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Angle singularities of solutions to the
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Abstract. A two-dimensional Riccati’s equation with Neumann boundary data is considered in a domain with an angular point.
Asymptotic formulas for an arbitrary solution near the vertex are obtained.

1. Introduction

LetKδ be the sector

{
x = (x1,x2) ∈ R2: 0< r < δ, θ ∈ (0,ϕ)

}
,

where (r,θ) are the polar coordinates ofx andϕ ∈ (0, 2π]. Consider the nonlinear boundary value
problem

∆u+ α(x)(∂x1u)2 + 2β(x)∂x1u∂x2u+ γ(x)(∂x2u)2 = 0 onKδ, (1)

∂θu|θ=0 = ∂θu|θ=ϕ = 0 for r < δ. (2)

Hereα,β andγ are measurable functions. We suppose that for almost allx ∈ Kδ and for all (ξ1, ξ2) ∈ R2,

λ
(
ξ2

1 + ξ2
2
)
6 α(x)ξ2

1 + 2β(x)ξ1ξ2 + γ(x)ξ2
2 6 Λ

(
ξ2

1 + ξ2
2
)

(3)

with positive constantsλ andΛ. We assume everywhere thatu belongs to the Sobolev spaceH2(G) for
any open setG such thatG ⊂ Kδ \ {O}.

Our aim is to describe the asymptotic behaviour ofu near the vertexO without a priori restrictions on
its growth. We show that there exist two possibilities: eitheru is unbounded and then

u(x) = Q(r) + c∗ + o(1), (4)
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where

Q(r) = ϕ

∫ δ/ε

r

ds
s

(∫∫
x∈Kδ\Ks

α(x)x2
1 + 2β(x)x1x2 + γ(x)x2

2

|x|4 dx1 dx2

)−1

, (5)

or u is bounded and has the same asymptotics

u(x) = c0 + c1r
π/ϕ cos(πθ/ϕ) + o

(
rπ/ϕ

)
(6)

as in the case of the Neumann problem for∆u = 0. Herec∗, c0 andc1 are real constants.
If the coefficientsα, β andγ are constant we write the asymptotic expansion for unbounded solutions:

u(x) ∼ d log logr−1 + c∗ +
∞∑
k=1

Pk(log logr−1,θ)
(logr−1)k

, (7)

where

d =

(
α+ γ

2
+ β

sin2ϕ

ϕ
+
α− γ

4
sin 2ϕ
ϕ

)−1

, (8)

andPk(τ ,θ) are polynomials of degree6k in τ whose coefficients are smooth functions ofθ ∈ [0,ϕ]. If
u is bounded it admits the asymptotic representation

u(x) ∼ c0 +
∞∑
k=1

rkπ/ϕpk−1(logr,θ), (9)

whereck = const andpk are polynomials in the first argument with smooth coefficients on [0,ϕ].
We note that all our results and their proofs extend to the case whenO is the center of the disk

Kδ = {x: r < δ}. One should only putϕ = π in (6) and (9). In other words, we also describe the
asymptotic behaviour of solutions to Eq. (1) which are either bounded atO or have an isolated singularity
there.

We finish this paper by showing that problem (1), (2) has solutions with asymptotics (4).
It is worth noting that Eq. (1) and the Neumann conditions as well as assumption (3) about the coef-

ficientsα, β andγ are preserved under conformal mappings. Therefore, (4) and (6) along with asymp-
totics of conformal mappings (see [2]) imply asymptotic representations of solutions at infinity and near
boundary singularities other than corners, for example, cusps.

2. Auxiliary ordinary differential equation

Lemma 2.1. Letg be a locally integrable non-negative function on the interval[t0,∞). Suppose that an
absolutely continuous functionz = z(t), which is not identically zero for larget, satisfies the inequality

ż(t) 6 −qz2(t)− g(t) for t > t0, (10)
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whereq is a positive constant. Thenz is a positive function and

z(t) 6 1
q(t− c) for t > t0 (11)

with

c = t0−
1

qz(t0)
. (12)

Moreover,∫ ∞
t

g(τ ) dτ 6 z(t) for t > t0. (13)

Proof. We show thatz is non-negative. Letz(t1) < 0 for a certaint1 > t0. From (10) it follows that
z does not increase and, hence,z(t) 6 z(t1) for t > t1. By (10), ż(t)/z2(t) 6 −q. Integrating the last
inequality over the interval (t, t2), t1 6 t 6 t2, we obtain

1
z(t)

+ q(t2− t) 6
1

z(t2)
.

