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Abstract. For the general second order linear differential operator

L0 =
n∑

j, k=1

ajk ∂j∂k +
n∑

j=1

bj ∂j + c

with complex-valued distributional coefficients ajk, bj , and c in an open
set Ω ⊆ R

n (n ≥ 1), we present conditions which ensure that −L0 is
accretive, i.e., Re 〈−L0φ, φ〉 ≥ 0 for all φ ∈ C∞

0 (Ω).
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1. Introduction

Let L0 be the general second order differential operator in an open set
Ω ⊆ R

n,

(1.1) L0 =

n
∑

j, k=1

ajk ∂j∂k +

n
∑

j=1

bj ∂j + c,

where ajk, bj , and c are complex-valued distributions in D′(Ω). In this
paper, we are concerned with the accretivity of −L0 defined in terms of the
real part of its quadratic form:

(1.2) Re 〈−L0 u, u〉 ≥ 0,

for all complex-valued functions u ∈ C∞
0 (Ω). In other words, we study the

dissipativity property associated with L0.
If the principal part Au of the differential operator is given in the diver-

gence form,

(1.3) Au = div (A∇u), u ∈ C∞
0 (Ω),

then we consider the operator

(1.4) Lu = div (A∇u) + b · ∇u+ c u,

with distributional coefficients A = (ajk), b = (bj), and c. The correspond-
ing sesquilinear form 〈Lu, v〉 is given by

(1.5) 〈Lu, v〉 = −〈A∇u,∇v〉+ 〈b · ∇u, v〉+ 〈c u, v〉.
We observe that L0 = L − DivA · ∇ (see, for instance, [15], [23]), where

Div: D′(Ω)n×n → D′(Ω)n is the row divergence operator defined in Sec. 6.
Hence, we can always express 〈L0u, v〉 in the form (1.5), with b− DivA in
place of b, for distributional coefficients A and b.

If the differential operator is given in a more general divergence form,

(1.6) L1u = div (A∇u) + b1 · ∇u+ div (b2 u) + c1 u,

then obviously it is reduced to (1.4) with b = b1 + b1 and c = c1 + divb2.
From now on, without loss of generality we will treat the accretivity prop-

erty

(1.7) Re 〈−Lu, u〉 ≥ 0, for all u ∈ C∞
0 (Ω),

associated with the divergence form operator (1.4).
Assuming that A = (ajk), b = (bj) and c are locally integrable in Ω, we

write the sesquilinear form of L as

〈Lu, v〉 =
∫

Ω
(−(A∇u) · ∇v + b · ∇u v + c u v) dx,(1.8)

where u, v ∈ C∞
0 (Ω). Sometimes it will be convenient to write (1.5) in this

form even for distributional coefficients A, b, and c.
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Our main results on the accretivity problem are stated in Sec. 2 below,
in particular, Proposition 2.1 and Theorem 2.7 in higher dimensions n ≥ 2,
and Theorem 2.3 in the one-dimensional case.

This problem is of substantial interest in the real-variable case as well,
where the goal is to characterize operators −L with real-valued coefficients
whose quadratic form is nonnegative definite,

(1.9) 〈−Lh, h〉 ≥ 0, for all real-valued h ∈ C∞
0 (Ω).

Such operators −L are called nonnegative definite.
In the special case of Schrödinger operators

(1.10) Hu = div (P∇u) + σ u,

with real-valued P ∈ D′(Ω)n×n and σ ∈ D′(Ω), a characterization of this
property was obtained earlier in [12, Proposition 5.1] under the assumption
that P is uniformly elliptic, i.e.,

(1.11) m ||ξ||2 ≤ P (x)ξ · ξ ≤ M ||ξ||2, for all ξ ∈ R
n, a.e. x ∈ Ω,

with the ellipticity constants m > 0 and M < ∞.
An analogous characterization of (1.9) for more general operators which

include drift terms, L = div(P∇·) + b · ∇ + c, with real-valued coefficients
and P satisfying (1.11), is given in Theorem 2.2 below.

Returning to the accretivity problem (1.7) for L = div(A∇·) + b · ∇ + c

in the complex-valued case, define the symmetric component As and its
skew-symmetric counterpart Ac respectively by

(1.12) As =
1

2
(A+A⊥), Ac =

1

2
(A−A⊥),

where A = (ajk) ∈ D′(Ω)n×n, and A⊥ = (akj) is the transposed matrix.
As we will see below, in order that L be accretive, the matrix As must

have a nonnegative definite real part: P = ReAs should satisfy

(1.13) Pξ · ξ ≥ 0 for all ξ ∈ Rn, in D′(Ω).

Moreover, the corresponding Schrödinger operator H defined by (1.10) with

P = ReAs, σ = Re c− 1

2
div (Reb),

must be nonnegative definite:

(1.14) [h]2H = 〈−Hh, h〉 = 〈P∇h,∇h〉 − 〈σh, h〉 ≥ 0,

for all real-valued (or complex-valued) h ∈ C∞
0 (Rn).

The rest of the accretivity problem for L (see Sec. 2.1) boils down to the
commutator inequality involving these quadratic forms,

(1.15)
∣

∣

∣
〈b̃, u∇v − v∇u〉

∣

∣

∣
≤ [u]H [v]H,
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for all real-valued u, v ∈ C∞
0 (Rn), where the real-valued vector field b̃ is

given by

b̃ =
1

2
[Imb−Div(ImAc)] .

Under some mild restrictions on H, the “norms” [u]H and [v]H on the
right-hand side of (1.15) can be replaced, up to a constant multiple, with
the corresponding Dirichlet norms ||∇ · ||L2(Ω). This leads to explicit criteria

of accretivity in terms of BMO−1 estimates, as in Theorem 2.7 below.
Similar commutator inequalities related to compensated compactness the-

ory [4] were studied earlier [23] in the context of the form boundedness prob-
lem for L,
(1.16) |〈Lu, v〉| ≤ C ||∇u||L2(Ω) ||∇v||L2(Ω), u, v ∈ C∞

0 (Ω),

where the constant C does not depend on u, v.
If (1.16) holds, then 〈Lu, v〉 can be extended by continuity to u, v ∈

L1, 2(Ω). Here L1, 2(Ω) is the completion of (complex-valued) C∞
0 (Ω) func-

tions with respect to the norm ||u||L1, 2(Ω) = ||∇u||L2(Ω). Equivalently,

(1.17) L : L1, 2(Ω) → L−1, 2(Ω)

is a bounded operator, where L−1, 2(Ω) = L1, 2(Ω)∗ is a dual Sobolev space.
Analogous problems have been studied for the inhomogeneous Sobolev space
W 1, 2(Ω) = L1, 2(Ω) ∩ L2(Ω), fractional Sobolev spaces, infinitesimal form
boundedness, and other related questions ([22]–[25]).

The form boundedness problem (1.16) for the general second order differ-
ential operator L in the case Ω = R

n was characterized completely by the
authors in [23] using harmonic analysis and potential theory methods. We
observe that no ellipticity assumptions were imposed in [23] on the principal
part A of L.

For the Schrödinger operator H = ∆ + σ with σ ∈ D′(Ω), where either
Ω = R

n, or Ω is a bounded domain that supports Hardy’s inequality (see
[2]), a characterization of form boundedness was obtained earlier in [21]. A
different approach for H = div (P∇·)+σ in general open sets Ω ⊆ R

n based
on PDE and real analysis methods, under the uniform ellipticity assumptions
on P , was developed in [12]. A quasilinear version for operators of the p-
Laplace type can be found in [13].

