
R

(∂k
t vpl(t))2 dt =

∫
R

(
p (p + n − 2)

)i
γ2k|v̂pl(γ)|2 dγ

≤

∫
R

((
p (p + n − 2)

)m
+ γ2m

)
|v̂pl(γ)|2 dγ

≤
(
p (p + n − 2)

)m
∫
R

(vpl(t))2 dt +

∫
R

(∂m
t vpl(t))2 dt.(4.39)

Therefore,
∞∑

p=m− n
2 + 3

2

p∑
l=−p

(
p (p + n − 2)

)i
∫
R

(∂k
t vpl(t))2 dt

≤

∞∑
p=m− n

2 + 3
2

p∑
l=−p

m− n
2 + 1

2∏
s=− n

2 + 3
2

(
p (p + n − 2) − s (s + n − 2)

) ∫
R

(vpl(t))2 dt

+

∞∑
p=m− n

2 + 3
2

p∑
l=−p

∫
R

(∂m
t vpl(t))2 dt ≤ C

∫
Rn

(−∆)mu(x) u(x)|x|−1 dx,(4.40)

by Theorem 2.1.
Analogously, the left-hand side of (4.33) will give rise to terms

∞∑
p=m− n

2 + 3
2

p∑
l=−p

(
p (p + n − 2)

)i
∫
R

v2
pl(t) dt(4.41)

for 0 ≤ i ≤ m, which are bounded by

C
∞∑

p=m− n
2 + 3

2

p∑
l=−p

m− n
2 + 1

2∏
s=− n

2 + 3
2

(
p (p + n − 2) − s (s + n − 2)

) ∫
R

(vpl(t))2 dt

≤ C
∫
Rn

(−∆)mu(x) u(x)|x|−1 dx,(4.42)

as above. �

5. Integral identity and global estimate: the case of even dimension. Part I: power-logarithmic
weight

Theorem 5.1. Assume that m ∈ N and n ∈ [2, 2m] ∩ N is even. Let Ω be a bounded domain in Rn,
O ∈ Rn \ Ω, u ∈ C∞0 (Ω) and v = e(m− n

2 )t(u ◦ κ−1). Furthermore, let R be a positive constant such
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that the support of u is contained in B2R, CR := log(4R), and let ψ be a weight function such that
either ψ(t) = CR + t for all t ∈ R or ψ(t) = 1 for all t ∈ R. Then whenever m is even,∫

Rn
(−∆)mu(x) u(x)ψ(log |x|−1) dx ≥ C

m∑
k=1

m−k∑
i=0

∫
R

∫
S n−1

(
∂k

t∇
i
ωv

)2
ψ(t) dωdt

+ C
∫
R

∫
S n−1

v
∏

p

(−δω − p (p + n − 2))2 vψ(t) dωdt,(5.1)

where the product is over p = −n/2 + 2,−n/2 + 4, ...,m − n/2 − 2,m − n/2, that is, p = −n/2 + 2 j
with j = 1, 2, ...,m/2. If m is odd,∫

Rn
(−∆)mu(x) u(x)ψ(log |x|−1) dx ≥ C

m∑
k=1

m−k∑
i=0

∫
R

∫
S n−1

(
∂k

t∇
i
ωv

)2
ψ(t) dωdt

+ C
∫
R

∫
S n−1

v
∏

p

(−δω − p (p + n − 2))2
(
−δω + (n/2 − 1)2

)
vψ(t) dωdt,(5.2)

where the product is over p = −n/2+3,−n/2+5, ...,m−n/2−2,m−n/2, that is, p = −n/2+1+2 j
with j = 1, 2, ..., (m − 1)/2. In both cases C > 0 is some constant depending on m and n only.

Proof. Passing to the coordinates (t, ω) and decomposing v into spherical harmonics, we see that∫
Rn

(−∆)mu(x) u(x)ψ(log |x|−1) dx =

∫
R

∫
S n−1
Lm,n

o (∂t, δω)v(t, ω) v(t, ω)ψ(t) dωdt

=

∞∑
q=0

q∑
l=−q

∫
R

Lm,n
o (∂t,−q(q + n − 2))vql(t) vql(t)ψ(t) dt,(5.3)

where

Lm,n
o (∂t, δω) = (−1)m

m−1∏
j=0

((
−∂t + m − n/2 − 2 j

)(
−∂t + m + n/2 − 2 − 2 j

)
+ δω

)

=

m−1∏
j=0

(
−

(
∂t − m + 2 j + 1

)2
+

(
n/2 − 1

)2
− δω

)
.(5.4)

Let us denote A :=
(
n/2 − 1

)2
− δω. Then the expression above is equal to

m−1∏
j=0

(√
A − ∂t + m − 2 j − 1

)(√
A + ∂t − m + 2 j + 1

)

=

m−1∏
j=0

(√
A − ∂t + m − 2 j − 1

)(√
A + ∂t + m − 2 j − 1

)
=

m−1∏
j=0

(
−∂2

t + (
√

A + m − 2 j − 1)2
)
.(5.5)
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Hence,

(5.6) Lm,n
o (∂t,−q(q + n − 2)) =

m−1∏
j=0

(
−∂2

t + B j(q)2
)
,

with

(5.7) B j(q)2 =
( √

(n/2 − 1)2 + q(q + n − 2)+m−2 j−1
)2

=
(
q+n/2+m−2 j−2

)2
, q ∈ N∪{0}.

We claim that

(5.8) B j(q)2 ≥ C q(q + n − 2),when q ∈ N ∪ {0} is such that q , 2 j − m − n/2 + 2,

for some C > 0 depending on m and n only, and

(5.9) B j(q) = 0 if q = 2 j − m − n/2 + 2.

Indeed, if q > m − n/2 then (5.8) holds with any C ∈ (0, 1) satisfying

(5.10) (1 −C) q(q + n − 2) > (m − n/2)(m + n/2 − 2) ∀ q > m − n/2, q ∈ N.

Furthermore, one can directly check that B j(q) = 0 for the values of q described in (5.9) and
otherwise B j(q)2 > 0. Hence, if we choose C to be the minimum of B j(q)2/ (q(q + n − 2)) over all
j = 0, ...,m − 1, 0 < q ≤ m − n/2, such that q , 2 j −m − n/2 + 2, we obtain (5.8) for the values of
q ≤ m − n/2. This finishes the proof of (5.8).

Now one can show that∫
R

Lm,n
o (∂t,−q(q + n − 2))vql(t) vql(t)ψ(t) dt

=

m∑
j=1

∑
k1<...<k j

∫
R

(−∂2
t )m− jBk1(q)2...Bk j(q)2vql(t) vql(t)ψ(t) dt +

∫
R

(−∂2
t )mvql(t) vql(t)ψ(t) dt

=

m∑
j=1

∑
k1<...<k j

∫
R

Bk1(q)2...Bk j(q)2(∂m− j
t vql(t))2 ψ(t) dt +

∫
R

(−∂2
t )mvql(t) vql(t)ψ(t) dt

≥ C
∑

i≥0, k≥1
i+k=m

∫
R

(q(q + n − 2))i (∂k
t vql(t))2 ψ(t) dt +

∫
R

m−1∏
j=0

B j(q)2v2
ql(t)ψ(t) dt

≥ C
∑

i≥0, k≥1
i+k≤m

∫
R

(q(q + n − 2))i (∂k
t vql(t))2 ψ(t) dt +

∫
R

Lm,n
o (0,−q(q + n − 2))v2

ql(t)ψ(t) dt.(5.11)

Note that the second equality uses the particular form of the weight function. Indeed, when ψ ≡ 1,
this is just integration by parts, and when ψ(t) = CR + t, t ∈ R, we prove by induction in k ∈ N∪{0}
that ∫

R

(−∂2
t )kv2(t) (CR + t) dt =

∫
R

(∂k
t v)2(t) (CR + t) dt, k ∈ N.(5.12)
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Finally, a straightforward calculation shows that whenever m is even,

(5.13) Lm,n
o (0,−q(q + n − 2)) =

∏
p

(q(q + n − 2) − p (p + n − 2))2 , q ∈ N ∪ {0},

where the product above is over p = −n/2 + 2,−n/2 + 4, ...,m − n/2 − 2,m − n/2, and if m is odd,

(5.14) Lm,n
o (0,−q(q + n − 2)) =

∏
p

(q(q + n − 2) − p (p + n − 2))2
(
q(q + n − 2) + (n/2 − 1)2

)
,

for every q ∈ N∪ {0}, with the product above over p = −n/2 + 3,−n/2 + 5, ...,m− n/2− 2,m− n/2.
This finishes the argument. �

6. Integral identity and global estimate: the case of even dimension. Part II: weight g

Lemma 6.1. Assume that m ∈ N, n ∈ [2, 2m] ∩ N is even and m − n/2 is even. Recall that in this
case

(6.1) Lm,n
o (−∂t, 0) =

m−1∏
j=0

(
−∂2

t +
(
m −

n
2
− 2 j

)2
)

and consider the equation

(6.2)
m−1∏
j=0

(
−∂2

t +
(
m −

n
2
− 2 j

)2
)

h = δ,

where δ stands for the Dirac delta function. A unique solution to (6.2) which vanishes at +∞ and
has at most linear growth or decay at −∞ has a form

(6.3) h(t) =


∑(m−n/2)/2

i=1 ν(1)
i e−2it +

∑(m−n/2)/2
i=1 ν(2)

i te−2it +
∑n/2−1

i=1 ν(3)
i e−(m−n/2+2i)t, t > 0,∑(m−n/2)/2

i=1 µ(1)
i e2it +

∑(m−n/2)/2
i=1 µ(2)

i te2it +
∑n/2−1

i=1 µ(3)
i e(m−n/2+2i)t + µ(4)t + µ(5), t < 0.

