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Abstract

We present a review of the recent results on asymptotic approxi-
mations of solutions to boundary value value problems in domains with
large clusters of small defects. There are no assumptions, which require
periodicity within the cluster. The asymptotic approximations, which
we discuss here are uniform, and include the boundary layers occur-
ring in the neighbourhood of singularly perturbed boundaries of the
domains concerned. The term “meso-scale” is used to describe these
approximations, as they go beyond the conventional constraints of the
homogenization theory.

1 Introduction

The approach of homogenization for boundary value problems in domains
with multiple perforations and for equations with rapidly oscillating coeffi-
cients is an important part of the fundamental theory of partial differential
equations. The work [1]–[7] has brought seminal results and made an impact
in the area homogenization of differential operators and integral functionals
and G-convergence [1], [2], two-scale convergence [3], homogenization of de-
generate elliptic equations [4], and homogenization techniques for variational
problems [5]. These fundamental theoretical developments have led to so-
lutions of many challenging applied problems of high practical importance.
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Examples include analysis of challenging problems of elasticity in structured
solids, such as periodic structures depending on two geometric parameters,
when the homogenization has anon-classical nature [6]. Furthermore, the
notion of a critical thickness has been used to characterise a special class
of elastic structures in this non-classical homogenization problem. Homog-
enization of problems of linear elasticity on singular structures is studied in
[7].

D

(a) (b)

Figure 1: Three-dimensional domain containing multiple defects: (a) a large
cluster of small inclusions, and (b) a finite cluster of inclusions of finite size

The results of [1]–[7] have made an impact on the abstract theory of ho-
mogenization as well as applications in physics, mechanics and engineering
of heterogeneous structures including laminates, multiply perforated sys-
tems and random composites, as presented in the comprehensive research
monograph [2]. The work [2] serves as a fundamental textbook for experts
and learners of the homogenization, which covers key topics including G-
convergence of differential operators, homogenization of elliptic operators
with random coefficients, homogenization and percolation, spectral problems
in the homogenization theory and homogenization of nonlinear variational
problems.

The powerful asymptotic approach developing the compound asymp-
totic approximations to solutions of boundary value problem in singularly
perturbed domains is presented in the two-volume monograph [10]. The
present review is based on the series of papers [11]–[21] developing uniform
asymptotic approximations of Green’s kernels in singularly perturbed do-
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mains as well as the method of meso-scale asymptotic approximations for
fields around clusters of many defects of different shapes, sizes and relative
positions.

In particular, the article [15] presents the approach leading to uniform
asymptotic approximations of singularly perturbed boundary value prob-
lems in multiply perforated domains without the homogenization, and it
addresses the homogenization limits for the cases when the homogenized op-
erators gain additional terms in their representation. This also provides the
link to the classical work [8] and [9] addressing a special case of homogeniza-
tion referring to “a strange term brought from somewhere else”. Meso-scale
asymptotic approximations to solutions of transmission and mixed boundary
value problems in regions containing many perforations are studied in [17]
and [18]. The method has been extended to problems of linear elasticity [19]
and to spectral problems for domains containing clusters of small inclusions
[21].

The structure of the paper is as follows. We begin by describing the
geometry of domain and introduce the notion of meso-scale approximations.
Then, a class of homogenization problems are considered from the view point
of meso-scale approximations, with two examples concerned with volume
and surface clusters, and asymptotic evaluation of the capacity of a volume
cluster of small inclusions. The idea of derivation of meso-scale approxima-
tions and a formal argument are presented in Section 5. This is followed by
meso-scale approximations of Green’s functions, outlined in Sections 6 and
7, and the outline of asymptotic results for solutions of eigenvalue problems
in Section 8.

