
DIFFERENTIABILITY OF SOLUTIONS TO SECOND-ORDER ELLIPTIC
EQUATIONS VIA DYNAMICAL SYSTEMS

VLADIMIR MAZ’YA AND ROBERT MCOWEN

Abstract. For a second-order elliptic equation in divergence form we investigate conditions
on the coefficients which imply that all solutions are Lipschitz continuous or differentiable at a

given point. We assume the coefficients have modulus of continuity satisfying the square-Dini

condition, and obtain additional conditions that examples show are sharp. Our results extend
those of previous authors who assume the modulus of continuity satisfies the Dini condition.

Our method involves the study of asymptotic properties of solutions to a dynamical system

that is derived from the coefficients of the elliptic equation.
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0. Introduction

We consider the regularity of weak solutions of a linear uniformly elliptic equation in divergence
form in an open set U of Rn for n ≥ 2:

(1) Lu := ∂i(aij(x)∂ju) = 0 in U,

where we have used the summation convention, the aij = aji are bounded, measurable, real-
valued functions, and by a weak solution of (1) we mean that u ∈ H1,2

`oc(U), i.e. ∇u is locally
square-integrable, and satisfies

(2)
∫
U

aij(x) ∂ju ∂iη dx = 0 for all η ∈ C∞0 (U).

The classical results of De Giorgi [5] and Nash [20] show that u is locally Hölder continuous in U .
When the coefficients are continuous in U , then it is well-known (cf.[1]) that ∇u ∈ Lp`oc(U) for
1 < p <∞; in fact, this is even true when the coefficients are in VMO (cf.[6]). If the coefficients
are Dini-continuous in U , then u is known to be continuously differentiable (cf.[13],[23]). In the
present paper, we find conditions on the coefficients aij , milder than Dini-continuity, under which
u must be Lipschitz continuous, or even differentiable, at a given point.

Let us fix an interior point of U , which for convenience we shall assume is the origin, x = 0.
Using a change of independent variables, we may assume that aij(0) = δij . Suppose that

(3) sup
|x|=r

|aij(x)− δij | ≤ ω(r) as r → 0,

where ω(r) is a continuous, nondecreasing function for 0 ≤ r < 1 satisfying ω(0) = 0. We shall
not require the Dini condition on ω, i.e. r−1ω(r) ∈ L1(0, 1); instead we assume that ω satisfies
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the square-Dini condition:

(4)
∫ 1

0

ω2(r)
dr

r
<∞.

However, examples show that additional conditions are required to ensure that a solution is even
Lipschitz continuous.

Our additional conditions for regularity are derived from a dynamical system that we shall
now describe. Let

(5) R(r) := �
∫
Sn−1

(A(rθ)− nA(rθ)θ ⊗ θ) dsθ,

where the slashed integral denotes mean value, A = (aij), r = |x|, θ = x/|x| ∈ Sn−1, Aθ ⊗ θ is
the outer product of the vectors Aθ and θ, and ds denotes standard surface measure on Sn−1.
Note that |||R(r)||| ≤ c ω(r), where we use ||| · ||| to denote the matrix norm. Also note that R need
not be symmetric. Let us consider the dynamical system

(6)
dφ

dt
+R(e−t)φ = 0 for T < t <∞,

where t = − log r and T is sufficiently large. We shall find that the regularity of weak solutions
of (1) is determined by the asymptotic behavior as t → ∞ of solutions of (6). We say that
(6) is uniformly stable as t → ∞ if for every ε > 0 there exists a δ = δ(ε) > 0 such that any
solution φ of (6) satisfying |φ(t1)| < δ for some t1 > 0 satisfies |φ(t)| < ε for all t ≥ t1 (cf.
[4]). In addition, we are interested in the condition that every solution of (6) is asymptotically
constant, i.e. φ(t)→ φ∞ as t→∞. These two stability conditions are independent of each other
(cf. Section 5). On the other hand, it is easy to see that r−1R(r) ∈ L1(0, ε) implies that (6)
is uniformly stable and every solution is asymptotically constant as t → ∞; in particular, if ω
satisfies the Dini condition, then these conditions are met.

We are now in a position to state the main result of this paper; since we are only concerned
with regularity at x = 0, the coefficients are not required to be continuous elsewhere.

Theorem 1. Suppose that aij satisfy (3) where ω satisfies (4) and that (6) is uniformly stable.
Then every weak solution u ∈ H1,2

`oc(U) of (1) is Lipschitz continuous at x = 0 and satisfies

(7) |u(x)− u(0)| ≤ c |x|
r

(
�
∫
|y|<r
|u(y)|2 dy

)1/2

for |x| < r/2,

where r is sufficiently small. In addition, if every solution of (6) is asymptotically constant, then
u is differentiable at x = 0 and we have

(8) ∂ju(0) = lim
r→0

n

r
�
∫
Sn−1

u(rθ) θj dsθ.

In this theorem and throughout this paper, c denotes a constant whose value may change with
the instance but does not depend upon the solution u or the parameter r.

Remark 1. If the aij are radial functions, then R(r) ≡ 0 and we only require (3) and (4) to
conclude that weak solutions are differentiable at x = 0. Moreover, if aij(x) = a0

ij(|x|) + a1
ij(x),

then the R in (6) is completely determined by a1
ij; for example, if the a1

ij are Dini continuous
then weak solutions are differentiable even though aij need only be square-Dini continuous.

We also investigate specific analytic conditions on the coefficients aij that imply the desired
asymptotic properties of (6). Let us introduce the symmetric matrix S = − 1

2 (R+Rt), i.e.

(9) S(r) := �
∫
Sn−1

(n
2

[A(rθ)θ ⊗ θ + θ ⊗A(rθ)θ]−A(rθ)
)
dsθ,
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and

(10) µ(S) = largest eigenvalue of S.
In Section 4 we use the theory of dynamical systems to show that if there exist positive constants
ε and K so that

(11)
∫ r2

r1

µ (S(ρ))
dρ

ρ
< K for all ε > r2 > r1 > 0,

then (6) is uniformly stable. As a consequence, Theorem 1 implies the following:

Corollary 1. Suppose that (3), (4), and (11) are satisfied. Then every weak solution u of (1) is
Lipschitz continuous at x = 0.

What about conditions for differentiability at x= 0 ? As already observed, r−1R(r) ∈ L1(0, ε)
is sufficient, but is there a weaker condition? Let us suppose that for r ∈ (0, ε) the improper
integral

(12a)
∫ r

0

R(ρ)
dρ

ρ
converges (perhaps not absolutely).

Examples show (see Section 5) that this condition is not sufficient to ensure that (6) is uniformly
stable; we shall require an additional condition such as

(12b)
R(r)
r

∫ r

0

R(ρ)
dρ

ρ
∈ L1(0, ε),

which is also weaker than assuming R(r) r−1 ∈ L1(0, ε). In Section 4 we show that (12a) and (12b)
together imply not only that (6) is uniformly stable but asymptotically constant. Consequently,
Theorem 1 yields the following:

Corollary 2. Suppose that (3) and (4) are satisfied, as well as both (12a) and (12b). Then every
weak solution u of (1) is differentiable at x = 0.

Remark 2. Just as (12a) and (12b) have replaced the more restrictive R(r) r−1 ∈ L1(0, ε), the
assumption (12b) may be replaced by

(13a)
∫ r

0

R(ρ)
(∫ ρ

0

R(σ)
dσ

σ

)
dρ

ρ
converges (perhaps not absolutely),

and

(13b)
R(r)
r

∫ r

0

R(ρ)
(∫ ρ

0

R(σ)
dσ

σ

)
dρ

ρ
∈ L1(0, ε).

This process may be iterated to obtain further refinements.

Remark 3. The condition (12a) can be expressed as a volume integral (computed in the sense of
Cauchy principal value):

(14)
∫
|x|<r

(
A(x)− n A(x)x

|x|
⊗ x

|x|

)
dx

|x|n
converges for r ∈ (0, ε).

This form of the condition is better suited for changes of coordinates, so can be expressed without
the simplifying assumption aij(0) = δij; however, (12b) is not so easily handled in this way. In a
similar spirit, the following condition

(15)
∫
|x|<ε

∣∣∣∣∣∣A(x)− I
∣∣∣∣∣∣ dx
|x|n

<∞

is sufficient for Corollary 2 and easily generalizes to the case aij(0) 6= δij; however, it implies
r−1R(r) ∈ L1(0, ε), so is less general than assuming (12a) and (12b).
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Let us consider one more consequence of Theorem 1. In Section 4 we show that

(16)
∫ ε

r

µ(S(ρ))
dρ

ρ
→ −∞ as r → 0

implies that the null solution of (6) is asymptotically stable. Thus Theorem 1 yields the following:

Corollary 3. Suppose that (3), (4), and (11) are satisfied. Moreover, assume (16). Then every
weak solution u of (1) is differentiable at x = 0 and all derivatives are zero: ∂ju(0) = 0 for
j = 1, . . . , n.

In Section 5 we discuss an example which illustrates the sharpness of the conditions in Theorem
1 and its corollaries.

Now we describe the main ideas of the proof of Theorem 1, which is given in Section 3. We
write u in the form

(17) u(x) = u0(|x|) + ~v(|x|) · ~x+ w(x),

where

(18) u0(r) := �
∫
Sn−1

u(rθ) dsθ, vk(r) :=
n

r
�
∫
Sn−1

u(rθ)θk dsθ,

and w has zero spherical mean and first spherical moments:

(19) �
∫
Sn−1

w(rθ) dsθ = 0 = �
∫
Sn−1

w(rθ)θi dsθ for i = 1, . . . , n.