Here ν(1)
i , ν(2)

i , µ(1)
i , µ(2)

i , i = 1, ..., (m − n/2)/2, ν(3)
i , µ(3)

i , i = 1, ..., n/2 − 1, and µ(4), µ(5) are some real
numbers depending on m and n only.

Proof. The characteristic polynomial of the differential equation (6.2) has n/2−1 single roots given
by

(6.4) even numbers from − m − n/2 + 2 to − m + n/2 − 2,

then m − n/2 + 1 double roots given by

(6.5) even numbers from − m + n/2 to m − n/2,

(including 0), and then another n/2 − 1 single roots given by

(6.6) even numbers from m − n/2 + 2 to m + n/2 − 2.

This determines the structure of the solution (6.3). Furthermore, the solution to (6.2) h should be
such that that ∂k

t h are continuous for k = 0, 1, ..., 2m− 2, i.e., limt→0+ ∂k
t h(t)− limt→0− ∂

k
t h(t) = 0 for
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k = 0, 1, ..., 2m − 2, and limt→0+ ∂2m−1
t g(t) − limt→0− ∂

2m−1
t h(t) = (−1)m. Hence, the coefficients in

(6.3) satisfy the linear system

(6.7) A~κ⊥ = (−1)m(0, ..., 0, 1)⊥,

where the vector on the right-hand side is of the length 2m (it has first 2m − 1 entries equal to
0 and the last entry equal to 1), the vector ~κ is also of the length 2m with the entries (in order)
ν(1)

i , ν(2)
i , i = 1, ..., (m − n/2)/2, ν(3)

i , i = 1, ..., n/2 − 1, and −µ(1)
i ,−µ(2)

i , i = 1, ..., (m − n/2)/2, −µ(3)
i ,

i = 1, ..., n/2 − 1, −µ(4),−µ(5). Finally, A is a 2m × 2m matrix built as follows:

A jk = (−2i) j−1, for i = k, j = 1, ..., 2m, k = 1, ..., (m − n/2)/2,

A0k = 0, for k = (m − n/2)/2 + 1, ...,m − n/2,

A jk = ( j − 1)(−2i) j−2, for i = k − (m − n/2)/2, j = 2, ..., 2m, k = (m − n/2)/2 + 1, ...,m − n/2,

A jk = (−m + n/2 − 2i) j−1, for i = k − m + n/2, j = 1, ..., 2m, k = m − n/2 + 1, ...,m − 1,

A jk = (2i) j−1, for i = k − m + 1, j = 1, ..., 2m, k = m, ..., (3m − n/2)/2 − 1,

A0k = 0, for k = (3m − n/2)/2, ..., 2m − n/2 − 1,

A jk = ( j − 1)(2i) j−2, for i = k − (3m − n/2)/2 + 1, j = 2, ..., 2m, k = (3m − n/2)/2, ..., 2m − n/2 − 1,

A jk = (m − n/2 + 2i) j−1, for i = k − 2m + n/2 + 1, j = 1, ..., 2m, k = 2m − n/2, ..., 2m − 2,

A jk = 0, for j = 1 and j = 3, ..., 2m, and A2k = 1, when k = 2m − 1,

A jk = 0, for j = 1, ..., 2m, and A1k = 1, when k = 2m.

It remains to show that the system (6.7) has a unique solution, i.e., that the determinant of A is
not 0. This, however, is a standard argument in the theory of ordinary differential equations since
determinant of A is Wronskian at 0 for a complete system of solutions for an ODE of order 2m.
We omit the details. �

Lemma 6.2. Assume that m ∈ N, n ∈ [2, 2m] ∩ N is even and m − n/2 is odd. Recall that in this
case

(6.8) Lm,n
o (−∂t, 1 − n) = Lm,n

o (−∂t,−1(1 + n − 2)) =

m−1∏
j=0

(
−∂2

t +
(
m +

n
2
− 2 j − 1

)2
)

and consider the equation

(6.9)
m−1∏
j=0

(
−∂2

t +
(
m +

n
2
− 2 j − 1

)2
)

h = δ,

where δ stands for the Dirac delta function. A unique solution to (6.9) which vanishes at +∞ and
has at most linear growth or decay at −∞ has a form

(6.10)
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h(t) =


∑(m−n/2−1)/2

i=1 ν(1)
i e−2it +

∑(m−n/2−1)/2
i=1 ν(2)

i te−2it +
∑n/2

i=1 ν
(3)
i e−(m−n/2−1+2i)t, t > 0,∑(m−n/2−1)/2

i=1 µ(1)
i e2it +

∑(m−n/2−1)/2
i=1 µ(2)

i te2it +
∑n/2

i=1 µ
(3)
i e(m−n/2−1+2i)t + µ(4)t + µ(5), t < 0.

Here ν(1)
i , ν(2)

i , µ(1)
i , µ(2)

i , i = 1, ..., (m − n/2 − 1)/2, ν(3)
i , µ(3)

i , i = 1, ..., n/2, and µ(4), µ(5) are some real
numbers depending on m and n only.

We would like to remark a curious difference in h for three considered situations: n odd; n even
and m − n/2 even; n even and m − n/2 odd. While formula (6.3) is rather different from (4.2),
the underlying differential equation in (6.1)–(6.2) is a quite natural analogue of (4.1). Lemma 6.2,
however, deals with a different equation (6.8). Just as in Section 4, we will show below how one
can build a suitable weight from the corresponding function h.

Proof. The characteristic polynomial of the differential equation (6.9) has n/2 single roots given
by

(6.11) even numbers from − m − n/2 + 1 to − m + n/2 − 1,

then m − n/2 double roots given by

(6.12) even numbers from − m + n/2 + 1 to m − n/2 − 1,

(including 0), and then another n/2 single roots given by

(6.13) even numbers from m − n/2 + 1 to m + n/2 − 1.

In fact, these are the same collections of numbers as those appearing in (6.4)–(6.6), in the fol-
lowing sense. Let us denote the sequence of numbers described in (6.4)–(6.6) by S e

m,n and the one
described by (6.11)–(6.13) by S o

m,n. Then{
S e

m,n

}
m∈N, n∈[2,2m]∩N,m−n/2 even

⊃
{
S o

m,n

}
m∈N, n∈[2,2m]∩N,m−n/2 odd

,

via the identification S o
m,n = S e

m,n+2 for m, n as above. This identification immediately leads to the
observation that the solution to (6.9) must be given by the formula (6.3) with n replaced by n + 2.
�

Theorem 6.3. Assume that m ∈ N and n ∈ [2, 2m] ∩ N is even. Let Ω be a bounded domain in Rn,
O ∈ Rn \Ω, u ∈ C∞0 (Ω) and v = e(m− n

2 )t(u ◦ κ−1). Let R be a positive constant such that the support
of u is contained in B2R. Then there exist positive constants C, C′, C′′, depending on m and n only,
such that for every ξ ∈ B2R and τ = log |ξ|−1 we have∫

S n−1
v2(τ, ω) dω ≤ C

∫
Rn

(−∆)mu(x) u(x)g(log |x|−1, log |ξ|−1) dx(6.14)

where CR = log(4R) and g is defined by

(6.15) g(t, τ) = h(t − τ) + µ(4)(CR + τ) + C′ + C′′(CR + t),

where h and µ(4) are given by (6.3) and (6.10), depending on the parity of m − n
2 .



REGULARITY OF SOLUTIONS TO THE POLYHARMONIC EQUATION 31

Proof. Step I, the preliminary choice of weight. Recall the function h defined in (6.3) and (6.10)
for the cases when m − n/2 is even and odd, respectively. Let

(6.16) g̃(t, τ) := h(t − τ) + µ(4)(CR + τ). t, τ ∈ R.

In particular, when m − n/2 is even, we have

(6.17) g̃(t, τ) =



∑(m−n/2)/2
i=1 ν(1)

i e−2i(t−τ) +
∑(m−n/2)/2

i=1 ν(2)
i (t − τ)e−2i(t−τ)

+
∑n/2−1

i=1 ν(3)
i e−(m−n/2+2i)(t−τ) + µ(4)(CR + τ), t > τ,∑(m−n/2)/2

i=1 µ(1)
i e2i(t−τ) +

∑(m−n/2)/2
i=1 µ(2)

i (t − τ)e2i(t−τ)

+
∑n/2−1

i=1 µ(3)
i e(m−n/2+2i)(t−τ) + µ(4)(CR + t) + µ(5), t < τ,

and in the case when m − n/2 is odd, we have

(6.18) g̃(t, τ) =



∑(m−n/2−1)/2
i=1 ν(1)

i e−2i(t−τ) +
∑(m−n/2−1)/2

i=1 ν(2)
i (t − τ)e−2i(t−τ)

+
∑n/2

i=1 ν
(3)
i e−(m−n/2−1+2i)(t−τ) + µ(4)(CR + τ), t > τ,∑(m−n/2−1)/2

i=1 µ(1)
i e2i(t−τ) +

∑(m−n/2−1)/2
i=1 µ(2)

i (t − τ)e2i(t−τ)

+
∑n/2

i=1 µ
(3)
i e(m−n/2−1+2i)(t−τ) + µ(4)(CR + t) + µ(5), t < τ.