2 A domain with a cluster of inclusions

We describe the idea of the method of meso-scale approximations by consid-
ering a solution of the Dirichlet problem for Laplace’s operator in a three-
dimensional singularly perturbed domain Dε containing a large cluster of
small inclusions, as shown in Fig. 1a. For comparison, the Fig. 1b shows a
finite cluster of inclusions of finite size, where standard numerical methods,
for example FEM or BIE, apply effectively in order to determine physical
fields. We note that neither of these cases has periodic arrangements of
inclusions, and the shapes and sizes of the inclusions within the cluster may
change arbitrarily. It is also noted that the geometry shown in Fig. 1a ap-
pears to be problematic for FEM algorithms aiming at pointwise numerical
evaluation of physical fields around inclusions within the large cluster.
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The notation A
(j)
ε , j = 1, . . . , N , is used for small inclusions within

the cluster, as shown in Fig. 2, where it is assumed that their maximum
diameter is ε ≪ 1, and the number of inclusions is large N ≫ 1.

A
(j)
ε

2d

Figure 2: A schematic illustration of a cluster of small inclusions A
(j)
ε , j =

1, . . . , N . The distance between the inclusions is much larger compared to
their diameter.

The unperturbed simply connected domain is denoted by D with the

boundary Γ, and Dε = D \ ∪N
j=1A

(j)
ε , where A

(j)
ε represent compact subsets

of D separated from each other and from the exterior boundary Γ by a
distance, which is sufficiently large compared to ε.

It is also convenient to introduce a set of points {O(j)}Nj=1, which are

interior points in A
(j)
ε , and a domain ω, such that diam(ω) = 1, ω ⊂ D, and

A
(j)
ε ⊂ ω for all j. If d = 2−1mini 6=j,1≤i,j≤N |O(j) − O(i)|, then we assume

that ε < c d, where c is a sufficiently small constant. It is also required that

dist (∂ω,Γ) ≥ 2d, and dist
{

⋃N
j=1A

(j)
ε , ∂ω

}

≥ 2d.

For the case when the number N of small inclusions becomes large, the
asymptotic algorithm based on the method of meso-scale asymptotic ap-
proximations has been proposed in [15], and it takes into account the “com-
petition” between the small diameter ε of an inclusion and the large number
of inclusions within the cluster. The standard approach based on consider-
ation of a singularly perturbed domain with one or two (or a finite number)
of inclusions is no longer valid. Also, the approach based on meso-scale ap-
proximations goes beyond the range of applications of the homogenization
theory as illustrated below.
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3 Dirichlet problem: uniform approximation

Here u denotes the variational solution of the Dirichlet problem in the sin-
gularly perturbed domain Dε containing the cluster of small inclusions

∆u(x) + f(x) = 0, x ∈ Dε, (1)

u(x) = 0, x ∈ ∂Dε. (2)

The forcing term f is considered as a smooth function with a compact
support in D \ ω, outside the cluster of small inclusions.

Also, the notation v is used for the solution of the Dirichlet problems in
the corresponding limit domain D without inclusions:

∆v(x) + f(x) = 0, x ∈ D, (3)

v(x) = 0, x ∈ Γ. (4)

The notation P
(j)
ε is used for the capacitary potential of the small inclu-

sion A
(j)
ε :

∆P (j)
ε (x) = 0, x ∈ R

3 \A(j)
ε , (5)

P (j)
ε (x) = 1, x ∈ ∂A(j)

ε . (6)

P (j)
ε (x) → 0, as |x| → ∞, (7)

Subject to a constraint

ε < c d7/4, (8)

where c is a sufficiently small absolute constant, the paper [15] presented
a meso-scale uniform approximation for the solution of the singularly per-
turbed boundary value problem (1)–(2) in Dε:

u(x) = v(x) +
N
∑

j=1

Cj

(

P (j)
ε (x)− cap(A(j)

ε ) H(x,O(j))
)

+R(x), (9)

where cap(A
(j)
ε ) are capacities of small inclusions within the cluster, H is

the regular part of Green’s function

G(x,y) =
1

4π|x− y|
−H(x,y),

and R is the small remainder term.
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The formula includes N coefficients Cj , which are evaluated as solutions
of the linear algebraic system:

v(O(k)) + Ck +
∑

1≤j≤N, j 6=k

Cj cap(A(j)
ε ) G(O(k),O(j)) = 0, (10)

where k = 1, . . . , N.
While the meso-scale approximation is uniformly applicable in the entire

domain Dε, including the neighbourhood of the singularly perturbed bound-
ary within the cluster of inclusions, and it does not require homogenization,
we show in the next section the connection between the two approaches and
discuss illustrative examples.

