Sharp estimates for the gradient of the generalized
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Abstract. A representation of the sharp coefficient in a pointwise estimate for the gradi-
ent of the generalized Poisson integral of a function f on R” is obtained under the assumption
that f belongs to LP. The explicit value of the coefficient is found for the cases p = 1 and

p=2.
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1 Introduction
In the paper [3] (see also [6]) a representation for the sharp coeficient IC,(x) in the inequality

Vu(z)] < Ky()|ul,

was found, where u is harmonic function in the half-space R"™ = {x = () xp41) s 2 €
R", 2,41 > 0}, represented by the Poisson integral with boundary values in LP(R™), || - ||, is
the norm in LP(R"), 1 < p < oo, x € R%™. It was shown that
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and explicit formulas for K7 and K, were given. Namely,

2 1
K, = n) Ky = an+1)

Y
Wn41 2n+1wn+1

where w,, = 272 /T'(n/2) is the area of the unit sphere in R™.

In [3] it was shown that the sharp coefficients in pointwise estimates for the absolute
value of the normal derivative and the modulus of the gradient of a harmonic function in
the half-space coincide for the case p =1 as well as for the case p = 2.

Similar results for the gradient and the radial derivative of a harmonic function in the
multidimensional ball with boundary values from L? for p = 1,2 in [4] were obtained.

Thus, the L', L*-analogues of Khavinson’s problem [1] were solved in [3, 4] for harmonic
functions in the multidimensional half-space and the ball.

We note that explicit sharp coefficients in the inequality for the first derivative of analytic
function in the half-plane and the disk with boundary values of the real-part from L” in
2, 5, 7] were found.

In this paper we treat a generalization of the problem considered in our work [3]. Here
we consider the generalized Poisson integral

B
0 () =k [ )y
R

n |y — x|nte

with f € LP(R"), @ > —(n/p), 1 < p < oo, where z € RY™ | y = (¢/,0), v € R", and ki,
is a normalization constant. In the case o = 1 the last integral coincides with the Poisson
integral for a half-space.

In Section 2 we obtain a representation for the sharp coefficient C,(z) in the inequality

[V, ()] < Cp(@)|| £,
where
Cp

a:g::rlp)/p

and the constant C), is characterized in terms of an extremal problem on the unit sphere S
in R**1,

In Section 3 we reduce this extremal problem to that of finding of the supremum of a
certain double integral, depending on a scalar parameter and show that

01 == kn,an

Cp(z) =

if —n < a < n, and

Vi(n+a)nn+2)I (2-1)T (2 + ) }1/2

8n+1+a)l(n+a)

C(2 =/ wnflkn,a {

if —(n/2) <a<n(n+1)/2.

It is shown that the sharp coefficients in pointwise estimates for the absolute value of the
normal derivative and the modulus of the gradient of the generalized Poisson integral for a
half-space coincide in the case p = 1 as well as in the case p = 2.



2 Representation for the sharp constant in inequality for the gra-
dient in terms of an extremal problem on the unit sphere

We introduce some notation used henceforth. Let R = {z = (2/, z,41) 1 2/ = (21,...,2,) €
R", 241 > 0}, " = {oz € R"™ : |z = 1}, ST = {z € R™™ : |z| = 1, 2,41 > 0} and
S" ={z € R""! : |z] =1, x,41 < 0}. Let e, stand for the n + 1-dimensional unit vector
joining the origin to a point ¢ on the sphere S™.

By || - ||, we denote the norm in the space LP(R"), that is

1/p
st ={ [ 1srart

if 1 <p<oo,and ||f||e = ess sup{|f(z)] : 2’ € R"}.
Let the function in R7™" be represented as the generalized Poisson integral

uf('r) = kn,a/R _Tatl fhdy' (2.1)

n |y — |nte

with f € LP(R"), 1 < p < oo, where y = (¢/,0), ¢ € R",
-1
Pres r (u)
b o = / "—“dy’} _ ‘a2 ) 2.2
AL o (3) .

a > p (2.3)

Now, we find a representation for the best coefficient C,(x; 2z) in the inequality for the
absolute value of derivative of u, () in an arbitrary direction z € S", z € R, In particular,
we obtain a formula for the constant in a similar inequality for the modulus of the gradient.

