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Abstract. A two-dimensional Riccati’'s equation with Neumann boundary data is considered in a domain with an angular point.
Asymptotic formulas for an arbitrary solution near the vertex are obtained.

1. Introduction
Let K5 be the sector
{x=(r1,72) €ER% 0< 7 <6, 0€(0,p)},

where ¢, 6) are the polar coordinates af andy € (0, 2r1]. Consider the nonlinear boundary value
problem

A + o) (04, 1) + 26(x)04, udz,u + y(x)(0z,u)> =0 on K, (1)

dgulg—0 = Opulg—, = 0 forr < é. @)
Hereq, 3 andy are measurable functions. We suppose that for almasta@lKs and for all €1, &) € R?,

A(E+8) < a@)ef + 268(x)6a82 + ()& < A (G + &) 3
with positive constanta and A. We assume everywhere thabelongs to the Sobolev spaéE(G) for
any open sef; such thatz C K\ {O}.

Our aim is to describe the asymptotic behaviour, ofear the vertex) without a priori restrictions on
its growth. We show that there exist two possibilities: eithés unbounded and then

u(z) = Q(r) + ¢« +0(1), (4)
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where

B /e % r a(m)m% + 206(x)z122 + ’y(x)x% -1
a4 wa)' e

|

or u is bounded and has the same asymptotics
u(z) = co + c1r’™¥ cosgl /) + 0(1“7‘/ ) (6)

as in the case of the Neumann problemZ&ar= 0. Herec,, ¢ andc; are real constants.
If the coefficientsy, 8 and~y are constant we write the asymptotic expansion for unbounded solutions:

i >, Py(loglogr—1,6)
u(z) ~ dloglogr=! + ¢, + Z = , (7)
22" (logr 1

where

. . _1
d:<a+7+ﬂsmch+a'ysm2ap> ’ ()

2 ® 4 ®

and P, (7, 8) are polynomials of degre€k in = whose coefficients are smooth functiongaf [0, ¢]. If
u IS bounded it admits the asymptotic representation

u(@) ~ co+ Y " %pp_s(logr, 6), )
k=1

wherec;, = const angp,, are polynomials in the first argument with smooth coefficients op][0,

We note that all our results and their proofs extend to the case whenthe center of the disk
Ks = {x: » < 6}. One should only putp = 7 in (6) and (9). In other words, we also describe the
asymptotic behaviour of solutions to Eq. (1) which are either bound@bahave an isolated singularity
there.

We finish this paper by showing that problem (1), (2) has solutions with asymptotics (4).

It is worth noting that Eq. (1) and the Neumann conditions as well as assumption (3) about the coef-
ficientsa, 8 and~ are preserved under conformal mappings. Therefore, (4) and (6) along with asymp-
totics of conformal mappings (see [2]) imply asymptotic representations of solutions at infinity and near
boundary singularities other than corners, for example, cusps.

2. Auxiliary ordinary differential equation

Lemma 2.1. Letg be a locally integrable non-negative function on the intefegloo). Suppose that an
absolutely continuous function= z(t), which is not identically zero for largg satisfies the inequality

() < —q2%(t) — g(t) fort > to, (10)
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whereq is a positive constant. Thenis a positive function and

z(t) < fort > to (12)
q(t —c)
with
1
c=1g9— 12
7 gz(to) (12)
Moreover,
/ g(P)dr < 2(f) fort >t (13)
t

Proof. We show that: is non-negative. Let(t1) < O for a certaint; > to. From (10) it follows that
z does not increase and, hene€) < z(ty) for t > t1. By (10), 2(t)/2%(t) < —q. Integrating the last
inequality over the intervali(t,), t1 < t < tp, we obtain

i+ (tp —t) < —
A0 TS Ly

The left-hand side tends tboo whent = ¢,/2 andt, — +o0, but the right-hand side is bounded. This
contradiction shows thatis non-negative.
We prove that is positive. Indeed, i£(t1) = O for somet; > tgthenz(t) = 0 for all ¢ > t;, sincez
does not increase and is non-negative. ThusO.
We turn to inequality (11). The function(t) = ¢~ (¢t — ¢)~* satisfies
Ity = —q’(t),  ylto) = 2(to).
Therefore,
2=y < —qz+y)z —y). (14)
If y(t) < z(t) on an interval {p, t3) then, by (14),2 < y on the same interval. Sincdty) = y(to) it
follows thatz(t) < y(t), t € (to,t3). This proves (11).
In order to obtain (13) it suffices to integrate (10) ovier{cc). O
Let us consider the equation
2(t) + R()2%(t) + f(t) =0 fort > to, (15)
whereR and f are real-valued, measurable, bounded functionggnd). We shall suppose that