For future reference, we record a few estimates. First, by our assumptions on ξ and the support
of u, the discussion will be naturally restricted to the case t, τ ≥ log(2R)−1. Hence, both CR + t and
CR + τ are positive. We remark that we do not claim positivity of h or that of g̃. However,

(6.19) |̃g(t, τ)| ≤ C0(m, n) + |µ(4)| (CR + t), t, τ ≥ log(2R)−1,

and

(6.20) |∂l
t g̃(t, τ)| ≤ C1(m, n), t, τ ≥ log(2R)−1, 1 ≤ l ≤ 2m,

for some constants C0(m, n),C1(m, n) > 0 depending on m, n only. We note that ∂l
t g̃ can be defined

at t = τ for all l < 2m by continuity, and for l = 2m one assumes t , τ in (6.20).

Step II, the set-up. We commence similarly to (4.15):∫
Rn

(−∆)mu(x) u(x)̃g(log |x|−1, log |ξ|−1) dx =

∫
R

∫
S n−1
Lm,n

o (∂t, δ)v(t, ω) v(t, ω)̃g(t, τ) dωdt

=

∫
R

∫
S n−1
Lm,n

o (0, δ)v(t, ω) v(t, ω)̃g(t, τ) dωdt

+

∫
R

∫
S n−1

(
Lm,n

o (∂t, δ) − Lm,n
o (0, δ)

)
v(t, ω) v(t, ω)̃g(t, τ) dωdt.(6.21)

Furthermore, as in (4.21)–(4.22),∫
R

∫
S n−1

(Lm,n
o (∂t, δ) − Lm,n

o (0, δ))v(t, ω) v(t, ω)̃g(t, τ) dωdt



32 SVITLANA MAYBORODA AND VLADIMIR MAZ’YA

=
1
2

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t) (Lm,n(−∂t,−p(p + n − 2)) − Lm,n(0,−p(p + n − 2))) g̃(t, τ) dt

+
∑

k≥1, i≥0
2i+k≤2m

∑
l≥1, j≥0
2l+ j≤k

cki
l j

∫
R

∫
S n−1

(∂l
t∇

i
ωv)2 ∂

j
t g̃(t, τ) dωdt =: Io

1 + Io
2 ,(6.22)

for some constants cki
l j depending on m, n only.

Let us now denote

(6.23) p0 :=


0, when m − n/2 is even,

1, when m − n/2 is odd.

Then

Io
1 =

1
2

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t)

(
Lm,n

o (−∂t,−p(p + n − 2)) − Lm,n
o (0,−p(p + n − 2))

−Lm,n
o (−∂t,−p0(p0 + n − 2))

)
g̃(t, τ) dt

+
1
2

∫
S n−1

v2(τ, ω) dω,(6.24)

where we used (6.1)–(6.2), (6.8)–(6.9), as well as the fact that the operatorLm,n
o (−∂t,−p0(p0+n−2))

kills constants and thus,

(6.25) Lm,n
o (−∂t,−p0(p0 + n − 2))̃g(t, τ) = Lm,n

o (−∂t,−p0(p0 + n − 2))h(t − τ) = δ(t − τ).

Step III. The term in the representation of Io
1 in (6.24) associated to Lm,n

o (0,−p(p + n− 2)) and the
first term on the right-hand side of (6.21) are, modulo a multiplicative constant, the same, and can
be estimated as follows:∣∣∣∣∣∫

R

∫
S n−1
Lm,n

o (0, δ)v(t, ω)v(t, ω)̃g(t, τ) dωdt
∣∣∣∣∣

=

∣∣∣∣∣∣∣
∞∑

p=0

p∑
l=−p

∫
R

v2
pl(t)L

m,n
o (0,−p(p + n − 2))̃g(t, τ) dt

∣∣∣∣∣∣∣
≤

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t)L

m,n
o (0,−p(p + n − 2)) |̃g(t, τ)| dt

≤

∞∑
p=0

p∑
l=−p

∫
R

v2
pl(t)L

m,n
o (0,−p(p + n − 2))

(
C0(m, n) + |µ(4)| (CR + t)

)
dt
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=

∫
R

∫
S n−1
Lm,n

o (0, δ)v(t, ω)v(t, ω)
(
C0(m, n) + |µ(4)| (CR + t)

)
dωdt

≤ C
∫
Rn

(−∆)mu(x) u(x)
(
C0(m, n) + |µ(4)| (CR + log |x|−1)

)
dx,(6.26)

where we used the fact that the polynomial Lm,n(0,−p(p + n − 2)) ≥ 0 (see (5.13)–(5.14)) for the
first inequality, (6.19) for the second one, and (5.1)–(5.2) with (5.13)–(5.14) for the last inequality
above.

It remains to estimate Io
2 (see (6.22) for definition) and

(6.27)
∞∑

p=0

p∑
l=−p

∫
R

v2
pl(t)

(
Lm,n

o (−∂t,−p(p + n − 2)) − Lm,n
o (−∂t,−p0(p0 + n − 2))

)
g̃(t, τ) dt.

For the terms in the expression above (and for Io
2), it is sufficient to either prove positivity or, for

those which are not necessarily positive, a bound on (the sum of) their absolute values in terms of
the right-hand side of (6.14).

Step IV, 0 ≤ p ≤ m − n/2, m − n/2 even. At this stage, the discussion splits according to whether
m − n/2 is even or odd. In fact, the two cases are, in some sense, symmetric, but tracking both
at the same time would make the discussion too cumbersome. We start with the situation when
m − n/2 is even, that is, we are in the regimen of Lemma 6.1, and then we will list the necessary
modifications for m − n/2 odd.

To outline in a few words the strategy, we are going to show that the terms in the expression
above corresponding to 0 ≤ p ≤ m − n/2 even are positive by virtue of the theory developed in
Section 3, while the terms corresponding to 0 ≤ p ≤ m − n/2 odd, as well as the sum of those
corresponding to p > m − n/2, are bounded by the right-hand side of (6.14). Essentially, for large
p we use the same considerations as in Section 4, while for 0 ≤ p ≤ m − n/2 odd we observe that
the last integrals in (5.1), (5.2) do not vanish and provide the desired bounds. Finally, Io

2 can be
analyzed much as in Section 4. Now we turn to the details.

Step IV(a), m − n/2 even, 0 ≤ p ≤ m − n/2 even. In this case, we shall employ the strategy
suggested by the results of Section 3. One would like to show that

(6.28) Lm,n
o (−∂t, 0)h = δ =⇒

Lm,n
o (−∂t,−p(p + n − 2))h(t) ≥ 0, t , 0, for all 0 ≤ p ≤ m − n/2 even.

As we shall demonstrate below,Lm,n
o (−∂t,−p(p+n−2)), viewed as a polynomial in ∂t, has a double

root at zero for all 0 ≤ p ≤ m − n/2 even and hence, the result of its action (as an operator) on g̃ is
the same as the result of its action on h. Thus, it is indeed enough to consider h in place of g̃ in the
terms corresponding to such values of p.

Next, due to (5.6)–(5.7), the roots of Lm,n
o (−∂t,−p(p + n− 2)) as a polynomial in ∂t are given by

±
(
p + n/2 + m − 2 j − 2

)
, j = 0, ...,m − 1.
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Clearly, the sequence of the roots is symmetric with respect to zero and moreover, the roots can be
ordered in non-decreasing order as single roots given by

(6.29) even numbers from − p − m − n/2 + 2 to p − m + n/2 − 2,

then double roots given by

(6.30) even numbers from p − m + n/2 to − p + m − n/2,

(including 0), and then single roots given by

(6.31) even numbers from − p + m − n/2 + 2 to p + m + n/2 − 2.

Now, in the spirit of the Proof of Proposition 3.1, let us denotes the non-decreasing sequence of
the roots of Lm,n

o (−∂t,−p(p + n − 2)) for p = 0 by

(6.32) bm−1 ≤ bm−2 ≤ ... ≤ b1 < b0 = 0 = a0 < a1 ≤ ... ≤ am,

and, respectively, the roots of Lm,n
o (−∂t,−p(p + n − 2)) for a given even 0 < p ≤ m − n/2 by

(6.33) dm−1 ≤ dm−2 ≤ ... ≤ d1 < d0 = 0 = c0 < c1 ≤ ... ≤ cm.

It is not hard to see that for all even 0 < p ≤ m − n/2 there holds [bi, ai] ⊂ [di, ci] for all
i = 0, ...,m − 1, and moreover, a0 = c0 = 0 = b0 = d0 are the only zero roots. We are now in
a position to apply Corollary 3.3. The only problem lies in extra zero roots which appear in the
current scenario. To avoid it, we do the following.

The goal is to establish (6.28). In the framework of Corollary 3.3, let us denote by P the differ-
ential operator of the order 2(m−1) such that ∂2

t P(∂t) = (−1)mL
m,n
o (−∂t, 0), f := δ, and let Q be the

differential operator of the order 2(m − 1) such that ∂2
t Q(∂t) = (−1)mL

m,n
o (−∂t,−p(p + n − 2)) with

0 < p ≤ m− n/2 even. Then the roots of P and Q are, respectively, bi, ai, i = 1, ...,m− 1, and di, ci,
i = 1, ...,m − 1, as above. They satisfy [bi, ai] ⊂ [di, ci], i = 1, ...,m − 1, and they are all non-zero.
Hence, applying Corollary 3.3 with m − 1 in place of m we have

(6.34) P(∂t) H = δ =⇒ Q(∂t) H is a positive distribution for all 0 ≤ p ≤ m − n/2 even,

assuming that H is the (unique) solution to P(∂t) H = δ which is bounded and vanishes at +∞. It
remains to show that H = (−1)m∂2

t h, where h is the unique solution to Lm,n
o (−∂t, 0)h = δ which

vanishes at +∞ and has at most linear growth or decay at −∞ (that is, h is given by Lemma 6.1).
However, evidently, ∂2

t [(−1)mh] is bounded and vanishes at +∞. Since a solution with such decay
properties is unique, (6.34) indeed proves (6.28).