Both the accretivity and form boundedness problems have numerous ap-
plications, including mathematical quantum mechanics ([29], [30]), elliptic
and parabolic PDE with singular coefficients ([5], [7], [14], [15], [20], [26], [9],
[27]), fluid mechanics and Navier-Stokes equations ([8], [16], [31], [33]), semi-
groups and Markov processes ([17]), homogenization theory ([34]), harmonic
analysis ([4], [6]), etc.

We remark that, for the form boundedness, the assumption that the co-
efficients are complex-valued is not essential. It is easily reduced to the
real-valued case.



ACCRETIVITY OF THE SECOND ORDER DIFFERENTIAL OPERATOR 5

The situation is quite different for the accretivity problem, where the
presence of complex-valued coefficients leads to additional complications,
especially in higher dimensions (n ≥ 2) when the matrix ImA is not sym-
metric, and/or the imaginary part of b is nontrivial. Then commutator
inequalities of the type (1.15) with sharp constants, BMO estimates, and
other tools of harmonic analysis come into play.

These phenomena, along with some examples demonstrating possible in-
teraction between the principal part, drift term and zero-order term of the
operator L, are discussed in the next section.

2. Main results

2.1. General accretivity criterion. Let Ω ⊆ R
n (n ≥ 1) be an open set,

and let L be a divergence form second order linear differential operator with
complex-valued distributional coefficients defined by (1.4).

For A = (ajk) ∈ D′(Ω)n×n, define its symmetric part As and skew-
symmetric part Ac respectively by (1.12). The accretivity property for −L
can be characterized in terms of the following real-valued expressions:

(2.1) P = ReAs, b̃ =
1

2
[Imb−Div (ImAc)] , σ = Re c− 1

2
div (Reb),

where P = (pjk) ∈ D′(Ω)n×n, b̃ = (b̃j) ∈ D′(Ω)n, and σ ∈ D′(Ω). This is a
consequence of the relation (see Sec. 3)

(2.2) Re〈−Lu, u〉 = Re〈−L2u, u〉, u ∈ C∞
0 (Ω),

where

(2.3) L2 = div (P∇·) + 2i b̃ · ∇+ σ.

Moreover, in order that −L be accretive, the matrix P must be nonneg-
ative definite, i.e., Pξ · ξ ≥ 0 in D′(Ω) for all ξ ∈ R

n. In particular, each pjj
(j = 1, . . . , n) is a nonnegative Radon measure.

A comprehensive characterization of accretive operators −L is given in
the following proposition.

Proposition 2.1. Let L = div(A∇·) + b · ∇ + c, where A ∈ D′(Ω)n×n,

b ∈ D′(Ω)n and c ∈ D′(Ω) are complex-valued. Suppose that P , b̃, and σ

are defined by (2.1).
The operator −L is accretive if and only if P is a nonnegative definite

matrix, and the following two conditions hold:

(2.4) [h]2H = 〈P∇h,∇h〉 − 〈σ h, h〉 ≥ 0,

for all real-valued h ∈ C∞
0 (Ω), and

(2.5)
∣

∣

∣〈b̃, u∇v − v∇u〉
∣

∣

∣ ≤ [u]H [v]H,

for all real-valued u, v ∈ C∞
0 (Ω).
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In equation (2.4), the expression [h]2H = 〈−Hh, h〉 stands for the quadratic
form associated with the Schrödinger operatorH = div (P∇h)+σ, discussed
in Sec. 2.3.

In Theorem 5.1 below, we show that it is possible to replace b̃ in Propo-
sition 2.1 by b̃− P∇λ, with an appropriate change in σ. In particular, the
commutator condition (2.5) trivializes if b̃ = P∇λ. This reduction is used
in Sec. 4 in the one-dimensional case.

2.2. Real-valued coefficients. As a consequence of Proposition 2.1, we
see that, for operators with real-valued coefficients, the sole condition (2.4)
characterizes nonnegative definite operators −L in an open set Ω ⊆ R

n

(n ≥ 1). We next state a more explicit characterization of this property,
under the assumption that P = As ∈ L1

loc(Ω)
n×n in the sufficiency part,

and that P is uniformly elliptic in the necessity part.

Theorem 2.2. Let L = div(A∇·) + b · ∇ + c, where A ∈ D′(Ω)n×n, b ∈
D′(Ω)n and c ∈ D′(Ω) are real-valued. Suppose that P = As ∈ L1

loc(Ω)
n×n

is a nonnegative definite matrix a.e.
(i) If there exists a measurable vector field g in Ω such that (Pg) · g ∈

L1
loc(Ω), and

(2.6) σ = c− 1

2
div (b) ≤ div (Pg)− (Pg) · g in D′(Ω),

then the operator −L is nonnegative definite.
(ii) Conversely, if −L is nonnegative definite, then there exists a vector

field g ∈ L2
loc(Ω)

n so that (Pg) · g ∈ L1
loc(Ω), and (2.6) holds, provided P is

uniformly elliptic.

Conditions similar to (2.6) are well known in ordinary differential equa-
tions, in relation to disconjugate Sturm-Liouville equations and Riccati
equations with continuous coefficients ([10, Sec. XI.7], Corollary 6.1, The-
orems 6.2 and 7.2). See also [9], [22], as well as the discussion in Sec. 2.4
and Sec. 4 below in the one-dimensional case.

2.3. Schrödinger operators. As was mentioned above, in the special case
of Schrödinger operatorsH = div (P∇h)+σ, with real-valued σ ∈ D′(Ω) and
uniformly elliptic P , Theorem 2.2 was obtained originally in [12, Proposition
5.1]. Under these assumptions, −H is nonnegative definite, i.e.,

[h]2H = 〈−Hh, h〉 ≥ 0, for all h ∈ C∞
0 (Ω),

if and only if there exists a vector field g ∈ L2
loc(Ω)

n such that

(2.7) σ ≤ div (Pg)− (Pg) · g in D′(Ω).

A “linear” sufficient condition for −H to be nonnegative definite is given
by σ ≤ div (Pg), where g ∈ L2

loc(Ω)
n satisfies the inequality

∫

Ω
(Pg · g)h2 dx ≤ 1

4

∫

Ω
(P∇h · P∇h) dx, for all h ∈ C∞

0 (Ω).
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Here Pg ·g is an admissible measure (Sec. 6). However, such conditions are
not necessary, with any constant in place of 1

4 , even when P = I; see [12].
We recall that in Proposition 2.1 above, the nonnegative definite quadratic

form [h]2H is associated with the Schrödinger operator H with real-valued

coefficients P = ReAs, σ = Re c− 1
2div (Reb).

Hence, (2.7) characterizes the first condition of Proposition 2.1 given by
(2.4). The second one, the commutator condition (2.5), will be discussed
further in Sections 2.5 and 2.6; see also an example in Sec. 2.7.

Notice that, even for form bounded σ such that

(2.8) |〈σ, h2〉| ≤ C ||∇h||2L2(Ω), for all h ∈ C∞
0 (Ω),

the fact that −H is nonnegative definite is not equivalent to the existence of
a positive solution u to the Schrödinger equation Hu = 0. In other words,
in our setup, the Allegretto-Piepenbrink theorem is generally not true. See
[12], [21], [22], and the literature cited there for further discussion.

2.4. The one-dimensional case. In the one-dimensional case, it is possi-
ble to avoid problems with commutator estimates using methods of ordinary
differential equations ([10], [11]). In particular, the following theorem gives
a generalization of Theorem 2.2 for complex-valued coefficients in the one-
dimensional case. In the statements below we will make use of the standard
convention 0

0 = 0.