R(t)>q¢>0 fort>tg and f(t)=0(t3) ast— +oc. (16)

We need the following standard comparison principle.
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Lemma 2.2. Let z andy be absolutely continuous non-negative functiongtgroo) such that
(< -RP—f, §=-Ry*~[ on(to, o),

andy(to) = z(to). Theny(t) > z(t) for t > to.

Proof. Suppose thay(t1) = z(t1) for somet, > tg andy(t) < z(t) for t € (¢1,t2). Then
2—y < —Rz+y)z—y) <0 forte (t1,1t2).

Consequentlyy > z on (1, t2). The result follows by contradiction. O

Lemma 2.3. Let z be a non-negative solution @5). Then either

t

Jim =) [ REydr =1 (17)
or

2(t) =0(t™%) ast — +oo. (18)

Proof. First, we prove that

t -1 t —3/2
2(t) < ( R(T) dr) - C( / R(7) d7> fort >ty (19)
to to
with someC' > 0 and witht1 being sufficiently large. Denote hy(t) the right-hand side of (19). Then
-3

t -5/2 t
U+ Ry’ + f = %CR( / R(7) d7> + 02R< R(7) d7> +0(t73) >0,
to to

providedC' is sufficiently large and > ¢1. Moreover, we can suppose that (19) is valid foe ¢;.
Reference to Lemma 2.2 proves (19) forialt 1.
Inequality (19) implies

t
limsupz(t) | R(r)dr < 1.

t—o0 to
If, additionally,
t
iminf () / R()dr > 1, (20)
—00 to

then we arrive at (17).
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We suppose that (20) fails and prove (18). Let there exist a sequefjge { such thatt; — oo as
j — oo and

t; -1
o)) < a( /t R(r) dT) (21)
with e € (0, 1). We puty(t) = e(J;, R()dr)~L. Then

JARP A f = (525)R</t't7e(7)d7)_2+f <0,

providedt is sufficiently large. By Lemma 2.2 this and (21) give the inequality

t -1
z(t) < 6( R(7) dT) fort > tq,

to

wheret; is sufficiently large. Using the last estimate we derive from (15)
ot -1
“1) +5R< / R() dT) A > —f(t) fort>t
to
or, equivalently,
d t € "t 5
— (z(t)( R(T) dT) ) > ( R(T) dT) f(@). (22)
dt to to
By (19),
ot €
z(t)(/ R(7) dT) — 0 ast — oo.
to
Integrating (22) overt( cc) we get

A1) < ( /t: R() d7> B /t - ( /tOT R(s) ds>8\ £(7)| dr-

Sincee € (0, 1), the left-hand side is ®(?) and we arrive at (18). O

Lemma 2.4. Let z be a non-negative solution ¢f5) and let(17) hold. Then

A1) = ( /t: R() d7> ol O(t2logt). 23)
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Proof. We represent as

(t) = ( /t: R(7) d7> *1(1 ).

By (17), the function{(¢) tends to O ag — oo and satisfies

émznm(gnvm04km+<%»(ﬁRﬁNﬁﬂﬁ (24)

We denote

a(t) = /t f R(7) ( /t OT R(s) ds) _1(1 +¢(n) dr,

wheret; > to. Then

lim_G() ( log ( /t: R() d7>>_1 —1, (25)
and Eq. (24) can be rewritten as
%(«aG(t)g(t)) _ —eG<t>( /t: R(7) dT) 0). (26)

Hence, and by (25X (t) = O(t 1) ast — oo, wheree is an arbitrary positive number. Using this
relation we can improve (25) as follows:

G(t) = log ( /t : R() d7> +0(1), 27)

Hence, and by (26), we hayét) = Ot *logt). The proof is complete. O

Lemma 2.5. Let z be a non-negative solution ¢f5) and let(18) hold. Then

|4m<clmuwnm, (28)

wherec is independent aofand f.