The left-hand side tends to+∞ whent = t2/2 andt2 → +∞, but the right-hand side is bounded. This
contradiction shows thatz is non-negative.

We prove thatz is positive. Indeed, ifz(t1) = 0 for somet1 > t0 thenz(t) = 0 for all t > t1, sincez
does not increase and is non-negative. Thusz > 0.

We turn to inequality (11). The functiony(t) = q−1(t− c)−1 satisfies

ẏ(t) = −qy2(t), y(t0) = z(t0).

Therefore,

ż − ẏ 6 −q(z + y)(z − y). (14)

If y(t) 6 z(t) on an interval (t0, t3) then, by (14),ż 6 ẏ on the same interval. Sincez(t0) = y(t0) it
follows thatz(t) 6 y(t), t ∈ (t0, t3). This proves (11).

In order to obtain (13) it suffices to integrate (10) over (t,+∞). 2

Let us consider the equation

ż(t) +R(t)z2(t) + f (t) = 0 for t > t0, (15)

whereR andf are real-valued, measurable, bounded functions on [t0,∞). We shall suppose that

R(t) > q > 0 for t > t0 and f (t) = O
(
t−3) ast→ +∞. (16)

We need the following standard comparison principle.
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Lemma 2.2. Letz andy be absolutely continuous non-negative functions on[t0,∞) such that

ż 6 −Rz2− f , ẏ > −Ry2− f on (t0,∞),

andy(t0) > z(t0). Theny(t) > z(t) for t > t0.

Proof. Suppose thaty(t1) = z(t1) for somet1 > t0 andy(t) < z(t) for t ∈ (t1, t2). Then

ż − ẏ 6 −R(z + y)(z − y) 6 0 for t ∈ (t1, t2).

Consequently,y > z on (t1, t2). The result follows by contradiction.2

Lemma 2.3. Letz be a non-negative solution of(15). Then either

lim
t→+∞

z(t)
∫ t

t0

R(τ ) dτ = 1 (17)

or

z(t) = O
(
t−2) ast→ +∞. (18)

Proof. First, we prove that

z(t) 6
(∫ t

t0

R(τ ) dτ
)−1

+ C

(∫ t

t0

R(τ ) dτ
)−3/2

for t > t1 (19)

with someC > 0 and witht1 being sufficiently large. Denote byy(t) the right-hand side of (19). Then

ẏ +Ry2 + f =
1
2
CR

(∫ t

t0

R(τ ) dτ
)−5/2

+ C2R
(∫ t

t0

R(τ ) dτ
)−3

+ O
(
t−3) > 0,

providedC is sufficiently large andt > t1. Moreover, we can suppose that (19) is valid fort = t1.
Reference to Lemma 2.2 proves (19) for allt > t1.

Inequality (19) implies

lim sup
t→∞

z(t)
∫ t

t0

R(τ ) dτ 6 1.

If, additionally,

lim inf
t→∞

z(t)
∫ t

t0

R(τ ) dτ > 1, (20)

then we arrive at (17).
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We suppose that (20) fails and prove (18). Let there exist a sequence {tj} j>1 such thattj → ∞ as
j →∞ and

z(tj) 6 ε
(∫ tj

t0

R(τ ) dτ
)−1

(21)

with ε ∈ (0, 1). We puty(t) = ε(
∫ t
t0
R(τ ) dτ )−1. Then

ẏ +Ry2 + f =
(
ε2− ε

)
R
(∫ t

t0

R(τ ) dτ
)−2

+ f 6 0,

providedt is sufficiently large. By Lemma 2.2 this and (21) give the inequality

z(t) 6 ε
(∫ t

t0

R(τ ) dτ
)−1

for t > t1,

wheret1 is sufficiently large. Using the last estimate we derive from (15)

ż(t) + εR
(∫ t

t0

R(τ ) dτ
)−1

z(t) > −f (t) for t > t1

or, equivalently,

d
dt

(
z(t)

(∫ t

t0

R(τ ) dτ
)ε )

> −
(∫ t

t0

R(τ ) dτ
)ε
f (t). (22)

By (19),

z(t)
(∫ t

t0

R(τ ) dτ
)ε
→ 0 ast→∞.

