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1. Introduction

The title of this article was inspired by the title of Sholem Aleichem’s story
“Seventy five thousand”. Alas, the reader will find only seventy five problems
here! I hope each of them can produce a long sequence (a thousand) of others.

The problems below present a sample of questions that I came across
upon during many years of research, but have never seen them solved or even
clearly formulated. Some of them might turn out being rather simple, while
others would present a significant challenge and hopefully attract interest of
beginning researchers and experts alike.

I tried to select questions that can be formulated without much prelim-
inary knowledge. For more explanations the reader is directed to the cited
literature.

The problems included here address both linear and non-linear PDEs.
One can hear sometimes that “all linear problems had been already solved”.
Hopefully, the following list of problems will show that this opinion is mis-
taken.

2. Basic notations

Here some notations which are used in the article are collected.

By a domain Ω we mean an open connected set in R
n with boundary ∂Ω.

We say that Ω is a Lipschitz graph domain if it can be locally explicitly rep-
resented in a certain cartesian system by a Lipschitz function. The domain
is weakly Lipschitz if it is locally Lipschitz diffeomorphic to a ball. Let Hn−1

stand for the (n − 1)-dimensional Hausdorff measure. Let Br(x) denote the
open ball with center x and radius r, Br = Br(0). We shall use the notation
mn for n-dimensional Lebesgue measure and vn formn(B1). We use the nota-
tion ∇lu for the distributional gradient of order l, i.e. ∇lu = {Dαu}, where
α is a multi-index (α1, . . . , αn), D

α = Dα1
x1
. . . Dαn

xn
and |α| = ∑

j αj = l.
We put ∇ = ∇1.

Let 1 ≤ p < ∞, l ∈ N, and let Ω be a domain in R
n. By Ll,p(Ω)

we denote the space of distributions whose gradient of order l is in Lp(Ω)
supplied with the norm

‖∇lu‖Lp(Ω) + ‖u‖Lp(ω),

where ω is a bounded subdomain of Ω with dist(∂ω, ∂Ω) > 0.

We call the quantities a and b equivalent if there are positive constants
c1 and c2 such that c1a ≤ b ≤ c2a.

By c, C we denote different positive constants.

The Einstein summation convention is always assumed.



Seventy Five (Thousand) Unsolved Problems in Analysis and PDEs 5

3. Sobolev spaces of integer and fractional orders

3.1. Isoperimetric problem for fractional perimeter

Let Ω be a bounded domain with smooth boundary ∂Ω and α ∈ (0, 1). The
following set function was introduced in [68]:

Pα(Ω) =

∫

Ω

∫

Rn\Ω

dx dy

|x− y|n+α
.

Later, Pα(g) was called the “fractional perimeter of Ω” and has attracted
a lot of attention since.

By [68, Section 6], (see also [71, Section 11.10]), the best constant C in
the isoperimetric inequality

Pα(Ω) ≤ C Hn−1(∂Ω)
n−α
n−1 (3.1)

is the same as the best constant C in the functional inequality
(

∫

Rn

∫

Rn

|u(x)− u(y)|q
|x− y|n+α

dx dy
)1/q

≤ 21/qC ‖∇u‖L1(Rn),

where q = n/(n− α) and u ∈ C∞
0 (Rn).

By [68, p. 333],

C ≤ n v
(n−1+α)/n
n

α(1− α)

(

Hn−1(∂B1)
)

n−α
n−1

.

The constant factor on the right, although explicit, is hardly best possible.

Problem. Find the best value of the isoperimetric constant C in (3.1).

3.2. Strong capacitary inequality for functions with arbitrary boundary data

Let F be a relatively closed subset of Ω. By the capacity of F generated by
the norm in Ll,p(Ω) we mean the set function

cap(F,Ll,p(Ω)) = inf
{

‖u‖p
Ll,p(Ω)

: u ∈ C∞(Ω), u|F ≥ 1
}

. (3.2)

Similar capacities are frequently used in potential theory, partial differential
equations and theory of function spaces (see [60], [69], [70]).

Here is, for example, a simple application of capacity to the integral
inequality

‖u‖Lp(Ω,µ) ≤ c ‖u‖Ll,p(Ω), (3.3)

where p ∈ (1,∞), µ is a Borel measure on Ω and u ∈ C∞(Ω) is an arbitrary
function. Take a relatively closed subset F of Ω and any function u from the
above definition of cap(F,Ll,p(Ω)). Then (3.2) implies

µ(F ) ≤ C cap(F,Ll,p(Ω)). (3.4)

Thus, this isocapacitary isoperimetric inequality proves to be a necessary
condition for inequality (3.3).

It is easy to show that the condition (3.4) is sufficient for (3.3) provided
that the so-called strong capacitary inequality

∫ ∞

0

cap({x ∈ Ω : |u(x)| ≥ t}, Ll,p(Ω)) d(tp) ≤ c ‖u‖p
Ll,p(Ω)

(3.5)
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holds for all u ∈ C∞(Ω).

For functions with zero boundary conditions inequalities of type (3.5)
first appeared in [61] (see also [69] and [1]). If l = 1, (3.5) holds without
restrictions on Ω. However, already for l > 1 the domain should satisfy some
regularity conditions as the counterexample constructed in [80] shows (see
also [83, Section 2.13]). This gives rise to the following

PROBLEM. Find necessary and sufficient conditions, or only non-trivial
sufficient conditions, on Ω guaranteeing inequality (3.5).

3.3. Boundary traces of functions in a Sobolev space

Let Ω be a bounded weakly Lipschitz domain and let ϕ : ∂Ω → R
1.

It is well-known that ϕ is the trace of a function in L1,p(Ω), if and only
if ϕ ∈ L1(∂Ω) for p = 1 and ϕ ∈ L1−1/p,p(∂Ω) for p > 1, where the Besov
space Lα,p(∂Ω), 0 < α < 1, is supplied with the seminorm

(

∫

∂Ω

∫

∂Ω

|ϕ(x)− ϕ(y)|p dsx dsy
|x− y|n+αp−2

)1/p

.

This fact fails if Ω is not weakly Lipschitz. Other characterizations of the
trace are given for some classes of non-Lipschitz domains in [83, Chapter 6].

Problem. Justify the following conjecture concerning an “extremal length”1

characterization of traces for an arbitrary domain Ω: The function ϕ is the
trace of a function in L1,p(Ω) if and only if there exists a function ρ ∈ C(Ω)∩
Lp(Ω) such that for “quasi-every” pair of points x

′

and x
′′

on ∂Ω and for

any locally rectifiable arc γ ⊂ Ω joining x
′

and x
′′

there holds the inequality

|ϕ(x′

)− ϕ(x
′′

)| ≤
∫

γ

ρ(x) |dx|.

By “quasi-everywhere” one means outside of a set of zero L1,p-capacity.

3.4. Embedding of a Sobolev space into the space of distributions

Let Ω be an open set in R
n. By Ll,p

0 (Ω, µ) we denote the completion of C∞
0 (Ω)

in the norm

‖∇lu‖Lp(Ω) +
(

∫

Ω

|u|pdµ
)1/p

,

where p ∈ [1,∞] and µ is a measure.

The question of embedding Ll,p
0 (Ω, 0) into the distribution space [C∞

0 (Ω)]′

is completely solved in [23] for p = 2 and by [69, Theorem 15.2] for all values
of p.

Problem. Find necessary and sufficient conditions on the measure µ ensuring

the embedding of Ll,p
0 (Ω, µ) into [C∞

0 (Ω)]′.

1For the notion “extremal length” see [17].
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3.5. An approximation problem in the theory of Sobolev spaces

J.L. Lewis [43] showed that C∞(Ω) is dense in L1,p(Ω) if Ω is an arbitrary
Jordan domain in the plane, i.e. ∂Ω is homeomorphic to ∂B1. In [44] he asked
if C∞(Ω) is dense in Ll,p(Ω) with l > 1 for every Jordan domain Ω ⊂ R

2.
It is almost obvious that L∞(Ω)∩L1,p(Ω) is dense in L1,p(Ω) for every

open set Ω ⊂ R
n. A direct extension of this property for Ll,p(Ω) with l > 1

is impossible, as shown in [80]. A planar domain Ω in the counterexample
proposed in [80] is not Jordan, which gives rise to the following

Problem. Are bounded functions belonging to Ll,p(Ω), l > 1, dense in Ll,p(Ω)
if Ω is an arbitrary Jordan domain?

3.6. Extensions of Sobolev functions outside of an angle

Let Aα denote the angle {z ∈ C : 0 < argz < α}, 0 < α < 2π, and let Eα be
the extension operator L1,2(Aα) → L1,2(R2) which has the least norm. Using
the Radon transform, one can show that

‖Eα‖ = max
{( α

2π − α

)1/2

,
(2π − α

α

)1/2}

.

Problem. Find the least norm of the extension operatorW 1,2(Aα) →W 1,2(R2),
where

‖u‖W 1,2(Ω) =
(

‖∇u‖2L2(Ω) + ‖u‖2L2(Ω)

)1/2

.

3.7. Best constants in some classical inequalities

Consider the inequality
∫

∂B1

|u(x)|2dω ≤ C

∫

B1

|∇u|2dx, (3.6)

where B1 is the open unit ball in R
n, n > 2, dω is an element of the surface

area on the sphere ∂B1, and u is an arbitrary C0,1 (Lipschitz) function given
on B1 that vanishes on a closed subset F of B1. This inequality holds if and
only if the harmonic (Wiener) capacity cap(F ) is positive, where the Wiener
capacity is defined as follows

cap(F ) = inf
{

∫

Rn

|∇v|2dx : v ∈ C0,1(Rn), v ≥ 1 on F
}

.