4 Homogenization from the view point of meso-

scale approximations

Here we use the meso-scale approximations obtained in [14], [15], [16] and
discuss examples to compare these results with homogenization approxima-
tions for periodic systems. In particular, we evaluate effective capacity of
a large cluster of small inclusions. For volume and surface clusters of in-
clusions, shown in Figs. 3, 4, we show the connection between pointwise
meso-scale approximations and solutions of the homogenized problems.

4.1 Examples of volume and surface clusters of small inclu-

sions

The first example includes a ball-shaped volume cluster filled with period-
ically positioned small inclusions of identical shapes, whereas the second
example is concerned with the surface cluster of inclusions positioned along
the surface of a sphere. In both cases we assume that D = R

3.
In the first example we make a stronger assumption than in (8) by taking

ε < cd3, (11)

where c is a d-independent constant; all inclusions A
(j)
ε are obtained by

appropriate translations of the same small inclusion Aε. In this case, Dε =

R
3 \ ∪N

j=1A
(j)
ε , and we also use the quantity µ defined by

µ = lim
d→0

d−3cap(Aε). (12)
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Figure 3: A ball-shaped volume cluster.

The cluster domain ω is the unit ball, and following [8], [9], [15], we refer
to a function û as a solution of the homogenization problem, as follows

∆û(x)− µχ(ω)û(x) + f(x) = 0, when x ∈ R
3, (13)

û(x) → 0, as |x| → ∞. (14)

Here χ(ω) is the characteristic function of ω, the forcing term f has its
support outside ω, and satisfies the condition

∫

R3

f(x)dx = 0. (15)

In this case, the formula (9) is reduced to

u(x) = v(x) +
N
∑

j=1

CjPε(
x−O(j)

ε
) +R(x), (16)

where Pε is the capacitary potential of the set Aε.
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Figure 4: A cluster of inclusions placed on a surface of a sphere.

Consider the following harmonic function incorporating the solutions of
the homogenization problem

Ud(x) = v(x) +
N
∑

j=1

CjPε(
x−O(j)

ε
), (17)

where Cj = −û(Oj).
It has been verified in [15, 16] that

|Ck − Ck| = O(d), k = 1, . . . , N.

The function Ud can be used as an approximation of u, with the remainder
term being of order O(d). Although this is inferior to (16), the convenience
of using the homogenized field û(x) in the representation of coefficients in
(17) is notable.

In the second example, which is concerned with a surface cluster, we
allow for a weaker constraint on ε, compared to (11)

ε < cd2, (18)
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where c is a d-independent constant; this assumption is still stronger com-

pared to (8). In this case, the centres of all inclusions A
(j)
ε are located on

the unit sphere γ, as shown in Fig. 4, the inclusions have the same shape
and are obtained by appropriate translations of the same small inclusion
Aε. For a regular tessellation of the unit sphere, into N cells of equal area
D2

N = 4π/N , we assume that each j-th cell contains the centre O(j) of one

inclusion A
(j)
ε . Taking the limit as N → ∞

µγ = lim
N→∞

D−2
N cap(Aε), (19)

we deduce that the homogenized field ûγ , approximating in this case the
solution of the singularly perturbed problem in Dε has the form:

ûγ(x) = v(x)− µγ

∫

γ={|y|=1}

v(y)

4π|x− y|
dy. (20)

In turn, the approximation (17) is also in place with Cj = −v(Oj).