Proof. From (15) we derive that

% ( o ' R(=(r)dr _ (t)) _ RO dr 0.

Due to (18), the function — ftto R(7)z(7) dr is bounded. By integrating the last equality we arrive at
(28). O
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3. Splitting of Eq. (1)

Using the coordinates= — logr and# we rewrite (1) and (2) as
(92 4+ 93)u + A(d;u)? + 2Bd;udgu + C(Qgu)> =0 fort >tg, 0< 0 < ¢, (29)
agu‘gzo = agub:@ =0 fort > to, (30)
wheretg = —log 6 and

A(t,0) = a.coS 0 + 203 sinf cosh + ~ sif 6,
B(t,0) = (a — 7) sind cosh + 3(sin? § — cos ),
C(t,0) = asir? 0 — 26 sinf cosf + ~ cos 6.

The functionsa(z), B(x) andy(z) have to be calculated at= (e~! cosf, et sinf). From (3) it follows
that

MNEE+€3) < AG +2BG& + CE < A+ &) (31)
We represent the functiomas
u(t, ) = h(t) + v(t,0), (32)

whereh(t) = éfo“" u(t, ) dd. Then
P
/ W(t,0)d0 = 0 (33)
0
and

0gu(t,0) = 0gu(t,p) =0 fort > to. (34)

Inserting (32) in (29) and then integrating with respecttover the interval (Op) we arrive at the
equation

h+A@h? + f(t) =0 fort > to, (35)
whereA(t) = (1/y) /& A(t,0) dd and
f@) = % /0 ’ {A(2h0,v + (34v)?) 4 2B(h + 3,v)dgv + C(dgv)?} 6. (36)

Subtracting (35) from (29) we obtain

0% + 9%v = (A — A)h? — 1§, (37)
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where
f= A(2hdsw + (34v)?) + 2B(h + 8,v)dgv + C(Qgv)? — f(1). (38)
Clearly,
%)
/O it,0)dd = 0. (39)

Thus, the boundary value problem (29), (30) is split into system (35), (37) completed by conditions (33)
and (34).
4. Auxiliary estimates for » and v

Lemma 4.1. The following estimates hald

o .
/t /0 (@) + (090)?) o o < 5 (40)

and

1
At — o)

0< h(t) < (41)

for t > tp, wherec is defined by(12).

Proof. From (29) and (31) we derivédf + 92)u + A((3;u)? + (dpu)?) < 0. Integrating this inequality
over the interval (Op) and using (30) we arrive at

h(t) + M\R2(t) + g(t) <O fort > to, (42)
where

o(t) = g I (©20.0) + @on2e.0) .

Applying Lemma 2.1 to inequality (42) we obtain (40) and (41

5. Pointwise estimate for the gradient

We shall use the notations

C={(t0):tcR 0c(0,9)} and C={(r.0):t<7<t+1,0€c(0¢)}.
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Theorem 5.1. Letu € H?(C;) for anyt > to be a solution 0f29), (30). Then

1V 2ul|yc,y = O(t~?) (43)
and
=0t Y?), 44
0%%|Vu(t,9)| (%) (44)
Proof. Let

D(&, Q) = A&1C1 + B(&1(2 + £201) + C&2(2,

where¢ and¢ are points inR?2. We introduce a cut-off function € C§°(—1,2),n = 1 on (0, 1), and set
n:(1) = n(r — t). It will be convenient to make orthogonal to 1 on the set

Ci={(r,0):t—1<7<t+2,60¢c(0,p)}.
We rewrite (29) as

—A(nu) = B(Vu, V(nu) — uVn) — 2V Vu — ulkn,. (45)
Hence, forp € (1, 2),

Ineullwaey < c([IVul [V ||, + 1uVullz,ep + lullwaep)-
The first norm on the right does not exceed