The following assertion containing an explicit value of C in (3.6) was
obtained in [51].

Let u ∈ C0,1(B1), u = 0 on F , where F ⊂ B1. Then
∫

∂B1

|u(x)|2dω ≤ cn
cap(F )

∫

B1

|∇u|2dx, (3.7)

where

cn = 2(n− 1)nvn. (3.8)

Various inequalities related to (3.7) have interesting applications to the
theory of partial differential equations and were studied from different points
of view in [69] and elsewhere. However, the question of sharp constants has



8 Vladimir Maz’ya

never been addressed. Therefore, it seems reasonable to formulate the prob-
lem.

Problem. Find the best value of cn in (3.7).

3.8. Hardy inequality with capacitary distance to ∂Ω

Let Ω be a domain in R
n, n > 2. As is well-known, the Hardy inequality
∫

Ω

( |u(x)|
d(x)

)2

dx ≤ c

∫

Ω

|∇u|2dx, (3.9)

where u ∈ C∞
0 (Ω) and d(x) is the distance from x to ∂Ω, does not hold for

any domain and conditions for its validity are known (see [69, p. 733–735] for
references).

Problem. Prove that (3.9) holds for any domain Ω if d(x) is replaced by the
capacitary distance defined by

dα(x) = inf
{

r > 0 : cap(Br(x)\Ω) ≥ α cap(Br)
}

,

where α is a positive parameter and cap denotes the Wiener capacity defined
in the previous subsection.

3.9. Uncertainty principle for divergence-free fields

The inequality
(

∫

R1

u2dx
)2

≤ 4
(

∫

R1

x2 u2dx
)(

∫

R1

(u′)2dx
)

is the so-called uncertainty principle in quantum mechanics, and the constant
4 is sharp.

Problem. What is the best constant C > 0 in the inequality
(

∫

Rn

|u|2dx
)2

≤ C
(

∫

Rn

|x|2 |u|2dx
)(

∫

Rn

|∇u|2dx
)

,

where u = (u1, . . . , un) is an arbitrary divergence-free vector field?
Answer the same question concerning the inequality
(

∫

Rn

|u|pdx
)p

≤ Cp

(

∫

Rn

(

|x| |u|
)p/(p−1)

dx
)p−1(

∫

Rn

|∇u|pdx
)

,

where p ∈ (1,∞) and divu = 0 in R
n.

3.10. Normalization of an anisotropic Riesz potential space

Let 1 < p < ∞ and let l = (l1, . . . , ln), where 0 < li < 1. By Ll,p(Rn) we
denote the generalization of the classical Riesz potential space normed by

‖µ(D)u‖Lp(Rn),

where µ(D) is the pseudodifferential operator with symbol

µ(λ) =

n
∑

i=1

|λi|li .
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It is shown in [48] (see also [24]) that the space Ll,2(Rn) can be endowed
with the norm ‖Dl,2 u‖L2(Rn), where

(

Dl,2
)

u(x) =
(

∫

Rn

|u(x+ z)− u(x)|2
(

n
∑

i=1

|zi|li
)−δ

dz
)1/2

with

δ = 2 +

n
∑

i=1

l−1
i .

This norm is useful in applications such as the description of multipliers in
Ll,2(Rn) and the theory of Dirichlet forms.

Problem. For p 6= 2 find an analog of the just mentioned representation of
the norm in Ll,p(Rn) involving the difference u(x+ z)− u(x).

Remark. Strichartz [101] supplied the space of isotropic Riesz potentials with
the norm ‖Sl u‖Lp(Rn), where

(

Slu
)

(x) =
(

∫ ∞

0

[

∫

|z|<y

|u(x+ z)− u(x)| dz
]2 dy

y1+2(n+l)

)1/2

.

3.11. Two-weight Hardy inequality involving first and second derivatives

Let p ≥ 1 and let γ 6= 1−2/p. By ψ we denote a function in C∞
0 (R2). In case

γ < 1− 2/p we require additionally that ∇ψ(0) = 0.

Problem. Find the best constant in the inequality
∫

R2

|∇ψ|p |x|p(γ−1)dx ≤ C(p, γ)

∫

R2

(

ψ2
x1x1

+ 2ψ2
x1x2

+ ψ2
x2x2

)p/2 |x|pγ dx.

It is proved in [10] (see also [69, p. 229]) that when p = 2,

C(2, γ) =



















1 + (1− γ)2

γ2(3 + (1− γ)2)
for γ ∈ [−

√
3− 1,

√
3− 1],

(γ2 + 1)−1 otherwise.

The method used in the proof of this result cannot be applied to the
case p 6= 2.

3.12. Trace inequality with a non-positive measure

Let Ω be a bounded smooth domain in R
n and let σ be a real measure, not

necessarily positive, even a distribution, supported on ∂Ω.

Problem. Let n > p > 1 and let u be any function in C∞(Ω). Find necessary
and sufficient condition on σ for the validity of the inequality

inf
c∈R1

∫

∂Ω

|u− c|pdσ ≤ C

∫

Ω

|∇u(x)|pdx.
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A similar problem for the inequality
∫

Ω

|u|pdσ ≤ C

∫

Ω

|∇u(x)|pdx

with σ supported on Ω was solved in [25] for p = 2 and in [26] for an arbitrary
p > 1.

3.13. Domains for which Ll,p(Ω) ∩ L∞(Ω) is a Banach algebra

Let Ω be a domain in R
n. We may ask whether the space Ll,p(Ω)∩L∞(Ω) is

an algebra with respect to pointwise multiplication. Clearly, this is the case
for l = 1. Since Stein’s extension operator from a Lipschitz graph domain Ω
is continuous as an operator

Ll,p(Ω) ∩ L∞(Ω) → Ll,p(Rn) ∩ L∞(Rn),

the above question has the affirmative answer for the union of a finite number
of Lipschitz graph domains. For example, Ω can be a bounded domain having
the cone property. However, by a counterexample proposed in [80] (see also
[69, p. 120-121]), it turns out that the space Ll,p(Ω)∩L∞(Ω) is generally not
an algebra.

Problem. Find a necessary and sufficient condition on Ω ⊂ R
n ensuring that

Ll,p(Ω) ∩ L∞(Ω) is a Banach algebra.

4. Integral operators

4.1. A multi-dimensional integral equation which can be reduced to one-
dimensional

Let ϕ and ψ be functions defined on a multi-dimensional domain Ω.

Problem. Develop a theory of solvability of the integral equation

λu(x)−
∫

Ω

u(y)

ϕ(x)− ψ(y)
dy = f(x), (4.1)

where f is a given function and λ is a complex parameter.

Note that (4.1) can be reduced to a certain one-dimensional integral
equation by using the so-called coarea formula, see [69].

4.2. A singular integral operator in Lp(Rn)

Consider the singular integral operator A with the symbol

∂B1 ∋ ω → exp(i λ φ(ω)),

where φ is a smooth real-valued function on ∂B1, and λ is a large real pa-
rameter.

Problem. Prove or disprove the estimate

‖A‖Lp(Rn)→Lp(Rn) ≤ c |λ|(n−1)| 1
2
− 1

p
|,

where 1 < p <∞, c depends on n, p and the function φ.
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4.3. Fredholm radius of the harmonic double layer potential

Considering the logarithmic harmonic potentials of the single and double
layer on curves of “bounded rotation”, J. Radon has introduced the notion of
the essential norm and the Fredholm radius of a bounded operator in 1919.

The essential norm ‖L‖ of a linear bounded operator L acting on a
Banach space B is defined as

‖L‖ = inf
{K}

‖L−K‖B→B,

where {K} is the set of all linear compact operators on B.
The Fredholm radius R(L) of the operator L is the radius of the largest

circle on the complex λ-plane centered at λ = 0 inside which I + λL is a
Fredholm operator.

The essential norm ‖L‖ is related to R(L) by the inequality

R(L) ≥ ‖L‖−1.

It was shown by I. Gohberg and A. Marcus [20] that the Fredholm radius
of the operator L, acting on a Banach space B equipped with the norm ‖ · ‖0,
satisfies

R(L) = sup{‖L‖−1 : ‖ · ‖ ∈ N (‖ · ‖0)},

where ‖L‖ is calculated with respect to a norm ‖ · ‖ in the set N (‖ · ‖0) of all
norms in B, equivalent to ‖ · ‖0.

Král [35] and Burago and Maz’ya [5] showed that for a n-dimensional
bounded domain D with finite variation of the solid angle ωD(p,E) (p ∈
∂D, E ⊂ R

n) the essential norm of the harmonic double layer potential in
the Banach space C(∂D) is

2

nvn
lim
δ→0

sup
p∈∂D

varωD(p, Bδ(p)).

References to other results in the same area can be found in [36, Chapter 7].

Problem. Find a geometrical representation for the Fredholm radius of the
harmonic double layer potential as an operator in C(∂D).

4.4. Potential theory for surfaces with cusps

A detailed theory of boundary integral equations for harmonic and elastic
singe and double layer potentials on curves with exterior and interior cusps
was constructed in [93].

Problem. Develop a theory of multidimensional boundary integral equations
for domains with inner and outer cusps.

First results concerning the multidimensional case can be found in [84]-[86].