4.2 Capacity of a volume cluster of small inclusions

Let Ξε,N = ∪N
j=1A

(j)
ε be a volume cluster of small inclusions A

(j)
ε in R

3.To
evaluate the capacity of this cluster, we introduce a function UΞ(x), which
is harmonic and satisfies the following conditions

UΞ(x) = 1, when x ∈ ∂(R3 \ Ξε,N ), (21)

and
UΞ(x) → 0, as |x| → ∞. (22)

The capacity of the cloud is defined by

cap Ξε,N =

∫

R3\Ξε,N

|∇UΞ(x)|
2dx =

∫

R3\Ξε,N

|∇(UΞ(x)− 1)|2dx. (23)

Similar to (16) we write

UΞ(x) =

N
∑

j=1

CjP
(j)
ε (

x−O(j)

ε
) +Rε,N , (24)

where the vector of coefficients C = (C1, . . . , CN ) is

C = E(I+DS)−1; (25)
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here E = (1, . . . , 1) is the N-dimensional row vector whose entries are equal
to 1, and the matrices S and D are

S =
{

(1− δik)G(O(k),O(i))
}N

i,k=1
, (26)

and
D = diag {cap(A(1)

ε ), . . . , cap(A(N)
ε )}, (27)

Then the capacity of the cloud of inclusions of identical shape, replicating
an inclusion Aε, is approximated by the formula

cap Ξε,N ∼ cap(Aε) E(I+ cap(Aε)S)
−1ET . (28)

The derivation of this formula is as follows:

cap Ξε,N ∼ lim
R→∞

∫

BR\Ξε,N

|∇(UΞ(x)− 1)|2dx

= lim
R→∞

∫

∂BR

(UΞ(x)− 1)
∂UΞ(x)

∂n
dsX

= −
N
∑

j=1

Cj lim
R→∞

∫

∂BR

∂

∂r

( cap(A
(j)
ε )

4π|x−O(j)|

)

dsX

=
N
∑

j=1

Cjcap(A
(j)
ε ) = E

(

I+DS
)−1

DET .

Here BR is a ball of radius R centred at the origin. In particular, when all
the holes have the same shape, the above formula is reduced to (28).

In particular, for the ball-shaped volume cluster discussed in the example
above and shown in Fig. 3, the homogenization approximation leads to a
simple asymptotic representation of the capacity of the cluster

cap Ξε,N ∼ 1− µ−1/2 tanh(µ1/2), (29)

where µ is the same as in (12).

5 The idea of derivation of a meso-scale approxi-

mation

Let the solution u of (1), (2) be written as

u(x) = v(x) +R(1)(x), (30)
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where v solves the Dirichlet problem in the unperturbed domain D, whereas
the function R(1) is harmonic in Dε and satisfies the boundary conditions

R(1)(x) = 0 when x ∈ Γ, (31)

and
R(1)(x) = −v(x) = −v(O(k)) +O(ε) when x ∈ ∂A(k)

ε . (32)

The function R(1) is approximated by

R(1)(x) ∼
N
∑

j=1

Cj

(

P (j)
ε (x)− cap(A(j)

ε ) H(x,O(j))
)

, (33)

where Cj are unknown constant coefficients, and H is the regular part of
Green’s function in D.

For all x ∈ Γ, j = 1, . . . , N, the following approximation holds

P (j)(x)− cap(A(j)
ε ) H(x,O(j)) = O(ε cap(A(j)

ε )|x−O(j)|−2). (34)

On the boundary of a small inclusion A
(k)
ε (k = 1, . . . , N) we have

v(O(k)) +O(ε) + Ck(1 +O(ε)) (35)

+
∑

1≤j≤N, j 6=k

Cj

(

cap(A(j)
ε ) G(O(k),O(j))

+O(ε cap(A(j)
ε )|x−O(j)|−2)

)

= 0,

for all x ∈ ∂A
(k)
ε .