We shall find that ~v satisfies a second-order differential system depending upon u0 and w, but it
is equivalent to a first-order system that only depends on w. Moreover, in this first-order system,
the behavior of both ~v(r) and r~v ′(r) is controlled by the asymptotic properties of the solutions
to (6). To be more specific, we need to assume that ω(r) does not vanish faster than r as r → 0:

(20) ω(r) r−1+κ is nonincreasing for r near 0 and some κ > 0.

Then the assumption that (6) is uniformly stable ensures not only that ~v(r) and r~v ′(r) are
bounded as r → 0, but that |u0(r)−u0(0)| and |w(x)| are both bounded by c ω(r) r, so we obtain

(21) u(x) = u(0) + ~v(|x|) · ~x+O(ω(r)r) as r = |x| → 0,

which confirms that u is Lipschitz at x = 0. If we also know that all solutions of (6) are
asymptotically constant, then ~v(r) = ~v(0) + o(1) as r → 0, which shows that u is differentiable
at x = 0.

We observe that the square-Dini condition has been encountered by several other authors
in a variety of contexts. It was used by Stein and Zygmund [22] in their investigation of the
differentiability of functions, by Fabes, Sroka, and Widman [9] in their study of Littlewood-
Paley estimates for parabolic equations, and more recently by several authors (cf. [8], [3], [10],
[14]) investigating the absolute continuity of elliptic measure and L2 boundary conditions for the
Dirichlet problem. We also used the square-Dini condition in [16] and [17] to study equations in
nondivergence and double divergence form. In addition, we should note that the techniques used
in this paper are related to, but independent of, the asymptotic theory developed in [15].

Finally, we mention that the techniques and results of this paper apply to weak solutions of
more general linear equations than (1): lower-order terms in u (even with mild singularities in the
coefficients) as well as a nonhomogenous right-hand side (with certain integrability conditions)
can be treated. However, sharp conditions on singular coefficients in lower-order terms requires
additional analysis beyond the results of this paper.
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1. Potential Theory Estimates in Rn

We will encounter an equation in the following form

(22) −∆w = g in Rn\{0},
where g is a distribution and we consider the derivatives in (22) in the distributional sense.
We will encounter certain orthogonality conditions with respect to the spherical mean, so let us
summarize these in the following:

Lemma 1. (a) Suppose that f ∈ L1
`oc(Rn\{0}) and g is bounded with compact support. Then

(23a)
∫

Rn

f(|x|)g(x) dx =
∫

Rn

f(x)g(|x|) dx.

(b) Suppose that ∇f ∈ L1
`oc(Rn\{0}). For all r > 0

(23b) f(r) = �
∫
Sn−1

f(rθ) dsθ = 0 ⇒ �
∫
Sn−1

θi ∂if(rθ) dsθ = 0.

(c) Suppose that ∇f ∈ L1
`oc(Rn\{0}). For all r > 0 and any i = 1, . . . , n

(23c) �
∫
Sn−1

θif(rθ) dsθ = 0 ⇒ �
∫
Sn−1

∂if(rθ) dsθ = 0 = �
∫
Sn−1

θiθj∂jf(rθ) dsθ.

Proof. The proof of (a) is trivial. To prove (b), we consider φ ∈ C∞0 (0,∞) and compute〈
�
∫
θi∂ifdsθ, φ

〉
=
∫ ∞

0

�
∫
θi ∂if(rθ)dsθ φ(r) dr =

1
|Sn−1|

∫
Rn

xi∂if(x)φ(|x|)|x|−n dx

= − 1
|Sn−1|

∫
Rn

nf(x)φ(|x|)|x|−n dx− 1
|Sn−1|

∫
Rn

xif(x)[φ(r)r−n]′|r=|x|θi dx

= −
∫ ∞

0

(
�
∫
Sn−1

f(rθ)dsθ

)
φ′(r) dr = 0

where ′ denoted d/dr. To prove (c), we again consider φ ∈ C∞0 (0,∞) and compute〈
�
∫
∂ifds, φ

〉
=
∫ ∞

0

�
∫
Sn−1

∂if(rθ) ds φ(r) dr =
1

|Sn−1|

∫
Rn

∂if(x)|x|1−nφ(|x|) dx

= − 1
|Sn−1|

∫
Rn

f(x)[r1−nφ(r)]′|r=|x|θi dx

= −
∫ ∞

0

∫
Sn−1

f(rθ)θi ds [r1−nφ(r)]′rn−1dr = 0.

The proof of the remaining identity in (23b) is similar. �

Note that (23a) enables us to define the spherical mean of a distribution. In fact, for f ∈
L1
`oc(Rn\{0}), let us define

(24) f(rθ)⊥ = f(rθ)− Pf(rθ),

where Pf is defined by

Pf(rθ) = �
∫
Sn−1

f(rφ) dsφ + nθk�
∫
Sn−1

φkf(rφ) dsφ.

Using

�
∫
Sn−1

θkθ` dsθ =
1
n
δk` for k, ` = 1, . . . , n,
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it is clear that (for each r > 0) P is the projection of f onto the functions on Sn−1 spanned by
1, θ1, . . . , θn. For the same reason as (23a), we have

(25)
∫

Rn

P (f) g dx =
∫

Rn

f P (g) dx.

for g bounded with compact support. This also allows us to define P on distributions. In fact,
one particular instance of (22) that we are interested in is

(26) −∆w = [∂ifi]⊥ in Rn\{0},

where fi ∈ L1
`oc(Rn\{0}). We will solve (26) by convolution with Γ(|x|), the fundamental solution

for −∆, but we are interested in controlling the growth of the solution near x = 0 using mean
values over annuli. We consider Lp-means for any p ∈ (1,∞):

(27) Mp(w, r) =
(
�
∫
Ar

|w(x)|p dx
)1/p

,

where Ar = {x : r < |x| < 2r} and w may be scalar or vector-valued. To control the growth of
the first derivatives of functions we introduce

M1,p(w, r) = rMp(∇w, r) +Mp(w, r).

Proposition 1. Suppose n ≥ 2, p ∈ (1,∞), and f = (fi) with fi ∈ Lp`oc(Rn\{0}) satisfies∫
|x|<1

|x| |f(x)| dx <∞, and
∫
|x|>1

|f(x)| |x|−n−1 dx <∞.

Then convolution by Γ defines a solution w ∈ H1,p
`oc(Rn\{0}) of (26) that satisfies Pw = 0 and

(28) M1,p(w, r) ≤ c
(
r−n

∫ r

0

Mp(f, ρ) ρn dρ+ r2
∫ ∞
r

Mp(f, ρ) ρ−2 dρ

)
.

In (28) and throughout this paper, c denotes a constant; in other instances, the value of c may
change line by line without change in notation.
Proof of Proposition 1. We may assume that fi ∈ C1

0 (Rn\{0}) since the general case may be
handled by an approximation argument. Using (25), let us write the solution of (26) as

w(x) =
∫

Rn

Γ(|x− y|) (∂ifi(y)− P (∂ifi)(y)) dy

=
∫

Rn

[Γ(|x− y|)− P (Γx)(|y|, ŷ)] ∂ifi(y) dy, ŷ = y/|y|,

where Γx(y) = Γ(|x − y|); clearly Pw = 0. To calculate P (Γx), we use an expansion of Γ in
spherical harmonics. Let Hk denote the spherical harmonics of degree k and let N(k) = dimHk.
For each k, choose an orthonormal basis {φk,m : m = 1, . . . , N(k)} for Hk; for k = 1, note that
φ1,m(θ) =

√
n θm. For notational convenience, let us assume n ≥ 3; the case n = 2 is analogous.

For |x| < |y| we can write Γ(|x− y|) as a convergent series

(29) Γ(|x− y|) =
∞∑
k=0

|x|k

|y|n−2+k

N(k)∑
m=1

φk,m (x̂) φk,m (ŷ) .

Since
∫
φk,m(θ) dsθ = 0 for k > 0, the spherical mean of Γ is given by

�
∫
Sn−1

Γ(|x− y|) dsŷ = cn |y|2−n = Γ(|y|).
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We can also use (29) and the orthogonality of the φk,` to compute

�
∫
Sn−1

θ` Γx(|y|θ) dsθ =
|x|
|y|

Γ(|y|)x̂`.

Consequently,

P (Γx)(|y|, ŷ) =
(

1 + n
|x|
|y|
x̂ · ŷ

)
Γ(|y|).