Integrating (22) over (t,∞) we get

z(t) 6
(∫ t

t0

R(τ ) dτ
)−ε ∫ ∞

t

(∫ τ

t0

R(s) ds
)ε
|f (τ )|dτ.

Sinceε ∈ (0, 1), the left-hand side is O(t−2) and we arrive at (18). 2

Lemma 2.4. Letz be a non-negative solution of(15) and let(17) hold. Then

z(t) =

(∫ t

t0

R(τ ) dτ
)−1

+ O
(
t−2 log t

)
. (23)
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Proof. We representz as

z(t) =

(∫ t

t0

R(τ ) dτ
)−1(

1 + ζ(t)
)
.

By (17), the functionζ(t) tends to 0 ast→∞ and satisfies

ζ̇(t) = −R(t)
(∫ t

t0

R(τ ) dτ
)−1(

ζ(t) + ζ2(t)
)
−
(∫ t

t0

R(τ ) dτ
)
f (t). (24)

We denote

G(t) =

∫ t

t1

R(τ )
(∫ τ

t0

R(s) ds
)−1(

1 + ζ(τ )
)

dτ ,

wheret1 > t0. Then

lim
t→+∞

G(t)
(

log
(∫ t

t0

R(τ ) dτ
))−1

= 1, (25)

and Eq. (24) can be rewritten as

d
dt

(
eG(t)ζ(t)

)
= −eG(t)

(∫ t

t0

R(τ ) dτ
)
f (t). (26)

Hence, and by (25),ζ(t) = O(t−1+ε) as t → ∞, whereε is an arbitrary positive number. Using this
relation we can improve (25) as follows:

G(t) = log
(∫ t

t0

R(τ ) dτ
)

+ O(1). (27)

Hence, and by (26), we haveζ(t) = O(t−1 log t). The proof is complete. 2

Lemma 2.5. Letz be a non-negative solution of(15) and let(18) hold. Then

|z(t)| 6 c
∫ ∞
t
|f (τ )|dτ , (28)

wherec is independent oft andf .

Proof. From (15) we derive that

d
dt

(
e
∫ t
t0
R(τ )z(τ ) dτ

z(t)
)

= −e
∫ t
t0
R(τ )z(τ ) dτ

f (t).

Due to (18), the functiont →
∫ t
t0
R(τ )z(τ ) dτ is bounded. By integrating the last equality we arrive at

(28). 2
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3. Splitting of Eq. (1)

Using the coordinatest = − logr andθ we rewrite (1) and (2) as(
∂2
t + ∂2

θ

)
u+A(∂tu)2 + 2B∂tu∂θu+ C(∂θu)2 = 0 for t > t0, 0< θ < ϕ, (29)

∂θu|θ=0 = ∂θu|θ=ϕ = 0 for t > t0, (30)

wheret0 = − logδ and

A(t,θ) = α cos2 θ + 2β sinθ cosθ + γ sin2 θ,

B(t,θ) = (α− γ) sinθ cosθ + β
(

sin2 θ − cos2 θ
)
,

C(t,θ) = α sin2 θ − 2β sinθ cosθ + γ cos2 θ.

The functionsα(x), β(x) andγ(x) have to be calculated atx = (e−t cosθ, e−t sinθ). From (3) it follows
that

λ
(
ξ2

1 + ξ2
2
)
6 Aξ2

1 + 2Bξ1ξ2 + Cξ2
2 6 Λ

(
ξ2

1 + ξ2
2
)
. (31)

We represent the functionu as

u(t,θ) = h(t) + v(t,θ), (32)

whereh(t) = 1
ϕ

∫ ϕ
0 u(t,θ) dθ. Then

∫ ϕ

0
v(t,θ) dθ = 0 (33)

and

∂θv(t, 0) = ∂θv(t,ϕ) = 0 for t > t0. (34)