Step IV(b), m − n/2 even, 0 ≤ p ≤ m − n/2 odd. We first note that

(6.35) Lm,n
o (0,−p(p + n − 2)) ≥ C, for m − n/2 even and 0 ≤ p ≤ m − n/2 odd,

where C > 0 is a strictly positive constant depending on m and n only. This can be seen immedi-
ately from (5.13)–(5.14), or, alternatively, from (5.6)–(5.7). Indeed, the polynomialLm,n

o (0,−p(p+

n− 2)) is a product of squares. Thus, it is non-negative. Moreover, if m− n/2 even, Lm,n
o (0,−p(p +

n − 2)) can only be zero when p is even too. Thus, one can take C as a (strictly positive) minimum
of Lm,n

o (0,−p(p + n − 2)) over 0 ≤ p ≤ m − n/2 odd, justifying (6.35).
Thus, for any 0 ≤ p ≤ m − n/2 odd
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(6.36)

∣∣∣∣∣∣
(
Lm,n

o (−∂t,−p(p + n − 2)) − Lm,n
o (−∂t, 0)

)
g̃(t, τ)

∣∣∣∣∣∣ ≤ C1 + C2(CR + t)

≤ Lm,n
o (0,−p(p + n − 2)) (C3 + C4(CR + t)) , t, τ ≥ log(2R)−1,

where we used (6.19)–(6.20) for the first inequality above and (6.35) for the second one. The
constants Ci, i = 1, 2, 3, 4, depend on m and n only. Note that the operator Lm,n

o (−∂t,−p(p + n −
2)) − Lm,n

o (−∂t, 0) has order strictly smaller than 2m, thus, the corresponding derivatives of g̃ are
continuous at t = τ.

Therefore, for any 0 ≤ p ≤ m − n/2 odd we have

(6.37)

∣∣∣∣∣∣
∫
R

v2
pl(t)

(
Lm,n

o (−∂t,−p(p + n − 2)) − Lm,n
o (−∂t, 0)

)
g̃(t, τ) dt

∣∣∣∣∣∣
≤ C

∫
R

v2
pl(t)L

m,n
o (0,−p(p + n − 2)) (C3 + C4(CR + t)) dt

≤ C
∫
Rn

(−∆)mu(x) u(x)
(
C3 + C4 (CR + log |x|−1)

)
dx,

as desired.

Step V, 0 ≤ p ≤ m− n/2, m− n/2 odd. The argument in this case is very similar to that in Step IV,
except that the approach to even p for m − n/2 odd resembles the approach to odd p for m − n/2
even and vice versa.

Indeed, when m − n/2 is odd, the case of 0 ≤ p ≤ m − n/2 even can be handled following
verbatim the argument in Step IV(b), observing that

(6.38) Lm,n
o (0,−p(p + n − 2)) ≥ C, for m − n/2 odd and 0 ≤ p ≤ m − n/2 even,

where C > 0 is a strictly positive constant depending on m and n only. Then, as in Step IV(b),
when m − n/2 is odd, for any 0 ≤ p ≤ m − n/2 even we have with p0 = 1

(6.39)

∣∣∣∣∣∣
∫
R

v2
pl(t)

(
Lm,n

o (−∂t,−p(p + n − 2)) − Lm,n
o (−∂t,−p0(p0 + n − 2))

)
g̃(t, τ) dt

∣∣∣∣∣∣
≤ C

∫
R

v2
pl(t)L

m,n
o (0,−p(p + n − 2)) (C3 + C4(CR + t)) dt

≤ C
∫
Rn

(−∆)mu(x) u(x)
(
C3 + C4 (CR + log |x|−1)

)
dx.

Thus, it remains to treat 0 ≤ p ≤ m − n/2 odd. The argument essentially follows Step IV(a).
First of all, the roots of Lm,n

o (−∂t,−p(p + n − 2)) for any 0 ≤ p ≤ m − n/2 odd, m − n/2 odd,
are exactly described by (6.29)–(6.31), including the parity. Hence, for all such p the operator
L

m,n
o (−∂t,−p(p + n − 2)) kills constants and it is enough to show that with m − n/2 odd

(6.40) Lm,n
o (−∂t,−1(1 + n − 2))h = δ =⇒
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Lm,n
o (−∂t,−p(p + n − 2))h(t) ≥ 0, t , 0, for all 0 ≤ p ≤ m − n/2 odd.

As before, the crux of the matter is the structure of the roots of Lm,n
o (−∂t,−p(p + n − 2)) and

L
m,n
o (−∂t,−1(1 + n − 2)) in the context of the results of Section 3. However, if we denote the set

of the numbers described by (6.29)–(6.31) as S e
m,n,p when m − n/2 is even and 0 ≤ p ≤ m − n/2 is

even and as S o
m,n,p when m − n/2 is odd and 0 ≤ p ≤ m − n/2 is odd, then they can be identified

via S o
m,n,p = S e

m,n+2,p−1. Hence, the results of Step IV(a) translate into the present setting and give
exactly (6.40), as desired.

Step VI, p > m − n/2. Our treatment of p > m − n/2 does not depend on whether m − n/2 is even
or odd, and we record it here in full generality.

First of all, by (5.8) we have B j(q)2 ≥ C q(q + n − 2) for all q > m − n/2 and j = 0, ...,m − 1,
with C > 0 depending on m and n only. Thus,

(6.41) Lm,n
o (0,−p(p + n − 2)) ≥ Cpm(p + n − 2)m, for p > m − n/2,

with C > 0 depending on m and n only. Secondly, recalling the definition of p0 in (6.23), we have

(6.42)

∣∣∣∣∣∣
(
Lm,n

o (−∂t,−p(p + n − 2)) − Lm,n
o (−∂t,−p0(p0 + n − 2))

)
g̃(t, τ)

∣∣∣∣∣∣
≤ (C1 + C2(CR + t)) pm(p + n − 2)m,

by (6.19)–(6.20). Combining (6.41) with (6.42) yields then for any p > m − n/2

(6.43)
∞∑

p=m−n/2+1

p∑
l=−p

∣∣∣∣∣∣
∫
R

v2
pl(t)

(
Lm,n

o (−∂t,−p(p + n − 2)) − Lm,n
o (−∂t,−p0(p0 + n − 2))

)
g̃(t, τ) dt

∣∣∣∣∣∣
≤ C

∞∑
p=m−n/2+1

p∑
l=−p

∫
R

v2
pl(t)pm(p + n − 2)m (C1 + C2(CR + t)) dt

≤

∞∑
p=m−n/2+1

p∑
l=−p

∫
R

v2
pl(t)L

m,n
o (0,−p(p + n − 2)) (C3 + C4(CR + t)) dt

≤ C
∫
Rn

(−∆)mu(x) u(x)
(
C3 + C4 (CR + log |x|−1)

)
dx.

This finishes the argument for Io
1 .

Step VII, the bound on Io
2 . The estimate on Io

2 is essentially already incorporated in (5.1), (5.2).
Indeed,

Io
2 ≤

∑
k≥1, i≥0

2i+k≤2m

∑
l≥1, j≥0
2l+ j≤k

|cki
l j |

∫
R

∫
S n−1

(∂l
t∇

i
ωv)2 |∂

j
t g̃(t, τ)| dt



REGULARITY OF SOLUTIONS TO THE POLYHARMONIC EQUATION 37

≤ C
∑

k≥1, i≥0
i+k≤m

∫
R

∫
S n−1

(∂k
t∇

i
ωv(t, ω))2(C1 + C2(CR + t)) dωdt

≤

∫
Rn

(−∆)mu(x) u(x)
(
C3 + C4 (CR + log |x|−1)

)
dx,(6.44)

employing (6.19)–(6.20) for the first inequality and (5.1), (5.2) for the second one.
This finishes the argument. �

7. Pointwise and local L2 estimates for solutions to the polyharmonic equation

This section is devoted to the proof of Theorem 1.1. In addition, we will establish sharp local
estimates for solutions in a neighborhood of a boundary point and “at infinity”, that is, when
moving away from a given Q ∈ ∂Ω.

To start, we record for future reference a well-known result that follows from the energy esti-
mates for solutions of elliptic equations.

Lemma 7.1. Let Ω be an arbitrary domain in Rn, n ≥ 2, Q ∈ Rn \Ω and R > 0. Suppose

(7.1) (−∆)mu = f in Ω, f ∈ C∞0 (Ω \ B4R(Q)), u ∈ W̊m,2(Ω).

Then

(7.2)
m∑

i=1

1
ρ2m−2i

∫
Bρ(Q)∩Ω

|∇iu|2 dx ≤
C
ρ2m

∫
Cρ,2ρ(Q)∩Ω

|u|2 dx

for every ρ < 2R.

The following Proposition reflects the rate of growth of solutions near a boundary point encoded
in Theorems 4.2, 6.3, and ultimately provides a passage to Theorem 1.1.

Proposition 7.2. Let Ω be a bounded domain in Rn, 2 ≤ n ≤ 2m + 1, Q ∈ Rn \ Ω, and R > 0.
Suppose

(7.3) (−∆)mu = f in Ω, f ∈ C∞0 (Ω \ B4R(Q)), u ∈ W̊m,2(Ω).

Then

(7.4)
1

ρ2λ+n−1

∫
S ρ(Q)∩Ω

|u(x)|2 dσx ≤
C

R2λ+n

∫
CR,4R(Q)∩Ω

|u(x)|2 dx for every ρ < R,

where C is a constant depending on m and n only, and λ =
[
m − n

2 + 1
2

]
, that is,

(7.5) λ =

 m − n/2 + 1/2 when n is odd,

m − n/2 when n is even.