By symmetry, it is clear how to modify these projections for |x| > |y|, so we obtain the following:

w(x) =
∫
|y|>|x|

[
Γ(|x− y|)− Γ(|y|)− n |x|

|y|
Γ(|y|) x̂ · ŷ

]
∂ifi(y) dy

+
∫
|y|<|x|

[
Γ(|x− y|)− Γ(|x|)− n |y|

|x|
Γ(|x|) x̂ · ŷ

]
∂ifi(y) dy

=−
∫
|y|>|x|

∂

∂yi

[
Γ(|x− y|)− Γ(|y|)− n |x|

|y|
Γ(|y|) x̂ · ŷ

]
fi(y) dy

−
∫
|y|<|x|

∂

∂yi

[
Γ(|x− y|)− Γ(|x|)− n |y|

|x|
Γ(|x|) x̂ · ŷ

]
fi(y) dy,

where we have used the divergence theorem (and the fact that fi is supported in Rn\{0}).
If we assume r < |x| < 2r and introduce the annulus Ãr = {x : r/2 < |x| < 4r}, then we can

split up the integrals as follows:

w(x) =−
∫
Ãr

∂

∂xi
Γ(|x− y|)fi(y) dy +

∫
r/2<|y|<|x|

∂

∂yi

(
Γ(|x|) + n

|y|
|x|

Γ(|x|) x̂ · ŷ
)
fi(y) dy

+
∫
|x|<|y|<4r

∂

∂yi

(
Γ(|y|) + n

|x|
|y|

Γ(|y|) x̂ · ŷ
)
fi(y) dy

−
∫
|y|<r/2

∂

∂yi

[
Γ(|x− y|)− Γ(|x|)− n |y|

|x|
Γ(|x|) x̂ · ŷ

]
fi(y) dy

−
∫
|y|>4r

∂

∂yi

[
Γ(|x− y|)− Γ(|y|)− n |x|

|y|
Γ(|y|) x̂ · ŷ

]
fi(y) dy.

Using (29) we can estimate the last two integrals:∣∣∣∣∣
∫
|y|<r/2

∂

∂yi

[
Γ(|x− y|)− Γ(|x|)− n |y|

|x|
Γ(|x|) x̂ · ŷ

]
fi(y) dy

∣∣∣∣∣ ≤ c
∫
|y|<r/2

|x|−n|yf(y)| dy

≤ c r−n
∫
|y|<|x|

|y| |f(y)| dy∣∣∣∣∣
∫
|y|>4r

∂

∂yi

[
Γ(|x− y|)− Γ(|y|)− n |x|

|y|
Γ(|y|) x̂ · ŷ

]
fi(y) dy

∣∣∣∣∣ ≤ c
∫
|y|>4r

|x|2|y|−n−1|f(y)| dy

≤ c r2
∫
|y|>|x|

|y|−n−1|f(y)| dy.
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We can also easily estimate∣∣∣∣∣
∫
r/2<|y|<|x|

∂

∂yi

(
Γ(|x|) + n

|y|
|x|

Γ(|x|) x̂ · ŷ
)
fi(y) dy

∣∣∣∣∣ ≤ c
∫
r/2<|y|<|x|

|x|1−n|f(y)| dy

≤ c r−n
∫
r/2<|y|<|x|

|y| |f(y)| dy ≤ c r−n
∫
|y|<|x|

|y| |f(y)| dy

and ∣∣∣∣∣
∫
|x|<|y|<4r

∂

∂yi

(
Γ(|y|) + n

|x|
|y|

Γ(|y|) x̂ · ŷ
)
fi(y) dy

∣∣∣∣∣ ≤ c r2
∫
|x|<|y|<4r

|y|−n−1|f(y)| dy

≤ c r2
∫
|x|<|y|

|y|−n−1|f(y)| dy.

We conclude that∣∣∣∣w(x)−
∫
Ãr

∂

∂xi
Γ(|x− y|)fi(y) dy

∣∣∣∣ ≤ c
(
r−n

∫
|y|<|x|

|y| |f(y)| dy + r2
∫
|y|>|x|

|y|−n−1|f(y)| dy

)
.

Similarly, we can show that ∣∣∣∣ ∂w∂xj (x)−
∫
Ãr

∂2

∂xj∂xi
Γ(|x− y|)fi(y) dy

∣∣∣∣
is bounded by

c

(
r−n−1

∫
|y|<|x|

|y| |f(y)| dy + r

∫
|y|>|x|

|y|−n−1|f(y)| dy

)
.

Now we use Stein’s inequality [21] to conclude∥∥∥∥∫
Ãr

∂

∂xi
Γ(|x− y|)fi(y) dy

∥∥∥∥
Lp(Ar)

≤ c r ‖f‖Lp(Ãr)

and the Lp-boundedness of singular integral operators to conclude∥∥∥∥∫
Ãr

∂2

∂xj∂xi
Γ(|x− y|)fi(y) dy

∥∥∥∥
Lp(Ar)

≤ c ‖f‖Lp(Ãr).

Putting this all together, we obtain

(30) M1,p(w, r) ≤ c

(
rM̃p(f, r) + r−n

∫
|y|<r

|y| |f(y)| dy + r2
∫
|y|>r

|f(y)||y|−n−1 dy

)
where M̃p denotes the mean value over Ãr instead of Ar.

The integrals in (30) can be estimated in terms of Mp and combined with the M̃p term. In
fact it is elementary (cf. [16]) to establish∫

|y|<r
|y| |f(y)| dy ≤ c

∫ r

0

Mp(f, ρ)ρn dρ∫
|y|>r

|f(y)||y|−n−1 dy ≤ c
∫ ∞
r

Mp(f, ρ)ρ−2 dρ.

In addition, it is easy to see that

M̃p(f, r) ≤ c

∫ 4r

r/4

Mp(f, ρ)ρ−1dρ ≤ c

[
r−n−1

∫ r

r/4

Mp(f, ρ)ρn dρ+ r

∫ 4r

r

Mp(f, ρ)ρ−2dρ

]
.
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Using these inequalities, it is clear that (30) implies (28). �

Another instance of (22) that we are interested in is

(31) −∆w = [f ]⊥ in Rn\{0},

where f ∈ L1
`oc(Rn\{0}). To control the growth of the second derivatives of functions we use

M2,p(w, r) = r2Mp(D2w, r) +M1,p(w, r),

where D2w denotes the Hessian matrix of all second-order derivatives of w. The proof of the
following is analogous to that of Proposition 1.

Proposition 2. Suppose n ≥ 2, p ∈ (1,∞), and f ∈ Lp`oc(Rn\{0}) satisfies∫
|x|<1

|x|2 |f(x)| dx <∞, and
∫
|x|>1

|f(x)| |x|−n dx <∞.

Then convolution by Γ defines a solution w ∈ H2,p
`oc(Rn\{0}) of (31) that satisfies

(32) M2,p(w, r) ≤ c
(
r−n

∫ r

0

Mp(f, ρ) ρn+1 dρ+ r2
∫ ∞
r

Mp(f, ρ) ρ−1 dρ

)
.

2. Stability Properties of Dynamical Systems

Let us now consider the result that we require from perturbation theory for systems of ODEs
on T < t < ∞. Without loss of generality, we assume T = 0. First, let us introduce a positive,
nonincreasing continuous function ε(t) satisfying

(33)
∫ ∞

0

ε2(t) dt <∞.

Now consider the 2n× 2n system on (0,∞)

(34a)
d

dt

(
φ
ψ

)
+
(

0 0
0 −nI

)(
φ
ψ

)
+R(t)

(
φ
ψ

)
= g(t),

where i) R is a 2n× 2n matrix of the form

(34b) R(t) =
(
R1(t) R2(t)
R3(t) R4(t)

)
with

∣∣∣∣∣∣Rj(t)∣∣∣∣∣∣ ≤ ε(t) on 0 < t <∞,

and ii) g = (g1, g2) with g1 ∈ L1(0,∞) and there exists δ > 0 so that for any choice of α ∈ [n−δ, n)
there is a constant cα so that

(34c) eαt
∫ ∞
t

|g2(s)|e−αs ds ≤ cα ε(t) for 0 < t <∞.

(With regard to convergence at infinity, (34c) is weaker than assuming g2 ∈ L1(0,∞).) In
addition, we assume asymptotic conditions on the solutions of

(35)
dφ

dt
+R1φ = 0 for t > 0,

and that ψ satisfies the “finite-energy condition”

(36)
∫ ∞

0

(
|ψ|2 + |ψt|2

)
e−nt dt <∞.
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Proposition 3. Suppose that (35) is uniformly stable. Then all solutions (φ, ψ) of (34) that
satisfy (36) remain bounded as t → ∞, and ψ(t) → 0. In fact, for α = n − δ with δ > 0
sufficiently small, we have the estimates

(37a) sup
0<t<∞

|φ(t)| ≤ c (cα + |φ(0)|+ ‖g1‖1),

and

(37b) |ψ(t)| ≤ c ε(t) (cα + sup
t<τ<∞

|φ(τ)| ).

In addition, if all solutions of (35) are asymptotically constant as t→∞, then the solution (φ, ψ)
of (34) also has a limit:

(38) (φ(t), ψ(t))→ (φ∞, 0) as t→∞.

Proof. Let us simplify notation by denoting d/dt by dot: dφ/dt = φ̇. Therefore, we want to
study solutions of

(39)
φ̇+R1φ+R2ψ = g

ψ̇ − nψ +R3φ+R4ψ = h,

when g ∈ L1(0,∞) and h satisfies the condition on g2 in (34c) for a certain value of α that will
be specified below. Let Φ denote the fundamental matrix for φ̇+R1φ = 0 on t > 0, i.e.

Φ̇ +R1Φ = 0, Φ(0) = I.

The assumption that (35) is uniformly stable is equivalent (cf. [4]) to

(40)
∣∣∣∣∣∣Φ(t)Φ−1(s)

∣∣∣∣∣∣ ≤ K for t > s > 0,

where K is a constant. Next let Ψ denote the fundamental matrix for ψ̇ +R4ψ = 0 on t > 0, i.e.

Ψ̇ +R4Ψ = 0, Ψ(0) = I.

Since ε(t)→ 0 as t→∞, for fixed 0 < δ < 1 we can find t1 so that

(41) ε(t) < δ for t ≥ t1, and
∫ ∞
t1

ε2(t) dt < δ.