Inserting (32) in (29) and then integrating with respect toθ over the interval (0,ϕ) we arrive at the
equation

ḧ+A(t)ḣ2 + f (t) = 0 for t > t0, (35)

whereA(t) = (1/ϕ)
∫ ϕ

0 A(t,θ) dθ and

f (t) =
1
ϕ

∫ ϕ

0

{
A
(
2ḣ∂tv + (∂tv)2)+ 2B

(
ḣ+ ∂tv

)
∂θv + C(∂θv)2} dθ. (36)

Subtracting (35) from (29) we obtain

∂2
tv + ∂2

θv =
(
A−A

)
ḣ2− f, (37)
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where

f = A
(
2ḣ∂tv + (∂tv)2)+ 2B

(
ḣ+ ∂tv

)
∂θv +C(∂θv)2− f (t). (38)

Clearly,∫ ϕ

0
f(t,θ) dθ = 0. (39)

Thus, the boundary value problem (29), (30) is split into system (35), (37) completed by conditions (33)
and (34).

4. Auxiliary estimates for h and v

Lemma 4.1. The following estimates hold:∫ ∞
t

∫ ϕ

0

(
(∂τv)2 + (∂θv)2)dθ dτ 6 ϕ

λ2(t− c) (40)

and

06 ḣ(t) 6 1
λ(t− c) (41)

for t > t0, wherec is defined by(12).

Proof. From (29) and (31) we derive (∂2
t + ∂2

θ)u + λ((∂tu)2 + (∂θu)2) 6 0. Integrating this inequality
over the interval (0,ϕ) and using (30) we arrive at

ḧ(t) + λḣ2(t) + g(t) 6 0 for t > t0, (42)

where

g(t) =
λ

ϕ

∫ ϕ

0

(
(∂tv)2(t,θ) + (∂θv)2(t,θ)

)
dθ.

Applying Lemma 2.1 to inequality (42) we obtain (40) and (41).2

5. Pointwise estimate for the gradient

We shall use the notations

C =
{
(t,θ): t ∈ R, θ ∈ (0,ϕ)

}
and Ct =

{
(τ ,θ): t < τ < t+ 1, θ ∈ (0,ϕ)

}
.
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Theorem 5.1. Letu ∈ H2(Ct) for anyt > t0 be a solution of(29), (30). Then

‖∇2u‖L2(Ct) = O
(
t−1/2) (43)

and

max
0<θ<ϕ

∣∣∇u(t,θ)
∣∣ = O

(
t−1/2). (44)

Proof. Let

Φ(ξ, ζ) = Aξ1ζ1 +B(ξ1ζ2 + ξ2ζ1) + Cξ2ζ2,

whereξ andζ are points inR2. We introduce a cut-off functionη ∈ C∞0 (−1, 2),η = 1 on (0, 1), and set
ηt(τ ) = η(τ − t). It will be convenient to makeu orthogonal to 1 on the set

C′t =
{
(τ ,θ): t− 1< τ < t+ 2, θ ∈ (0,ϕ)

}
.

We rewrite (29) as

−∆(ηtu) = Φ
(
∇u,∇(ηtu)− u∇ηt

)
− 2∇ηt∇u− u∆ηt. (45)

Hence, forp ∈ (1, 2),

‖ηtu‖W 2
p (C′t) 6 c

(∥∥ |∇u| ∣∣∇(ηtu)
∣∣ ∥∥
Lp(C′t)

+ ‖u∇u‖Lp(C′t) + ‖u‖W 1
p (C′t)

)
.

The first norm on the right does not exceed

c‖∇u‖L2(C′t)
∥∥∇(ηtu)

∥∥
L2p/(2−p)(C′t)

,

which is majorized byct−1/2‖ηtu‖W 2
p (C′t) due to (40), (41) and Sobolev’s embeddingW 1

p (C′t) into
L2p/(2−p)(C′t). Therefore, for sufficiently larget,

‖ηtu‖W 2
p (C′t) 6 c

(
‖u∇u‖Lp(C′t) + ‖u‖W 1

p (C′t)
)
.