Theorem 2.3. Let I ⊆ R be an open interval (possibly unbounded). Let
a, b, c ∈ D′(I), and Lu = (a u′)′ + bu′ + c. Suppose that p = Re a ∈ L1

loc(I),
and Im b ∈ L1

loc(I).

(i) The operator −L is accretive if and only if (Im b)2

p
∈ L1

loc(I), where

p ≥ 0 a.e., and the following quadratic form inequality holds:

(2.9)

∫

I

p(h′)2dx− 〈Re c− 1

2
(Re b)′, h2〉 −

∫

I

(Im b)2

4p
h2 dx ≥ 0,

for all real-valued h ∈ C∞
0 (I).

(ii) If there exists a function f ∈ L1
loc(I) such that f2

p
∈ L1

loc(I), and

(2.10) Re c− 1

2
(Re b)′ − (Im b)2

4p
≤ f ′ − f2

p
in D′(I),

then the operator −L is accretive.
Conversely, if −L is accretive, and m ≤ p(x) ≤ M a.e. for some con-

stants M,m > 0, then there exists a function f ∈ L2
loc(I) such that (2.10)

holds.

Remark 2.4. Clearly, the functions f in Theorem 2.3 and g in Theorem 2.2
are related through f = p g.

Remark 2.5. In general, p = Re a ≥ 0 is a Radon measure in I. It is easy to
see that condition (2.9) with ρ in place of p, where ρ = dp

dx
is the absolutely

continuous part of the measure p, is sufficient for −L to be accretive.
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On the other hand, −L is accretive if, for instance, a = 2δx0
, c = −2δx0

,
and b = iδx0

, where x0 ∈ I. This example is immediate from Proposition
2.1. Operators with measure-valued A in the principal part A = div (A∇·)
are treated in [3] in the context of Lp-dissipativity.

The characterization of accretivity obtained in Theorem 2.3 in the one-
dimensional case does not involve Im a and Im c. However, Im b plays an
important role. In higher dimensions, the situation is more complicated.
The term Im b may contain both the irrotational and divergence-free compo-
nents, the latter in combination with ImAc. (See Theorem 2.7, and Example
in Sec. 2.7 below.)

There is an analogue of Theorem 2.3 in higher dimensions for operators
with complex-valued coefficients, but only in the case where b̃ has a specific
form, for instance, if b̃ = P∇λ for some λ ∈ D′(Ω). More general vector
fields are treated in Theorem 5.1 below.

2.5. Upper and lower bounds of quadratic forms. Returning now to
general operators with complex-valued coefficients in the case n ≥ 2, we re-
call that the first condition of Proposition 2.1 is necessary for the accretivity
of −L, namely,

(2.11) 〈σ h, h〉 ≤
∫

Ω
(P∇h · ∇h) dx,

for all real-valued h ∈ C∞
0 (Ω), where σ = Re c − 1

2div(Reb) ∈ D′(Ω), and
ReAs = P ∈ D′(Ω)n×n is a nonnegative definite matrix.

Suppose now that σ has a slightly smaller upper form bound, that is,

(2.12) 〈σ h, h〉 ≤ (1− ǫ2)

∫

Ω
(P∇h · ∇h) dx, h ∈ C∞

0 (Ω),

for some ǫ ∈ (0, 1]. We also consider the corresponding lower bound,

(2.13) 〈σ h, h〉 ≥ −K

∫

Ω
(P∇h · ∇h) dx, h ∈ C∞

0 (Ω),

for some constant K ≥ 0.
Such restrictions on real-valued σ ∈ D′(Ω) were invoked in [12], for uni-

formly elliptic P .

Remark 2.6. Notice that (2.12) is obviously satisfied for any ǫ ∈ (0, 1), up
to an extra term C ||h||2

L2(Ω), if σ is infinitesimally form bounded ([29]), i.e.,

∣

∣〈σ, h2〉
∣

∣ ≤ ǫ ||∇h||2L2(Ω) + C(ǫ) ||h||2L2(Ω), h ∈ C∞
0 (Ω),

for any ǫ ∈ (0, 1). This property was characterized in [25]. The second term
on the right is sometimes included in the definition of accretivity of the
operator −L. We can always incorporate it as a constant term in σ −C(ǫ).
The same is true with regards to the lower bound where we can use σ+C(ǫ).
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If both bounds (2.12) and (2.13) hold for some ǫ ∈ (0, 1] and K ≥ 0, then
obviously

ǫ

∫

Ω
(P∇h · ∇h) dx ≤ [h]2H ≤ (K + 1)

1

2

∫

Ω
(P∇h · ∇h) dx, h ∈ C∞

0 (Ω).

Assuming that P satisfies the uniform ellipticity assumptions (1.11), we
see that in this case condition (2.5) is equivalent, up to a constant multiple,
to

(2.14)
∣

∣

∣
〈b̃, u∇v − v∇u〉

∣

∣

∣
≤ C ||∇u||L2(Ω) ||∇v||L2(Ω)

where C > 0 is a constant which does not depend on real-valued u, v ∈
C∞
0 (Ω).
This commutator inequality was characterized completely in the case Ω =

R
n in [23, Lemma 4.8] for complex-valued u, v. Clearly, that characterization

works also in the case of real-valued u, v as well (with a change of the
constant C up to a factor of

√
2).

2.6. Main theorem on the entire space. Combining the characteriza-
tion of the commutator inequality (2.14) obtained in [23] with Proposition
2.1, we deduce our main theorem in the case Ω = R

n. We employ separately
the lower bound (2.13) in the necessity part, and the upper bound (2.12) in
the sufficiency part.

Theorem 2.7. Let L be a second order differential operator in divergence
form (1.4) with complex-valued coefficients A ∈ D′(Rn)n×n, b ∈ D′(Rn)n

and c ∈ D′(Rn) (n ≥ 2). Let P , b̃ and σ be given by (2.1), where P is
uniformly elliptic.

(i) Suppose that −L is accretive, i.e., (1.7) holds, and suppose that (2.13)
holds for some K ≥ 0.

(a) If n ≥ 3, then b̃ can be represented in the form

(2.15) b̃ = ∇f +DivG,

where f ∈ D′(Rn) is real-valued, and there exists a positive constant C so
that

(2.16)

∫

Rn

|∇f |2h2dx ≤ C

∫

Rn

|∇h|2dx, for all h ∈ C∞
0 (Rn),

and G ∈ BMO(Rn)n×n is a real-valued skew-symmetric matrix field.
Moreover, f and G above can be defined explicitly as

(2.17) f = ∆−1(div b̃), G = ∆−1(Curl b̃),

where the constant C in (2.16) and the BMO-norm of G may depend on K.

(b) If n = 2, then b̃ = (−∂2g, ∂1g), where g ∈ BMO(R2) is a real-valued

function so that div(b̃) = 0.

(ii) Conversely, suppose that (2.12) holds for some ǫ ∈ (0, 1]. Then
−L is accretive if representation (2.15) holds when n ≥ 3, or f = 0 and
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b̃ = (−∂2g, ∂1g) when n = 2, so that both the constant C in (2.16) and the
BMO-norm of G (or g when n = 2) are small enough, depending only on ǫ.

Remark 2.8. Notice that the condition imposed on the divergence-free com-
ponent DivG in the Hodge decomposition (2.15) is much weaker that the
condition on the irrotational component ∇f .

In particular, (2.16) means that |∇f |2dx ∈ M
1,2(Rn) is an admissible

measure. Several equivalent characterizations of the class M1,2(Rn) are dis-
cussed in Sec. 6 below.