Moreover, for every x ∈ BR/4(Q) ∩Ω

(7.6) |∇iu(x)|2 ≤ C
|x − Q|2λ−2i

Rn+2λ

∫
CR/4,4R(Q)∩Ω

|u(y)|2 dy, 0 ≤ i ≤ λ.
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In particular, for every bounded domain Ω ⊂ Rn the solution to the boundary value problem
(7.3) satisfies

(7.7) |∇m−n/2+1/2u| ∈ L∞(Ω) when n is odd and |∇m−n/2u| ∈ L∞(Ω) when n is even.

This Proposition will conclude the proof of Theorem 1.1.

Proof of Proposition 7.2. Without loss of generality we can assume that Q = O. Let us approximate
Ω by a sequence of domains with smooth boundaries {Ωn}

∞
n=1 satisfying

(7.8)
∞⋃

n=1

Ωn = Ω and Ωn ⊂ Ωn+1 for every n ∈ N.

Choose n0 ∈ N such that supp f ⊂ Ωn for every n ≥ n0 and denote by un a unique solution of the
Dirichlet problem

(7.9) (−∆)mun = f in Ωn, un ∈ W̊m,2(Ωn), n ≥ n0.

The sequence {un}
∞
n=n0

converges to u in W̊m,2(Ω) (see, e.g., [39], §6.6).
Next, take some η ∈ C∞0 (B2R) such that

(7.10) 0 ≤ η ≤ 1 in B2R, η = 1 in BR and |∇kη| ≤ CR−k, k ≤ 2m.

Also, fix τ = log ρ−1 and let g be the function defined in (4.12) when n is odd and by (6.15) when
n is even.

We observe that when n is odd, the formula (4.12) yields

(7.11)
∣∣∣∇k

x g(log |x|−1, log ρ−1)
∣∣∣ ≤ C|x|−k−1, 0 ≤ k ≤ 2m, x ∈ Rn \ {0}, ρ ∈ (0,∞),

while for n even by (6.15) and (6.19)–(6.20)

(7.12)
∣∣∣g(log |x|−1, log ρ−1)

∣∣∣ ≤ C1 + C2(CR + log |x|−1), 0 < |x|, ρ < 2R,

and

(7.13)
∣∣∣∇k

x g(log |x|−1, log ρ−1)
∣∣∣ ≤ C|x|−k, 1 ≤ k ≤ 2m, 0 < |x|, ρ < 2R.

Here, as usually, we assume |x| , ρ when k = 2m, and lower derivatives of g as well as g itself are
defined at x such that |x| , ρ by continuity. Hence, in particular, when n is odd,

(7.14)
∣∣∣∇k

x g(log |x|−1, log ρ−1)
∣∣∣ ≤ CR−k−1, 0 ≤ k ≤ 2m, x ∈ CR,2R, ρ < R,

and when n is even,

(7.15)
∣∣∣∇k

x g(log |x|−1, log ρ−1)
∣∣∣ ≤ CR−k, 0 ≤ k ≤ 2m, x ∈ CR,2R, ρ < R,

since for x ∈ CR,2R we have

CR + log |x|−1 = log(4R) + log |x|−1 = log
4R
|x|
≈ C.

Consider now

(7.16)
∫
Rn

(
[(−∆)m, η]un(x)

)(
η(x)un(x)g(log |x|−1, log ρ−1)

)
dx,
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where the brackets denote the commutator

[(−∆)m, η]un(x) = (−∆)m (η(x)un(x)) − η(x)(−∆)mun(x),

the integral in (7.16) is understood in the sense of pairing between W̊m,2(Ωn) and its dual. Evidently,
the support of the integrand is a subset of supp∇η ⊂ CR,2R, and therefore, the expression in (7.16)
is equal to

(7.17)
∫

CR,2R

(
[(−∆)m, η]un(x)

)(
η(x)un(x)g(log |x|−1, log ρ−1)

)
dx

≤ C
m∑

i=0

1
R2λ+n−2i

∫
CR,2R

|∇iun(x)|2 dx ≤
C

R2λ+n

∫
CR,4R

|un(x)|2 dx,

using Cauchy-Schwarz inequality, (7.14)–(7.15), and (7.10) for the first inequality and Lemma 7.1
for the second one.

On the other hand, since un is biharmonic in Ωn ∩ B4R and η is supported in B2R, one can see that
η (−∆)mun = 0 and hence the integral in (7.16) is equal to

(7.18)
∫
Rn

(−∆)m (η(x)un(x)) η(x)un(x)g(log |x|−1, log ρ−1) dx.

To estimate it we employ Theorems 4.2 and 6.3 with u = η un. The results (4.11) and (6.14) hold for
such a choice of u. This can be seen directly by inspection of the argument or one can approximate
each un by a sequence of C∞0 (Ωn) functions in W̊m,2(Ωn) and then take a limit using that O < Ωn.
Then (7.18) is bounded from below by

(7.19)
C

ρ2λ+n−1

∫
S ρ

|η(x)un(x)|2 dσx.

Hence, for every ρ < R

(7.20)
1

ρ2λ+n−1

∫
S ρ

|un(x)|2 dσx ≤
C

R2λ+n

∫
CR,4R

|un(x)|2 dx.

Now the proof of (7.4) can be finished by taking the limit as n→ ∞.
Going further, by virtue of the local estimates for solutions of elliptic equations, the bound in

(7.4) transforms into the uniform pointwise estimates for ∇λu (observe that the exponent λ, as
defined in (7.5), is an integer number both when n is odd and when n is even).

Indeed, by interior estimates for solutions of the elliptic equations (see [4])

(7.21) |∇iu(x)|2 ≤
C

d(x)n

∫
Bd(x)/2(x)

|∇iu(y)|2 dy, 0 ≤ i ≤ m,

where d(x) denotes the distance from x to ∂Ω. Let x0 be a point on the boundary of Ω such that
d(x) = |x − x0|. Since x ∈ BR/4(Q) ∩Ω and Q ∈ Rn \Ω, we have x ∈ BR/4(x0), and therefore

(7.22)
1

d(x)n

∫
Bd(x)/2(x)

|∇iu(y)|2 dy ≤
C

d(x)n+2i

∫
B2d(x)(x0)

|u(y)|2 dy ≤ C
d(x)−2i+2λ

Rn+2λ

∫
C3R/4,3R(x0)

|u(y)|2 dy,
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as soon as i ≤ λ. Indeed, the first inequality in (7.22) follows from Lemma 7.1. Turning to the
second one, we observe that d(x) ≤ R/4 and therefore, 2d(x) < 3R/4. On the other hand, u is
polyharmonic in B4R(Q) ∩ Ω and |Q − x0| ≤ |Q − x| + |x − x0| ≤ R/2. Hence, u is polyharmonic
in B3R(x0) ∩ Ω and Proposition 7.2 holds with x0 in place of Q, 3R/4 in place of R and ρ = 2d(x).
Furthermore, C3R/4,3R(x0) ⊂ CR/4,4R(Q), and that finishes the argument for the second inequality in
(7.22). Clearly, d(x) ≤ |x − Q|, so that (7.21)–(7.22) entail (7.6). �

At this point, we are ready to address the behavior of solutions “at infinity”.

Proposition 7.3. Let Ω be a bounded domain in Rn, 2 ≤ n ≤ 2m + 1, Q ∈ Rn \Ω, r > 0 and assume
that

(7.23) (−∆)mu = f in Ω, f ∈ C∞0 (Br/4(Q) ∩Ω), u ∈ W̊m,2(Ω).

Then

(7.24) ρ2λ+n+1−4m
∫

S ρ(Q)∩Ω

|u(x)|2 dσx ≤ C r2λ+n−4m
∫

Cr/4,r(Q)∩Ω

|u(x)|2 dx,

for any ρ > r and λ given by (7.5).
Furthermore, for any x ∈ Ω \ B4r(Q)

(7.25) |∇iu(x)|2 ≤ C
r2λ+n−4m

|x − Q|2λ+2n−4m+2i

∫
Cr/4,4r(Q)∩Ω

|u(y)|2 dy, 0 ≤ i ≤ λ.

Proof. Without loss of generality, one can consider Q = O. Retain the approximation of Ω with
the sequence of smooth domains Ωn satisfying (7.8) and define un according to (7.9). We denote
by I the inversion x 7→ y = x/|x|2 and by Un the Kelvin transform of un,

(7.26) Un(y) := |y|2m−n un(y/|y|2), y ∈ I(Ωn).

Then

(7.27) (−∆)mUn(y) = |y|−n−2m((−∆)mun)(y/|y|2),

and therefore, Un is polyharmonic in I(Ωn) ∩ B4/r. Moreover, Un ∈ W̊m,2(I(Ωn)) if and only if
un ∈ W̊m,2(Ωn). Note also that Ωn is a bounded domain with O < Ωn, hence, so is I(Ωn) and
O < I(Ωn).

At this point we can invoke Proposition 7.2 to show that

(7.28) ρ2λ+n−1
∫

S 1/ρ

|Un(y)|2 dσy ≤ C r2λ+n
∫

C1/r,4/r

|Un(y)|2 dy,

so that

(7.29) ρ2λ+n+1−4m
∫

S ρ

|un(x)|2 dσx ≤ C r2λ+n−4m
∫

Cr/4,r

|un(x)|2 dx.

using the substitution (7.26) and the change of coordinates.
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This furnishes the desired L2 estimates. It remains to establish pointwise control. To this end,
let us fix some x ∈ Ω \ B4r(Q) and recall that

un(x) = |x|2m−n Un(x/|x|2),

hence,

(7.30) |∇iun(x)| ≤ C
i∑

k=0

|x|2m−n−i−k (∇kUn)(x/|x|2).