By Sobolev’s embedding theorem and by (40), (41),

‖u∇u‖Lp(C′t) 6 c‖∇u‖L2(C′t)‖u‖L2p/(2−p)(C′t) 6 c‖∇u‖
2
L2(C′t) 6 ct

−1.

Furthermore,

‖u‖W 1
p (C′t) 6 c‖∇u‖L2(C′t) 6 ct

−1/2.

Hence,

‖u‖W 2
p (C′t) + ‖u‖W 1

2p/(2−p)(C
′
t)
6 ct−1/2.
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Therefore, the right-hand side of (45) belongs toLp/(2−p)(C′t) and its norm in this space does not exceed
ct−1/2. Thus,

‖ηtu‖W 2
p/(2−p)

(C′t) 6 ct
−1/2

for all p ∈ (1, 2). Finally, (44) follows by Sobolev’s embedding theorem.2

6. On the Neumann problem for the Laplace operator in the strip

Here we consider the boundary value problem{
−(∂2

t + ∂2
θ)v = F onC,

∂θv(t, 0) = ∂θv(t,ϕ) = 0 for t ∈ R,
(46)

whereC is the same as in the previous section. We shall study this problem assuming that∫ ϕ

0
v(t,θ) dθ =

∫ ϕ

0
F (t,θ) dθ = 0. (47)

We need the following assertion on the solvability of problem (46), (47).

Theorem 6.1. (i) Existence. LetF ∈ L2,loc(C) satisfy(47) and let∫ ∞
−∞

e−(π/ϕ)|τ |‖F‖L2(Cτ ) dτ <∞. (48)

Then problem(46) has a solutionv ∈ H2
loc(C) such that

‖v‖H2(Ct) 6 C
∫ ∞
−∞

e−(π/ϕ)|t−τ |‖F‖L2(Cτ ) dτ , (49)

whereC is a positive constant which depends only onϕ.
(ii) Uniqueness. Solutionv ∈ H2

loc(C) satisfying(46), (47) and subject to

‖v‖L2(Ct) = o
(
e(π/ϕ)|t|) ast→ ±∞ (50)

is unique.

Proof. (i) The system {wk(θ)}∞k=0, where

w0(θ) =
1
√
ϕ

, wk(θ) =

√
2
ϕ

cos
kπθ

ϕ
, k > 0,

forms an orthonormal basis inL2(0,ϕ). Due to (47) we can represent the functionF as the Fourier series

F (t,θ) =
∞∑
k=1

Fk(t)wk(θ) (51)
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with Fk(t) =
∫ ϕ

0 F (t,θ)wk(θ) dθ. It is clear thatFk ∈ L2,loc(R) and that

‖F‖L2(Ct) =

( ∞∑
k=1

‖Fk‖2L2(t,t+1)

)1/2

.

We are looking for a solutionv in the form

v(t,θ) =
∞∑
k=1

vk(t)wk(θ). (52)

It satisfies (47) and there exist positive constantsC1 andC2 such that

C1‖v‖2H2(Ct) 6
∞∑
k=1

{(
1 +

(
kπ

ϕ

)4)
‖vk‖2L2(t,t+1) + ‖v̈k‖2L2(t,t+1)

}
6 C2‖v‖2H2(Ct). (53)

Inserting (52) and (51) in (46) we obtain the equation forvk:

−v̈k(t) +

(
kπ

ϕ

)2

vk(t) = Fk(t).

Hence,

vk(t) =
ϕ

2kπ

∫ ∞
−∞

e−(kπ/ϕ)|t−τ |Fk(τ ) dτ.

By Minkowski’s inequality for the norm

∥∥{ gk}∞k=1

∥∥ =

( ∞∑
k=1

∫ t+1

t

∣∣gk(τ )
∣∣2 dτ

)1/2

,

we obtain

( ∞∑
k=1

(
kπ

ϕ

)4 ∫ t+1

t

∣∣vk(x)
∣∣2 dx

)1/2

6 1
2

∫ ∞
−∞

( ∞∑
k=1

(
kπ

ϕ

)2(∫ t+1

t
e−(kπ/ϕ)|x−τ |∣∣Fk(τ )

∣∣ dx)2
)1/2

dτ.