12 Vladimir Maz’ya

4.5. Regularity of domains in the theory of boundary integral equations

In [90] (see also [88, Chapter 15]) a regularity theory of classical boundary
integral equations involving harmonic, elastic and hydrodynamic potentials
on nonsmooth surfaces is presented. A goal of this theory is to establish
solvability in fractional Besov spaces.

Problem. Obtain results on the solvability of just mentioned equations in
Sobolev spaces Ll,p(∂Ω) with integer l under minimal requirements on ∂Ω.

4.6. Integral equations of potential theory under interaction of nearly touch-
ing particles

The following difficulty arises when using the boundary element method to
study hydrodynamic interactions among particles in suspensions and other
similar phenomena when the particles are nearly touching. Integration of ker-
nels of integral operators on elements near the closest contact points destroys
the accuracy of the numerical procedure.

Problem. Find asymptotic representation for densities of harmonic, elastic,
and hydrodynamic potentials satisfying the boundary integral equations by
using the distance between particles as a small parameter.

4.7. Non-classical maximal operator

Let the maximal operator M♦ be defined by

(

M♦f
)

(x) = sup
r>0

∣

∣

∣

∫

−
Br(x)

y − x

|y − x| f(y) dy
∣

∣

∣
, x ∈ R

n,

where f is locally integrable in R
n and the barred integral stands for the

mean value. It is obviously dominated by the Hardy-Littlewood maximal
operator M . A simple property of M♦ is the sharp pointwise inequality for
functions of one variable

|u′(x)|2 ≤ 8

3

(

M♦u
)

(x)
(

M♦u′′
)

(x),

see [71, formula (12.0.5)].
Clearly,M♦ is dominated by the sharp maximal operatorM ♯ defined by

(

M ♯f
)

(x) = sup
r>0

∫

−
Br(x)

|f(y)− fBr(x)| dy,

where fBr(x) stands for the mean value of f in the ball Br(x).

Problem. Does there exist a Banach space B such that one of the operators
M ♯ or M♦ is bounded in B whereas the other operator is not bounded?

4.8. Fourier p-capacity and potentials

It is difficult to overestimate the role of various capacities of sets in analysis
and partial differential equations.

Let us introduce the set function

inf
{

‖F u‖Lp(Rn) : u ∈ C∞
0 (Rn), u ≥ 1 on K

}

(4.2)
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where p ∈ [1,∞], F is the Fourier transform and K is a compact set in R
n.

It is natural to call (4.2) the Fourier capacity of K. If p = 2, this capacity is
equal to (mnK)1/2.

Problem. Find upper and lower geometrical estimates of the Fourier p-capacity.
Develop a theory of Fourier p-potentials

F−1
(

|F µ|1/(p−1)F µ
)

,

where µ is a measure, in spirit of [73]-[75].

5. Linear elliptic operators

5.1. Integral inequality for the integrable Laplacian

It is shown in [89] that the inequality

∣

∣

∣

∫

R2

2
∑

i,j=1

ai,j uxi
uxj

dx
∣

∣

∣
≤ C

(

∫

R2

|∆u| dx
)2

,

where ai,j are constants and u is an arbitrary complex-valued function in
C∞

0 (R2), holds if and only if a1,1 + a2,2 = 0.
Other results of a similar nature are obtained in [70], where in particular

it is proved that the inequality

∣

∣

∣

∫

Rn

n
∑

j=1

αj

∣

∣

∣

∂u

∂xj

∣

∣

∣

dx

|x|
∣

∣

∣
≤ C

∫

Rn

|∆u| dx,

where αj are real constants, holds for all real-valued functions u ∈ C∞
0 (Rn)

if and only if
n
∑

j=1

αj = 0.

Problem. I conjecture that the inequality
∣

∣

∣

∫

Rn

Φ(∇u) dx
∣

∣

∣

n−1

n ≤
∫

Rn

|∆u| dx,

where n > 1, Φ is a smooth function outside the origin and positive homoge-
neous of degree n/(n− 1), holds for all u ∈ C∞

0 (Rn) if and only if
∫

∂B1

Φ(x) dωx = 0.

5.2. Hölder regularity of a boundary point with respect to an elliptic oper-
ator of second order

Let Ω be a bounded domain in R
n, n ≥ 2. We fix a non-isolated point O ∈ ∂Ω

as the origin. Let us say that a function u defined on Ω is α-Hölder continuous
at O with α > 0 if it has a limit u(O) as x→ O and there exists α such that

|u(x)− u(O)| ≤ C|x|α
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for all x ∈ Ω. Similarly, a function ϕ given on ∂Ω is called α-Hölder continuous
at O if there is a limit ϕ(O) of ϕ(x) as x→ O, x ∈ ∂Ω, and

|ϕ(x)− ϕ(O)| ≤ C|x|α (5.1)

By uϕ we mean a bounded solution to the Dirichlet problem

Lu = 0 in Ω, u = ϕ on ∂Ω,

where ϕ is a bounded Borel function on ∂Ω and

(Lu)(x) = div
(

A(x)∇u(x)
)

is a uniformly elliptic operator with a measurable symmetric coefficient ma-
trix A. Basic facts concerning solvability of this problem can be found in [45].

We introduce the L-harmonic measure HL(x,B), where x ∈ Ω and B is
a Borel subset of ∂Ω (see e.g. [45, Definition 1.2.6]).

Definition. The point O is called α-Hölder regular with respect to L if the
α-Hölder continuity of ϕ at O implies the α-Hölder continuity of uϕ at O.

Definition. The point O is called Hölder regular with respect to L if there
exists α > 0 such that O is α-Hölder regular.

A necessary and sufficient condition for the Hölder regularity of O is
contained in the following assertion proved in [72].

Theorem. The point O ∈ ∂Ω is Hölder regular with respect to L if and only
if, for some positive constants λ and C,

HL(x, ∂Ω\Br) ≤ c
( |x|
r

)λ

(5.2)

for all r > 0 and x ∈ Ω ∩Br.

Let n > 2 and let cap denote the Wiener capacity defined in Section 3.7.
The following condition, sufficient for the Hölder regularity of O and inde-
pendent of L, was found in [52], [54] [55]:

lim inf
r→0

1

| log r|

∫ 1

r

cap(Ω\Bρ)
d ρ

ρn−1
> 0. (5.3)

Under additional restrictions on the domain, this condition proves to be
necessary for the Hölder regularity, see [54], [104].

Clearly, (5.3) fails or works simultaneously for all operators L. However,
it is not necessary for the Hölder regularity in general, see the counterexample
in [66, p. 509–510]. Although (5.2) formally depends on L, it is natural to
formulate the

Problem. Prove or disprove that the Hölder regularity of a point is indepen-
dent of the operator L.
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5.3. Uniqueness in the Cauchy problem for the Laplace equation

Let Rn+1
+ = {(p, t) : p ∈ R

n, t > 0}. Suppose a function u ∈ C1(Rn+1
+ ∪ R

n)

is harmonic in R
n+1
+ and its Dirichlet data has zero of infinite order at the

origin. Moreover, let the normal derivative satisfy
∣

∣

∣

∂u

∂t
(p)
∣

∣

∣
≤ h(|p|), p ∈ R

n, (5.4)

where h is a function defined on [0,∞) positive on (0,∞) and such that
h(r) ↓ 0 as r ↓ 0. One can ask for which h it is true that (5.4) implies u = 0.

The following answer to this question was obtained in [76].

Suppose h satisfies certain regularity conditions (not to be specified here),
then (5.4) implies u = 0 if and only if

∫ 1

0

log h(r) dr = −∞. (5.5)

By Kelvin’s transform, the criterion (5.5) can be stated for harmonic
functions in a ball. However, the method of proof given in [76] does not
provide an answer to the following question.

Problem. Is it possible to replace R
n+1
+ in the above exposition by a smooth

domain? Also, can one replace the Laplace operator by an arbitrary second
order elliptic operator with smooth coefficients?

In this case, it is only known that the uniqueness follows from the esti-
mate

|∇u(x)| ≤ exp(−1/|x|c)
with a certain positive c (see [39]) and with c = 2 + ε, ε > 0, (see [41]).

5.4. De Giorgi-Nash theorem for equations with complex-valued coefficients

Let Ω be a domain in R
n. By the classical De Giorgi-Nash theorem, an

arbitrary weak solution of the uniformly elliptic equation

∂

∂xi

(

aij(x)
∂ u

∂xj

)

= 0, 1 ≤ i, j ≤ n

with measurable bounded real-valued coefficients is locally Hölder continuous.
If the coefficients aij are complex-valued and

Re
(

aij(x)ξiξj
)

≥ C|ξ|2,
for all x ∈ Ω and ξ ∈ R

n, this assertion is not true for dimensions n > 4.
See [95, p. 391–393] for examples of equations whose weak solutions are even
unbounded near an interior point of a domain.

Problem. Prove or disprove that De Giorgi-Nash property holds for dimen-
sions n = 3 and n = 4.

The Hölder continuity of u in the case n = 2 follows from [94].
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5.5. Fractal domains versus Lipschitz domains

During the last fifty years considerable progress has been made in the study
of elliptic boundary value problems on Lipschitz graph domains (see [27] for a
survey of this development). In particular, classes of solvability and estimates
of solutions received considerable attention in this area.

A Lipschitz graph domain is locally given by

{x = (x′, xn) ∈ R
n, xn > ϕ(x′)},

where ϕ satisfies the Lipschitz condition. Replacing here Lipschitz condition
by Hölder condition, we arrive at the definition of a Hölder graph domain.