Remark 2.9. Under the assumptions of Theorem 2.7, b̃ ∈ BMO−1(Rn)n (see
Sec. 6). A thorough discussion of the space BMO−1(Rn) and its applications
is given in [16].

Remark 2.10. In (2.17), the Newtonian potential ∆−1 is understood in terms
of the weak-∗ BMO convergence (see [23], [32]), and Div and Curl are the
usual matrix operators defined in Sec. 6.

In the case n = 3, we can use the usual vector-valued curl(g) ∈ D′(R3)3

in place of DivG in decomposition (2.15), with g = ∆−1(curl b̃) in (2.17).

2.7. Example. We conclude Sec. 2 with an example in two dimensions
that demonstrates possible interaction between the principal part and lower
order terms in the accretivity problem for operators with complex-valued
coefficients.

Consider the operator L = div (A∇·) + b · ∇ + c in R
2 with A = (ajk),

where a11 = a22 = 1, a12 = −a21 = i λ log |x|, b = −x|x|2 and c = −2|x|2,
where x ∈ R

2 and λ ∈ R.
If |λ| ≤ C, where C is an absolute constant, then by statement (ii) of

Theorem 2.7, the operator −L is accretive due to the interaction between the
principal part, the drift term, and the zero-order term (harmonic oscillator).

In this example P = I, σ = 0, b̃ = (−∂2g, ∂1g), where g = λ
2 log |x| ∈

BMO(R2). The upper bound (2.12) obviously holds for any ǫ ∈ (0, 1], but
the lower bound (2.12) fails.

We note in passing that, by Proposition 2.1, the optimal value of the
constant |λ| in this example is found from the inequality

(2.18)

∣

∣

∣

∣

∫

R2

g(x) J [u, v] dx

∣

∣

∣

∣

≤ ||∇u||L2(R2)||∇u||L2(R2),

for all real-valued u, v ∈ C∞
0 (R2), where J [u, v] = ∂u

∂x1

∂v
∂x2

− ∂u
∂x2

∂v
∂x1

is the

determinant of the Jacobian matrix D(u, v) (see [4], [23], and Sec. 6 below).

3. Proofs of Proposition 2.1 and Theorem 2.2

Proof of Proposition 2.1. Clearly, the principal part of Re 〈Lu, u〉 depends
only on ReAs and ImAc, since for u = f + ig ∈ D′(Ω) (f, g are real-valued),
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we have

−Re 〈Au, u〉 = 〈ReAs∇f, ∇f〉+ 〈ReAs∇g, ∇g〉 − 2 〈ImAc∇f, ∇g〉
= 〈ReAs∇f, ∇f〉+ 〈ReAs∇g, ∇g〉+ 2 〈div (ImAc∇f), g〉
= 〈ReAs∇f, ∇f〉+ 〈ReAs∇g, ∇g〉
+ 〈div (ImAc∇f), g〉 − 〈div (ImAc∇g), f〉.

Since Ac is skew-symmetric, it follows that

div (Ac∇u) = −Div(Ac) · ∇u in D′(Ω),

where the vector field Div(Ac) is solenoidal (divergence free). In particular,

div (ImAc∇f) = −Div(ImAc)∇f,

for real-valued f .
Letting b1 = b − Div(Ac), we see that the skew symmetric-part Ac can

always be included in the first-order term b1 · ∇, and hence does not affect
the principal part of L. Consequently, we have

〈−Lu, u〉 = 〈P∇f,∇f〉+ 〈P∇g,∇g〉 − 〈b1, f∇f + g∇g〉
− i〈b1, f∇g − g∇f〉 − 〈c, f2 + g2〉,

and

Re 〈−Lu, u〉 = 〈P∇f,∇f〉+ 〈P∇g,∇g〉 − 〈Reb1, f∇f + g∇g〉
+ 〈Imb1, f∇g − g∇f〉 − 〈Re c, f2 + g2〉.

Integrating by parts, and using the fact that div (Reb1) = div (Reb), we
deduce

〈Reb1, f∇f + g∇g〉 = −1

2
〈div (Reb), f2 + g2〉.

It follows that

Re 〈−Lu, u〉 = 〈P∇f,∇f〉+ 〈P∇g,∇g〉
+ 〈Imb1, f∇g − g∇f〉 − 〈σ, f2 + g2〉,

where σ = Re c− 1
2div (Reb).

This proves that Re 〈Lu, u〉 = Re 〈L2u, u〉, where L2 is defined by (2.3).
Thus, (2.2) holds.

Interchanging the roles of f and g we deduce that Re 〈Lu, u〉 ≥ 0 if and
only if

〈P∇f,∇f〉+ 〈P∇g,∇g〉 − 〈σ, f2 + g2〉 ≥ |〈Imb1, f∇g − g∇f〉| .
Using the quadratic form [f ]2H defined by (2.4), we rearrange the preceding

inequality as follows,

(3.1) |〈Imb1, f∇g − g∇f〉| ≤ [f ]2H + [g]2H.

for all are real-valued f, g ∈ C∞
0 (Ω). Clearly, the right-hand side of this

inequality equals [f ]2H + [g]2H = [u]2H, where [u]2H = 〈−Hu, u〉 ≥ 0 for every
complex-valued u ∈ C∞

0 (Ω). In particular, −H is nonnegative definite.



12 V. G. MAZ’YA AND I. E. VERBITSKY

Replacing f, g in (3.1) with αf, 1
α
g respectively, and minimizing over all

real α 6= 0, we deduce that Re 〈Lu, u〉 ≥ 0 if and only if

(3.2) |〈Imb1, f∇g − g∇f〉| ≤ 2 [f ]H[g]H,

where f, g ∈ C∞
0 (Ω) are real-valued, provided [u]2H ≥ 0 for every complex-

valued (or equivalently real-valued) u ∈ C∞
0 (Ω). Clearly, 1

2 Imb1 = b̃, where

b̃ is defined by (2.1), so that (3.2) coincides with (2.5).
It remains to show that if −L is an accretive operator, then P = ReAs

is a non-negative definite matrix. Let u = eit x·ξ v, where v ∈ C∞
0 (Ω) is

real-valued, t ∈ R and ξ ∈ R
n. Then clearly,

〈−Lu, u〉 =t2〈(Aξ · ξ) v, v〉+ 〈A∇v,∇v〉+ it〈(Aξ)v,∇v〉
− it〈A∇v, vξ〉 − it〈(b · ξ)v, v〉 − 〈b · ∇v, v〉 − 〈c v, v〉.

It follows,

Re 〈−Lu, u〉 =t2〈(Pξ · ξ) v, v〉+ 〈P∇v,∇v〉 − t〈(ImA)ξv,∇v〉
+ t〈(ImA)∇v, vξ〉+ t〈(Imb · ξ)v, v〉 − 〈σ v, v〉 ≥ 0.

Dividing both sides by t2 and letting t → ∞, we immediately get that
〈(Pξ · ξ) v, v〉 ≥ 0 for every real-valued v ∈ C∞

0 (Ω). Then, for any h ∈
C∞
0 (Ω), h ≥ 0, denote by η ∈ C∞

0 (Ω) a cut-off function such that η h = h.

Setting v = η(h+ δ)
1

2 ∈ C∞
0 (Ω), for δ > 0, we see that 〈Pξ · ξ, h+ δ η2〉 ≥ 0.

Letting δ → 0 yields Pξ · ξ ≥ 0 in D′(Ω). This completes the proof of
Proposition 2.1. �

Proof of Theorem 2.2. We recall some estimates for non-negative definite,
symmetric matrices P = (pjk), starting with the Schwarz inequality

(3.3) |Pξ · η| ≤
(

Pξ · ξ
) 1

2

(

Pη · η
) 1

2

, for all ξ, η ∈ R
n.