CHvu”Lz(CD H V(ﬂtu)Hsz/(zfp)(Cé),

which is majorized byct*1/2|]77tu|ng(q) due to (40), (41) and Sobolev's embeddifig!(C;) into
Loy, 2—p)(Cp)- Therefore, for sufficiently largg

Ineullwzer < c(lluVullz, ey + llullwep)-
By Sobolev’'s embedding theorem and by (40), (41),

luVullz,ep < ellVull Lyepllull, o ey < elVulZey < et
Furthermore,

lullwieyy < el Vullryep < ct 712,
Hence,

—-1/2
lullwaey + lullwg , e < et
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Therefore, the right-hand side of (45) beIongsL;g(z_p)(C{) and its norm in this space does not exceed
ct~Y2, Thus,

_1/2
”Wtu”wj/(zfp)(cg) St

for all p € (1, 2). Finally, (44) follows by Sobolev’'s embedding theorena

6. On the Neumann problem for the Laplace operator in the strip

Here we consider the boundary value problem

{ ~(@2+ ) ="F onc, (46)
0gu(t,0) = 0gu(t, ) =0 fort € R,
where( is the same as in the previous section. We shall study this problem assuming that
¥ @
/ u(t,0)do = / F(t,0)d0 = 0. (47)
0 0
We need the following assertion on the solvability of problem (46), (47).
Theorem 6.1. (i) Existence Let F' € Ly oc(C) satisfy(47) and let
| e Py dr < co. 48)
Then problen{46) has a solutiorv € H%C(ﬁ) such that
oy <€ [ e AT ey, (49)
whereC is a positive constant which depends onlyon
(i) UniguenessSolutionv € HI%C(C) satisfying(46), (47) and subject to
10]| oy = 0(&7/N) st — +oo (50)

is unique.

Proof. (i) The system {v;(6)} 2o, Where

1 2
wo(f) = ﬁ wi(0) = \/;cos%, k>0,

forms an orthonormal basis ifp(0, ©). Due to (47) we can represent the functiBras the Fourier series

F(t,0) =) Fi(tywx(6) (51)
k=1
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with Fy,(t) = [§ F(t,0)wi(0) db. Itis clear thatF}, € Ly o(R) and that

1/2

o
1E | zocey = (Z ”FRH%Z(t,t—f—l))

k=1
We are looking for a solution in the form

v(t,0) = Z v (t)wg(0).
k=1

It satisfies (47) and there exist positive constaritandC, such that

00 kmt 4
2 2 =112 2
Cullliaey < S { (14 () oulaesssy + lilenny} < ol
k=1

Inserting (52) and (51) in (46) we obtain the equationfar

. km\ 2
—%m+(5)%mzﬁwy
Hence,
onlt) = 5 /_ & /DIl 1 (7) dir.

By Minkowski’s inequality for the norm

1/2

o) _ - t+1 2
i = (3 [ oo

we obtain

(E(5)'[ o)
k=1

1 o [0 /km\2/ [t+l 2\ 1/2
<L / 3 (—) ( / e(k”/“’)xT|Fk(7)}dx) dr.
2) 0 \fZ\ ¥ t

By direct calculation one can verify that

1/2

1
/ T e la 1l gy < @ef(n/w\tfﬂ_
t

67

(52)

(53)
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Hence,
go.o) o
1850 ey < © / e ANTF(r, )| 04 8 < C / e AT P e,y o
—00 — 0o

The norms|v|| z,c,)» 1182v]|,c,) can be estimated analogously. Thus series (52) belongg ) and
satisfies (46), (47) and (49).
(i) By (46) with F' = 0, we have

2
Uy, — (k_ﬂ) v, = 0.
¥
Moreover, by (50),
op(t) = o(e /A ast — +oo.

This givesv, = 0. Hencev = 0. O

Here is a version of Theorem 6.1, which deals with the Neumann problem for the serfistip
(to, ) x (0,¢).

Theorem 6.2. Let F' € L,(S) andv € H2(S) satisfy(47)for t > to and

[ e @I F ey dr < . (54)

to

Letv be a solution of

(32 1 32}y —
{ 3+ ) =F ons, )
dgv|g—o0 = 0pvlp=, =0 fort > to,
subject to
0]l Loy = O(€7/P)  ast — +oo. (56)
Then
olzren < C(/t e N Fl| e dr + €7 “"’t\lvHH«cm)) (57)
0
for t > to.