With the existing rich theory of boundary value problems in Lipschitz
graph domains, the absence of similar results in Hölder graph domains seems
ubiquitous.

Problem. Address this issue.

5.6. Dirichlet problem in a planar Jordan domain

Let u be a variational solution of the Dirichlet problem with zero boundary
data for the equation

L2m(Dx)u = f (5.6)

in Ω, where Ω is an arbitrary bounded Jordan domain in R
2 (see Section 3.5),

f ∈ C∞
0 (Ω) and L2m is a strongly elliptic operator with real constant coeffi-

cients.

Problem. Prove that the solution satisfies
∫

Ω

|∇mu|4−εdx <∞ (5.7)

for every small ε > 0.

This problem is unsolved even for the case of the Laplace operator which
is related to Brennan’s conjecture [7].

Inequality (5.7) holds for an arbitrary piecewise smooth domain without
cusps, see [33, Chapter 9] and [87, Chapter 4].

5.7. Hölder regularity of capacitary potential of n-dimensional cube

It can be easily proved by a barrier argument that the harmonic capacitary
potential of the cube {x : 0 ≤ xi ≤ 1, i = 1, . . . , n} belongs to a certain
Hölder class Cα(n), 0 < α(n) < 1, which gives rise to the following

Problem. Describe the asymptotic behaviour of α(n) as n→ ∞.

5.8. Non-Lipschitz graph domains which are weakly Lipschitz

Recall that open sets, locally Lipschitz diffeomorphic to a half-space, are
called weak Lipschitz domains. One can easily construct cones with bound-
ary smooth outside the vertex and polyhedra which are not Lipschitz graph
domains (see [33, p. 4]).
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Problem. Do the known results on elliptic equations in Lipschitz graph do-
mains (see [27] and references therein) extend to arbitrary weakly Lipschitz
domains?

It seems, there are no counterexamples to this question and some results
concerning non-Lipschitz graph cones suggest the affirmative answer to it, see
[33], [87].

5.9. Self-adjointness of the Laplacian in a weighted L2-space

Let ρ ∈ L1
loc(R

n), ρ > 0, and let

L2(ρ) =
{

u :

∫

Rn

|u(x)|2 ρ(x) dx <∞
}

.

In 1990 Eidus [14] proved that for n ≥ 3 a necessary condition for the operator
ρ−1∆ in L2(ρ) to be self-adjoint is

∫

Rn

ρ(x) dx = ∞. (5.8)

One can replace (5.8) by
∫

Rn\F

ρ(x) dx = ∞ (5.9)

for all closed sets F with finite harmonic capacity (see [71, Section 17.1]).

Problem. Show that (5.9) is not sufficient and find a sharp sufficient condi-
tion for the self-adjointness of ρ−1∆ in L2(ρ).

5.10. Peculiarities of planar C1 domains and extensions of the Dirichlet
Laplacian

By L1,2
0 (Ω) we denote the completion of C∞

0 (Ω) in the norm of L1,2(Ω). By

∆ we denote the closure of the Laplacian ∆ : L2,2(Ω) ∩ L1,2
0 (Ω) → L2(Ω).

Let ∆̃ be the Friedrichs extension of ∆ and let ∆∗ denote the adjoint of ∆.
It is well known that ∆ = ∆ = ∆̃ = ∆∗, if Ω is sufficiently smooth. This is
not true in general if Ω is not in the class C2.

The following result was obtained in [63], [56].
Let ω(r) be the angle measure of {x ∈ Ω : |x| = r}, where O ∈ ∂Ω and

Ω ⊂ R
2. If ∂Ω\{O} is smooth and

∫ 1

0

exp
( 2

π

∫ 1

ρ

π − ω(r)

r
dr
)d ρ

ρ
= ∞,

then ∆ = ∆̃. This condition is also necessary under some additional restric-
tions.

Here are two surprising consequences of the above statement.

1. There exists a planar C1 domain Ω such that the closure of ∆ is self-
adjoint, but the estimate

‖u‖L2,2(Ω) ≤ C‖∆u‖L2(Ω) (5.10)

does not hold for all u in the domain of ∆̃, i.e. ∆ = ∆̃ but ∆ 6= ∆.
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2. The closure of the operator (1+ε) ∂2x1
+∂2x2

, ε > 0, can be non-selfadjoint

whilst for the same Ω, the generalized solution u ∈ L1,2
0 (Ω) of the equa-

tion ∆u = f satisfies (5.10) and, consequently, ∆ = ∆ = ∆̃.

Example. Let

Ω =

{

x ∈ B1 : x2 >
−C |x1|
| log |x1| |

}

⊂ R
2,

where C is a positive constant. Then

∆ = ∆ = ∆̃ if and only if C < π/4,

∆ 6= ∆, ∆ = ∆̃ if and only if C = π/4,

∆ 6= ∆, ind∆ = 1 if and only if C > π/4.

These isolated phenomena were studied only for the particular case n = 2
and the Laplace-Dirichlet operator

Problem. Obtain similar results for various extensions of elliptic differential
operators under minimal restrictions on Ω and the coefficients.

Concerning the index of elliptic boundary value problems in domains
with angle and cone vertices see [82], [15].

5.11. Pointwise estimates for polyharmonic Green’s functions

Let Ω be an arbitrary domain in R
n. Green’s function of ∆m is a solution of

∆m
x Gm(x, y) = δ(x− y), x, y ∈ Ω,

subject to zero Dirichlet conditions for x ∈ ∂Ω. Here δ is the Dirac function.

Problem. Let n > 2m. Prove or disprove that

|Gm(x, y)| ≤ c(m,n)

|x− y|n−2m
, x, y ∈ Ω, x 6= y,

where c(m,n) does not depend on Ω.

This estimate is known for the dimensions n = 5, 6, 7 if m = 2 and
n = 2m+ 1, 2m+ 2 if m > 2, see [67].

5.12. Boundedness of solutions to the polyharmonic equation in arbitrary
domains

Let Ω be an arbitrary bounded domain in R
n and suppose n > 2m + 2 if

m > 2 and n ≥ 8 if m = 2.

Problem. Prove or disprove that the variational solution of the equation

∆mu = f, f ∈ C∞
0 (Ω),

subject to zero Dirichlet boundary conditions is in L∞(Ω).
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This is true for the dimensions listed at the end of the previous subsec-
tion (see [67]) and fails for the operator

∆2
x + 10

∂4

∂x48

with x = (x1, . . . , x8), see [78].

5.13. Polyharmonic capacitary potentials

Let m = 1, 2, . . .. The m-harmonic capacity of a compact set F in R
n is

defined by

capm(F ) =inf
{

∑

|α|=m

m!

α!
‖∂αu‖2L2(Rn) : u ∈ C∞

0 (Ω),

u = 1 in a neigborhood of F
}

(5.11)

was introduced in [50] (see also [53]) and proved to be useful in the theory
of higher order elliptic equations. It is well-known that capm(F ) = 0 for all
compact sets F if 2m ≥ n.

Let n > 2m. One of the definitions of the potential-theoretic Riesz
capacity of order 2m is as follows:

R2m(F ) = inf
{

∑

|α|=m

m!

α!
‖∂αu‖2L2(Rn) : u ∈ C∞

0 (Rn), u ≥ 1 on F
}

. (5.12)

The capacities capm(F ) and R2m(F ) are equivalent, that is their ratio is
bounded and separated from zero by positive constants depending only on n
and m (see [57], [62] and [71, Section 13.3]).

The minimizer in R2m is a Riesz potential of a measure whereas that in
capm is a Riesz potential of a distribution. The last minimizer will be denoted
by UF . By [67], for the dimensions n = 5, 6, 7 if m = 2 and n = 2m+1, 2m+2
if m > 2, the inequalities

0 < UF (x) < 2 (5.13)

hold for all x ∈ R
n\F . In general, the constant 2 cannot be replaced by 1.

Problem. Is it possible to extend (5.13) for dimensions n ≥ 8 if m = 2, and
n ≥ 2m + 3 for m > 2? Another question: is the constant 2 in (5.13) best
possible?

5.14. Subadditivity of the polyharmonic capacity

Let capm(F ) and R2m(F ) be the capacities defined by (5.11) and (5.12). By
the classical potential theory, the Riesz capacity R2m is upper subadditive.
However, the following problem is open.

Problem. Prove or disprove that the m-harmonic capacity capm is upper
subadditive.
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5.15. Normal derivative of a harmonic function at a boundary point

Let a δ-neighborhood of the origin O ∈ ∂Ω be given by the inequality xn >
ϕ(x′), where ϕ is a Lipschitz function of the variable x′ ∈ R

n−1, ϕ(0) = 0.
We assume that the function

ω(r) = sup
|x′|<r

|∇ϕ(x′)|

satisfies
∫ δ

0

ω2(r)

r
dr <∞. (5.14)

Consider also the condition
∫

|ξ|<δ

ϕ(ξ)
d ξ

|ξ|n <∞, (5.15)

where the integral is improper.

The following property of harmonic functions appeared in mathematical
literature at the end of the XIX century: if a harmonic function takes its
minimum value at O, then its inner normal derivative at O is strictly positive.

Problem. Prove that under the a priori requirement (5.14), the condition
(5.15) is necessary and sufficient for the validity of the just formulated prop-
erty of harmonic functions.

Note that (5.15) is much weaker than the Dini condition

∫ δ

0

ω(r)

r
dr <∞

which previously appeared in the same context (see [2], where other references
can be found).