From (3.3) with η = Pξ, we deduce the estimate

|Pξ|2 ≤ ||P || (Pξ · ξ), for all ξ ∈ R
n,

where ||P || is the operator norm of P . Since ||P || ≤ ∑n
j,k=1 |pjk|, using the

preceding inequality with ξ = g, we deduce, for any h ∈ C∞
0 (Ω),

∫

Ω
|Pg|h2 dx ≤

(∫

Ω

(

Pg · g
)

h2 dx

) 1

2





∫

Ω
(

n
∑

j,k=1

|pjk(x)|)h2 dx





1

2

.

We now prove statement (i) of Theorem 2.2. From the preceding estimate
it follows that P ∈ L1

loc(Ω)
n×n and (Pg) ·g ∈ L1

loc(Ω)
n yield Pg ∈ L1

loc(Ω)
n.

Applying (3.3) with ξ = g(·) and η = ∇h(·), we obtain
∣

∣

∣

∣

∫

Ω
[(Pg) · ∇h]h dx

∣

∣

∣

∣

≤
∫

Ω
[(Pg) · g] 12 [(P∇h) · ∇h]

1

2 h dx

≤
(∫

Ω
[(Pg) · g]h2 dx

) 1

2

(∫

Ω
[(P∇h) · ∇h] dx

) 1

2

.
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Using (2.6), along with the preceding inequality, and integrating by parts,
we estimate,

〈σ, h2〉 ≤ 〈div (Pg), h2〉 −
∫

Ω
[(Pg) · g]h2dx

= −2

∫

Ω
[(Pg) · ∇h]h dx−

∫

Ω
[(Pg) · g]h2dx

≤ 2

(∫

Ω
[(Pg) · g]h2dx

) 1

2

(∫

Ω
[(P∇h) · ∇h] dx

) 1

2

−
∫

Ω
[(Pg) · g]h2dx

≤
∫

Ω
[(P∇h) · ∇h] dx.

In other words, (2.4) holds. Since b̃ = 0, and hence the commutator
condition (2.5) is vacuous, −L is nonnegative definite by Proposition 2.1.
This proves statement (i) of Theorem 2.2.

Statement (ii) of Theorem 2.2 is immediate from Proposition 2.1, and the
corresponding result for the Schrödinger operatorH in Sec. 2.3, which yields
the existence of g ∈ L2

loc(Ω) such that (2.4) holds. The proof of Theorem
2.3 is complete. �

4. Proof of Theorem 2.3

Let Lu = (a u′)′ + bu′ + c be a second order linear differential operator
with complex-valued distributional coefficients a, b, c on an open interval
I ⊆ R (possibly unbounded). As in (2.1), we define the associated real-

valued distributions p, b̃, and σ by

p = Re a, b̃ =
1

2
Im b, σ = Re c− 1

2
Re b′.

Proposition 2.1 gives a criterion of accretivity for −L in terms of the
quadratic form inequality for −H,

[h]2H = 〈ph′, h′〉 − 〈σ h, h〉 ≥ 0, for all h ∈ C∞
0 (I),

where Hh = (ph′)′+σ h is the Sturm-Liouville operator on I, together with
the commutator inequality

∣

∣

∣
〈b̃, uv′ − vu′〉

∣

∣

∣
≤ [u]2H [v]2H,

for all real-valued u, v ∈ C∞
0 (I).

In the case where p, b̃ ∈ L1
loc(I), it is possible to avoid the commutator

inequality by including b̃ in the stronger quadratic form inequality (2.9), i.e.,

(4.1) [h]2N =

∫

I

p (h′)2 dt− 〈σ, h2〉 −
∫

I

b̃2

p
h2 dt ≥ 0,

for all real-valued h ∈ C∞
0 (I). Here Nh = (ph′)′ + q h, with

q = Re c− 1

2
(Re b)′ − b̃2

p
.
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This means that −L is accretive if and only if the Sturm-Liouville operator

−N is nonnegative definite. In this case, the condition b̃2

p
∈ L1

loc(I) is

necessary for accretivity. We recall that throughout the paper, we are using
the convention 0

0 = 0.
The reduction of the accretivity of−L to the property that the Schrödinger

operator −N is nonnegative definite is performed via an exponential substi-
tution u = ze−iλ, where λ ∈ D′(Ω) is a real-valued vector field. It actually
works in the general case n ≥ 1, provided b has a specific form, so that
b̃ = P∇λ, under certain restrictions on P and λ (see Sec. 5 below). If

n = 1, we will show that this is always possible with λ′ = b̃
p
in I.

We first prove statement (i) of Theorem 2.3. Our first step is to show
that, in the general case Ω ⊆ R

n, for n ≥ 1, we can replace the operator L
in the corresponding quadratic form inequalities with the operators Lǫ with
mollified coefficients Aǫ, bǫ, and cǫ (ǫ > 0).

More precisely, if u ∈ C∞
0 (Ω), then we can pick a smooth real-valued

cut-off function η ∈ C∞
0 (Ω) so that η u = u. Then, applying the inequality

Re 〈−Lu, u〉 ≥ 0 with η u = u, we can clearly replace A, b, and c by η2A,
η2b, and η2c, respectively, so that we may assume that the coefficients of L
are compactly supported.

Notice that we can also replace u(x) with a shifted test function uy(x) =
u(x+ y), where |y| < ǫ, for a small enough ǫ depending on the support of u
and η. Let φǫ(y) = ǫ−nφ( t

ǫ
) be a mollifier, so that φ ≥ 0, φ ∈ C∞(B(0, 1))

and
∫

B(0,1) φ(y) dy = 1. Then supp (φǫ) ⊂ B(0, ǫ). Integrating both sides of

the inequality Re 〈−Luy, uy〉 ≥ 0 against φǫ(t) dt, we obtain

Re 〈−Lǫu, u〉 ≥ 0,

where the coefficients Aǫ, bǫ, and cǫ are the mollifications of the distributions
η2A, η2b, and η2c, respectively. Conversely, if this inequality holds for small
enough ǫ > 0, then passing to the limit as ǫ → 0, we recover the inequality
Re 〈−Lu, u〉 ≥ 0. In other words, we can assume without loss of generality
that the coefficients of L in the inequality Re 〈−Lu, u〉 ≥ 0 are C∞

0 (Ω)
functions.

Returning to the one-dimensional case, we fix u ∈ C∞
0 (I), and define pǫ,

b̃ǫ, σǫ as the mollifications of p, b̃, and σ, respectively. Obviously, we can
always replace p in the inequality Re 〈−Lu, u〉 ≥ 0 by p+ δ, for some δ > 0,
and eventually set δ ↓ 0.

Let η ∈ C∞
0 (I) be a real-valued function such that η u = u. We set

(4.2) λ(t) = η(t)

∫ t

t0

b̃ǫ(τ)

pǫ(τ) + δ
, t ∈ I,

where t0 ∈ I, and δ > 0. Then clearly λ ∈ C∞
0 (I), and

λ′(t) = η(t)
b̃ǫ(t)

pǫ(t) + δ
+ η′(t)λ(t), t ∈ I.
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Notice that, on the support of u, we have

b̃ǫ(t)−λ′(t) (pǫ(t)+δ)(t) = 0, 2 b̃ǫ(t)λ
′(t)−(pǫ(t)+δ) [λ′(t)]2 =

b̃ǫ(t)
2

pǫ(t) + δ
.