Proof. Letn = n(t) be a smooth function equal to 1 for- tg + 1 and 0 fort < #p. Then
— (93 + 02) (1) = nF — 27dw —ijv onC and dg(nv) =0 ondC.

Moreover,nv satisfies (50). Applying Theorem 6.1 we arrive at (57
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7. Estimate forwv

Here, as in Sections 3 and 4, the pdir«) is a solution of the boundary value problem (33)—(35),
(37).

Lemma 7.1. Lete be an arbitrary positive number. Then there exists a number to depending onr
such that the estimate

HUHHZ(Q) < Cg(/:j ef((ﬂ/w)fs)ufr\thHLZ(TYTH) dr + e((ﬂ/v)Eﬁ) (58)
holds fort > t;, wherec. depends on.
Proof. Using (41) one can estimate function (38) as

Il ey < Ct vl ey + C(Q0v)? + (arv)ZHLz(Ct)- (59)
Applying the Gagliardo—Nirenberg inequality

||w2HL2(Ct) < CHwHLZ(Ct)HwHHl(Ct)f

and using (40) in order to estimate the second term in the right-hand side of (59), we get

1@ov)? + (@+0)|| ey < C (118601 Loty + 110701 Laeo) [0l pr2esy < CE 20l pr2(cyy- (60)
Hence,
Il acry < CEY2 0]l g2,y Tor larget. (61)

Lett; > to. Due to Theorem 5.1 and (41) the right-hand side of (37) satisfies (54y @dubject
to (56). By (61) and by Theorem 6.2 with replaced by we obtain

o .
vl pr2ey < € ( /t e AT 2 ol ey + |12y r4ay) AT €7 “")(t_tl)HvHHZ(cm)>

1

for t > t1. We choosé; such thaﬁf[l/z = ke, wherex is a constant depending only gn Then
o0
vl 2,y < Cre / e AT raqe,y dr + W (8), (62)
t1
where

40) :c</ e_(W/SD)t—T|HhZHL2(TT+l)dT+e—(ﬂ/ﬁo)(t—tl)Hv‘|H2(Ctl)>. (63)
t1 '
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Hence,
N . o0 o0
mmm@<wm+230myé-~ﬂ e/ At=nl++ =T Dy () diry . dir
j=1 1 1

o0 o0
+(Cre)N L / / e (/A= tln=TD ||| ool drydr. (64)
t1 t1

The last multiple integral can be majorized by

AN o
(2—> / gn(t — DVl a2,y dr,
® t1

wheregy is Green’s function of the operat(),ao%z2 + %ZZ)NH

IN+1
Tt

gn(t) = (f) g /Aty <— |75|>,
T @

where

. This Green'’s function is given by

N

t? (2N — N N ra
pN(T):Z_I q 2 2N 1+(1<Z_I’ 7_20
pr L N pur 'L

Hence, and by the uniform boundedness{df2(, ), the last term in (64) tends to zero &s— oo for
sufficiently smalle. By taking the limit in (64) asV — oo we arrive at

lollnaco < € |~ 9t = 2l iy 07+ 52t = el ). (65)
1
where

Ge (t - 7—)

2nC ke
2

k.
) [ oolt =gt~ 7)ol - e (66)

Zgo(t7)+z<
=1

with go(t) = (¢/2m)e" /)t One can see that is Green’s function of the operater% + %ﬁ — %.
Hence, we get

1/m®  2nCke\ Y? w2 2nCre\ Y2
50 =5(% ) e (% ) ). (67
0 ¢ ¢ ¢

By choosingk sufficiently small we have

9:(t) < Cexp(— (g — 5) \t\).
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The result follows from (65). O
Estimates (41) and (58) immediately give
Corollary 7.2. The estimate
0]l 2y < Ct2 (68)
holds fort > tg.
since|£(1)] < Cllv]l ey (1v]l ey + 1l ooy, estimates (41) and (68) imply
If(t)] < Ct™3 fort > to. (69)
Proposition 7.3. Let there exist a constant> 0 such that
|h(t)] < ct™2 fort > to. (70)