Remark. One possible approach is to use the asymptotic formula for harmonic
functions near the Lipschitz boundary established in [30].

5.16. Essential spectrum of a perturbed polyharmonic operator

Consider the selfadjoint operator L in L2(Rn) generated by the differential
expression

(

−∆
)m

+ q(x),

where q is a locally integrable nonnegative function in R
n.

Problem. Let m > 1 and 2m ≤ n. Is it true that either the essential spectrum
of L coincides with the half-axis λ ≥ 0, or the point λ = 0 does not belong to
the spectrum of L?

This “spectral alternative” was established by Putnam [98] for n = 1,
m = 1, by Glazman [19] for n ≥ 1, m = 1, and by Yafaev [107] for 2m > n.
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5.17. Singularity of Green’s function for second order elliptic equations with
lower order terms

It is well-known that Green’s function G(x, y) of the uniformly elliptic oper-
ator

Lu = − ∂

∂xi

(

aij(x)
∂ u

∂xj

)

, n > 2,

with measurable bounded coefficients is equivalent to |x − y|2−n near the
point y (see [99], [45]).

Problem. Find necessary and sufficient conditions for the coefficients b1, . . . , bn
and c preserving the equivalence of |x−y|2−n and Green’s function of the op-
erator

u→ Lu+ bi(x)
∂ u

∂xi
+ c(x)u.

5.18. Generic degenerating oblique derivative problem

Oblique derivative problem consists in determining solutions of the second
order elliptic equation in a domain Ω ⊂ R

n subject to the boundary condition

∂u

∂l
= f on ∂Ω,

where l denotes a field of unit vectors on ∂Ω. The corresponding boundary
pseudodifferential operator is elliptic if and only if l is nowhere tangent to ∂Ω.
In the non-elliptic case the oblique derivative problem is called degenerate.

Around 1970 V. Arnold [3] stressed the importance of the so-called
generic case of degeneration, where the vector field l is tangent to ∂Ω on a
submanifold of codimention 1 and is not transversal to this submanifold (see
also his well-known book [4, Section 29]).

In [4, Section 29] Arnold writes:
“One of the simplest problems of such a calculation of infinite codi-

mensions corresponding to kernels and cokernels consisting of functions on
manifolds of different dimensions is the oblique derivative problem. If we con-
sider this problem on the sphere bounding an n-dimensional ball, a vector
field tangent to the n-dimensional ambient space is given. A function har-
monic in the ball is to be determined whose derivative in the direction of the
field is equal to a given boundary function.

We consider, for example, the case n = 3. In this case, a generic field
is tangent to the sphere on some smooth curve. There are singular points on
this curve where the field is tangent to the curve itself. The structure of the
field in the neighborhood of each of these singular points is standard: it can
be proved that for any n of a generic field in the neighborhood of every point
of the boundary, the field is given, in an appropriate coordinate system, by
a formula of the form

x2∂1 + x3∂2 + . . .+ xk∂k−1 + ∂k, k ≤ n,

where ∂j = ∂/∂xj and x1 = 0 on the boundary (cf. S.M. Vǐsik, On the oblique
derivative problem, Vestnik MGU, Ser. Mathem. 1 (1972), 21–28).
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The oblique derivative problem apparently has to be stated according to
the following scheme. The manifold of tangency of the field with the bound-
ary, the manifold of the tangency of the field with the tangency manifolds,
etc. divide the boundary into parts of various dimensions. On some of these
parts of the boundary, conditions have to be given: on some other parts, the
boundary function itself has to satisfy certain conditions for the existence of
the classical solution of the problem.”

In 1972 [59] I published a result related to the generic degeneration, still
the only known one. I assumed that there are smooth manifolds

Γ0 ⊃ Γ1 . . . ⊃ Γs

of dimensions n− 2, n− 3, . . . , n− 2− s such that l is tangent to Γj exactly
at the points of Γj+1, whereas l is nowhere tangent to Γs. A local model of
this situation is given by the following:

Ω = {x ∈ R
n : x1 > 0}, Γ = {x1 = 0},

l = x2∂1 + x3∂2 + . . .+ xk∂k−1 + ∂k, k ≤ n,

Γj = {x1 = x2 = . . . = x2+j = 0}, j = 0, . . . , k − 2.

Some function spaces of the right-hand side and solutions ensuring the
unique solvability of the problem are found in [59]. The success was achieved
by a choice of weight functions in the derivation of a priori estimates for the
solution. Additionally, I proved that the inverse operator of the problem is
always compact on Lp(Γ), 1 < p ≤ ∞. It turned out that the tangent mani-
folds of codimension greater than one do not influence the correct statement
of the problem, contrary to Arnold’s expectations.

However, the following problem is still unsolved.

Problem. Describe the asymptotic behaviour of solutions near the points of
tangency of the field l. In particular, it seems challenging to find asymptotics
near the point of Γ1 whose neighbourhood contains both points of entrance
and exit of the field l with respect to Γ.

More generally, it would be interesting to obtain regularity results for
strong solutions of the generic degenerating problem.

5.19. Matrix generalization of the oblique derivative problem

Let Ω be a domain in R
n. Consider the Laplace equation ∆u = 0 in Ω, where

u is a k-dimensional vector field, and add the condition
n
∑

i=1

Ai(x)
∂u

∂xi
= ϕ(x) on ∂Ω,

where {Ai}1≤i≤n is a collection of k × k matrix function.

Problem. Develop a theory of solvability of the boundary value problem above
in the case when the corresponding pseudodifferential operator on ∂Ω is not
elliptic. An interesting particular case is the boundary condition

(a+ ib) · ∇u = ϕ,

where a and b are real vector fields and u is a complex-valued scalar function.
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5.20. Coercive weighted estimates for elliptic equations in domains with in-
ner cusps

Consider the Dirichlet problem for an arbitrary elliptic equation of order 2m
in a domain Ω ⊂ R

n with inner cusp. Two-sided estimates for derivatives of
order 2m of solutions were obtained in [32, Chapter 10] with n > 2m+ 1.

Problem. Obtain estimates of the same nature for n ≤ 2m+ 1.

5.21. Multiplicative inequality for the linear elasticity system in an arbitrary
domain

One of the theorems obtained in [47] reads as follows:

Let Ω be a three-dimensional domain and let L denote the Lamé oper-
ator defined by

Lu = −∆u− α∇ div u,

where α = 1/(1 − 2ν) > −1 and ν is the Poisson’s ratio. Let 1 < q < 3,

p = q/(q − 1) and let L1,q
0 (Ω) stand for the completion of C∞

0 (Ω) in the
Sobolev space L1,q(Ω). By [47], the condition

α ∈ (α−, α+) ≈ (−0.194, 1.524), (5.16)

implies the inequality

‖u‖L∞(Ω) ≤ C ‖Lu‖1/2Lp(Ω)‖∇u‖
1/2
Lq(Ω), (5.17)

where C is an absolute constant depending only on α.

Problem. Does (5.17) hold for an arbitrary domain Ω ⊂ R
3 without the

assumption (5.16)?

5.22. Lp-dissipativity of the Lamé operator

Consider the Dirichlet problem with zero boundary condition for the Lamé
operator L defined in the previous section.

We say that L is Lp-dissipative if for all u ∈ [C∞
0 (Ω)]n

∫

Ω

Lu · |u|p−2 u dx ≤ 0,

where 1 < p <∞.

In [9, Chapter 3], we prove that for n = 2 the operator L is Lp-dissipative
if and only if

(1

2
− 1

p

)2

≤ 2(ν − 1)(2ν − 1)

(3− 4ν)2
. (5.18)

For n = 3 this inequality is necessary for the Lp-dissipativity of L
and there are some sufficient conditions. However, the following problem is
unsolved.

Problem. Prove or disprove that (5.18) is sufficient for the Lp-dissipativity
of L in the three-dimensional case.
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5.23. Generalized maximum principle for the Lamé system in a domain with
non-Lipschitz graph conical vertex

Let Ω be a domain with compact closure and whose boundary ∂Ω is smooth
outside one point. We assume that near this point ∂Ω coincides with a cone,
not necessarily a Lipschitz graph.

We consider the Dirichlet problem

∆u+ (1− 2ν)−1∇ divu = 0 in Ω,

u = g on ∂Ω,

where ν < 1. The case ν = 1/2 corresponds to the Stokes system, when the
condition divu = 0 becomes explicit.

By [81] for n = 3 (see also [33, Sections 3.6 and 5.5]) and [13] for n ≥ 3,
the generalized maximum principle

‖u‖C(Ω) ≤ C‖g‖C(∂Ω) (5.19)

holds provided ν ≤ 1/2. The proof fails for ν > 1/2, which gives rise to the
following

Problem. Prove (5.19) under the assumption 1/2 < ν < 1.

5.24. Boundedness of the displacement vector in the traction problem in
domains with non-Lipschitz graph conical vertices

Let Ω be a domain in R
3 with ∂Ω smooth outside one point, the vertex of

a non-Lipschitz graph cone. Consider the Neumann problem for the linear
elasticity system

∂σi,j(u)

∂xj
= f in Ω,

σi,j(u) νj = 0 on ∂Ω,

(5.20)

where f ∈ C∞
0 (Ω), u is the displacement vector,

σi,j = λθδi,j + 2µεi,j , θ = ε11 + ε22 + ε33,

εi,j =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

.

Problem. Prove or disprove that the displacement vector is uniformly bounded.

In case of Lipschitz graph domains, the positive answer was given in
[29], [12], and [11].