Using the exponential substitution u = ze−iλ discussed in Sec. 5 below,
we deduce from (5.7) and (5.8) that Re 〈−Lǫu, u〉 ≥ 0 holds if and only if

(4.1) holds with pǫ + δ, b̃ǫ and σǫ in place of p, b̃ and σ, for all small enough
ǫ and δ > 0, that is

(4.3)

∫

I

(pǫ(t) + δ)h′(t)2 dt− 〈σǫ, h2〉 −
∫

I

b̃ǫ(t)
2

pǫ(t) + δ
h(t)2 dt ≥ 0,

where h ∈ C∞
0 (I) has the same support as u, since h is a linear combination

of f and g, the real and imaginary parts of u (see Sec. 3).
Clearly, pǫk → p in L1

loc(I), and σǫk → σ in D′(I) as ǫk → 0. Since

b̃ ∈ L1
loc(I) and p ∈ L1

loc(I), there exists a subsequence k → ∞ so that

b̃ǫk → b̃, and pǫk → p a.e. Passing to the limit as k → ∞, and using Fatou’s
lemma, we deduce the inequality

(4.4)

∫

I

(p(t) + δ)h′(t)2 dt− 〈σ, h2〉 −
∫

I

b̃(t)2

p(t) + δ
h(t)2 dt ≥ 0.

Letting δ ↓ 0 and using the dominated convergence theorem and the

monotone convergence theorem, we see that b̃2

p
∈ L1

loc(I), and (4.1) holds,

provided −L is accretive. This proves the necessity of condition (4.1) for
the accretivity of the operator −L.

To prove the sufficiency of condition (4.1), assuming p ∈ L1
loc(I), notice

that it obviously yields (4.4) for every δ > 0. Using the same mollification
process as above we deduce

(4.5)

∫

I

(pǫ(t) + δ)h′(t)2 dt− 〈σǫ, h2〉 −
∫

I

( b̃2

p+ δ

)

ǫ
(t)h(t)2 dt ≥ 0.

By Jensen’s inequality, we have

(b̃ǫ(t))
2 ≤ (pǫ(t) + δ)

( b̃2

p+ δ

)

ǫ
(t), t ∈ I.

Consequently, (4.5) yields (4.3). As was mentioned above, inequality (4.3),
via the exponential substitution u = ze−iλ with λ defined by (4.2), is equiv-
alent to the inequality Re 〈−Lǫu, u〉 ≥ 0. Letting ǫ → 0, we conclude that
−L is accretive. This proves statement (i) of Theorem 2.3.

To prove statement (ii), suppose that (2.10) holds for some f ∈ L1
loc(I)

such that f2

p
∈ L2

loc(I). Letting g = f
p
, we see that p g2 ∈ L1

loc(I), and

condition (2.6) holds with q in place of σ. Hence, by Theorem 2.2, the
operator −N is nonnegative definite, i.e., (2.9) holds, which yields that −L
is accretive by statement (i) of Theorem 2.3.

In the converse direction, if −L is accretive, then (2.9) holds by statement
(i) of Theorem 2.3. In other words, the operator −N is nonnegative definite.



16 V. G. MAZ’YA AND I. E. VERBITSKY

Thus, by Theorem 2.2, there exists a function g ∈ L2
loc(I) such that (2.10)

holds with f = p g. Here p is uniformly bounded above and below by
positive constants, so that f ∈ L2

loc(I), and the right-hand side of (2.10) is
well-defined. The proof of Theorem 2.3 is complete. �

5. Decomposition of the drift term

In this section, we deduce a version of Proposition 2.1 for vector fields

(5.1) b̃ = P∇λ+ d,

where λ and d are real-valued. In particular, it yields more explicit criteria
of accretivity in the special cases where d = 0, i.e., b̃ = P∇λ, or P = I and
divd = 0, so that (5.1) is the Hodge decomposition.

This is a consequence of the following theorem, which in a sense represents
a higher dimensional analogue of Theorem 2.3 in the case n = 1, with
λ′ = Im b

2p .

Theorem 5.1. Let P , b̃, and σ be defined by (2.1), where P ∈ L∞
loc(Ω)

n×n

is a nonnegative definite matrix, and b̃ ∈ L2
loc(Ω)

n. Suppose ∇λ ∈ L2
loc(Ω)

n,
where λ ∈ D′(Ω) is real-valued. Then −L is an accretive operator if and only
if the following two conditions hold:

[h]2N =

∫

Ω
(P∇h · ∇h) dx− 〈σ h, h〉

−
∫

Ω
(2b̃− P∇λ) · ∇λ |h|2dx ≥ 0,

(5.2)

for all h ∈ C∞
0 (Ω), and

(5.3)
∣

∣

∣
〈b̃− P∇λ, u∇v − v∇u〉

∣

∣

∣
≤ [u]N [v]N ,

for all real-valued u, v ∈ C∞
0 (Ω).

Remark 5.2. In the special case where P is invertible (for instance, uniformly

elliptic), and P−1b̃ = ∇λ is a gradient field, the sole condition (5.2), namely,

(5.4) [h]2N =

∫

Ω
(P∇h · ∇h) dx− 〈σ h, h〉 −

∫

Ω
(P−1b̃ · b̃) |h|2dx ≥ 0,

for all h ∈ C∞
0 (Ω), characterizes accretive operators −L.

This is an analogue of condition (2.9) in the one-dimensional case.

Remark 5.3. If P = I, then in decomposition (5.1) we can pick the irrota-

tional component of b̃ as ∇λ. In this case, Theorem 5.1 is clearly equivalent
to the inequality

(5.5) [h]2N = ||∇h||2L2(Ω) − 〈σ h, h〉 −
∫

Ω

(

|b̃|2 − |d|2
)

|h|2dx ≥ 0,
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for all h ∈ C∞
0 (Ω), where d = b̃ − ∇λ is the divergence-free component of

b̃, combined with the commutator inequality

(5.6) |〈d, u∇v − v∇u〉| ≤ [u]N [v]N ,

for all real-valued u, v ∈ C∞
0 (Ω).

Notice that here the condition b̃ ∈ L2
loc(Ω) is necessary for −L to be

accretive, provided d ∈ L2
loc(Ω), as in the one-dimensional case where we

can set d = 0.

Proof. It follows from (2.2), (2.3) that, without loss of generality, we may
assume

Lu = div (P∇u) + 2i b̃ · ∇+ σ,

where P , b̃, and σ are given by (2.1).
Let us assume for simplicity that P ∈ L∞

loc(Ω)
n×n, where P is a nonnega-

tive definite, symmetric, real-valued n×n matrix, and ∇λ ∈ L2
loc(Ω), where

λ ∈ D′(Ω) is real-valued.
We use the substitution u = z e−iλ, where u ∈ C∞

0 (Ω) is complex-valued,

to replace b̃ with b̃−∇λ.
Suppose first that λ ∈ C∞

0 (Ω). Since z = u eiλ ∈ C∞
0 (Ω), we have

P∇u = (P∇z − iz P∇λ) e−iλ, ∇ū = (∇z̄ + iz̄∇λ) eiλ.

Hence,

P∇u · ∇ū = P∇z · ∇z̄ + (P∇λ · ∇λ) |z|2 − i (P∇λ) · (z∇z̄ − z̄∇z).

We deduce
∫

Ω
(P∇u · ∇ū) dx =

∫

Ω
(P∇z · ∇z̄) dx+

∫

Ω
(P∇λ · ∇λ) |z|2 dx

+ 2

∫

Ω
P∇λ · Im (z∇z̄) dx.