Then the estimate
HUHHZ(Ct) < C(/t e (/o] HhZHLZ(TYH_l) dr + e(”/v?)t) (71)
1

holds, where is sufficiently large and is a constant independent bf

Proof. Using (70) and (68) and reasoning as in the beginning of the proof of Proposition 7.1 we obtain

1§l Laeny < Ct2 [0l mr2(cyy-

Hence, the right-hand sid€ in (37) admits the estimate

1F oo < CE200llrrzey + ClR2 | e ay

Applying Theorem 6.2 to Eq. (37) on the semiakis t; we arrive at the estimate
ol ey < W) + C /: & N2 -
whereV is defined by (63). Iterating this inequality and arguing as in the proof of Lemma 7.1 we obtain
[Vl e,y < C/:o 9ot P g 742y O + Coultst) 0]l ey - (73)
Here

gw(tiT)Zgo(t—T)JrZ/ go(t — T)w(T1)go(T1 — 72) - - - W(Tk)go(Tk — T) ATy 72 .. A7 (74)
k=17R*
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and

UJ(T) _ {ST[CQO_]'T_Z for r > t1,

otherwise.

One can see that, is Green’s function of the operater% + %ﬁ —w(t). Sincew(t) = O(t~2) ast — oo
andw(t) < m?/y?, it follows from [1, Theorem 6.4.1] that

gu(t,7) < Ce /A=l fort 7> 1.
This together with (73) leads to (71).0

Proposition 7.4. Any solutionh of (35) satisfies one of two alternatives

() the relation

h(t) = ( /t t A(7) d7> - +O(t"?logt) (75)

holds
(i) the estimate

()| < Ce= (/e (76)
holds for larget.

Proof. Equation (35) coincides with (15) whef@ = 4, z = h, and f satisfies (16) by (69). By
Lemma 2.3 there are two alternatives:

(i) Let (17) with R = A be valid. Then, by Lemma 2.4, relation (75) holds.
(i) Let (18) be valid. Then, by (68), (70) and by (71),
O < or2( [Te AR L dr o),
t1 '
wheret is a large positive number. This together with (28) gives
|(t)] < Ct‘l( /t e TR iy oygy O + e—(“/@t). (77)
1

We introduce the functiom(t) = maX.<-<¢+1 |h|. By (77) and (18) we have

wit) < c( / > e ATl 2oy dr 4 e(n/g,)t)‘
1

0
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Iterating this inequality (compare with the proof of Proposition 7.3) we obtain

w(t) < C ( / go(t, 7)E O dr 4 e—(ﬂ/w)t> ,

t1
whereg,, is given by (74). This leads to
w(t) < Ce” /9t for larget,

which completes the proof. O

8. Principal terms of the asymptotics
The main result is the following
Theorem 8.1. Letu be a solution of the boundary value probl€), (2). Then
u(z) = Q(r) + c1 + wa(2) (78)
or
u(z) = o + car™¥ cosd /) + wo(x), (79)

where @ is given by(5) and c¢1, ¢, and c3 are constants. The remainder termag and w, admit the
estimates

A loglogr—t
=317 % w < (2=2
j;kgz [0z,0z, 1HL2(KT\Kr/e) = logr—1

and

Z Tﬁjikil”ailal;zwzHLz(Kr\KT/e) < Carlrio=e,
Jt+k<2

Herec is an arbitrary positive number.
We reformulate this theorem in the coordinate®).

Theorem 8.2. Letu € H%C([to, o0) x [0, ¢]) be a solution 0f29), (30). Then one of the alternatives
holds

(i) (unbounded solution)

1

u(t) = /'t ( " A(s) ds) e+ ot ), (80)

to to
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wherec; is a constant and
Il 2,y < Ct *logt  fort > to; (81)
(ii) (bounded solution)
u(t, 0) = cz + cae” /9 cosgd /) + plt, ), (82)
where
10l roeyy < Cee™ @A for ¢ > 1,

Proof. (i) Suppose that the alternative (i) in Proposition 7.4 is valid. By (75),
t T -1
h(t) = / ( As) ds) dr + 1 + hat),
to to

where||ha || g2 1) < Ct~tlogt. This, together with (68), implies (80) and (81) wjih= hy + v.
(i) Let estimate (76) hold. Then we can rewrite problem (29), (30) as

{(a? +0%)u = f(t,0) fort>tq, 6 € (0,p), (83)
dgu =20 ford = 0, and fort > tq,

wheref satisfie| f|| r,¢.+1) < Ce~2079)%, By (76) and (71),
[0]| gr2(cy = 0(e”/)!) for larget.