5.25. Comparison of Martin’s and Euclidian topologies

In [65] a description of the Martin boundary and of the minimal positive
harmonic functions were given without proofs for a class of domains in R

n.
The description just mentioned is as follows.

Let Ω be a bounded domain in R
n with Euclidean boundary ∂Ω, O ∈

∂Ω, and let ∂Ω\{O} be a C2 manifold. Take spherical coordinates (ρ, τ, α)
with origin O (ρ ≥ 0, |τ | ≤ π/2, α ∈ Sn−2) and consider the case when Ω
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is obtained by rotating about the axis |τ | = π/2 a domain ω contained in
the half-plane {(ρ, τ) : ρ > 0, |τ | < π/2}, which is given near ρ = 0 by an
inequality of the form |τ − ψ(ρ)| < Θ(ρ), so that the boundary of Ω near
O is made up of two tangential components under certain conditions on ψ
and Θ. The necessary and sufficient condition for O to give rise to exactly
one Martin boundary point is the divergence of the integral

∫ 1

0

Θ(t) dt
(

π − 2|ψ(t)|
)2
t
. (5.21)

In other words, (5.21) is equivalent to the existence of the limit

lim
x→0

G(x, y)

G(x, z)
,

where G is Green’s function and x, y, z are points in Ω.
For me, the period of time when I worked on the topic, was difficult and

I was not able to prepare a detailed exposition. Even later I did not return
to the area so that [65] became a collection of unproved lemmas. Since it
is impossible for me to do this job in the future, I dare to propose it as an
unsolved

Problem. Justify the criterion (5.21) and prove assertions on the Martin
boundary formulated in [65].

6. Nonlinear elliptic operators

6.1. Nonlinear singularities at the vertex of a cone

Let ∆p be the p-Laplace operator

u→ div(|∇u|p−2 gradu).

Variational solutions of the Dirichlet problem for the p-Laplace equation in
a cone Ω ⊂ R

n with vertex at the origin O ∈ R
n:

∆pu = 0 in Ω near O,

u = 0 on ∂Ω near O

admit the asymptotics

u(x) ∼ C|x|λΨ
( x

|x|
)

, (6.1)

see [37] and [103].

Problem. No analogue of (6.1) is known for higher order nonlinear equations
∑

|α|≤m

∂α(aα(∇mu)) = 0,

where aα are positive homogeneous vector-valued functions. The same applies
elliptic systems of the second order.
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6.2. Nonlinear boundary value problem with infinite Dirichlet data

Let Ω be a bounded smooth domain in R
n and let Q denote a function on

Ω × R
n, positive homogeneous of degree p ∈ (1,∞), Q(x, ξ) > 0 for x ∈ Ω,

ξ 6= 0. By ∆p we denote the p-Laplace operator.

Problem. Prove that there exists a unique positive λ such that the Dirichlet
problem

∆p u+Q(x,∇u) + λ = 0 in Ω,

u|∂Ω = −∞ (6.2)

is uniquely solvable up to a constant term.

Remark. The pair (u, λ) should solve the variational problem

λ = sup
v|∂Ω=−∞

inf
x∈Ω

(

−∆p v −Q(x,∇ v)
)

.

It is obvious that for p = 2 and Q(ξ) = |ξ|2, (6.2) is the classical
variational principle for the first eigenvalue of the Laplacian [96].

6.3. Singularities of solutions to the Neumann problem for a semilinear equa-
tion

Let the planar domain Ω have an angle with vertex O. The Neumann problem






∆u+ a(x)u2x1
+ 2b(x)ux1

ux2
+ c(x)u2x2

= 0 in Ω,

∂ u

∂n
= 0 on ∂Ω near O,

(6.3)

is considered in [28], where an asymptotic formula for an unbounded solution
is given under the assumption of the positivity of the quadratic form

a(x)ξ2 + 2b(x)ξη + c(x)η2. (6.4)

Roughly speaking, the solution has a log log r−1 singularity. This asymptotic
behaviour fails without positivity of the quadratic form. Indeed, the function
u(x) = log r−1 + cos θ satisfies

∆u+
cos θ

1 + sin2 θ
|∇u|2 = 0

on R
2
+ as well as zero Neumann condition. This example suggests the following

problem.

Problem. Describe the asymptotic behaviour of solutions to (6.3) without
assumption of positivity of the quadratic form (6.4).

6.4. Positive solutions of a non-linear Dirichlet problem with zero boundary
data

Let Ω be a bounded planar domain and let ∂Ω be smooth except for an
angular point O.

Problem. Study the existence, uniqueness and regularity of solutions of the
equation

∆u− λuk = 0 in Ω

that are positive in Ω and vanish on ∂Ω\{O}. Here λ and k are real numbers.
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Remark. Obviously, for λ = 0 and the sector

Ω = {x = r exp(iϕ) : 0 < r < 1, 0 < ϕ < α}
all solutions in question are given by

u(x) = C
(

r−π/α − 1
)

sin
(π

α
ϕ
)

.

6.5. Positive p-harmonic functions in a cone

Let u denote a positive locally bounded solution of the equation ∆pu = 0 in
a cone vanishing at the boundary.

Problem. Prove that

u(x) = C |x|λψ
( x

|x|
)

, (6.5)

where λ > 0 and C is an arbitrary constant.

The existence of solutions appearing in the right-hand side of (6.5) was
studied in [37] and [103]. If the cone is the half-space {x : xn > 0}, formula
(6.5) becomes u(x) = Cxn.

6.6. Phragmen-Lindelöf principle for the p-Laplace equation

By [58], bounded solutions u(x) of the p-Laplace equation, 1 < p < n, with
zero Dirichlet data in a δ-neighborhood of a point O ∈ ∂Ω, admit the point-
wise majorant

C exp
(

−c
∫ δ

|x|

(capp(Bρ\Ω)
capp(Bρ)

)1/(p−1) dρ

ρ

)

,

where

capp(F ) = inf
{

‖∇u‖pLp(Rn) : u ∈ C∞
0 (Rn), u ≥ 1 on F

}

. (6.6)

Problem. Prove the following conjecture. If the energy integral of u is diver-
gent, then, for 2r < δ,

‖u‖Lp(Bδ\Br) ≥
c(δ)

r
n−p
p−1

exp
(

c

∫ δ

r

capp(Bρ\Ω)
capp(Bρ)

dρ

ρ

)

.

This assertion was established for the linear uniformly elliptic equation

− ∂

∂xi

(

aij(x)
∂ u

∂xj

)

= 0

with measurable bounded coefficients in [55].

6.7. Isolated singularity of solution to a nonlinear elliptic system

In [16], J. Frehse noticed that the elliptic system with smooth nonlinearity

∆u1 = − 2u1
|u|2 + 1

(∣

∣

∣

∂u

∂x

∣

∣

∣

2

+
∣

∣

∣

∂u

∂y

∣

∣

∣

2)

∆u2 = − 2u2
|u|2 + 1

(∣

∣

∣

∂u

∂x

∣

∣

∣

2

+
∣

∣

∣

∂u

∂y

∣

∣

∣

2)
(6.7)
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has the weak discontinuous solution

u1 = cos log r, u2 = sin log r, (6.8)

where r =
√

x2 + y2 < e−2.

Problem. Is the right-hand side of (6.8) the only possible isolated singularity
of solutions to system (6.7) at the origin?

6.8. Poisson type solutions of Riccati’s equation with Dirichlet data

Let Ω be a smooth, bounded planar domain and let the origin O be a point
of ∂Ω. Consider the equation

∆u+ αu2x + β u2y = 0 in Ω,

where α and β are smooth positive functions given on Ω. We assume that
the solution u satisfies u = 0 on ∂Ω\{O}.

Problem. Prove that either u = 0 on ∂Ω, or u has a logarithmic singularity
at O and depends upon an arbitrary constant.

A formal asymptotic expansion of u near O can be found in [92], also
for more general equations.

7. Parabolic, hyperbolic and general differential operators

7.1. Behaviour at infinity of solutions to the Cauchy-Dirichlet problem for a
semi-linear parabolic equation

Consider the equation

∂ u

∂ t
−∆u = ∇uA(x)∇u,

in the half-cylinder {(x, t) : x ∈ Ω, t > 0}, where A is a positive-definite
matrix and Ω is a bounded domain in R

n. Assume that

u = 0 for x ∈ ∂Ω, t > 0.

If A is the unit matrix, the replacement of u by log v with v > 0 shows
that at infinity either u vanishes exponentially, or u behaves as t at any
positive distance from the boundary.

Problem. Show that the same alternative holds if A is not the unit matrix.
Describe an asymptotic behaviour of unbounded solutions. What happens if
A is not positive-definite?
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7.2. Two inequalities related to the heat equation

Let Ω be an open subset of Rn. By [49] and [71, Section 2.5.2], the inequality
∫

Ω

|u|2dµ ≤ C

∫

Ω

|∇u|2dx, (7.1)

where µ is a non-negative measure in Ω, holds for all u ∈ C∞
0 (Ω) if and only if

sup
F

µ(F )

cap(F,Ω)
<∞. (7.2)

Here cap(F,Ω) is the relative harmonic capacity of a compact subset F of Ω
with respect to Ω

cap(F,Ω) = inf
{

∫

Ω

|∇v|2dx : v ∈ C0,1(Ω), v ≥ 1 on F
}

.

Inequality (7.1) is important in particular in the theory of the Schrödinger
operator ∆ + µ, see [49] and [71, Section 2.5].