By direct calculation one can verify that

∫ t+1

t
e−(kπ/ϕ)|x−τ | dx 6 C(ϕ)

k
e−(π/ϕ)|t−τ |.
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Hence,

∥∥∂2
θv
∥∥
L2(Ct) 6 C

∫ ∞
−∞

e−(π/ϕ)|t−τ |∥∥F (τ , ·)
∥∥
L2(0,ϕ) dτ 6 C

∫ ∞
−∞

e−(π/ϕ)|t−τ |‖F‖L2(Cτ ) dτ.

The norms‖v‖L2(Ct), ‖∂2
tv‖L2(Ct) can be estimated analogously. Thus series (52) belongs toH2

loc(C) and
satisfies (46), (47) and (49).

(ii) By (46) with F = 0, we have

v̈k −
(
kπ

ϕ

)2

vk = 0.

Moreover, by (50),

vk(t) = o
(
e−(π/ϕ)|t|) ast→ ±∞.

This givesvk = 0. Hencev = 0. 2

Here is a version of Theorem 6.1, which deals with the Neumann problem for the semistripS =
(t0,∞)× (0,ϕ).

Theorem 6.2. LetF ∈ L2(S) andv ∈ H2
loc(S) satisfy(47) for t > t0 and∫ ∞

t0

e−(π/ϕ)|τ |‖F‖L2(Cτ ) dτ <∞. (54)

Letv be a solution of{
−(∂2

θ + ∂2
t )v = F onS,

∂θv|θ=0 = ∂θv|θ=ϕ = 0 for t > t0,
(55)

subject to

‖v‖L2(Ct) = o
(
e(π/ϕ)t) ast→ +∞. (56)

Then

‖v‖H2(Ct) 6 C
(∫ ∞

t0

e−(π/ϕ)|t−τ |‖F‖L2(Ct) dτ + e−(π/ϕ)t‖v‖H2(Ct0)

)
(57)

for t > t0.

Proof. Let η = η(t) be a smooth function equal to 1 fort > t0 + 1 and 0 fort < t0. Then

−
(
∂2
θ + ∂2

t

)
(ηv) = ηF − 2η̇∂tv − η̈v onC and ∂θ(ηv) = 0 on∂C.

Moreover,ηv satisfies (50). Applying Theorem 6.1 we arrive at (57).2
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7. Estimate for v

Here, as in Sections 3 and 4, the pair (h,v) is a solution of the boundary value problem (33)–(35),
(37).

Lemma 7.1. Let ε be an arbitrary positive number. Then there exists a numbert1 > t0 depending onε
such that the estimate

‖v‖H2(Ct) 6 Cε
(∫ ∞

t1

e−((π/ϕ)−ε)|t−τ |∥∥ḣ2∥∥
L2(τ ,τ+1) dτ + e−((π/ϕ)−ε)t

)
(58)

holds fort > t1, wherecε depends onε.

Proof. Using (41) one can estimate function (38) as

‖f‖L2(Ct) 6 Ct−1‖v‖H1(Ct) + C
∥∥(∂θv)2 + (∂τv)2∥∥

L2(Ct). (59)

Applying the Gagliardo–Nirenberg inequality

∥∥w2∥∥
L2(Ct) 6 C‖w‖L2(Ct)‖w‖H1(Ct),

and using (40) in order to estimate the second term in the right-hand side of (59), we get∥∥(∂θv)2 + (∂τv)2∥∥
L2(Ct) 6 C

(
‖∂θv‖L2(Ct) + ‖∂τv‖L2(Ct)

)
‖v‖H2(Ct) 6 Ct

−1/2‖v‖H2(Ct). (60)

Hence,

‖f‖L2(Ct) 6 Ct−1/2‖v‖H2(Ct) for larget. (61)

Let t1 > t0. Due to Theorem 5.1 and (41) the right-hand side of (37) satisfies (54) andv is subject
to (56). By (61) and by Theorem 6.2 witht0 replaced byt1 we obtain

‖v‖H2(Ct) 6 C
(∫ ∞

t1

e−(π/ϕ)|t−τ |(τ−1/2‖v‖H2(Cτ ) +
∥∥ḣ2∥∥

L2(τ ,τ+1)