Representation (82) follows from well-known results on asymptotic behaviour of solutions to elliptic
problems in a strip (see, for example, [3, Theorem 5.4.10).

9. Complete asymptotic expansion

Let us consider Eq. (1) with constant coefficientss and~. In this case one can write the whole
asymptotic representation far

Theorem 9.1. If «, 8 and~ are constant then an arbitrary unbounded solutioof (1), (2) admits the
asymptotic expansion

N
u(z) = dloglogr= + ¢ + Z
k=1

Py(loglogr—1,6)
(logr—1)*

+ Ry (x1,22),

whered is given by(8) and Py (&, ) are polynomials of degregk in ¢ whose coefficients are smooth
functions of € [0, ¢]. The remainder ternk 5 satisfies

- : log logr—1)V+1
ki-lak 3i R (

r N S
k%z H T1° X2 HLz(KT\KT/e) (Iogr—l)N+1

for smallr.
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In order to prove Theorem 9.1 we need two lemmas.
Lemma 9.2. Let x be a solution of the equation
X0 +d"I3() +gt) =0 fort >tg>1,

subject to

X(t) = %l + o("’t_gf).

Assume that

N-1
g(t) = t3 + Z I 2(|°g D + O((Iothll )

wherex = constandg, are polynomials of degre€s. Then

N—
X0 =24 +Y M+ (o),

wherep, are polynomials of degre€ s and

XN(t):c)((Iogtti]le—l)‘

Proof. By putting x(t) = dt~1 + t~%(t) we arrive at the equation
= —d 2% —t?g fort > to,
wherey(t) = O(logt). By integrating (89) overtf, t) we obtain

Y(t) = —klogt + const+ 1 (t),

75

(84)

(85)

(86)

(87)

(88)

(89)

whereyn (t) = Ot 1(logt)?). This gives (87) withV = 3, y3(t) = t~21(t) andp,(§) = —k& + const.

Clearly,

P1(t) = d~ / —klogT + const+ 1(7)) 2dr + / 729(r) + k771) dr.

The result follows from (90) by induction ity. O

Lemma 9.3. Letw be a solution of55) with

N
r,0) =3 129900 | )
k=2

(90)

(91)
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wheref, are polynomials irf of degree<s with smooth coefficients dA, ¢] and

logt)V-1
I7vlco = O 52— (92
Also let
©
/ (t,6)df = 0 (93)
0

and||v| g2,y = O(1) for large t. Then

N

o(t,0) =" W + V(¢ 0), (94)
k=2

whereuv, (&, 6) are polynomials ir of degree<s with smooth coefficients dA, o] and

logt)V -1
VN Il m2e,y = O(%) (95)

for largett.

Proof. From (93) and (55) one derives

¥ ®
/fs(f,ﬁ)dez/ Fy(t,0)dd =0
0 0

fors=0,1,..., N —2and for all¢ andt > . Inserting (94) and (91) into (55) and equating terms with
the same power dfwe get

{ —05up—2 = (k — 2)(k — L)vg—_a — (2k — 3)ip_a + Vp—a+ fr—2. (96)
09Vk—2/p=0, = O

fork=2,3,...,N (herev_» = v_1 = 0) and

{ —(af + ag)VN =Fy + ZéV:Nfl(k(k + 1)?}]{,2 — (Zk‘ + 1)’[)]@72 + ?'}'kfz)tfkfz, (97)
99Vixl9—o, = O.