The following inequality finds applications in the theory of the Cauchy-
Dirichlet problem for the operator

u→ ∂u

∂t
−∆u− µu

in the cylinder Ω× (0, T ), where µ is a measure defined on this cylinder:
∫

Ω×[0,T )

u2dµ(x, t) ≤ C
(

∫

Ω×[0,T )

|∇xu|2dxdt+ sup
t∈[0,T )

∫

Ω

(

u(x, t)
)2
dx
)

. (7.3)

Problem. Give a complete characterization of the measure µ subject to the
inequality (7.3) for all smooth functions u given on Ω× [0, T ) and vanishing
near ∂Ω× [0, T ].

Answer the same question for the inequality
∫

Ω×[0,T )

u2dµ(x, t) ≤ C
(

∫

Ω×[0,T )

|∇xu|2dxdt+
∫ T

0

∥

∥

∥

∂u

∂t

∥

∥

∥

2

L−1,2(Ω)
dt
)

,

where L−1,2(Ω) is the dual space of L1,2
0 (Ω).

A necessary condition of type (7.2) obviously holds with the parabolic
capacity studied in [97]. Most probably, it is also sufficient.

7.3. Trace space for the maximal operator generated by the wave operator

Let Ω be a domain in R
1 × R

n and let �x,t = ∂2/∂t2 − ∆x. By � denote
the maximal operator generated by �x,t, i.e. the closure of �x,t defined on

C∞(Ω) in the norm
(

‖�x,tu‖2L2(Ω) + ‖u‖2L2(Ω)

)1/2

.

Problem. Describe the space of boundary traces for functions in the domain
of �.

Remark. If Ω = R
n+1
+ = {(x, t) : x ∈ R

n, t > 0}, then by [18, Corollary 4.6.2]

the traces in question make up the Besov space B1/2,2(Rn).



30 Vladimir Maz’ya

7.4. Characteristic problem for nonlinear hyperbolic operators

In [106], the authors study the initial value problem for a hyperbolic linear
equation of order 2m, when the initial surface has characteristic points on
some compact set Γ. It is proved that the problem is well posed if the set Γ is
free from the last initial condition D2m−1

t u = f . In the case m = 1 a similar
result was later obtained in [22].

Problem. Obtain a similar result without linearity assumption for the hyper-
bolic operator.

The only result in this direction known to me is in [6]. It concerns the
global characteristic Cauchy problem (Goursat problem) for the nonlinear
wave equation. The boundary data in [6] are prescribed on the light cone
with two singularities representing both past and future.

7.5. Boundary traces of functions in the domain of a maximal differential
operator with t-dependent coefficients

Let P (Dt, Dx) be an arbitrary differential operator acting on functions de-
fined on the half-space R

n
+ = {(x, t) : x ∈ R

n, t > 0} and let Pmax be the
corresponding maximal operator. The domain of Pmax is the completion of
the space of functions smooth on Rn

+ and vanishing at infinity in the norm

‖P u‖L2(Rn
+
) + ‖u‖L2(Rn

+
). (7.4)

In [18, Chapter 2], an algebraic characterization of boundary traces of func-
tions in the domain of Pmax was found.

Problem. Describe traces on the hyperplane t = 0 of functions in the domain
of Pmax assuming that P is an arbitrary differential operator of the first order
in t with coefficients depending on t.

This is only an example which points to the possible development of the
theory in [18] for differential operators with coefficients depending only on t.

7.6. Differential operators acting in pairs of Sobolev spaces

Obviously, a differential operator of order h with variable coefficients maps
the Sobolev space Ll,p(Rn) into Ll−h,p(Rn) if the coefficients are multipliers
in the proper pairs of Sobolev spaces. This statement can be inverted for some
classes of differential operators as shown in [88, Section 10.1.1]. However, the
following counterexample proposed in [88, Section 10.1.2] shows that this is
not a general property of differential operators.

The coefficient a of the operator

u→ a(x)
∂u

∂xn
: W 2,2(Rn) → L2(Rn), (7.5)

whereW l,2 = Ll,2∩L2, need not be a multiplier fromW 1,2(Rn) into L2(Rn).
This gives rise to the following
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Problem. Find a condition on the function a, necessary and sufficient for the
validity of the inequality

∥

∥

∥
a(x)

∂u

∂xn

∥

∥

∥

L2(Rn)
≤ c ‖u‖W 2,2(Rn)

for all u ∈ C∞
0 (Rn), where n > 3.

Let me point out that if a is independent of the variable xn, then the
criterion is

sup
0<r<1,y′∈Rn−1

r3−n

∫

|x′−y′|<r

a(x′) dx′ <∞,

see [88, Section 10.1.2 ].

7.7. Existence of a well-posed boundary value problem for for general dif-
ferential operators in Lp(Ω)

Hörmander (1955) showed the existence of a well-posed boundary value prob-
lem for every differential operator with constant coefficients in an arbitrary
bounded domain. Equivalently, he proved the estimate

‖u‖L2(Ω) ≤ C ‖L(D)u‖L2(Ω), (7.6)

where u is an arbitrary function in C∞
0 (Ω).

Problem. Does (7.6) hold with Lp(Ω) instead of L2(Ω)?

7.8. Existence of a well-posed boundary value problem for unbounded do-
mains

Estimate (7.6) fails for some unbounded domains which gives rise to

Problem. Let L(D) be a differential operator in R
n with constant coefficients.

Characterise the domains satisfying (7.6).

Example. For L(D) = ∆−1, any domain is admissible whereas for L(D) = ∆,
n = 3, inequality (7.6) holds if and only if Ω does not contain balls with
arbitrary radii. For n ≥ 4, one needs the notion of biharmonic capacity to
formulate a necessary and sufficient condition in terms of a capacitary inner
radius (see [71, Chapter 16]).

One can even ask the same question for special operators. For instance,
it seems interesting to characterize unbounded domains for which the in-
equalities

‖u‖Lp(Ω) ≤ C ‖∆u+ u‖Lp(Ω),

‖u‖Lp(Ω) ≤ C ‖�u‖Lp(Ω),

‖u‖Lp(Ω) ≤ C ‖∂xn
u−∆x′ u‖Lp(Ω)

hold for all u ∈ C∞
0 (Ω). Here� and ∂xn

−∆x′ are the wave and heat operators.
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8. Stationary Stokes and Navier-Stokes systems

8.1. Hölder regularity of solutions to the n-dimensional Dirichlet-Stokes prob-
lem

Consider the Dirichlet problem for the Stokes system

−ν∆v +∇ p = f in Ω

divv = 0 in Ω

v = g on ∂Ω

where Ω is a polyhedron in R
n, n ≥ 3, and v ∈ L1,2(Ω).

Problem. Assuming that g belongs to the Hölder space C0,α(∂Ω) for a certain
α ∈ (0, 1), prove that there exists β ∈ (0, 1) such that v ∈ C0,β(Ω).

Remark. The starting point could be the following property obtained in [13]:
for any solution of the form |x|λψ(x/|x|) with Reλ > 1−n/2 one has Reλ > 0.

8.2. Differentiability of solutions to the Dirichlet problem for the equations
of hydrodynamics in convex domains

Consider the Dirichlet problem for the Stokes system

−ν∆v +∇ p = f in Ω

divv = 0 in Ω

v = g on ∂Ω

(8.1)

The following result is obtained in [30, Section 6.3].

Let Ω be a bounded convex two-dimensional domain and let f ∈ Lq(Ω),
for some q > 2. Then v ∈ C0,1(Ω), i.e. v is Lipschitz and

‖v‖C0,1(Ω) ≤ C ‖f‖Lq(Ω),

where C depends only on Ω.

The following similar result for the Navier-Stokes system was also es-
tablished in [30, Section 6.3].

Let L1,2
0 be the space introduced in Section 3.4. Suppose that (v, p) ∈

L1,2
0 (Ω)× L2(Ω) satisfy the Dirichlet problem

−ν∆v +∇ p+
∑

1≤k≤2

vk ∂xk
v = f in Ω

divv = 0 in Ω

v = 0 on ∂Ω

where Ω is a bounded convex two-dimensional domain and f ∈ Lq(Ω) for
some q > 2. Then v ∈ C0,1(Ω).

Problem. Show that the above two facts hold with q > 2 replaced by q > 3 for
the three-dimensional case.
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8.3. Boundedness of solutions to the Dirichlet problem for the Stokes system
in arbitrary 3D domains

Let Ω be an arbitrary bounded three-dimensional domain. Consider the
Dirichlet problem (8.1).

Problem. Prove or disprove that the variational solutions are uniformly bounded
in Ω.

8.4. Resolvent Lp-estimates for the Dirichlet-Stokes operator

Let Rλ be the resolvent operator of the Dirichlet problem

∆v +∇p+ λv = f in Ω

divv = 0 in Ω

v = 0 on ∂Ω,

where λ ∈ R
1 and Ω is a bounded domain in R

n.

Problem. 1. Justify the following conjecture. If Ω ⊂ R
n is convex, then, for

all λ ∈ R
1 \ {0} and 1 < p <∞,

‖Rλ‖Lp(Ω)→Lp(Ω) ≤
c

|λ| , (8.2)

where c is a constant which does not depend on λ.
2. Let Ω be smooth outside of a smooth (n−2)-dimensional submanifold

M without boundary. Assume that ∂Ω has a reentrant dihedral angle with
edge M and opening α > π. Prove that (8.2) holds for all λ ∈ R

1 \ {0} if
∣

∣

∣

1

p
− 1

2

∣

∣

∣
<

π

2α
.