and

Proposition 1. Let x be an arbitrary point in R’f“l and let z € S™. The sharp coefficient
Cy(x; z) in the inequality
[ (Vu, (), 2) | < Gyl 2)| 1],

15 given by
Cp(2)
Cpl; 2) = x<f+p>/p’ (24)
n+1
where .
Ci(2) = knq susp ‘(aenﬂ — (n+ a)(eq, €ny1)ey, z) | (ea, enﬂ) , (2.5)
o€ 1
p1
P (a=1)ptntl P
Cp(z)=kna ‘(aen+1—(n+a)(eg, €ni1)€s, z)"H (eg, en+1) =1 do (2.6)
St
for1 <p< oo, and
Coo(2) = kna ‘(aenﬂ — (n+ a)(es, enyi1)es, z) ’ (e,,, enﬂ)a_1 do. (2.7)
St



In particular, the sharp coefficient C,(x) in the inequality
Vu, ()] < ()| f],

s given by
Cyfa) = 2 2.8
p(z) = p)p (2.8)
n+1
where
C, = sup Cp(2). (2.9)
|z]=1
Proof. Let © = (2/,7,41) be a fixed point in R, The representation (2.1) implies
auf _ / 57”05'%7&1—7&-% (TL + a)xg-‘rl (yl — xl) f(y/)dy/
Ox; " Jon ||y — x|t ly — x|nt2ta ’
that is
N ae,. 1 (n+ o)1 (y — x)
\V/ — kna a—1 + / d /
u, () alni1 /Rn { ly — z|rte - ly — g t2re fy)dy
— Q€pni1 — (’I’L + a)(ex 7en+1)ex
f— k?’LOé a—1 + Y Yy / d /
it [ e £y’
where e,, = (y — )|y — z|~'. For any z € S",
_ a—1 (aen-l-l — (n + a>e$y’ en+1>ea:y7 Z) / /
(Y, (0).2) = bt | e f)dy. (210)
Hence,
Ci(1:%) = bngaly) sup (281 = 1+ O Empnv)em, D gy
yEOR" ly — |
and
C ( . ) =k a—1 ‘(aerﬁ*l - (n + Oé)(e:vyv en+1)€:py7 Z) ‘q d / e (2 12)
p\T; 2) = Rpalpiq . |y _ $|(n+a)q Yy .
for 1 < p < oo, where p~ ! + ¢! =1.
Taking into account the equality
Tn+1
|y —+£L'| - (ezyu _en+1)7 (213)
by (2.11) we obtain
n+ao
Ci(z;2) = k o1 sup [(aepi1 — (n+ a)(ewy7 en+1>ezya z)| ( Tp41 )
) - n,a“n41 n+a
’ yeIR™ xnil ly — x|
kn,a n+o
= T suSp (aeml — (n+ a)(es, eny1)es, z)!(eo, —€n+1) )
n+1 oES™



Replacing here e, by —e,, we arrive at (2.4) for p = 1 with the sharp constant (2.5).
Let 1 < p < co. Using (2.13) and the equality

1 1 (a:nH )(’”“)q‘”‘l Tnt

|y — a|(mreda — pnrale=n \ Jy — g ly — x|+t

n+1

and replacing ¢ by p/(p — 1) in (2.12), we conclude that (2.4) holds with the sharp constant

p—1
(a—1)p+n+1 P

S B e
Sl

where S” = {0 € S" : (e,,e,+1) < 0}. Replacing here e, by —e,, we arrive at (2.6) for
1 <p<ooandat (2.7) for p = cc.
By (2.10) we have

f)dy'.

/ (aen+1 B (n + a)(ewya en-l—l)emya Z)

V :kna a—1
90, (0)| = o} s e

|z|=1JR

Hence, by the permutation of suprema, (2.12), (2.11) and (2.4),

1/q
oe, n+ )€y, €nt1)ewn, 2)|”
Cplx) = kn,ax‘flﬁ sup {/}R B }( 1 )€y, €ni1)eny )‘ dy’}

|2|=1 |y — x|t

= sup Cp(x; 2) = sup Cy(2)a, 777 (2.14)

|z|=1 |z|=1
for 1 < p < oo, and

](aenﬂ — (77, + Oé)(exy, en+1)exy7 Z)|

Ci(r) = kpoS7isup sup
1(z) AT L=t yeomn |y — a|r+e
= sup Ci(z;z) = sup Cl(z)x;fﬁﬂ). (2.15)
|z|=1 |z|=1
Using the notation (2.9) in (2.14) and (2.15), we arrive at (2.8). O