Since b̃ ∈ L1
loc(Ω), we have

Re 〈−Lu, u〉 =
∫

Ω
(P∇z · ∇z̄) dx−

∫

Ω

[

2(b̃ · ∇λ)− (P∇λ · ∇λ)
]

|z|2 dx

− 〈σ, |z|2〉 − 2〈b̃− P∇λ, Im(z∇z̄)〉.
It follows that

Re 〈−Lu, u〉 ≥ 0 ⇐⇒ Re 〈−Mz, z〉 ≥ 0,

where

Mz = div (P∇z) + 2i (b̃− P∇λ) · ∇z +
(

σ + 2(b̃ · ∇λ)− (P∇λ · ∇λ)
)

.

Thus, Re 〈−Lu, u〉 ≥ 0 if and only if

[h]2M =

∫

Ω
(P∇h · ∇h) dx− 〈σ h, h〉

−
∫

Ω

[

2(b̃ · ∇λ)− (P∇λ · ∇λ)
]

|h|2 dx ≥ 0,

(5.7)
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for all real-valued h ∈ C∞
0 (Ω), and

(5.8)
∣

∣

∣
〈b̃− P∇λ, u∇v − v∇u〉

∣

∣

∣
≤ [u]M [v]M,

for all real-valued u, v ∈ C∞
0 (Ω).

In the case ∇λ ∈ L2
loc(Ω), we notice that, without loss of generality we

may assume that λ is compactly supported in Ω. Otherwise, we consider
λη, where η ∈ C∞

0 (Ω) is a cut-off function such that η u = u, and apply the
subsequent estimates to λη. We next replace λ with its mollification λǫ =
λ ⋆ φǫ, for ǫ > 0, where as usual φǫ(x) = ǫ−nφ(ǫ−1x), for some φ ∈ C∞

0 (Ω).
Using the same substitution as above, for z ∈ C∞

0 (Ω), we set

uǫ = z e−iλǫ ∈ C∞
0 (Ω), ∇uǫ = (∇z − i∇λǫ) e

−iλǫ .

Notice that, as above,

Re 〈Luǫ, uǫ〉 =
∫

Ω
(P∇z · ∇z) dx−

∫

Ω

[

2(b̃ · ∇λǫ)− (P∇λǫ · ∇λǫ)
]

|z|2 dx

− 〈σ, |z|2〉 − 2〈b̃− P∇λǫ, Im(z∇z̄)〉 ≥ 0,

which yields the following two conditions:

[z]2M =

∫

Ω
(P∇z · ∇z) dx−

∫

Ω

[

2(b̃ · ∇λǫ)− (P∇λǫ · ∇λǫ)
]

|z|2 dx

− 〈σ, |z|2〉 ≥ 0,
∣

∣

∣
〈b̃− P∇λǫ, u∇v − v∇u

∣

∣

∣
≤ [u]M[v]M,

for all z ∈ C∞
0 (Ω) (real- or complex-valued) and real-valued u, v ∈ C∞

0 (Ω).
We have ||(∇λǫ − ∇λ)η||L2(Ω) → 0 as ǫ → 0. Consequently, it follows

||(b̃ · ∇λǫ − b̃ · ∇λ)η||L2(Ω) → 0 for b̃ ∈ L2
loc(Ω). Since P ∈ L∞

loc(Ω)
n×n, we

have ||(P∇λǫ − P∇λ)η||L2(Ω) → 0 as well. Passing to the limit as ǫ → 0
completes the proof of Theorem 5.1. �

6. BMO estimates, trace inequalities, and admissible measures

In this section, we discuss BMO estimates, trace inequalities and ad-
missible measures used in Theorem 2, which gives necessary and sufficient
conditions on A, b and c for the accretivity of −L on R

n, under some ad-
ditional assumptions on the upper and lower bounds of the quadratic forms
[·]H imposed in Sec. 2.5.

By L1, 2(Ω) we denote the energy space (homogeneous Sobolev space)
defined as the completion of the complex-valued C∞

0 (Ω) functions in the
Dirichlet norm ||∇ · ||L2(Ω).

For f ∈ L1
loc(R

n), we set mB(f) =
1
|B|

∫

B
f(x) dx, where B is a ball in R

n,

and denote by BMO(Rn) the class of functions f ∈ Lr
loc(R

n) for which

sup
x0∈Rn, δ>0

1

|Bδ(x0)|

∫

Bδ(x0)
|f(x)−mBδ(x0)(f)|r dx < +∞,

for any (or, equivalently, all) 1 ≤ r < +∞.
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The corresponding vector- and matrix-valued function spaces are intro-
duced in a similar way. In particular, BMO(Rn)n stands for the class of vec-
tor fields f = {fj}nj=1 : Rn → C

n, such that fj ∈ BMO(Rn), j = 1, 2, . . . , n.

The matrix-valued analogue is denoted by BMO(Rn)n×n, etc. The notion of
the weak-∗ BMO-convergence is discussed based on the H1 − BMO duality
in [32, Ch. IV].

The matrix divergence operator Div : D′(Ω)n×n → D′(Ω)n is defined on

matrix fields F = (fij)
n
i,j=1 ∈ D′(Ω)n×n by DivF =

(

∑n
j=1 ∂j fij

)n

i=1
∈

D′(Ω)n. If F is skew-symmetric, i.e., fij = −fji, then we obviously have
div (DivF ) = 0.

The Jacobian, D : D′(Ω)n → D′(Ω)n×n, is the formal adjoint of −Div,

〈DivF, v〉 = −〈F, Dv〉, v ∈ C∞
0 (Ω)n.

Here the scalar product of matrix fields F = (fij)
n
i,j=1 and G = (gij)

n
i,j=1 is

defined by 〈F, G〉 = ∑n
i,j=1〈fij , gij〉. If F, G ∈ L2(Ω)n×n, then

〈F, G〉 =
∫

Ω
trace (F t · Ḡ) dx,

where F t = (fji)
n
i,j=1 is the transposed matrix, and Ḡ = (ḡij)

n
i,j=1.

The matrix curl operator Curl : D′(Ω)n → D′(Ω)n×n is defined on vector
fields f = (fk)

n
k=1 by Curl f = (∂jfk − ∂jfk)

n
j,k=1. Clearly, Curl f is always a

skew-symmetric matrix field.
Notice that in the case n = 3 we can use the usual vector-valued curl

operator which maps D′(Ω)3 → D′(Ω)3. For instance, if a vector field is
represented as b = curl(g), then we can write commutator inequalities of
the type |〈b, u∇ v − v∇u〉| ≤ C ||∇u||L2(R3) ||∇v||L2(R3), in the equivalent
form

|〈g,∇u×∇v〉| ≤ C ||∇u||L2(R3) ||∇v||L2(R3),

where g ∈ BMO(R3)3. This is an analogue of the Jacobian determinant
inequality (2.18) in two dimensions. Such inequalities are studied in com-
pensated compactness theory [4].

Similarly, when n = 3, in Theorem 2.7 we can use the Hodge decomposi-
tion in R

3,

b̃ = ∇f + curl(g),

where g = ∆−1(curl b̃) ∈ BMO(R3)3. Here the operator ∆−1 is understood
in the sense of the weak-∗ BMO-convergence, as explained in [23]. Notice
that this decomposition does not contain any harmonic vector fields h such
that both div (h) = 0 and curl(h) = 0. This is, of course, true in R

n for
higher dimensions n ≥ 4 as well.