From (96) one can find all;, s = 0,1,..., N — 2, subject tof§ vs(&,6) dd = 0. Applying Theorem 6.2
to (97) we obtain estimate (95) fofy. O

Proof of Theorem 9.1. By Theorem 8.2 it suffices to obtain the required asymptotic expansion for the
solutionw of (29), (30) given by (80). This means thapriori « is given by

u(t,0) = dlogt + c + p(t,0),
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wherep satisfies (81). By (32) it is sufficient to establish the following asymptotic representatidn for
anduv:

. N+l | | N+1

i(t) :%l z Pr— 1(°gt) o<(°?;)+2 ) (98)

o(t) = Z w + V(L 0), (99)
k=2

wherep;(£) andvs(€, 0) are polynomials irf of degree<s. The coefficients of; are smooth functions
of 8 € [0, ]. The remainder ternivy should satisfy estimate (95). Singés unbounded} satisfies (75)
which becomes in our case

h=dt™' 4+ O(t ?logt).

By this and (68) we obtain the asymptotic representation for the right-hand side in (37):

(™t~ A)?—j +0(t3logt).
Applying Theorem 6.2 we get

o(t,0) = vo(0)t % + O(t3logt), (100)
whereuy is the solution of

{ 05vo(0) = d*(d~1 — A(6)) on (0,),
dpvolo—0, = 0,

subject to the orthogonality conditioff” vo(f) df = 0. By (36) and (100) the functiopi in (35) has the
asymptotics

) = 2h(t)

/ B(6)dguo(6) d8 + O(t*logt).

Using Lemma 9.2 we obtain

h(t) =dt™ + pl(ltggt) N O((Io?3t)2>,

wherep; is a linear polynomial in log. Now we can improve the asymptotic representation for the right-
hand side in (37) and then the asymptotics{ofontinuing this iterative procedure we arrive at (98)
and (99). O
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Theorem 9.4. If «, 3 and v are constant functions then an arbitrary bounded solutionf (1), (2)
admits the asymptotic expansion
N
u(@) = co+ Y rpy_a(logr, 0) + wn (r,0),
k=1

wherecg is a constantps(£,0) is a polynomial of degreels in £ whose coefficients are smooth of
0 €[0,¢] and

k+i—1||ak A N+1 N
Z et HazlaészHLg(Kr\Kr/e) < Onr™N % log |
k+j<2

for smallr.

Proof. By Theorem 8.1, representation (79) is valid. The result follows from Lemma 5.1.6 and Theorem
54.1in[3]. O

10. Existence of a solution with prescribed asymptotics

We begin with an existence result from [2] (see Theorem 2.2) adjusted to problem (33), (34), (37). Let
F denote the right-hand side in (37). The only informationfowe need is the trivial inequality

; 2
1F | 2oy < CUAN 1y 01y + 10l Er2) ™
Here the constan® depends only onl.

Theorem 10.1. Let s be a continuous function dig, co) satisfying
s(t) = C/ T[] 7,y + 5(0)) T, (101)
to—1 '

whereC is a constant depending ahiand . Let also
s(t) = o(e”™!)  ast — cc.
Then problen(33), (34), (37) has a solutiory € H2_([to, o) x [0, ¢]) such that
[V zr2(c,y < s(B)-
Corollary 10.2. Lettq be sufficiently large and Iét € C'(to, c0) be subject to
|ht)] <20)71 (102)
for t > tp. Then there exists a solution of probl€&8), (34), (37) satisfying

1]l g2y < Ct=? fort > to.
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Proof. Due to (102) inequality (101) has the solutigf) = ct~2 with ¢ depending only on\, A ande.
The result follows from Theorem 10.1.0

We prove the main existence result of the present section.

Theorem 10.3. For sufficiently smalb there exists a solution ¢f.), (2) with the asymptotics

u(x) = Q(r) + o(1).

Proof. We are looking for a solutioh of (34) in the form

= ( ) d7> 71(1 + (D).

to

wherez is subject toz(t) < Ct=1Y2 for t > to with a fixed constan€. Then for a sufficiently largey
the functionh is subject to (102) and satisfies the equation

B it -1
2(t) + A(t)(/t A(T) dT) (2(t) + zz(t)) + F(2)(t) =0,

whereF is a nonlinear operator subject to the estimjaéz)()| < Ct~2 by Corollary 10.2 and by (35).
Now the result follows by a standard fixed point argumernt.
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