Hence, the constant coefficients Cj , j = 1, . . . , N, are chosen to satisfy
the system of linear algebraic equations

v(O(k)) + Ck

+
∑

1≤j≤N, j 6=k

Cj cap(A(j)
ε ) G(O(k),O(j)) = 0, k = 1, . . . , N. (36)

Then within certain constraints on the small parameters ε and d, it is shown
that the above system of algebraic equations is solvable and that the har-
monic function

R(2)(x) = R(1)(x)−

N
∑

j=1

Cj

(

P (j)
ε (x)− cap(A(j)

ε ) H(x,O(j))
)
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is small on ∂Dε. Further application of the maximum principle for harmonic
functions leads to an estimate of the remainder R(2) in Dε.

Hence, the solution (30) takes the form

u(x) = v(x) +
N
∑

j=1

Cj

(

P (j)
ε (x)− cap(A(j)

ε ) H(x,O(j))
)

+R(2)(x), (37)

where Cj are obtained from the algebraic system (36).
It is convenient to define the matrices S and D as follows:

S =
{

(1− δik)G(O(k),O(i))
}N

i,k=1
, (38)

and
D = diag {cap(A(1)

ε ), . . . , cap(A(N)
ε )}, (39)

where G is Green’s function of the unperturbed domain D. Then the coef-
ficients Cj in the formula (37) can be placed as components of the vector
C = (C1, . . . , CN )T and evaluated as

C = −(I+ SD)−1V, (40)

where
V = (v(O(1)), . . . , v(O(N)))T . (41)

The solvability of the algebraic system (36) is analysed in [15, 16] and
the individual estimates for the coefficients Cj are given by

Lemma 1 Let the small parameters ε and d satisfy

ε < cd2, (42)

where c is a sufficiently small absolute constant. Then the components Cj

of vector C in (40) allow for the estimate

|Ck| ≤ c max
1≤j≤N

|v(O(j))|. (43)

Meso-scale uniform approximation of u. As proved in [15, 16], the fol-
lowing uniform asymptotic approximation of the solution u holds:

Theorem 1 Let the parameters ε and d satisfy the inequality

ε < c d7/4, (44)
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where c is a sufficiently small absolute constant.

Then the matrix I + SD, defined according to (38), (39), is invertible,

and the solution u(x) to the boundary value problem (1)–(2) is defined by

the asymptotic formula

u(x) = v(x) +
N
∑

j=1

Cj

(

P (j)
ε (x)− cap(A(j)

ε ) H(x,O(j))
)

+R(x), (45)

where the column vector C = (C1, . . . , CN )T is given by (40) and the re-

mainder R(x) is a function harmonic in ΩN , which satisfies the estimate

|R(x)| ≤ C
{

ε‖∇v‖L∞(ω) + ε2d−7/2‖v‖L∞(ω)

}

. (46)

6 Meso-scale approximation of Green’s function

Let Gε(x,y) be Green’s function of the Dirichlet problem for the operator
−∆ in Dε containing a cluster of many inclusions. The case of several
spherical inclusions is discussed in [22]. The work [15, 16, 18] includes a
uniform asymptotic approximation of Gε(x,y). In addition to the solution
of the algebraic system similar to (36), it also requires several models fields:
Green’s functions g(j)(x,y) = (4π|x − y|)−1 − h(j)(x,y) of the Dirichlet

problem for the operator −∆ in R
3 \A

(j)
ε , j = 1, . . . , N, and its regular part

h(j). The asymptotic formula for Green’s function Gε(x,y) is given by

Theorem 2 Let the small parameters ε and d satisfy the inequality ε < c d2,
where c is a sufficiently small absolute constant. Then

Gε(x,y) = G(x,y)−
N
∑

j=1

{

h(j)(x,y) (47)

−P (j)
ε (y)H(x,O(j))− P (j)

ε (x)H(O(j),y) + cap(A(j)
ε )H(x,O(j))H(O(j),y)

+H(O(j),O(j)) T (j)(x)T (j)(y)−
N
∑

i=1

CijT
(i)(x)T (j)(y)

}

+R(x,y),

where

T (j)(y) = P (j)
ε (y)− cap(A(j)

ε )H(O(j),y), (48)

with the capacitary potentials P (j) and the regular part H of Green’s function

G of Ω being the same as in Section 3. The matrix C = (Cij)
N
i,j=1 is defined

by

C = (I+ SD)−1S, (49)
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where S and D are the same as in (38), (39). The remainder R(x,y) is a

harmonic function, both in x and y, and satisfies the estimate

|R(x,y)| ≤ const εd−2 (50)

uniformly with respect to x and y in ΩN .