)
dτ + e−(π/ϕ)(t−t1)‖v‖H2(Ct1)

)

for t > t1. We chooset1 such thatt−1/2
1 = κε, whereκ is a constant depending only onϕ. Then

‖v‖H2(Ct) 6 Cκε
∫ ∞
t1

e−(π/ϕ)|t−τ |‖v‖H2(Cτ ) dτ + Ψ (t), (62)

where

Ψ (t) = C

(∫ ∞
t1

e−(π/ϕ)|t−τ |∥∥ḣ2∥∥
L2(τ ,τ+1) dτ + e−(π/ϕ)(t−t1)‖v‖H2(Ct1)

)
. (63)
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Hence,

‖v‖H2(Ct) 6 Ψ (t) +
N∑
j=1

(Cκε)j
∫ ∞
t1

· · ·
∫ ∞
t1

e−(π/ϕ)(|t−τ1|+···+|τj−1−τj |)Ψ (τj) dτ1 . . . dτj

+ (Cκε)N+1
∫ ∞
t1

· · ·
∫ ∞
t1

e−(π/ϕ)(|t−τ1|+···+|τN−τ |)‖v‖H2(Cτ ) dτ1 . . . dτN dτ. (64)

The last multiple integral can be majorized by

(
2
π

ϕ

)N+1 ∫ ∞
t1

gN (t− τ )‖v‖H2(Cτ ) dτ ,

wheregN is Green’s function of the operator
(
− d2

dt2 + π2

ϕ2

)N+1
. This Green’s function is given by

gN (t) =

(
ϕ

π

)2N+1

e−(π/ϕ)|t|pN

(
π

ϕ
|t|
)

,

where

pN (τ ) =
N∑
q=0

tq

q!

(
2N − q
N

)
2−2N−1+q 6

N∑
q=0

τ q

q!
, τ > 0.

Hence, and by the uniform boundedness of‖v‖H2(Cτ ), the last term in (64) tends to zero asN → ∞ for
sufficiently smallε. By taking the limit in (64) asN →∞ we arrive at

‖v‖H2(Ct) 6 C
(∫ ∞

t1

gε(t− τ )
∥∥ḣ2∥∥

L2(τ ,τ+1) dτ + gε(t− t1)‖v‖H2(Ct1)

)
, (65)

where

gε(t− τ )

= g0(t− τ ) +
∞∑
k=1

(
2πCκε
ϕ

)k ∫
Rk
g0(t− τ1)g0(τ1− τ2) · · · g0(τk − τ ) dτ1 dτ2 . . . dτk (66)

with g0(t) = (ϕ/2π)e−(π/ϕ)|t|. One can see thatgε is Green’s function of the operator− d2

dt2 + π2

ϕ2− 2πCκε
ϕ .

Hence, we get

gε(t) =
1
2

(
π2

ϕ2 −
2πCκε
ϕ

)−1/2

exp
(
−
(
π2

ϕ2 −
2πCκε
ϕ

)1/2

|t|
)
. (67)

By choosingκ sufficiently small we have

gε(t) 6 C exp
(
−
(
π

ϕ
− ε

)
|t|
)
.
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The result follows from (65). 2

Estimates (41) and (58) immediately give

Corollary 7.2. The estimate

‖v‖H2(Ct) 6 Ct
−2 (68)

holds fort > t0.

Since|f (t)| 6 C‖v‖H2(Ct)(‖v‖H2(Ct) + ‖ḣ‖L2(Ct)), estimates (41) and (68) imply

|f (t)| 6 Ct−3 for t > t0. (69)

Proposition 7.3. Let there exist a constantc > 0 such that∣∣ḣ(t)
∣∣ 6 ct−2 for t > t0. (70)

Then the estimate

‖v‖H2(Ct) 6 C
(∫ ∞

t1

e−(π/ϕ)|t−τ |∥∥ḣ2∥∥
L2(τ ,τ+1) dτ + e−(π/ϕ)t

)
(71)

holds, wheret1 is sufficiently large andC is a constant independent ofh.

Proof. Using (70) and (68) and reasoning as in the beginning of the proof of Proposition 7.1 we obtain

‖f‖L2(Ct) 6 Ct−2‖v‖H2(Ct).