Without loss of generality, we can assume t1 = 0. Using Gronwall’s inequality, we can show

(42)
∣∣∣∣∣∣Ψ(t)Ψ−1(s)

∣∣∣∣∣∣ ≤ eδ|t−s| for t, s > 0.

However, we also need a lower bound on Ψ(t). To derive this, let ψ(t) = Ψ(t)ψ0 and p(t) = |ψ(t)|2.
Then

ṗ =2ψ1ψ̇1 + · · ·+ 2ψnψ̇n

=− 2r11ψ2
1 − 2r12ψ1ψ2 − · · · − 2r1nψ1ψn

− 2r21ψ2ψ1 − 2r22ψ2
2 − · · · − 2r2nψ2ψn

...

− 2rn1ψnψ1 − · · · − 2rnnψ2
n

≥− 2nδ|ψ|2 = −2nδp.

Integration yields p(t) ≥ p0 e
−2nδt; in other words

(43) |||Ψ(t)||| ≥ e−nδt.
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Now we can use the “variation of parameters” formula to conclude from the first equation in
(39) that

(44) φ(t) = Φ(t)
[
φ(0) +

∫ t

0

Φ−1(τ)[g(τ)−R2(τ)ψ(τ)] dτ
]
,

and from the second equation in (39) that

(45) ψ(t) = entΨ(t)
[
ψ(0) +

∫ t

0

Ψ−1(τ)[h(τ)−R3(τ)φ(τ)]e−nτ dτ
]
.

In order to have (36), we see from (43) that we must have

ψ(0) = −
∫ ∞

0

Ψ−1(τ)[h(τ)−R3(τ)φ(τ)]e−nτ dτ,

and consequently (45) can be rewritten as

(46) ψ(t) = entΨ(t)
∫ ∞
t

Ψ−1(τ)[R3(τ)φ(τ)− h(τ)]e−nτ dτ.

If we plug (46) into (44), we obtain

(47a) φ(t) + Sφ(t) = ξ(t) = ξ0(t) + ξ1(t) + ξ2(t),

where

(47b)

Sφ(t) = −Φ(t)
∫ t

0

Φ−1(τ)R2(τ)enτΨ(τ)
∫ ∞
τ

Ψ−1(σ)R3(σ)φ(σ)e−nσ dσ dτ,

ξ0(t) = Φ(t)φ(0), ξ1(t) = Φ(t)
∫ t

0

Φ−1(τ)g(τ) dτ,

ξ2(t) = Φ(t)
∫ t

0

Φ−1(τ)R2(τ)enτΨ(τ)
∫ ∞
τ

Ψ−1(σ)h(σ)e−nσ dσ dτ.

We want to use (47) to conclude that φ is bounded.
Let X = C[0,∞) with ‖φ‖X := sup0<t<∞ |φ(t)| < ∞. Notice that (40) and g ∈ L1(0,∞)

imply that ξ0, ξ1 ∈ X. To show ξ2 ∈ X, let us use (40), (42), and (34c):

|ξ2(t)| ≤ K
∫ t

0

ε(τ)e(n−δ)τ
∫ ∞
τ

|h(σ)|e(δ−n)σ dσ dτ

≤ K
∫ t

0

ε(τ)
∫ ∞
τ

|h(σ)| dσ dτ ≤ K cα

∫ t

0

ε2(τ) dτ ≤ K cα δ,

although we do not care if this is small. Now let us show that S : X → X with ‖S‖ < 1 if δ is
small. In fact, assume ‖φ‖X ≤ 1. Then

|Sφ(t)| ≤ K
∫ t

0

ε(τ)e(n−δ)τ
∫ ∞
τ

e(δ−n)σε(σ)|φ(σ)| dσ dτ

≤ K
∫ t

0

ε(τ)e(n−δ)τ
∫ ∞
τ

e(δ−n)σε(σ) dσ dτ ≤ K

n− δ

∫ ∞
0

ε2(τ) dτ <
Kδ

n− δ
,

so ‖S‖ < 1 if δ is sufficiently small. We conclude that φ = (1 + S)−1ξ ∈ X, i.e. φ is bounded.
Now if we apply (42) to (46), we find that

|ψ(t)| ≤ c e(n−δ)t
∫ ∞
t

e(δ−n)τε(τ)|φ(τ)| dτ + e(n−δ)t
∫ ∞
t

|h(τ)|e(δ−n)τ dτ

≤ c ε(t)
(
cα + sup

t<τ<∞
|φ(τ)|

)
,
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which is (37b). We can then combine this with (44) and (41) to conclude

|φ(t)| ≤ c (|φ(0)|+ ‖g‖1) + c δ (cα + ‖φ‖X) .

Taking δ sufficiently small, we can conclude (37a).
If all solutions of (35) are asymptotically constant as t→∞, then Φ(∞) = limt→∞Φ(t) exists

and from (44) we find

φ∞ = Φ(∞)
(
φ(0) +

∫ ∞
0

Φ−1(τ)[g(τ)−R2(τ)ψ(τ)]dτ
)
.

To show φ(t)→ φ∞ we estimate three terms: |(Φ(t)− Φ(∞))φ(0)| ≤ |||Φ(t)− Φ(∞)||||φ(0)|,∣∣∣∣Φ(t)
∫ t

0

Φ−1(τ)g(τ) dτ − Φ(∞)
∫ ∞

0

Φ−1(τ)g(τ) dτ
∣∣∣∣ ≤ c

(
|||Φ(t)− Φ(∞)||| ‖g‖1 +

∫ ∞
t

|g(τ)| dτ
)

∣∣∣∣Φ(t)
∫ t

0

Φ−1(τ)R2(τ)ψ(τ)dτ − Φ(∞)
∫ ∞

0

Φ−1(τ)R2(τ)ψ(τ)dτ
∣∣∣∣

≤ c (1 + ‖φ‖X)
[
|||Φ(t)− Φ(∞)|||+

∫ ∞
t

ε2(τ) dτ
]
.

This confirms (38). �

It will also be useful to know that the uniform stability is not affected by perturbation with
terms bounded by ε2(t).

Proposition 4. If R̃(t) − R(t) ∈ L1(0,∞), then (6) is uniformly stable if and only if the same
is true of

dφ

dt
+ R̃φ = 0.

The same equivalency applies if the property that all solutions are asymptotically constant is added
to uniform stability.

Proof. Let S = R̃ − R, Φ(t) denote the fundamental solution for dφ
dt + Rφ = 0 on t > 0, and

Φ̃ denote the same for dφ
dt + R̃φ = 0. According to [4], we know that (40) holds and we want to

prove that a similar bound holds for Φ̃. But we can solve

dφ

dt
+Rφ = −Sφ, φ(s) = ξ

by variation of parameters to obtain

φ(t) = Φ(t)Φ−1(s)ξ − Φ(t)
∫ t

s

Φ−1(σ)S(σ)φ(σ) dσ,

Applying Gronwall’s lemma and (40), we obtain

|φ(t)| ≤ K exp
(
k

∫ t

s

|||S(σ)||| dσ
)
|ξ| ≤ K exp

(
k

∫ ∞
0

|||S(σ)||| dσ
)
|ξ|.

But φ(t) = Φ̃(t)Φ̃−1(s)ξ, so this last estimate shows dφ
dt + R̃φ = 0 is uniformly stable. The

additional property that solutions are asymptotically constant also follows from the variation of
parameters formula. �
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3. Proof of Theorem 1

Recall that ω(r) is a continuous, nondecreasing function for 0 ≤ r < 1 satisfying ω(0) = 0, (4),
and (20). Since our result is local, we focus our attention on a very small ball centered at x = 0;
by rescaling, we may assume this is B1(0), the unit ball centered at x = 0, and that (3) holds for
0 < r < 1; in fact, given any small δ > 0, we can similarly assume that

(48)
∫ 1

0

ω2(r)dr
r

< δ and ω(1) ≤ δ.

If the aij are continuous in U , then we know by the results of [1] that ∇u ∈ Lp`oc(U) for all
p ∈ (1,∞). More generally, under the small oscillation assumption (3), we can fix any p ∈ (1,∞)
and conclude that ∇u ∈ Lp`oc(U) provided δ = δ(p) in (48) is sufficiently small; cf. Corollary
6.2 in [18]. Henceforth, we fix p > n and assume that δ(p) has been chosen small enough that
∇u ∈ Lp(B1(0)).

For our analysis, it is advantageous to extend the problem to all of Rn, so let us redefine and
extend the aij outside of B1(0) by

(49) aij(x) = δij for |x| ≥ 1.

If we extend ω(r) to be ω(1) for r > 1, we see that ω(r) is still nondecreasing and ω(r) r−1+κ is
still nonincreasing; in particular, we easily see that

(50) Mp(ωf, r) ≤ c ω(r)Mp(f, r) for 0 < r <∞,
where f ∈ Hp

`oc(Rn\{0}) and c is independent of r. Now let us introduce a smooth cutoff function
χ(r) which is 1 for 0 ≤ r ≤ 1/4 and 0 for r ≥ 1/2. Given a weak solution u of (1), we can write

∂i(aij∂j(χu)) = ∂i(aijχ′θju) + χ′θiaij∂ju.