Therefore, combining (7.30) and Proposition 7.2 applied to the function Un, we deduce that

(7.31) |∇iun(x)|2 ≤ C
rn+2λ

|x|2λ+2n−4m+2i

∫
C1/(4r),4/r

|Un(z)|2 dz = C
rn+2λ−4m

|x|2λ+2n−4m+2i

∫
Cr/4,4r

|un(z)|2 dz,

for all 0 ≤ i ≤ λ. Now one can use the limiting procedure to complete the argument. Indeed,
since un converges to u in W̊m,2(Ω) and i ≤ λ ≤ m, the integrals on the right-hand side of (7.29)
and (7.31) converge to the corresponding integrals with un replaced by u. Turning to |∇iun(x)|, we
observe that both un and u are m-harmonic in a neighborhood of x, in particular, for sufficiently
small d

(7.32) |∇i(un(x) − u(x))|2 ≤
C

dn+2i

∫
Bd/2(x)

|un(z) − u(z)|2 dz.

As n→ ∞, the integral on the right-hand side of (7.32) vanishes and therefore, |∇iun(x)| → |∇iu(x)|.
Similar considerations apply to un(x) and the integral on the left-hand side of (7.29). �

8. Green’s function estimates

The present section addresses sharp pointwise estimates on Green’s function of the polyhar-
monic equation and the regular part of Green’s function, that is, the difference between Green’s
function and the fundamental solution. We have discussed some of these bounds, as well as their
applications for the solutions of the Dirichlet problem, in [23]. The estimates listed below are more
refined compared to the statements in [23] and we present them here with full proofs.

To start, let us recall the definition of the fundamental solution for the polyharmonic equation
(see. e.g., [7]). A fundamental solution for the m-Laplacian is a linear combination of the char-
acteristic singular solution (defined below) and any m-harmonic function in Rn. The characteristic
singular solution is

Cm,n|x|2m−n, if n is odd, or if n is even with n ≥ 2m + 2,(8.1)

Cm,n|x|2m−n log |x|, if n is even with n ≤ 2m.(8.2)

The exact expressions for constants Cm,n can be found in [7], p.8. Hereafter we will use the funda-
mental solution given by

(8.3) Γ(x) = Cm,n


|x|2m−n, if n is odd,

|x|2m−n log diam Ω
|x| , if n is even and n ≤ 2m,

|x|2m−n, if n is even and n ≥ 2m + 2.
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As in the Introduction, by G we denote the Green function of the operator (−∆)m (see (1.6)) and
S stands for its regular part, that is S (x, y) = G(x, y) − Γ(x − y), x, y ∈ Ω.

Theorem 8.1. Let Ω ⊂ Rn be an arbitrary bounded domain, m ∈ N, n ∈ [2, 2m + 1] ∩N, and let λ
retain the significance of (7.5). Fix any number N ≥ 25. Then there exists a constant C depending
on m, n,N only such that for every x, y ∈ Ω the following estimates hold.

If n ∈ [3, 2m + 1] ∩ N is odd then

(8.4) |∇i
x∇

j
yG(x, y)| ≤ C

d(y)λ− j

|x − y|λ+n−2m+i , when |x − y| ≥ N d(y), 0 ≤ i, j ≤ λ,

and

(8.5) |∇i
x∇

j
yG(x, y)| ≤ C

d(x)λ−i

|x − y|λ+n−2m+ j , when |x − y| ≥ N d(x), 0 ≤ i, j ≤ λ.

Next,

(8.6) |∇i
x∇

j
yG(x, y)| ≤

C
|x − y|n−2m+i+ j ,

when |x − y| ≤ N−1 max{d(x), d(y)}, and i + j ≥ 2m − n, 0 ≤ i, j ≤ m − n/2 + 1/2,

and

(8.7) |∇i
x∇

j
yG(x, y)| ≤ C min{d(x), d(y)}2m−n−i− j,

when |x − y| ≤ N−1 max{d(x), d(y)}, and i + j ≤ 2m − n, 0 ≤ i, j ≤ m − n/2 + 1/2.

Finally,

(8.8) |∇i
x∇

j
yG(x, y)| ≤

C
min{d(x), d(y), |x − y|}n−2m+i+ j ≈

C
max{d(x), d(y), |x − y|}n−2m+i+ j ,

when N−1 d(x) ≤ |x − y| ≤ Nd(x) and N−1 d(y) ≤ |x − y| ≤ Nd(y), 0 ≤ i, j ≤ λ.

Furthermore, if n ∈ [3, 2m+1]∩N is odd, the estimates on the regular part of the Green function
S are as follows:

(8.9) |∇i
x∇

j
yS (x − y)| ≤

C
|x − y|n−2m+i+ j when |x − y| ≥ N min{d(x), d(y)}, 0 ≤ i, j ≤ λ.

Next,

(8.10) |∇i
x∇

j
yS (x, y)| ≤

C
max{d(x), d(y)}n−2m+i+ j ,

when |x − y| ≤ N−1 max{d(x), d(y)}, and i + j ≥ 2m − n, 0 ≤ i, j ≤ m − n/2 + 1/2,

and

(8.11) |∇i
x∇

j
yS (x, y)| ≤ C min{d(x), d(y)}2m−n−i− j,
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when |x − y| ≤ N−1 max{d(x), d(y)}, and i + j ≤ 2m − n, 0 ≤ i, j ≤ m − n/2 + 1/2.

Finally,

(8.12) |∇i
x∇

j
yS (x, y)| ≤

C
min{d(x), d(y), |x − y|}n−2m+i+ j ≈

C
max{d(x), d(y), |x − y|}n−2m+i+ j ,

when N−1 d(x) ≤ |x−y| ≤ Nd(x) and N−1 d(y) ≤ |x−y| ≤ Nd(y), 0 ≤ i, j ≤ m−n/2+1/2.

If n ∈ [2, 2m] ∩ N is even, then (8.4)–(8.5) and (8.8) are valid with λ = m − n
2 , and

(8.13) |∇i
x∇

j
yG(x, y)| ≤ C min{d(x), d(y)}2m−n−i− j

(
C′ + log

min{d(x), d(y)}
|x − y|

)
,

when |x − y| ≤ N−1 max{d(x), d(y)} and 0 ≤ i, j ≤ m − n/2.

Furthermore, if n ∈ [2, 2m] ∩ N is even, the estimates on the regular part of the Green function
S are as follows:

(8.14) |∇i
x∇

j
yS (x − y)| ≤ C |x − y|−n+2m−i− j

(
C′ + log

diam (Ω)
|x − y|

)
when |x − y| ≥ N min{d(x), d(y)}, 0 ≤ i, j ≤ m − n/2.

Next,

(8.15) |∇i
x∇

j
yS (x, y)| ≤ C min{d(x), d(y)}2m−n−i− j

(
C′ + log

diam Ω

max{d(x), d(y)}

)
,

when |x − y| ≤ N−1 max{d(x), d(y)}, 0 ≤ i, j ≤ m − n/2.

Finally,

(8.16) |∇i
x∇

j
yS (x, y)| ≤ C min{d(x), d(y), |x − y|}2m−n−i− j

(
C′ + log

diam Ω

max{d(x), d(y), |x − y|}n−2m+i+ j

)
when N−1 d(x) ≤ |x − y| ≤ Nd(x) and N−1 d(y) ≤ |x − y| ≤ Nd(y), 0 ≤ i, j ≤ m − n/2.

Before passing to the proof of the Theorem, we would like to point out that the bounds on the
highest order derivatives highlighted in Theorem 1.2 is a particular case of Theorem 8.1.

Proof of Theorem 8.1. Recall the definition of the fundamental solution Γ in (8.3). For any α, a
multi-index of length less than or equal to λ, the function ∂αy Γ(x − y) can be written as

(8.17) ∂αy Γ(x − y) = Pα(x − y) log
diam Ω

|x − y|
+ Qα(x − y).

Here, when the dimension is odd, Pα ≡ 0 and Qα is a homogeneous function of order 2m − n − |α|.
If the dimension is even (and less than or equal to 2m by the assumptions of the theorem) then Pα

and Qα are homogeneous polynomials of order 2m − n − |α| as long as |α| ≤ 2m − n. In both cases,
Pα and Qα do not depend in any way on the domain Ω.
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Consider a function η such that

(8.18) η ∈ C∞0 (B1/2) and η = 1 in B1/4,

and define

(8.19) Rα(x, y) := ∂αy G(x, y) − η
(

x − y
d(y)

) (
−Pα(x − y) log

|x − y|
d(y)

+ Qα(x − y)
)
, x, y ∈ Ω.

For every fixed y ∈ Ω the function x 7→ Rα(x, y) is a solution of the boundary value problem

(8.20) (−∆x)mRα(x, y) = fα(x, y) in Ω, fα(·, y) ∈ C∞0 (Ω), Rα(·, y) ∈ W̊m,2(Ω),

where

(8.21) fα(x, y) := (−∆x)mRα(x, y) = −

[
(−∆x)m, η

(
x − y
d(y)

)] (
Pα(x − y) log

|x − y|
d(y)

+ Qα(x − y)
)
.