It is noted that the coefficients, represented as components of the matrix
C can be estimated as follows.

Lemma 2 Let the small parameters ε and d obey the inequality ε < c d2,
where c is a sufficiently small absolute constant. Then the matrix C in (49)
satisfies the estimate

‖C‖RN→RN ≤ cd−3. (51)

7 Homogenized coefficients in meso-scale approx-

imations of Green’s functions

For a bounded three-dimensional domain D, we assume that a large num-
ber of points O1,O2, ...,ON are packed in a cubic three-dimensional ar-
ray. Assuming that all inclusions have identical shape, and d, which is
proportional to the minimum of the distance between neighbouring inclu-
sions, is a small parameter as in Section 2, we consider the case where
limε→0 cap(Aε)/d

3 = µ = const.
Then Green’s function of the Dirichlet problem in the perforated domain

is approximated by the asymptotic formula:

Gε(x,y) = G(x,y)−

N
∑

j=1

h(j)(x,y)+

N
∑

j=1

{P (j)
ε (y)H(x,Oj)+P (j)

ε (x)H(Oj ,y)}

−cap(Aε)

N
∑

j=1

H(x,Oj)H(Oj ,y)−

N
∑

j=1

H(Oj ,Oj)T
(j)(x)T (j)(y)

+

N
∑

j=1

∑

i 6=j

Ghom(Oj ,Oi)T
(i)(y)T (j)(x) +O(d−1ε), (52)

where T (j) are the same as in (48), and Ghom(x,y) is the Green’s function
of the “homogenized” operator ∆− µ in D.
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It is worthwhile to note that the formula (52) provides a pointwise ap-
proximation of Gε in Dε. It includes the discrete values of the homogenized
Green’s function, and in comparison with the classical homogenization the-
ory the approximation (52) satisfies the same equation as the perturbed
function Gε in Dε. An important feature of this approximation is its uni-
formity with respect to x and y in Dε.

8 Eigenvalues for domains containing clusters of

small inclusions

Eigenvalue problems in domains with defects are important in the framework
of applications in acoustics, as well as defect detection and non-destructive
testing of structures.

Asymptotic analysis of spectral problems for the Laplacian in domains
containing a small ball-shaped or disk-shaped inclusions was published in a
series of papers [23]–[28].

Fundamental results obtained for spectral problems in the homogeniza-
tion theory are included in the monograph [2]. In particular, [2] incorporates
analysis of spectral properties of stratified media, as well as the study of den-
sity of states for random elliptic operators.

The analysis of spectral problems in domains with a finite number of
small voids of arbitrary shapes is presented in [10]. The method of com-
pound asymptotic approximations has been implemented for evaluation of
the first eigenvalue and the corresponding eigenfunction for the Laplacian
in a domain with a small defect.

The recent paper [21] has extended the analysis of eigenvalue problems
to the case of large clusters of inclusions by employing the approach of meso-
scale asymptotic approximations

We now outline the asymptotic representations for the first eigenvalue
and the corresponding eigenfunction for the Laplacian in the domain con-
taining a cluster of small inclusions, with the Dirichlet boundary conditions
on their surfaces, and the homogeneous Neumann boundary condition on
the exterior boundary of the domain.