Since we are interested in the behavior near x = 0 where χ(|x|)u(x) and u(x) agree, we can
assume that u is supported on |x| < 1/2 and satisfies

(51a) ∂i(aij(x)∂ju) = ∂ifi + f0 in Rn,
where fi, f0 ∈ Lp(Rn) are both supported in 1/4 ≤ |x| ≤ 1/2, and (using (2) with η = χ)

(51b)
∫

Rn

f0(x) dx = 0;

when convenient, we let ~f = (f1, . . . , fn). Of course, we now must replace (2) with the following:

(52)
∫

Rn

aij(x) ∂ju ∂iη dx =
∫

Rn

fi∂iη dx−
∫

Rn

f0η dx,

for all η ∈ C∞0 (Rn).
Recall the decomposition u(x) = u0(r)+~v(r) ·~x+w(x) given in (17). Orthogonality properties

show that

(53) ∇u ∈ L2(B1(0))⇒
∫ 1

0

(
(u′0)2 + |~v|2 + r2|~v ′|2

)
rn−1 dr <∞ and ∇w ∈ L2(B1(0)).

We want to show that |u0(r) − u0(0)| r−1 → 0 and |w(x)| |x|−1 → 0 as r = |x| → 0, so that the
differentiability of u is determined by the behavior of ~v as r → 0. The strategy is to show that
~v satisfies a system of ODEs which depends upon w and that w satisfies a PDE which depends
upon ~v. We obtain the system of ODEs by plugging u(x) = u0(r) + ~v(r) · ~x+w(x) into (52) and
choosing special η ∈ C∞0 (Rn). For example, taking η = η(r) ∈ C∞0 [0,∞), we obtain

(54a)
∫ ∞

0

(
αu′0 + r~β · ~v ′ + ~γ · ~v + p[∇w]

)
η′ rn−1 dr =

∫ ∞
0

(
f̃ η′ − f0η

)
rn−1 dr,
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where

(54b)

α(r) = �
∫
Sn−1

aij(rθ)θiθj dsθ, βk(r) = �
∫
Sn−1

aij(rθ)θiθjθk dsθ,

γj(r) = �
∫
Sn−1

aij(rθ)θi dsθ, p[∇w](r) = �
∫
Sn−1

aij(rθ) ∂jw(rθ) θi dsθ,

f̃(r) = �
∫
Sn−1

fi(rθ)θi dsθ, f0(r) = �
∫
Sn−1

f0(rθ) dsθ.

Using (3) and Lemma 1, we see that these terms satisfy

(54c)

|α(r)− 1|, |~β(r)|, |~γ(r)| ≤ ω(r) for 0 < r < 1,

|p[∇w](r)| ≤ ω(r)�
∫
Sn−1
|∇w| ds for 0 < r < 1,

f̃(r) =f0(r) = 0 for 0 < r < 1/4,

whereas for r > 1 we have α(r) = 1 and all the other terms vanish. We can integrate (54a) to
find

(55a) α(r)u′0(r) + r~β(r) · ~v ′(r) + ~γ(r) · ~v(r) + p[∇w](r) = ϑ(r),

where

(55b) ϑ(r) = f̃(r) + r1−n
∫ r

0

f0(ρ) ρn−1 dρ

has support in 1/4 ≤ r ≤ 1/2. (Note that ϑ(r) = 0 for r < 1/4 follows from (54a) with supp
η ⊂ [0, 1/4) and η(0) = 1, whereas ϑ(r) = 0 for r > 1/2 is a consequence of (51b).)

Similarly, we can let η = η(r)x` in (52) and obtain a 2nd-order linear system of ODEs. We can
use (55a) to eliminate u0 and then reduce the 2nd-order system for ~v to a 1st-order system for
(~v,~vr); of course, these systems also depend on w. This 1st-order system is simplified by changing
independent variables to t = − log r, so we introduce

(56) ε(t) = ω(e−t),

which satisfies (33) by (4). In the Appendix, we show that the 1st-order system for (~v,~vt) may
be converted to the form (34):

(57a)
d

dt

(
φ
ψ

)
+
(

0 0
0 −nI

)(
φ
ψ

)
+R(t)

(
φ
ψ

)
= g(t,∇w) + h(t),

where R ≡ 0 for t < 0, but for t > 0 it is of the form (34b) with

(57b) R1(t) ≈ �
∫
Sn−1

(A− nAθ ⊗ θ) dsθ as t→∞,

where ≈ indicates that the difference is bounded by c ε2(t); the term g(t,∇w) ≡ 0 for t < 0 but
satisfies

(57c) |g(t,∇w)| ≤ c ε(t)�
∫
Sn−1
|∇w| ds for t > 0,

and the term h is in Lp with support in log 2 ≤ t ≤ 2 log 2 with L1-norm satisfying

(57d) ‖h‖1 ≤ c
(
‖~f‖p + ‖f0‖p

)
.

Moreover, the new dependent variables (φ, ψ) are related to (~v,~vt) according to:

(57e)
(
φ
ψ

)
− 1
n2

(
n~v − ~vt
~vt

)
≤ c ε(t)

(
|~v(t)|+ |~vt(t)|+�

∫
|∇w|ds

)
.
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Now, given w with suitable properties, we solve (57a) with initial conditions φ(0) = 0 = ψ(0)
to find (φ, ψ) and hence ~v. But we want to separately control the dependence of ~v upon w, so let
us write ~v = ~v w + ~v 0 where ~v w corresponds to solving (57a) with h(t) ≡ 0 and ~v 0 corresponds
to solving (57a) with g(t,∇w) ≡ 0. We want to apply Proposition 3 to estimate ~v w on (0,∞), so
we need to confirm that g = (g1, g2) satisfies g1 ∈ L1(0,∞) and g2 satisfies (34c). To show that
g1 ∈ L1, we use (57c) to conclude∫ ∞

0

|g1(t,∇w)| dt ≤ c

(∫ ∞
0

ε2(t) dt
)1/2(∫ ∞

0

∫
Sn−1

|∇w|2 ds dt
)1/2

= c

(∫ 1

0

ω2(ρ)
dρ

ρ

)1/2(∫ 1

0

�
∫
|∇w|2 ds dρ

ρ

)1/2

,

and then invoke (48) to conclude

(58) ‖g1‖1 ≤ c
√
δ

(∫ 1

0

�
∫
|∇w|2 ds dρ

ρ

)1/2

.

Similarly, to verify (34c), we estimate

(59a) eαt
∫ ∞
t

|g2(τ)| e−ατ dτ ≤ c ε(t)
∫ ∞
t

eα(t−τ)�
∫
|∇w| ds dτ ≤ cαε(t),

where

(59b) cα =
c√
2α

(∫ 1

0

�
∫
|∇w|2 dsdρ

ρ

)1/2

.

As we shall see below, M2(∇w, r) = O(ω(r)) as r → 0, so the finiteness of cα and the bound in
(58) follow from the following calculations: for j = 0, 1, . . . , let rj = 2−j , so that

(60a)
∫ 1

0

∫
Sn

|∇w|2 ds dρ
ρ

=
∞∑
j=0

∫ 2rj

rj

∫
Sn−1

|∇w|2 ds dρ
ρ
≤ c

∞∑
j=0

M2
2 (∇w, rj)

and

(60b)
∞∑
j=0

ω2(rj) =
∞∑
j=0

ω2(rj)
rj − rj+1

rj+1
≤ c

∫ 1

0

ω2(ρ)
dρ

ρ
≤ c δ,

where we have used (48) at the end.
Now let us derive the PDE for w. Introduce the matrix Ω = (Ωij) with entries

(61) Ωij = aij − δij ,

and recall that |Ωij(r)| ≤ ω(r) for 0 < r < 1 and Ωij(r) = 0 for r > 1. We can apply I − P to
(51a), to obtain

[∂i(aij(x)∂ju)]⊥ = [∂ifi + f0]⊥ in Rn.
If we substitute (17) into this and use P [∆(u0 +~v · ~x)] = ∆(u0 +~v · ~x) and P [∆w] = 0, we obtain
the following equation for w:

∆w + [div(Ω∇w)]⊥ + [div(Ω∇(~v · ~x))]⊥ + [div(Ω∇u0)]⊥ = [∂ifi + f0]⊥.

But we can use (55a) to eliminate u0 and ~v = ~v w + ~v 0 to write this as:

(62)
∆w+[div(Ω∇w)]⊥ + [div(Ω∇(~v w · ~x))]⊥ − [div(α−1Ωθ(r~β · (~v w)′ + ~γ · ~v w + p[∇w]))]⊥

=[∂ifi + f0 + div(α−1Ωθ(r~β · (~v 0)′ + ~γ · ~v 0)− Ω∇(~v 0 · ~x))− div(α−1Ωθϑ)]⊥.
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Our strategy now is to simultaneously solve (57a) and (62) for ~v and w, then we can plug these
into (55a) and integrate to find u0 with u0(r) = 0 for r > 1/2. Indeed, for our chosen p > n, we
assume w is in the space Y consisting of functions in H1,p

`oc(Rn\{0}) with finite norm

(63) ‖w‖Y = sup
0<r<1

M1,p(w, r)
ω(r) r

+ sup
r>1

M1,p(w, r)
δ r−n

.