Indeed, it is not hard to see that for every α

(8.22) fα(·, y) ∈ C∞0 (Cd(y)/4,d(y)/2(y)) and | fα(x, y)| ≤ Cd(y)−n−|α|, x, y ∈ Ω,

so that, in particular, fα(·, y) ∈ C∞0 (Ω) as stated in (8.20). Furthermore, by (8.21),

(8.23)
∥∥∥∇m

xRα(·, y)
∥∥∥

L2(Ω)
= ‖Rα(·, y)‖Wm,2(Ω) ≤ C‖ fα(·, y)‖W−m,2(Ω),

where W−m,2(Ω) stands for the Banach space dual of W̊m,2(Ω), i.e.

(8.24) ‖ fα(·, y)‖W−m,2(Ω) = sup
v∈W̊m,2(Ω): ‖v‖W̊m,2(Ω)=1

∫
Ω

fα(x, y)v(x) dx.

Recall that by Hardy’s inequality

(8.25)
∥∥∥∥∥ v
| · −Q|m

∥∥∥∥∥
L2(Ω)
≤ C ‖∇mv‖L2(Ω) for every v ∈ W̊m,2(Ω), Q ∈ ∂Ω.

Then by (8.24)

(8.26) ‖ fα(·, y)‖W−m,2(Ω) = sup
v∈W̊m,2(Ω): ‖v‖W̊m,2(Ω)=1

∫
Ω

fα(x, y)v(x) dx

≤ C sup
v∈W̊m,2(Ω): ‖v‖W̊m,2(Ω)=1

∥∥∥∥∥ v
| · −y0|

m

∥∥∥∥∥
L2(Ω)
‖ fα(·, y) | · −y0|

m‖L2(Ω)

≤ C sup
v∈W̊m,2(Ω): ‖v‖W̊m,2(Ω)=1

d(y)m ‖∇mv‖L2(Ω) ‖ fα(·, y)‖L2(Cd(y)/4,d(y)/2(y))

≤ Cd(y)m‖ fα(·, y)‖L2(Cd(y)/4,d(y)/2(y)),

where y0 ∈ ∂Ω is such that |y − y0| = d(y). Therefore, by (8.22)

(8.27)
∥∥∥∇m

xRα(·, y)
∥∥∥

L2(Ω)
≤ Cd(y)m−|α|−n/2.

Now we split the discussion into a few cases.
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Case I: either |x − y| ≥ N d(y) or |x − y| ≥ N d(x) for some N ≥ 25.
Let us first assume that |x − y| ≥ Nd(y), N ≥ 25. In this case we have η

(
x−y
d(y)

)
= 0 and hence,

(8.28) ∇i
xRα(x, y) = ∇i

x∂
α
y G(x, y), for x, y ∈ Ω such that |x − y| ≥ N d(y), 0 ≤ i, |α| ≤ λ.

As before, we denote by y0 some point on the boundary such that |y− y0| = d(y). Then by (8.20),
(8.22) the function x 7→ Rα(x, y) is m-harmonic in Ω \ B3d(y)/2(y0). Hence, by Proposition 7.3 with
r = 6d(y)

(8.29) |∇i
xRα(x, y)|2 ≤ C

d(y)2λ+n−4m

|x − y0|
2λ+2n−4m+2i

∫
C3d(y)/2,24d(y)(y0)

|Rα(z, y)|2 dz, for 0 ≤ i ≤ λ,

provided |x − y0| ≥ 4r = 24 d(y). The latter condition is automatically satisfied for x such that
|x− y| ≥ N d(y) with N ≥ 25, which is the current assumption on x, y. The right-hand side of (8.29)
is bounded by

C
d(y)2λ+n−2m

|x − y0|
2λ+2n−4m+2i

∫
C3d(y)/2,24d(y)(y0)

|Rα(z, y)|2

|z − y0|
2m dz

≤ C
d(y)2λ+n−2m

|x − y0|
2λ+2n−4m+2i

∫
Ω

|∇m
z Rα(z, y)|2 dz ≤ C

d(y)2λ−2|α|

|x − y|2λ+2n−4m+2i ,(8.30)

by Hardy’s inequality and (8.27). Therefore,

(8.31) |∇i
xRα(x, y)|2 ≤ C

d(y)2λ−2|α|

|x − y|2λ+2n−4m+2i , when |x − y| ≥ N d(y), 0 ≤ i, |α| ≤ λ.

By (8.28), the estimate (8.31) with j := |α| implies (8.4). Also, by the symmetry of Green’s
function we automatically deduce (8.5). This furnishes the desired estimates on Green’s function
when either |x − y| ≥ N d(y) or |x − y| ≥ N d(x), both in the case when n is odd and when n is even.

Turning to the estimates on the regular part of Green’s function, we observe that, in particular,
(8.4) and (8.5) combined give the estimate

(8.32) |∇i
x∇

j
yG(x, y)|2 ≤

C
|x − y|2n−4m+2i+2 j , when |x − y| ≥ N min{d(x), d(y)}, 0 ≤ i, j ≤ λ.

Furthermore, if n is odd, then

(8.33) |∇i
x∇

j
yΓ(x − y)| ≤

C
|x − y|n−2m+i+ j for all x, y ∈ Ω, i, j ≥ 0,

while if n is even, then

(8.34) |∇i
x∇

j
yΓ(x− y)| ≤ C1 |x− y|−n+2m−i− j log

diam (Ω)
|x − y|

+C2 |x− y|−n+2m−i− j if 0 ≤ i + j ≤ 2m−n,

for all x, y ∈ Ω.
Combining this with (8.32) we deduce (8.9) and (8.14) in the cases when the dimension is odd

and even, respectively.

Case II: either |x − y| ≤ N−1d(y) or |x − y| ≤ N−1d(x) for some N ≥ 25.
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Assume that |x − y| ≤ N−1d(y). For such x we have η
( x−y

d(y)

)
= 1 and therefore

(8.35) Rα(x, y) = ∂αy G(x, y) + Pα(x − y) log
|x − y|
d(y)

− Qα(x − y).

Hence, if n is odd,

(8.36) Rα(x, y) = ∂αy (G(x, y) − Γ(x − y)) , when |x − y| ≤ N−1d(y),

and if n is even,

(8.37) Rα(x, y) = ∂αy (G(x, y) − Γ(x − y)) + Pα(x − y) log
diam Ω

d(y)
, when |x − y| ≤ N−1d(y).

By the interior estimates for solutions of elliptic equations for any i ≤ m

(8.38) |∇i
xRα(x, y)|2 ≤

C
d(y)n+2i

∫
Bd(y)/8(x)

|R(z, y)|2 dz,

since by (8.22) for any fixed y the function Rα(·, y) is m-harmonic in Bd(y)/4(y) ⊃ Bd(y)/8(x). Next,
since for every z ∈ Bd(y)/8(x) ⊂ Bd(y)/4(y) and any y0 ∈ ∂Ω such that |y − y0| = d(y) we have
|z − y0| ≈ d(y), one can bound the expression above by

(8.39)
C

d(y)n+2i−2m

∫
Bd(y)/4(y)

|R(z, y)|2

|z − y0|
2m dz ≤

C
d(y)n+2i−2m

∥∥∥∇m
xR(·, y)

∥∥∥2

L2(Ω)
≤

C
d(y)2n−4m+2i+2|α| ,

with 0 ≤ |α| ≤ λ. Then, overall,

(8.40) |∇i
xRα(x, y)|2 ≤

C
d(y)2n−4m+2i+2|α| , |x − y| ≤ N−1d(y), 0 ≤ |α| ≤ λ.

Having this at hand, we turn to the estimates on the regular part of Green’s function, starting
with the case when n is odd. It follows from (8.36) and (8.40) that

(8.41) |∇i
x∇

j
yS (x, y)| ≤

C
d(y)n−2m+i+ j , 0 ≤ i ≤ m, 0 ≤ j ≤ λ, |x − y| ≤ N−1d(y).

and hence, by symmetry,

(8.42) |∇i
x∇

j
yS (x, y)| ≤

C
d(x)n−2m+i+ j , 0 ≤ i ≤ λ, 0 ≤ j ≤ m, |x − y| ≤ N−1d(x).

However, we have

(8.43) |x − y| ≤ N−1d(y) =⇒ (N − 1) d(y) ≤ Nd(x) ≤ (N + 1) d(y),

i.e. d(y) ≈ d(x) ≈ min{d(y), d(x)} ≈ max{d(y), d(x)}whenever |x−y| is less than or equal to N−1d(y)
or N−1d(x). Therefore, when the dimension is odd, we obtain (8.10) and (8.11) depending on the
range of i, j.

Moreover, by (8.33), for the Green function itself, we then arrive at (8.6), (8.7), once again
depending on the range of i, j.

Similar considerations apply to the case when the dimension is even, leading by (8.37) to the
following results:
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(8.44) |∇i
x∇

j
yS (x, y)| ≤ C d(y)2m−n−i− j

(
C′ + log

diam Ω

d(y)

)
,

for 0 ≤ i ≤ m, 0 ≤ j ≤ m −
n
2
, |x − y| ≤ N−1d(y),

and

(8.45) |∇i
x∇

j
yS (x, y)| ≤ C d(x)2m−n−i− j

(
C′ + log

diam Ω

d(x)

)
,

for 0 ≤ i ≤ m −
n
2
, 0 ≤ j ≤ m, |x − y| ≤ N−1d(x).