Note that for three-dimensional Lipschitz graph domains the question
of validity of (8.2) for

3

2
− ε < p < 3 + ε

with certain ε > 0, was raised by M. Taylor [102] and answered affirmatively
Z. Shen [100].

8.5. Non-uniqueness for the stationary Navier-Stokes system with Dirichlet
data

Let Ω be a simply connected bounded domain in R
3. It is well known [40] that

the Dirichlet problem for the stationary Navier-Stokes system has at most
one variational solution provided the Reynolds number is sufficiently small.
It seems probable that the uniqueness fails for large Reynolds numbers.

Problem. Construct a counterexample showing that the just mentioned Dirich-
let problem may have more than one solution for small viscosity and big data.

This problem is classical but seems half-forgotten to me. Therefore,
I include it in the present list.
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9. Theory of surface waves

9.1. Well-posed Neumann-Kelvin problem for a surface-piercing body

When solving the seakeeping problem with forward speed which is called
Neumann-Kelvin problem, one looks for a velocity potential u(x, y, z) defined
on a lower half-space outside the wetted part S of a body moving in the x-
direction. The normal derivative of u is prescribed on S and the condition

∂2u

∂x2
+ ν

∂u

∂z
= 0, ν = const > 0,

should be satisfied on the flat surface F outside the body (see [38, Chapter 8]).
This classical boundary value problem is in an unsatisfactory state both

from theoretical and numerical points of view.

Problem. Verify the following conjecture. The Neumann-Kelvin problem be-
comes Fredholm if the above formulation is completed by prescribing the ele-
vation of the free surface on a part of the water line L, to be more precise,
by adding the values of ∂u/∂x at those points of L where the angle between
the exterior normal to L and the x-axis is not greater than π/2.

Note that the asymptotics of u near the curve L is not known. However,
the existence of ∂u/∂x is suggested by the asymptotic formula (8.8) in [38]
obtained for the two-dimensional case.

9.2. Solvability of the two-dimensional Kelvin-Neumann problem for a sub-
merged cylinder

In [46], the two-dimensional problem on the steady flow of infinite depth
about a submerged cylinder is considered and the existence of the unique
solution of any velocity v of the undisturbed flow upstream in the case of an
arbitrary circular cylinder is proved.

This boundary value problem is stated as follows. One looks for the
velocity potential u(x, y) of the steady motion of a heavy ideal incompressible
fluid induced by the cylinder with the cross-section Ω which moves uniformly
in the x-direction. The function u satisfies

∆u = 0 inW = R
2
− \ Ω, (9.1)

∂2u

∂x2
+ ν

∂u

∂y
= 0 for y = 0, (9.2)

where R
2
− = {(x, y) : y < 0} and ν = gv−2 with g being the acceleration due

to gravity. In addition,

sup |∇u| <∞, |∇u| = o(1) as x→ ∞, (9.3)

∂u

∂n
= v cos(N, x) on ∂Ω, (9.4)

where N is the unit normal to ∂Ω directed into Ω.
The second relation in (9.3) is equivalent to the absence of waves far

upstream.
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The result obtained in [46], which is of course rather special, seems,
however, to be the only known uniqueness theorem for the boundary value
problem just stated not relying on any restrictions on ν.

Hence we naturally arrive at the following

Problem. Show the unique solvability of (9.1) – (9.4) for a fairly arbitrary
domain and for all values of ν.

Note that the proof in [46] is based on the theorem in [105] ensuring the
uniqueness of a solution with finite Dirichlet integral under the assumption

x cos(N, x) ≥ 0 on ∂Ω.

The proof of uniqueness in [105] concerns the n-dimensional case, n ≥ 2.

Problem. Construct a connected open set Ω for which problem (9.1) – (9.4)
is not uniquely solvable for a certain value of v.

For a modern state of the art presentation of the linear theory of water
waves see [38].

9.3. Counterexample in the water-wave problem for a submerged body

Let us use the geometrical assumptions made in Section 48. The boundary
value problem of harmonic oscillations of the fluid induced by a submerged
body is stated as follows. The function u satisfies (9.1), (9.3), while (9.2) is
replaced by

∂ u

∂y
− ν u = 0 for y = 0

and a radiation condition at infinity is required (see [38]).
In [64] a class of domains is found for which the problem in question is

uniquely solvable for all ν > 0, see also [38, Chapter 1].

Problem. Construct an example of a connected set Ω showing that some
restrictions on Ω ensuring solvability are necessary.

9.4. Sharp Hardy-Leray inequality for divergence-free fields

Let u denote a vector field in R
n with components in C∞

0 (Rn). The following
n-dimensional generalization of the one-dimensional Hardy inequality [21]

∫

Rn

|u|2
|x|2 dx ≤ 4

(n− 2)2

∫

Rn

|∇u|2dx (9.5)

appears for n = 3 in Leray’s pioneering paper on the Navier-Stokes equa-
tions [42]. The constant factor on the right-hand side is sharp. Since one
frequently deals with divergence-free fields in hydrodynamics, it is natural to
ask whether this restriction can improve the constant in (9.5).

It is shown in [10] that this is the case indeed if n > 2 and the vector
field u is axisymmetric by proving that the aforementioned constant can be
replaced by the (smaller) optimal value

4

(n− 2)2

(

1− 8

(n+ 2)2

)

(9.6)
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which, in particular, becomes 68/25 in three dimensions.
However, the following problem remains unsolved.

Problem. Prove or disprove that the constant 4(n − 2)−2 is optimal if u is
an arbitrary divergence-free vector field with components in C∞

0 (Rn).

10. Miscellaneous topics

10.1. A modified Riemann’s zeta function appearing in a non-local parabolic
Cauchy problem

Let C be a unit circle and let u denote a function defined on C. Consider the
integral operator A:

(Au)(x) =

∫

C

u(x)− u(y)

|x− y| |dy|.

The spectrum of A is described in [79, Section 12.2.2].

Problem. Show that the fundamental solution of the Cauchy problem for the
operator

d

dt
+A, t > 0,

which is reminiscent of the modified Riemann zeta function

f(z) =
∑

n≥1

exp
(

−z
∑

1≤k≤n

1

k

)

,

admits a meromorphic extension to the complex z = t + i τ plane. Study
properties of this extension.

10.2. Uniqueness criterion for analytic functions with finite Dirichlet integral

The following question was raised by L. Carleson [8]. Suppose that f is ana-
lytic in the unit disc U and

∫

U

|f ′|p dA <∞

for some p > 1. Let E be a subset of (−π, π) and suppose that for θ ∈ E,

f(reiθ) → 0 as r → 1.

Of what size must E be to force the conclusion that f is identically zero?
In [8], sufficient conditions for a set of zero length which ensure the

uniqueness in the case p = 2 are given. One of the conditions is the positivity
of the Riesz potential theoretic capacity Rα of a certain positive order α.

Maz’ya and Havin [75] described a class of uniqueness sets which is not
included into Carleson’s. To state our theorem, denote by E a Borel subset
of ∂U and let ∆ be a set of non-overlapping open arcs δ ⊂ ∂U . Let |δ| be the
length of δ and put Eδ := E ∩ δ. Suppose p ∈ (1, 2) and

∑

δ∈∆

|δ| log |δ|
c(δ)

= −∞, (10.1)
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where c(δ) := capp(Eδ) is the capacity of Eδ defined by (6.6). Then E is

a uniqueness set for A1,p, the class of all functions f analytic in U with
f ′ ∈ Lp(U).

This theorem is also valid for p = 2 with a slightly different meaning
of c(δ) due to the peculiarity of dimension two: it is now the cap2-capacity
of Eδ with respect to the disc 2 dδ, where dδ is a disc contained in Eδ. This
capacity can be expressed by the logarithmic capacity of Eδ or by its transfi-
nite diameter. The case (p,∞) can also be included, but it is not interesting.
It is not hard to construct a set E satisfying (10.1) whose Riesz capacities
Rα(E) of any order α > 0 vanish. Thus our theorem enlarges the class of
uniqueness sets for A1,2 found in [8].

However, the following problem is still open.

Problem. Give a complete characterization of the uniqueness sets for analytic
functions in the class A1,p(U).

10.3. Hybrid iterative methods for solving boundary value problems

In [34], a mathematical justification of certain new iterative schemes used
in solving the Dirichlet and Neumann problems for the Laplace equation is
given. These schemes are based on a combination of Green’s formula and some
numerical methods, FEM, for example, which is applied to some auxiliary
mixed boundary value problem on a subset of the original domain.

The proofs in [34] rely upon geometrical requirements on the boundary
of the domain of strong convexity type which do not seem natural.

Problem. Extend the class of domains with preservation of convergence of
the iterative procedures proposed in [34].

10.4. Asymptotic optimization of multi-structures

The present section concerns boundary value problems for multi-structures,
i.e. domains dependent on small parameters in such a way that the limit
region, as parameters tend to zero, consists of subsets of different space di-
mensions. Asymptotic analysis of physical fields in multi-structures is devel-
oped in [31], [77] and elsewhere. Direct methods of variational calculus are
often ineffective for solving problems of optimal control of multi-structures
because of their complicated geometry. However, [77, Remark 4.4] suggests
the following promising

Problem. Apply algebraic optimization methods to asymptotic approxima-
tions of fields in 1D− 3D multi-structures.
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Sweden
e-mail: vladimir.mazya@liu.se