We plug w into (57a) and solve as described above to find ~v = ~v w + ~v 0; since M2(∇w, r) ≤
cMp(∇w, r) = O(ω(r)) for 0 < r < 1, we can apply Proposition 3 to estimate ~v w. Now we want
w to satisfy (62), so let us apply ∆−1, i.e. convolution by the fundamental solution, to both sides
of (62) to obtain

(64) w + T [w] = ξ,

where

T [w] = ∆−1
(

[div(Ω∇w)]⊥ + [div(Ω∇(~v w · ~x))]⊥ − [div(α−1Ωθ(r~β · (~v w)′ + ~γ · ~v w + p[∇w])]⊥
)

ξ = ∆−1
(

[∂ifi + f0 − div(α−1Ωθϑ) + div(α−1Ωθ(r~β · (~v 0)′ + ~γ · ~v 0)− Ω∇(~v 0 · ~x))]⊥
)
.

We want to use the results of Sections 1 and 2 to show ξ ∈ Y and T is a bounded operator Y → Y
with small norm.

To show T : Y → Y has small norm, consider T [y] for ‖y‖Y ≤ 1, i.e. we assume y satisfies

(65a) M1,p(y, r) ≤ ω(r) r for 0 < r < 1,

and

(65b) M1,p(y, r) ≤ δ r−n = ω(r) r−n for r > 1.

Now let us consider separately the three terms,

T1[y] =∆−1
(
[div(Ω∇y)]⊥

)
, T2[y] = ∆−1

(
[div(Ω∇(~v y · ~x))]⊥

)
,

T3[y] = ∆−1
(

[div(α−1Ωθ(r~β · (~v y)′ + ~γ · ~v y + p[∇y]))]⊥
)
.

First we consider T1. Using Proposition 1 and (50), we have

(66) M1,p(T1[y], r) ≤ c
(
r−n

∫ r

0

Mp(Ω∇y, ρ)ρn dρ+ r2
∫ ∞
r

Mp(Ω∇y, ρ)ρ−2 dρ

)
.

But recall |Ω(r)| ≤ ω(r) for 0 < r < 1 and Ω(r) = 0 for r > 1. Thus, for 0 < r < 1, we can
use (65a) and (65b) with the facts that ω(r) is nondecreasing and ω(r)r−1+κ is nonincreasing to
obtain

(67a)
M1,p(T1[y], r) ≤ c

(
r−n

∫ r

0

ω2(ρ)ρn dρ+ r2
∫ 1

r

ω2(ρ)ρ−2 dρ

)
≤ c

(
r−nω2(r)rn+1 + r2δω(r)r−1+κ(r−κ − 1)

)
≤ c δ ω(r) r.

For r > 1 we simply get

(67b) M1,p(T1[y], r) ≤ c r−n
∫ 1

0

δ2ρn dρ ≤ c δ2 r−n.

The estimates (67a) and (67b) show that ‖T1[y]‖Y ≤ c δ, so for δ sufficiently small we conclude
that T1 : Y → Y has norm less than 1/3.
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Next we consider T2. To use Proposition 1, we need to estimate Mp(∇(~v y · ~x), r). But ~v y and
r(~v y)′ can be expressed in terms of the solutions φ, ψ of (57a) with h ≡ 0, to which we can apply
Proposition 3 to find

(68) sup
|x|<1

|∇(~v y · ~x)| ≤ c sup
r<1

(r|(~v y)′|+ |~v y|) ≤ c sup
t>0

(|φ|+ |ψ|) ≤ c (cα + ‖g1‖1),

where cα is given in (59b) and ‖g1‖ is estimated as in (58). But, using (60a), p > 2, (65a), and
(60b), we have∫ 1

0

�
∫
Sn−1
|∇y|2 ds dρ

ρ
≤ c

∞∑
j=0

M2
2 (∇y, rj) ≤ c

∞∑
j=0

M2
p (∇y, rj) ≤ c

∞∑
j=0

ω2(rj) ≤ c δ.

We conclude that for 0 < r < 1:

(69) Mp(∇(~v y · ~x), r) ≤ c sup
|x|<1

|∇(~v y · ~x)| ≤ c
√
δ.

We can use this in Proposition 1 and estimate as above to obtain for 0 < r < 1:

(70a) M1,p(T2[y], r) ≤ c

(
r−n

∫ r

0

ω(ρ)
√
δρn dρ+ r2

∫ 1

r

ω(ρ)
√
δρ−2 dρ

)
≤ c ω(r)

√
δ r.

Meanwhile, for r > 1 we know ~v = ~v w ≡ 0, so by Proposition 1

(70b) M1,p(T2[y], r) ≤ c r−n
∫ 1

0

ω(ρ)Mp(∇(~v y · ~x), ρ)ρn dρ ≤ c δ3/2 r−n.

For δ sufficiently small, we conclude from (70a), (70b) that T2 : Y → Y has norm less than 1/3.
To show T3 : Y → Y is small, we need to estimate Mp(α−1Ωθ(r~β · (~v y)′ + ~γ · ~v y + p[∇y]), r)

only for 0 < r < 1 (since it vanishes for r > 1). But recalling the bounds on Ω, ~β, ~γ and p[∇y],
we have for 0 < r < 1:

Mp(α−1Ωθ(r~β · (~v y)′ + ~γ · ~v y) + p[∇y], r) ≤ c ω2(r) (Mp(r(~v y)′, r) +Mp(~v y, r) +Mp(∇y, r))

≤ c
√
δ ω2(r),

where at the end we have used Proposition 3 and (68), similar to our derivation of (69). Applying
Proposition 1, we obtain for 0 < r < 1

M1,p(T3[y], r) ≤ c
(
r−n

∫ r

0

√
δ ω2(ρ) ρn dρ+ r2

∫ 1

r

√
δ ω2(ρ) ρ−2 dρ

)
≤ c δ3/2 ω(r) r,

and for r > 1 we have simply

M1,p(T3[y], r) ≤ c r−n
∫ 1

0

√
δ ω(ρ)ρn dρ ≤ c δ3/2 r−n.

Taking δ sufficiently small, we conclude that T3 : Y → Y has norm less than 1/3. We have
therefore shown that T = T1 + T2 + T3 : Y → Y has norm less than 1.

To show ξ ∈ Y , first note that supp f ⊂ A1/4 = {x : 1/4 ≤ |x| ≤ 1/2} implies Mp(f, r) = 0 for
r < 1/8 and r > 1/2, whereas Mp(f, r) ≤ c ‖f‖p for 1/8 ≤ r ≤ 1/2. Now we separately treat

ξ1 = ∆−1([∂ifi]⊥), ξ2 = ∆−1([f0]⊥), ξ3 = ∆−1([div(α−1Ωθϑ(r))]⊥),

and
ξ4 = ∆−1([div(α−1Ωθ(r~β · (~v 0)′ + ~γ · ~v 0)− Ω∇(~v 0 · ~x))]⊥).
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Since both fi and f0 are supported in A1/4, we can apply Proposition 1 to estimate ξ1 as

M1,p(ξ1, r) ≤

{
c ‖~f‖p r2 for 0 < r < 1,
c ‖~f‖p r−n for r > 1,

and Proposition 2 to estimate ξ2 as

M1,p(ξ2, r) ≤M2,p(ξ2, r) ≤

{
c ‖f0‖p r2 for 0 < r < 1,
c ‖f0‖p r−n for r > 1.

Since Ωθϑ = 0 for |x| = r > 1 and r < 1/8, whereas Mp(α−1Ωθϑ, r) ≤ c (‖~f‖p + ‖f0‖p) for
1/8 < r < 1, we similarly conclude

M1,p(ξ3, r) ≤

{
c (‖~f‖p + ‖f0‖p) r2 for 0 < r < 1,
c (‖~f‖p + ‖f0‖p) r−n for r > 1.

To estimate ξ4 we need to estimate Mp(∇(~v 0 · ~x), r). But ~v 0 and r(~v 0)′ can be expressed in
terms of the solutions φ, ψ of (57a) with g ≡ 0, to which we can apply Proposition 3 to find

sup
|x|<1

|∇(~v 0 · ~x)| ≤ c ‖h‖1.

Combined with (57d), we find Mp(∇(~v 0 ·~x), r) ≤ c (‖~f‖p+‖f0‖p), and then applying Proposition
1 yields

M1,p(ξ4, r) ≤ c (‖~f‖p + ‖f0‖p)
(
r−n

∫ r

0

ω(ρ)ρn dρ+ r2
∫ 1

r

ω(ρ) ρ−2 dρ

)
≤

{
c (‖~f‖p + ‖f0‖p)ω(r) r for 0 < r < 1,
c (‖~f‖p + ‖f0‖p) r−n for r > 1.

Plugging these estimates into (63), we find that ξ ∈ Y with

‖ξ‖Y ≤ c (‖~f‖p + ‖f0‖p).

We conclude that (64) admits a unique solution w ∈ Y satisfying

(71) ‖w‖Y ≤ c (‖~f‖p + ‖f0‖p),

and then we use this to find ~vw and uw0 as described above. We also know from Proposition 1
that Pw = 0, which in particular shows that

∫
|x|<r w(x) dx = 0 for every r > 0. Since p > n, we

can apply Morrey’s inequality (cf. Theorem 7.17 in [12]) to obtain

(72) sup
|x|<r

|w(x)| ≤ cn r

(
�
∫
|y|<r
|∇w|p dy

)1/p

.

But for fixed r ∈ (0, 1), we can introduce rj = r 2−j to compute

�
∫
|y|<r
|∇w|p dy =

∞∑
j=0

2−jnr−nj

∫
rj+1<|y|<rj

|∇w|p dy ≤ c sup
0<ρ<1

Mp(∇w, ρ).

Recalling that (71) implies Mp(∇w, r) ≤ c ω(r) (‖~f‖p + ‖f0‖p) for 0 < r < 1, we find

(73) sup
|x|<r

|w(x)| ≤ c r ω(r) (‖~f‖p + ‖f0‖p) for 0 < r < 1.