Overall, in view of (8.43), and the fact that 2m − n − i − j ≥ 0 whenever 0 ≤ i, j ≤ m − n
2 ,

(8.44)–(8.45) yield (8.15).
As for the Green’s function estimates, when n is even, (8.35) and (8.40) lead to the bounds

|∇i
x∇

j
yG(x, y)| ≤ C d(y)2m−n−i− j

(
C′ + log

d(y)
|x − y|

)
, 0 ≤ i, j ≤ m −

n
2
, |x − y| ≤ N−1d(y),(8.46)

|∇i
x∇

j
yG(x, y)| ≤ C d(x)2m−n−i− j

(
C′ + log

d(x)
|x − y|

)
, 0 ≤ i, j ≤ m −

n
2
, |x − y| ≤ N−1d(x),(8.47)

and therefore, one obtains (8.13).
Finally, it remains to consider

Case III: |x − y| ≈ d(y) ≈ d(x), or more precisely, the situation when

(8.48) N−1 d(x) ≤ |x − y| ≤ Nd(x) and N−1 d(y) ≤ |x − y| ≤ Nd(y) for some N ≥ 25.

Fix any x, y as in (8.48). Then the mapping z 7→ G(z, y) is m-harmonic in Bd(x)/(2N)(x). Assume
first that n is odd. Then by the interior estimates, with x0 ∈ ∂Ω such that |x − x0| = d(x), we have

|∇i
x∇
|α|
y G(x, y)|2 ≤

C
d(x)n+2i

∫
Bd(x)/(2N)(x)

|∇|α|y G(z, y)|2 dz

≤
C

d(x)n+2i

∫
Bd(x)/(2N)(x)

|∇|α|y Γ(z − y)|2 dz +
C

d(x)n+2i−2m

∫
B2d(x)(x0)

|Rα(z, y)|2

|z − x0|
2m dz(8.49)

by definition (8.19). Then the expression above is bounded by

C
d(x)n+2i

∫
Bd(x)/(2N)(x)

|∇|α|y Γ(z − y)|2 dz +
C

d(x)n+2i−2m

∫
Ω

|∇m
z Rα(z, y)|2 dz

≤
C

d(x)2n−4m+2i+2|α| +
C

d(x)n−2m+2id(y)n−2m+2|α| ,(8.50)

provided that 0 ≤ i ≤ m, 0 ≤ |α| ≤ m − n
2 + 1

2 .
The same estimate on derivatives of Green’s function holds when n is even, since
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|∇i
x∇
|α|
y G(x, y)|2 ≤

C
d(x)n+2i

∫
Bd(x)/(2N)(x)

|∇|α|y G(z, y)|2 dz ≤
C

d(x)n+2i

∫
Bd(x)/(2N)(x)

|Pα(z − y)|2 dz

+
C

d(x)n+2i

∫
Bd(x)/(2N)(x)

|Qα(z − y)|2 dz +
C

d(x)n+2i−2m

∫
B2d(x)(x0)

|Rα(z, y)|2

|z − x0|
2m dz,(8.51)

since the absolute value of log |z−y|
d(y) is bounded by a constant for z, x, y as in (8.51), (8.48). This

yields (8.8), both in the case when n is even and odd.
Furthermore, if n is odd, the same argument (or simply an estimate on the difference between

the Green function and S , that is, the fundamental solution) can be used to deduce

(8.52) |∇i
x∇

j
yS (x, y)| ≤

C
min{d(x), d(y), |x − y|}n−2m+i+ j ≈

C
max{d(x), d(y), |x − y|}n−2m+i+ j ,

when x, y satisfy (8.48), 0 ≤ i, j ≤ m − n/2 + 1/2,

which gives (8.12). However, if n is even, using (8.48), we are led to the bound

|∇i
x∇

j
yS (x, y)| ≤

C
min{d(x), d(y), |x − y|}n−2m+i+ j

(
C′ + log

diam Ω

max{d(x), d(y), |x − y|}n−2m+i+ j

)
≈

C
max{d(x), d(y), |x − y|}n−2m+i+ j

(
C′ + log

diam Ω

max{d(x), d(y), |x − y|}n−2m+i+ j

)
,(8.53)

for 0 ≤ i, j ≤ m − n
2 . This establishes (8.16) and finishes the argument. �

9. Estimates for solutions of the Dirichlet problem

The results of Section 7 provide certain local monotonicity estimates for solutions of the Dirich-
let problem. They can, in principle, be translated into the bounds on solution u in terms of data f
when f is a suitably supported C∞0 function. However, the pointwise control of the Green function
that we obtained in Section 8 allows us to estimate the solutions of the Dirichlet problem for a
wide, in some sense, optimal, class of data.

Proposition 9.1. Let Ω ⊂ Rn be an arbitrary bounded domain, m ∈ N, n ∈ [2, 2m + 1]∩N, and let
λ retain the significance of (7.5). Consider the boundary value problem

(9.1) (−∆)mu =
∑
|α|≤λ

cα∂α fα, u ∈ W̊m,2(Ω).

Then the solution satisfies the following estimates.
If n ∈ [3, 2m + 1] ∩ N is odd, then

|∇m− n
2 + 1

2 u(x)| ≤ Cm,n

∑
|α|≤m− n

2 + 1
2

∫
Ω

d(y)m− n
2 + 1

2−|α|

|x − y|
| fα(y)| dy, x ∈ Ω,(9.2)
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whenever the integrals on the right-hand side of (9.2) are finite. In particular,

‖∇m− n
2 + 1

2 u‖L∞(Ω) ≤ Cm,n,Ω

∑
|α|≤m− n

2 + 1
2

‖d(·)m− n
2−

1
2−|α| fα‖Lp(Ω), p >

n
n − 1

,(9.3)

provided that the norms on the right-hand side of (9.3) are finite.
If n ∈ [2, 2m] ∩ N is even, then

|∇m− n
2 u(x)| ≤ Cm,n

∑
|α|≤m− n

2

∫
Ω

d(y)m− n
2−|α| log

(
1 +

d(y)
|x − y|

)
| fα(y)| dy, x ∈ Ω,(9.4)

whenever the integrals on the right-hand side of (9.4) are finite. In particular,

‖∇m− n
2 u‖L∞(Ω) ≤ Cm,n,Ω

∑
|α|≤m− n

2

‖d(·)m− n
2−|α| fα‖Lp(Ω), p > 1,(9.5)

provided that the norms on the right-hand side of (9.5) are finite.
The constants Cm,n above depend on m and n only, while the constants denoted by Cm,n,Ω depend

on m, n, and the diameter of the domain Ω.

Proof. First of all, the integral representation formula

(9.6) u(x) =

∫
Ω

G(x, y)
∑
|α|≤λ

cα∂α fα(y) dy, x ∈ Ω,

follows directly from the definition of Green’s function. It implies that

∇λu(x) =
∑
|α|≤λ

cα(−1)|α|
∫

Ω

∇λx∂
α
y G(x, y) fα(y) dy x ∈ Ω.(9.7)

Let us now assume that n ∈ [3, 2m + 1] ∩ N is odd. We claim that in this case∣∣∣∣∇m− n
2 + 1

2
x ∂αy G(x, y)

∣∣∣∣ ≤ C
d(y)m− n

2 + 1
2−|α|

|x − y|
, for all x, y ∈ Ω, 0 ≤ |α| ≤ m −

n
2

+
1
2
.(9.8)

Indeed, when |α| = m− n
2 + 1

2 , (9.8) is equivalent to (1.8). Thus, it remains consider |α| ≤ m− n
2−

1
2 .

Now we split the cases, essentially according to Theorem 8.1. When |x − y| ≥ Nd(y), for some
N ≥ 25, (8.4) directly yields (9.8). If x, y ∈ Ω are such that |x − y| ≤ N−1d(y) then (9.8) follows
from (8.7). Finally, if N−1d(y) ≤ |x − y| ≤ Nd(y), we observe that d(x) ≤ |x − y| + d(y) ≤
(1 + N)|x − y|. The latter estimate shows that (8.5)–(8.8) imply the bound on the left-hand side of
(9.8) by C |x − y|m−

n
2−

1
2−|α|, and hence, (9.8), since here d(y) ≈ |x − y|.

Now (9.8) allows us to deduce (9.2), and (9.3) follows from it via the mapping properties of the
Riesz potential.

Let us now turn to the case when n ∈ [2, 2m] ∩ N is even. Then we have to show that∣∣∣∣∇m− n
2

x ∂αy G(x, y)
∣∣∣∣ ≤ C d(y)m− n

2−|α| log
(
1 +

d(y)
|x − y|

)
, for all x, y ∈ Ω, 0 ≤ |α| ≤ m −

n
2
.(9.9)

Once again, we split to cases according to Theorem 8.1. When |x−y| ≥ Nd(y), for some N ≥ 25,
then 1 +

d(y)
|x−y| is bounded from below and above by a positive constant, so that (8.4) is the same as
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(9.9). If x, y ∈ Ω are such that |x − y| ≤ N−1d(y) then (9.9) follows directly from (8.13). Finally, if
N−1d(y) ≤ |x− y| ≤ Nd(y), then, as before, d(x) ≤ (1 + N)|x− y| and 1 +

d(y)
|x−y| is bounded from below

and above by a positive constant. Then (8.5), (8.13), and (8.8) imply the bound on the left-hand
side of (9.9) by C |x − y|m−

n
2−|α|, and hence, (9.9), using that d(y) ≈ |x − y|. This finishes the proof

of (9.4).
Finally, we obtain from (9.4) the bound

|∇m− n
2 u(x)| ≤ C

∑
|α|≤m− n

2

∫
Ω

d(y)m− n
2−|α|

(
d(y)
|x − y|

)ε
| fα(y)| dy, x ∈ Ω. ε > 0,(9.10)

Then, by the mapping properties of the Riesz potential we recover an estimate

‖∇m− n
2 u‖L∞(Ω) ≤ CΩ

∑
|α|≤m− n

2

∥∥∥d(y)m− n
2−|α|+ε fα

∥∥∥
Lp(Ω)

, provided that ε > 0, p >
n

n − ε
,(9.11)

which, in turn, leads to (9.5). �
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