First, we consider a finite cluster, i.e. N is assumed to be finite, inclusions
are assumed to be separated by a finite distance from each other, and d =
O(1). The points O(1),O(2), . . . ,O(N) are also assumed to be separated by
a finite distance from the exterior boundary Γ = ∂D. In this case, the first
eigenvalue λ and the corresponding eigenfunction u solve the problem:

∆xu(x) + λu(x) = 0 , x ∈ Dε , (53)
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∂u

∂n
(x) = 0 , x ∈ Γ , (54)

u(x) = 0 , x ∈ ∂A(j)
ε , 1 ≤ j ≤ N . (55)

We also use here the notion G(x,y) of the Neumann function and the har-
monic function H(x,y) = (4π|x− y|)−1 − G(x,y) for the limit domain D.

According to the method of compound asymptotic expansions [10], [21]
applied to the dilute cluster of small inclusions, the first eigenvalue and the
corresponding eigenfunction are approximated as follows:

Theorem 3 The first eigenvalue λ corresponding to the problem (53)–(55)
in Dε is evaluated in the form

λ =
1

|D|

N
∑

j=1

cap(A(j)
ε ) +O(ε2) . (56)

Theorem 4 The asymptotic approximation of the eigenfunction u, corre-
sponding to the first eigenvalue of (53)–(55) in Dε, is given by

uε(x) = 1−
N
∑

j=1

Γ(j)cap(A(j)
ε )

−

N
∑

j=1

{P (j)
ε (x)− cap(A(j)

ε )H(x,O(j))}+R(x) ,

where R is the remainder term satisfying

‖R‖L2(Dε) ≤ Const ε2 .

and

Γ(j) =
1

4π|D|

∫

D

dz

|z−O(j)|
. (57)

When the number of inclusions in the cluster increases, and hence the
quantity d becomes a small parameter, we consider an additional constraint
ε < c d3, and follow the results of the paper [21]:

Theorem 5 When N ≫ 1, it is assumed that

ε < c d3 (58)
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where c is a sufficiently small constant. Then the asymptotic approximation

of the eigenfunction u, which is a solution of (53)–(55) in Dε, is given by

u(x) = 1 +
N
∑

j=1

CjΓ
(j)cap(A(j)

ε )

+

N
∑

j=1

Cj{P
(j)
ε (x)− cap(A(j)

ε )H(x,O(j))}+R(x) , (59)

where R is the remainder term, and the coefficients Ck, 1 ≤ k ≤ N , satisfy

the solvable algebraic system

1 + Ck(1− cap(A(k)
ε ){H(O(k),O(k))− Γ(k)})

+
∑

j 6=k
1≤j≤N

Cjcap(A
(j)
ε )

{

G(O(k),O(j)) + Γ(j)
}

= 0 , 1 ≤ k ≤ N . (60)

Here R satisfies the estimate

‖R‖L2(ΩN ) ≤ Const ε2d−6 . (61)

The corresponding first eigenvalue is then defined in the form:

Theorem 6 Let the small parameters ε and d satisfy (58) Then the first

eigenvalue λ corresponding to the eigenfunction u admits the approximation

λ = −
1

|D|

N
∑

j=1

Cjcap(A
(j)
ε ) +O(ε2d−6) . (62)

The paper [21] also incorporates the higher-order approximations for the
first eigenvalue and the corresponding eigenfunction for the case of a cluster
with many small inclusions.

It is noted that the approximations included in Theorems 3 and 4 are
constructed for the case when the inclusions within the cluster are separated
by a finite distance, and these approximations are not designed to be used
in the case when the inclusions are close together and when their numbers
become large. On the other hand, the asymptotic formulae (59)–(61) and
(62) cover the scenarios of a domain containing a cluster containing many
small inclusions. The uniform approximation of Theorem 4 does not require
the solution of an auxiliary algebraic system of equations. On the other

17



hand, Theorem 5 does require the solutions Cj , 1 ≤ j ≤ N , to the system
(60), which incorporates the data about the shape, size and relative position
of small inclusions within the cluster, through the presence of the capacity
of individual inclusions.
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