The capacity of a compact set e ⊂ R
n is defined by ([20], Sec. 2.2):

(6.1) cap (e) = inf
{

||u||2L1,2(Rn) : u ∈ C∞
0 (Rn), u(x) ≥ 1 on e

}

.
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For a cube or ball Q in R
n,

(6.2) cap (Q) ≃ |Q|1− 2

n if n ≥ 3; cap (Q) = 0 if n = 2.

The capacity Cap (·) associated with the inhomogeneous Sobolev space
W 1, 2(Rn) defined by

(6.3) Cap (e) = inf
{

||u||2W 1,2(Rn) : u ∈ C∞
0 (Rn), u(x) ≥ 1 on e

}

,

for compact sets e ⊂ R
n. Note that Cap (e) ≃ cap (e) if diam (e) ≤ 1, and

n ≥ 3. For a cube or ball Q in R
n,

(6.4) Cap (Q) ≃ |Q|1− 2

n if n ≥ 3; Cap (Q) ≃
(

log 2
|Q|

)−1
if n = 2,

provided |Q| ≤ 1. For these and other properties of capacities, as well as
related notions of potential theory we refer to [1], [20].

By M+(Ω) we denote the calls of all nonnegative Radon measures (locally
finite) in an open set Ω ⊆ R

n. We discuss in this section several equivalent

characterizations of the class of admissible measures µ ∈ M
1, 2
+ (Ω) which

obey the so-called trace inequality (6.11) (see [1], [20], and the extensive
literature cited there).

We start with the case Ω = R
n. A measure µ ∈ M+(Rn) is said to be

admissible, i.e., µ ∈ M
1, 2
+ (Rn), if it obeys the trace inequality:

(6.5)

(∫

Rn

|u|2 dµ
) 1

2

≤ C ||∇u||L2(Rn), u ∈ C∞
0 (Rn),

where C is a positive constant which does not depend on u.

For µ ∈ M+(Rn), we denote by I1µ = (−∆)−
1

2µ the Riesz potential of
order 1,

I1µ(x) = (−∆)−
1

2µ(x) = c(n)

∫

Rn

dµ(y)

|x− y|n−1
, x ∈ R

n.

Here c(n) is a normalization constant which depends only on n.
We have the following equivalent characterizations of admissible measures

in R
n (see [20, Ch. 11]).

Theorem 6.1. Let µ ∈ M+(Rn). Then µ ∈ M
1, 2
+ (Rn) if and only if any

one of the following statements holds.
(i) The Riesz potential I1µ ∈ L2

loc(R
n), and (I1µ)

2 ∈ M
1, 2
+ (Rn), i.e.,

(6.6)

(∫

Rn

|u|2 (I1µ)2 dx
) 1

2

≤ c1 ||∇u||L2(Rn), u ∈ C∞
0 (Rn),

where c1 > 0 does not depend on u.
(ii) For every compact set e ⊂ R

n,

(6.7) µ(e) ≤ c2 cap (e),

where c2 does not depend on e.
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(iii) For every ball B in R
n,

(6.8)

∫

B

(I1µB)
2 dx ≤ c3 µ(B),

where dµB = χB dµ, and c3 does not depend on B.
(iv) The pointwise inequality

(6.9) I1[(I1µ)
2(x)] ≤ c4 I1µ(x) < ∞

holds a.e., where c4 does not depend on x ∈ R
n.

(v) For every dyadic cube P in R
n,

(6.10)
∑

Q⊆P

µ(Q)2

|Q|1− 2

n

≤ c5 µ(P ),

where the sum is taken over all dyadic cubes Q contained in P , and c5 does
not depend on P .

Moreover, the least constants ci, i = 1, . . . , 5, are equivalent to the least
constant c in (6.5).

Remark 6.2. It follows from Poincaré’s inequality and the formula for the
capacity of a ball, cap (B(x, r)) = cn r

n−2, for n ≥ 3, that if dµ = |∇v|2dx ∈
M

1, 2
+ (Rn), where v ∈ L

1,2
loc(R

n), then v ∈ BMO(Rn).

Remark 6.3. An analogous characterization holds for admissible measures
on the Sobolev space W 1, 2(Rn) in place of L1, 2(Rn). One only needs to

replace Riesz potentials I1µ = (−∆)−
1

2µ in statements (i), (iii), and (iv) by

Bessel potentials J1µ = (1 −∆)−
1

2µ, the capacity cap (·) in (ii) by Cap (·),
and restrict oneself to cubes P such that |P | ≤ 1 in (v).

Originally, the trace inequality in the Sobolev space L
1,2
0 (Ω), for an arbi-

trary open set Ω ⊆ R
n, was characterized by the first author in [18], [19] in

capacity terms as follows. A measure µ ∈ M+(Ω) is said to be admissible
if the inequality

(6.11)

(∫

Ω
|u|2 dµ

) 1

2

≤ C ||∇u||L2(Ω)

holds for all u ∈ C∞
0 (Ω), where C is a positive constant which does not

depend on u. The class of admissible measures for (6.11) is denoted by
M

1,2(Ω).
The capacity cap (e,Ω) of a compact subset e ⊂ Ω is defined by (see [20],

Sec. 2.2):

(6.12) cap (e,Ω) = inf
{

||∇u||2L2(Ω) : u ∈ C∞
0 (Ω), u(x) ≥ 1 on e

}

.

Then µ ∈ M
1,2(Ω) if and only if ([18], [19]; see also [20, Sec. 2.3])

(6.13) µ(e) ≤ c cap (e,Ω),

where the constant c does not depend on e.
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Moreover, condition (6.13) with c = 1
4 is sufficient for (6.11) to hold with

C = 1. Conversely, (6.13) with c = 1 is necessary in order that (6.11) hold
with C = 1. Both constants c = 1

4 and c = 1 and in these statements are
sharp (see [20, Sec. 2.5.2]).

There is a dual characterization of the trace inequality which does not
use capacities. Let us assume that G is a nontrivial nonnegative Green’s
function associated with the Dirichlet Laplacian in Ω. Then µ ∈ M

1,2(Ω) if
and only if the inequality

(6.14)

∫

e×e

G(x, y) dµ(x) dµ(y) ≤ c µ(e)

holds for all measurable sets e ⊂ Ω.
Moreover, inequality (6.14) is equivalent to the weighted norm inequality

||G(fdµ)||L2(Ω,µ) ≤ C ||f ||L2(Ω,µ), for all f ∈ L2(Ω, µ).

It is also equivalent to the weak-type (1, 1) inequality

||G(fdµ)||L1,∞(Ω,µ) ≤ C ||f ||L1(Ω,µ), for all f ∈ L1(Ω, µ).

Here G(fdµ)(x) =
∫

ΩG(x, y) f(y) dµ(y) is Green’s potential of f dµ.
In [28, Theorem 6.5], similar results are proved for nonnegative kernels G

satisfying a weak form of the maximum principle:

sup{Gν(x) : x ∈ Ω} ≤ b sup{Gν(x) : x ∈ supp ν},
where b ≥ 1 is a constant which does not depend on ν ∈ M+(Ω).

In particular, if G is a quasi-metric kernel, i.e., d(x, y) = 1
G(x,y) is symmet-

ric and satisfies a quasi-triangle inequality, then it suffices to verify (6.14)
on quasi-metric balls B(x, r) = {y ∈ Ω : d(x, y) ≤ r} in place of arbitrary
sets e (see [6], [28]).

Analogous results hold ([6]) for a more general class of quasi-metrically
modifiable kernels G. This is important since the Green kernel G is known to
be quasi-metrically modifiable if Ω satisfies the boundary Harnack principle,
for instance, if Ω is a bounded NTA domain ([14]).
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