Remark. Formula (2.6) for the coefficient C,(2),1 < p < oo, can be written with the
integral over the whole sphere S in R*!,

p—1

k;n o P (a=1)ptntl P

5G-D/p {/ (@€ —(n+a)(er €ni1)er, 2)| 7 (€, €nt1) 7 da} "
Sn

A similar remark relates (2.7):
kn,a

Co(z) = - /| |(aeni1 — (n+a)(es, eni1)es, 2)||(€r, eni1) }ail do, (2.16)

Cp(2) =

as well as formula (2.5):

Ci(2) = kna suSp |(a€ni1 — (n+a)(eq, eni1)es, z)||(€r eni1) |n+a
oesn



3 Reduction of the extremal problem to finding of the supremum
by parameter of a double integral. The cases p =1 and p = 2

The next assertion is based on the representation for C),, obtained in Proposition 1.

The sharp

Proposition 2. Let f € LP(R"), and let x be an arbitrary point in R
coefficient C,(x) in the inequality

Vu, ()] < Cy(@)|| £,

s given by
Cp
Col®) = iz
anrl
where

p—1

1 ™ w/2 P
Cp= Wn— (p_l)/pk:n aSuUp —/——— / dg@ / Fn ¥, 197 8 dv )
p ( 1) “50 m 0 0 7p( )

if 1 < p<oo. Here
Fup(@,0;7) = |Gl 03 7) [P/ cost@DPentD/ =D g ginm =1 g sin™=2
with
Gu(p,9;7) = ((n + @) cos® ¥ — a) + y(n + a) cos ¥ sind cos ¢ .

In addition,
Cl == kman

if —n < a < n.
In particular,

8n+1+a)l(n+ «)

n n 1/2
Oy = o { Vi(n+a)nn+2)I (2 -1)T (2 + ) }

for —(n/2) <a <n(n+1)/2.

(3.1)

(3.2)

(3.3)

Forp =1 and p = 2 the coefficient C,(z) is sharp in conditions of the Proposition also in

the weaker inequality obtained from (3.1) by replacing Vu, by Ou,/0xp,1.
Proof. The equality (3.2) was proved in Proposition 1.

(i) Let p = 1. Using (2.5), (2.9) and the permutability of two suprema, we find

Cl = kn,a sup sup |<Oé€n+1 - (n + Oé) (eoa en+1)eg, Z) ‘ (eaa en+1)n+a
|z|=10€ST}

= kna suSp ’aenﬂ — (n+a)(e,, enﬂ)eg‘ (eg, en+1)n+a )
oeST



Taking into account the equality

‘aen—&—l - (n + O{)(GU, en—i—l)eal
1/2
= (aen-l—l - (n + O./) (eaa en+1)807 Q€pni1 — (n + a)(eaa en+1)eo>

= (02 + ((n+ )2~ 20(n + a))(es. ew)?)

and using (2.3), (3.7), we arrive at the sharp constant (3.6) for —n < o < n.
Furthermore, by (2.5),

Ci(ent1) = kna suSp |a — (n+a)(eq, ens1)? (ea, en+1)n+a > kp.al.
o€ 1
Hence, by C; > Ci(en+1) and by (3.6) we obtain C; = C}(e,1), which completes the proof
in the case p = 1.

(ii) Let 1 < p < oo. Since the integrand in (2.6) does not change when z € S™ is replaced
by —z, we may assume that z,.1 = (e,41,2) > 0 in (2.9).

Let 2 = 2z — zp11€n41. Then (2/,€,41) = 0 and hence 22, +|2'|> = 1. Analogously, with
0=(01,...,00,0n41) €S, we associate the vector ' = e, — op1€n41.