In particular, this implies that w is differentiable at x = 0 with ∂jw(0) = 0.
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What about ~v and u0? Since we now know Mp(∇w, r) ≤ c ω(r) (‖~f‖p + ‖f0‖p), we obtain∫ 1

0

�
∫
|∇w|2 ds dρ

ρ
≤ c

∞∑
j=0

M2
p (∇w, rj) ≤ c (‖~f‖p + ‖f0‖p)2

∞∑
j=0

ω2(rj) ≤ c δ (‖~f‖p + ‖f0‖p)2.

Consequently, our analysis of (57a) yields

(74) sup
0<r<1

(|~v(r)|+ r |~v ′(r)|) ≤ c (‖~f‖p + ‖f0‖p).

Using (54a), we perform the following estimates

|u0(r)− u0(0)| ≤
∫ r

0

|u′0(ρ)| dρ ≤ c
∫ r

0

(
|ϑ(ρ)|+ |ρ~β(ρ) · ~v ′(ρ)|+ |~γ(ρ) · ~v|+ ω(ρ)�

∫
|∇w| ds

)
dρ

∫ r

0

(
|ϑ(ρ)|+ |ρ~β(ρ) · ~v ′(ρ)|+ |~γ(ρ) · ~v|

)
dρ ≤ c ω(r) r

(
‖~f‖p + ‖f0‖

)
∫ r

0

ω(ρ)�
∫
|∇w| ds dρ ≤ ω(r) r

∫ 1

0

�
∫
|∇w| ds dρ

ρ
≤ c ω(r) r

(
‖~f‖p + ‖f0‖

)
to obtain

(75) |u0(r)− u0(0)| ≤ c ω(r) r (‖~f‖p + ‖f0‖p).

But (75) implies that u0 is differentiable at r = 0 with u′0(0) = 0.
Thus we have found a solution of (51a) in the form ũ(x) = u0(r) + ~v(r) · ~x + w(x) which is

Lipschitz continuous at x = 0, but we need to verify that ũ coincides with the solution u of (51a)
that we began with. However, if we let z(x) = u(x) − ũ(x), we find that z is a weak solution of
the homogenous equation Lz = 0 in Rn, and z(x)→ 0 as x→∞ (since |x| > 1 implies u(x) ≡ 0
and ũ(x) = w(x) = O(|x|−n) as |x| → ∞). The maximum principle shows that z ≡ 0, i.e. u = ũ.

We conclude that our solution u of (1) is Lipschitz continuous at x = 0. To obtain the desired
estimate (7), we first combine (73), (74), (75), and recall the definitions of ~f and f0 to conclude

(76) |u(x)− u(0)| ≤ c |x| (‖∇u‖Lp(B′) + ‖u‖Lp(B′)) for 0 < |x| < 1/2 and B′ = B1/2(0).

But as a solution of (1), u satisfies the elliptic estimate

(77) ‖∇u‖Lp(B′) ≤ c ‖u‖Lp(B∗), where B∗ = B3/4(0),

which can be found, for example, in [1] when the coefficients are continuous; however, their proof
extends directly to the case where the coefficients have small oscillation, which we may assume in
the unit ball by taking δ sufficiently small. But from [19], u also satisfies the following estimate:

(78) sup
|y|≤3/4

|u(y)| ≤ c ‖u‖L2(B), where B = B1(0).

Using these in (76), we obtain

(79) |u(x)− u(0)| ≤ c |x|‖u‖L2(B) for 0 < |x| < 1/2,

which is (7) for r = 1. The case of general r ∈ (0, 1) can be achieved by scaling: x̃ = x/r and
ũ(x̃) = u(x). Thus (7) is proved.

Now let us add the hypothesis that every solution of (6) is asymptotically constant. Then,
according to Proposition 3, the solution (φ, ψ) satisfies φ(t)→ φ∞ and ψ(t)→ 0 as t→∞. Using
(57e), we see that ~vt → 0 as t→∞ and consequently

lim
r→0

~v(r) = n lim
t→∞

φ(t) = nφ∞ and lim
r→0

r~v ′(r) = 0.
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In particular, ~v(|x|) ·~x is differentiable at ~x = 0. Putting this together with what we have already
found about u0 and w, we conclude that our weak solution u of (1) is differentiable at x = 0 and
(8) holds. �

4. Proof of Corollaries

To prove Corollary 1, let us write (6) as

(80) φ̇ = B(t)φ for T < t <∞,

where B(t) is bounded, but not necessarily self-adjoint. (In fact, we know B(t) → 0 as t → ∞,
but we will not need this fact here.) Let µ(B) denote the largest eigenvalue of (B+Bt)/2, which
satisfies (cf. [4], Ch.II, Sec.1)

µ(B) = lim
h→0+

∣∣∣∣∣∣I + hB
∣∣∣∣∣∣− 1

h
.

Assuming that B(t) is continuous, the following inequality is proved in [4] (Ch.III, Sec.2):

(81) |φ(t)| ≤ |φ(s)| exp
(∫ t

s

µ(B(τ)) dτ
)

for t ≥ s ≥ T.

Let us verify that (81) holds even though B(t) may be discontinuous.
Let f(t) = |φ(t)| for t ≥ T . It is easy to see from (80) that φ is Lipschitz continuous, so

Rademacher’s theorem implies that φ is differentiable almost everywhere. Consequently, almost
everywhere f has a right-hand derivative ḟ+ satisfying

ḟ+(t) = lim
h→0+

|φ(t) + hφ̇(t)| − |φ(t)|
h

= lim
h→0+

|φ(t) + hB(t)φ(t)| − |φ(t)|
h

≤ µ(B(t)) f(t) a.e.

Since µ(B(t)) is bounded, we know that

w(t) := f(t) exp
(
−
∫ t

T

µ(B(τ)) dτ
)

is continuous and has a right-hand derivative satisfying

ẇ+(t) =
[
ḟ+(t)− µ(B(t))f(t)

]
exp

(
−
∫ t

T

µ(B(τ)) dτ
)
≤ 0 a.e.

We conclude that w(t) is nonincreasing for almost every t > T . But w(t) is continuous, so w(t)
is nonincreasing for all t > T . We conclude that (81) holds. Moreover, (81) together with∫ t

s

µ(B(τ)) dτ < K for t > s > T

implies that (80) is uniformly stable. Thus we may apply Theorem 1 to obtain Corollary 1.
To prove Corollary 2, we assume (12) and introduce a change of dependent variable (as in [7]

Section 11.1):
φ(t) = (I + S(t)) ξ(t)

where

S(t) =
∫ ∞
t

R̃(τ) dτ, with R̃(t) = R(e−t).

We find that ξ satisfies

(I + S(t))
dξ

dt
+ R̃S ξ = 0.
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But S(t) → 0 as t → ∞, so we can take T sufficiently large and conclude that (I + S(t)) is
invertible, and consequently ξ satisfies

(82)
dξ

dt
+Q(t) ξ = 0,

where by hypothesis we have Q = (1 +S)−1R̃S ∈ L1(T,∞). As we have observed, Q ∈ L1(T,∞)
implies that all solutions of (82) are asymptotically constant, i.e. ξ(t) = ξ∞ + o(1) as t→∞, so

φ(t) = (I + S(t))(ξ∞ + o(1)) = ξ∞ + o(1)

and we see that all solutions of (6) are asymptotically constant. We have also observed that
Q ∈ L1(T,∞) implies that (82) is uniformly stable, so the same is true of (6).

To prove Corollary 3, observe that
∫ t
T
µ(B(τ)) dτ → −∞ as t→∞ together with (81) implies

that all solutions of (80) tend to zero as t → ∞, i.e. the null solution is asymptotically stable.
But this implies that ~v(r) in (21) satisfies ~v(r)→ 0 as r → 0 and Corollary 3 follows.

5. Examples of Gilbarg-Serrin Type

In [11], Gilbarg and Serrin consider examples of the form

(83) aij(x) = δij + g(r)θiθj ,

where g(0) = 0 but vanishes slowly as r → 0. They use such examples to show that Dini continuity
is essential for their “extended maximum principle” to hold, but we shall use them to explore the
conditions in Theorem 1 and its corollaries. We assume that |g(r)| ≤ ω(r) for r near 0 with ω
satisfying (4), and we can explicitly calculate the quantities introduced in the Appendix:

α(r) = 1 + g(r), β(r) = 0 = γ(r), A(r) = B(r) =
1 + g(r)

n
I, C(r) =

(
1 +

g(r)
n

)
I.

Moreover, the matrix (5) is given by

R`k(r) =
1− n
n

g(r) δ`k,

so the dynamical system (6) reduces to the scalar equation

(84)
dφ

dt
=
n− 1
n

g̃(t)φ,

where g̃(t) = g(e−t).
Now consider a weak solution u of (1) in a domain containing x = 0 and aij of the form (83).

According to Theorem 1, u is Lipschitz continuous at x = 0 provided (84) is uniformly stable for
t > T with T sufficiently large; but it is easy to solve (84) and see that it is uniformly stable if
and only if

(85)
∫ t

s

g̃(τ) dτ < K for t > s > T.

Moreover, µ(R(r)) = (1−n−1)g(r), so (11) agrees with (85) and we see that Corollary 1 is sharp
for this class of examples. On the other hand, solutions of (84) are asymptotically constant if and
only if the improper integral

(86)
∫ ∞
T

g̃(τ) dτ converges to an extended real number <∞.