Using the equalities (o7, e,41) = 0, 0,01 = /1 —|0’|?> and (2, e,.11) = 0, we find an

expression for (e, 41 — (n + @)(€ey, €,41)€,, 2) as a function of o:

/‘2

(eni1 — (n+ @)(€r, €ny1)€s, 2) = aZpy1 — (N + @)0p11 (€0, 2)

= azpy1 — (N4 Q)on41 (0" + ont1€nt1, 2+ Zns1€041)

= azpy1 — (n+ @)on [(07,2) + 20410041

)1~ o)~ alz — VI[P (0 F). (38)
Let B" = {2’ = (21,...,2,) € R": |2/| < 1}. By (2.6) and (3.8), taking into account that

do = do'/\/1 — |o’|?, we may write (2.9) as

p

(ap+n+1)/2(p—1)
Cp = kna sUD / Hap(lo'], (0", 2) (1 = |o']?) ™ P do’ ,
P n,a zeSTy n 1—|o'?
p—1
B kma Sup{ H?’L,p(|0',|7 (0-/7 Z/)) (1_ |0'/|2)((a_Q)p+n+2)/2(p—1)d0'/} ! , (39)
ZESZL_ B"

where
Hop(l6] (07, 2) = |[(n+0)(1 = [0'P) ~ 0] 201t (nta)y/T— [0 F (o, 2)

Using the well known formula (see e.g. [8], 3.3.2(3)),

1 T
/ g(\a:], (a, a:))dx = Wp_1 / r"ldr/ g(r, la|r cos gp) sin" "2 dy |
n 0 0

p/(p—1)

. (3.10)

7



we obtain

Hn,p(|0'/|’ (g-” Z’)) (1 _ |0_/|2)((a*2)p+n+2)/2(p,1) da-/
Bn

1 ™
_ wn1/ 7"”1(1—7“2)((a_z)p+”+2)/2(p_1)dr/ s (7", r]z/\ cos SD) sin™2 odp .
0 0

Making the change of variable = sin ) in the right-hand side of the last equality, we find

(a=2)p+n+2
Hop(lo'], (0, 2)) (1 = |o'?) 2070 do’ (3.11)

BTL
T /2 . . S (@-Dptntl
=wp_1 [ sin""pdp Hyp(sind, |2'|sind cosp)sin” ' deos »1  9di,
0 0

where, by (3.10),

p/(p—1)

Hyp(sind, |2/ sind cos ) = ‘((n + @) cos® ¥ — @) zpq1+ (n + a)|2'| cos ¥ sind cos ¢

Introducing here the parameter v = |2'|/z,41 and using the equality |2/|> + 22, = 1, we
obtain 1
Hop(sind, |2'[sind cosp) = (1 + 72)*P/2(p*1>|gn(<p, v, 7)|p/(p_ ), (3.12)

where G, (p, ;) is given by (3.5).
By (3.9), taking into account (3.11) and (3.12), we arrive at (3.3).

(ifi) Let p = 2. By (3.3), (3.4) and (3.5),

1/2
1 T /2
Co = Jwn_1 kno SUp —— / d / Frnoalp, ;) di , 3.13
2 1 s 7213 m{ 0 2 0 2(80 7) } ( )

where
Fu2(e,9;7)=[((n + @) cos® 9 —a) +v(n + a) cos ¥ sind cos | 2 cos™ I 2o9gin 1 sin™ 0.
The last equality and (3.13) imply

1

Cy = Jon1 kno sup —— {7, + 72T 1/2, 3.14
2 1 , 7213 m{ 1 Y 2} ( )

where
m w/2 )
I, = / Sinn_2 (2 dg@/ ((n + a) COS2 9 — a) Sinn—l 9 COSn—l-i—Qa 9 dd
0 0

_ Vrn(n+2)(n+ o) I (%) I (2242)

I' (%5
4n+2a)(n+ 14+ a)T'(n+ «)

(3.15)



and

™ /2
I, = (n+a)? / sin" 2 ¢ cos® ¢ dgp/ sin™ ! 9 cos™ 122 9 dy
0 0

R (it T (5T (2 -
4n+1+a)l'(n+a) ' '
By (3.14) we have
Cy = Jwn_1 kp o max {111/27121/2}‘ (3.17)
Further, by (3.15) and (3.16),
T, n(n+2)
Z, n+2a
Therefore,
. L n?+n —2a
I n 4+ 2«
Taking into account (3.17) and that n 4+ 2« > 0 for p = 2 by (2.3), we see that inequality
oy
Iy —

holds for @ < n(n + 1)/2. So, we arrive at the representation for Cy with —(n/2) < a <
n(n 4 1)/2 given in formulation of the Proposition.

Since z € S™ and the supremum in v = |2/|/2,41 in (3.13) is attained for v = 0, we have
Cy = C(e,11) under requirements of the Proposition. O
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