Thus Theorem 1 implies that u is differentiable at x = 0 if both (85) and (86) hold. The case

(87)
∫ ∞
T

g̃(t) dt = −∞
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in (86) pertains to Corollary 3, which is sharp for this class of examples. On the other hand,
the case that g̃(t) is integrable pertains to Corollary 2 and coincides with the hypothesis (12a);
however, in Corollary 2 we also require (12b), since (as mentioned in the Introduction) the
condition (12a) alone does not imply the uniform stability of (6).

In fact, this class of examples may be used to show not only this last statement, but in general
that uniform stability is not implied by every solution being asymptotically constant: we only
need to construct g̃(t) for which (86) holds but (85) fails. Moreover, if (86) holds because g̃ is
integrable on (0,∞), then this explains the need for a condition such as (12b) in Corollary 2; on
the other hand, if we construct g̃ for which (87) holds and yet (85) fails, then we see that (11)
is not implied by (16), so both conditions are necessary in Corollary 3. In this latter regard, let
us observe that [4] gives an explicit example of a function g̃(t) satisfying (87) and yet (85) fails:
there exist tj → ∞ for which

∫ t2j+1

t2j
g̃(τ) dτ → ∞ and yet

∫ t2j+2

t2j+1
g̃(τ) dτ → −∞ more rapidly so

that (87) still holds. Now the example in [4] does not have g̃(t)→ 0 as t→∞, but the example
can be modified to achieve this; in fact, we can even arrange g̃(t) = O(t−2/3), which implies that
g̃ ∈ L2(T,∞) and so the aij are square-Dini continuous at x = 0. Moreover, the example can be
modified so that (87) is replaced by the condition that g̃ is integrable on (0,∞). Thus (85) and
(86) are completely independent conditions, even under the assumption that the coefficients aij
are square-Dini continuous at x = 0.

6. Appendix

In this appendix we provide the details behind the derivation of the dynamical system (57).
To express this system, let us introduce n× n matrices A,B,C and vectors ~ξ, ~ζ by

A`k(r) = �
∫
Sn−1

aij(rθ)θiθjθ`θkdsθ, B`k(r) = �
∫
Sn−1

a`j(rθ)θjθkdsθ, C`j(r) = �
∫
Sn−1

a`j(rθ) dsθ,

ξ`[∇w](r) = �
∫
Sn−1

aijθiθ`∂jw dsθ, ζ`[∇w](r) = �
∫
Sn−1

a`j∂jw dsθ,

which satisfy for 0 < r < 1

(88)
|||A− n−1I |||, |||B − n−1I |||, |||C − I ||| ≤ ω(r)

|~ξ[∇w](r)|, |~ζ[∇w](r)| ≤ ω(r)�
∫
Sn−1
|∇w| ds,

while for r > 1 we use (49) to conclude A = n−1I = B, C = I. (Notice that the matrix A(r)
introduced above is not the same as the matrix A(x) used in the Introduction.) Now using
η = η(r)x` in (52), we obtain the 2nd-order system of ODEs

(89) −
[
rn(u′0~β + rA~v ′ +B~v + ~ξ[∇w]− ~f #)

]′
+ rn−1(u′0~γ + rB~v ′ + C~v + ~ζ[∇w] + ~f [) = 0,

where

f#
` (r) = �

∫
Sn−1

fi(rθ)θiθ` dsθ and f [` (r) = �
∫
Sn−1

f0(rθ)θ` dsθ

are supported in 1/4 ≤ r ≤ 1/2. Next we can use (54a) to solve for u′0(r) and eliminate u0 from
(89); this is the 2nd-order system of ODEs (depending upon w) that we want to analyze:

(90)
−r
[
rn
(
rA~v ′ +B~v + ~ξ[∇w]− ~f #

)
− rn

α(r)

(
r~β · ~v ′ + ~γ · ~v + p[∇w]− ϑ

)
~β

]′
+
[
rn
(
rB~v ′ + C~v + ~ζ[∇w] + ~f [

)
− rn

α(r)

(
r~β · ~v ′ + ~γ · ~v + p[∇w]− ϑ

)
~γ

]
= 0.
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If we make the substitution r = e−t, then (90) becomes[
e−nt

(
−A~vt +B~v + ~ξ[∇w]− ~f # − 1

α
(−~β · ~vt + ~γ · ~v + p[∇w]− ϑ)~β

)]
t

+ e−nt
(
−B~vt + C~v + ~ζ[∇w] + ~f [ − 1

α
(−~β · ~vt + ~γ · ~v + p[∇w]− ϑ)~γ

)
= 0,

which after some rearrangement can be written[
−A~vt +B~v + ~ξ[∇w]− ~f # +

~β · ~vt − ~γ · ~v − p[∇w] + ϑ

α
~β

]
t

− (B − nA)~vt +
~β · ~vt
α

(~γ − n~β)

+(C − nB)~v − ~γ · ~v
α

(~γ − n~β) = n

[
~ξ[∇w]− p[∇w]− ϑ

α
~β

]
+
p[∇w]− ϑ

α
~γ − ~ζ[∇w]− ~f [

To avoid differentiating the coefficient matrices, let us convert this to a 1st-order system for
the 2n-vector V = (V1, V2) where V1 = ~v and

(91) V2 := −A~vt +B~v + ~ξ[∇w]− ~f # +
~β · ~vt − ~γ · ~v − p[∇w] + ϑ

α
~β.

Notice that, as in Section 2, we have omitted arrows over the vectors V1, V2, and V , and we
shall now also use the dot notation for d/dt. Since A is invertible (for δ sufficiently small), our
1st-order system can be written as

(92)

V̇1−A−1BV1 +A−1V2 +

[
~β · V̇1 − ~γ · V1

α

]
A−1~β = A−1

[
~ξ[∇w]− ~f # − p[∇w]− ϑ

α
~β

]

V̇2+(C −BA−1B)V1 + (BA−1 − n)V2 +
~β · V̇1

α
(~γ − (n+A−1)~β)

+
~γ · V1

α
((n+A−1)~β − ~γ) = n

[
~ξ[∇w]− p[∇w]− ϑ

α
~β

]
+
p[∇w]− ϑ

α
~γ − ~ζ[∇w]− ~f [.

Now (53) implies that ∫ ∞
0

(
|V1|2 + |V̇1|2 + |∇w|2

)
e−nt dt <∞,

and if we use the second equation in (92) we see that∫ ∞
0

(
|V2|2 + |V̇2|2

)
e−nt dt <∞.

We can summarize this as

(93)
∫ ∞

0

(
|V |2 + |V̇ |2 + |∇w|2

)
e−nt dt <∞.

Notice that the terms involving V̇1 and V̇2 in (92) are of the form (I +D(t))V̇ where I is the
identity matrix and

∣∣∣∣∣∣D(t)
∣∣∣∣∣∣ ≤ c ε2(t). So we may multiply (92) by (I + D(t))−1 and, after some

calculations, see that V satisfies a 1st-order system in the form

(94a)
dV

dt
+M(t)V = F (t,∇w) + F0(t),
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where M(t) is a 2n× 2n matrix of the form

(94b)

M(t) = M∞ + S1(t) + S2(t),

M∞ =
(

−I nI
(1− n−1)I (1− n)I

)
,

S1(t) =
(

I −A−1B A−1 − nI
C −BA−1B + 1−n

n I BA−1 − I

)
,

the Si satisfy

(94c)

∣∣∣∣∣∣S1(t)
∣∣∣∣∣∣ ≤ ε(t) and

∣∣∣∣∣∣S2(t)
∣∣∣∣∣∣ ≤ c ε2(t) for t > 0,

S1(t) = 0 = S2(t) for t < 0,

the vector F (t,∇w) satisfies

(94d) |F (t,∇w)| ≤ c ε(t)�
∫
Sn−1
|∇w| ds for t > 0 and F (t,∇w) ≡ 0 for t < 0,

and F0(t) has support in log 2 ≤ t ≤ 2 log 2 with L1-norm satisfying

(94e) ‖F0‖1 ≤ c (‖~f‖p + ‖f0‖).

We can calculate the eigenvalues of M∞ to be λ = 0 (n times) and λ = −n (n times). The matrix

(95a) J =
(
nI nI
I (1− n)I

)
diagonalizes M∞, i.e.

(95b) J−1M∞J = diag(0, . . . , 0,−n, . . . ,−n),

so we introduce the change of dependent variables V → (φ, ψ) by

(95c) V = J

(
φ
ψ

)
.

We find that the dynamical system (94a) now takes the form (57a), where the conditions (57c)
and (57d) follow from (94d) and (94e) respectively, and R is of the form (34b) with

(96) R1 =
n− 1
n2

A−1 − n− 1
n

A−1B + C −BA−1B +
1
n
BA−1 − I.

To simplify this expression for R1, let us write

A = n−1(1 + Ã), B = n−1(1 + B̃), and C = n−1(1 + C̃),

where |||Ã|||, |||B̃|||, |||C̃||| ≤ c ε(t) as t→∞. Then

A−1 ≈ n(I − Ã),

where ≈ means that the difference is bounded by c ε2(t) as t→∞, and a calculation shows

R1 ≈ C̃ − B̃ = C − nB as t→∞.

Since

C − nB = �
∫
Sn−1

(A− nAθ ⊗ θ) dsθ,

we see that (57b) holds and we have completed our derivation of (57). �
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