Hence, the right-hand sideF in (37) admits the estimate

‖F‖L2(Ct) 6 Ct−2‖v‖H2(Ct) + C
∥∥ḣ2∥∥

L2(t,t+1).

Applying Theorem 6.2 to Eq. (37) on the semiaxist > t1 we arrive at the estimate

‖v‖H2(Ct) 6 Ψ (t) + C

∫ ∞
t1

e−(π/ϕ)|t−τ |τ−2‖v‖H2(Cτ ) dτ , (72)

whereΨ is defined by (63). Iterating this inequality and arguing as in the proof of Lemma 7.1 we obtain

‖v‖H2(Ct) 6 C
∫ ∞
t1

gω(t, τ )
∥∥ḣ2∥∥

L2(τ ,τ+1) dτ + Cgω(t, t1)‖v‖H2(Ct1). (73)

Here

gω(t, τ ) = g0(t− τ ) +
∞∑
k=1

∫
Rk
g0(t− τ1)ω(τ1)g0(τ1− τ2) · · ·ω(τk)g0(τk − τ ) dτ1 dτ2 . . . dτk (74)
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and

ω(τ ) =

{
2πCϕ−1τ−2 for τ > t1,
0 otherwise.

One can see thatgω is Green’s function of the operator− d2

dt2 + π2

ϕ2 −ω(t). Sinceω(t) = O(t−2) ast→∞
andω(t) < π2/ϕ2, it follows from [1, Theorem 6.4.1] that

gω(t, τ ) 6 Ce−(π/ϕ)|t−τ | for t, τ > t1.

This together with (73) leads to (71).2

Proposition 7.4. Any solutionh of (35) satisfies one of two alternatives:

(i) the relation

ḣ(t) =

(∫ t

t0

A(τ ) dτ
)−1

+ O
(
t−2 log t

)
(75)

holds;
(ii) the estimate

∣∣ḣ(t)
∣∣ 6 Ce−(π/ϕ)t (76)

holds for larget.

Proof. Equation (35) coincides with (15) whereR = A, z = ḣ, and f satisfies (16) by (69). By
Lemma 2.3 there are two alternatives:

(i) Let (17) withR = A be valid. Then, by Lemma 2.4, relation (75) holds.
(ii) Let (18) be valid. Then, by (68), (70) and by (71),

∣∣f (t)
∣∣ 6 Ct−2

(∫ ∞
t1

e−(π/ϕ)|t−τ |∥∥ḣ2∥∥
L2(τ ,τ+1) dτ + e−(π/ϕ)t

)
,

wheret1 is a large positive number. This together with (28) gives

∣∣ḣ(t)
∣∣ 6 Ct−1

(∫ ∞
t1

e−(π/ϕ)|t−τ |∥∥ḣ2∥∥
L2(τ ,τ+1) dτ + e−(π/ϕ)t

)
. (77)

We introduce the functionw(t) = maxt6τ6t+1 |ḣ|. By (77) and (18) we have

w(t) 6 C
(∫ ∞

t0

e−(π/ϕ)|t−τ |τ−2w(τ ) dτ + e−(π/ϕ)t
)
.
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Iterating this inequality (compare with the proof of Proposition 7.3) we obtain

w(t) 6 C
(∫ ∞

t1

gω(t, τ )e−(π/ϕ)τ dτ + e−(π/ϕ)t
)

,

wheregω is given by (74). This leads to

w(t) 6 Ce−(π/ϕ)t for larget,

which completes the proof.2

8. Principal terms of the asymptotics

The main result is the following

Theorem 8.1. Letu be a solution of the boundary value problem(1), (2). Then

u(x) = Q(r) + c1 + w1(x) (78)

or

u(x) = c2 + c3r
π/ϕ cos(πθ/ϕ) + w2(x), (79)

whereQ is given by(5) and c1, c2 and c3 are constants. The remainder termsw1 andw2 admit the
estimates

∑
j+k62

r−j−k−1∥∥∂jx1
∂kx2

w1
∥∥
L2(Kr\Kr/e)

6 C log logr−1

logr−1

and ∑
j+k62

r−j−k−1∥∥∂jx1
∂kx2

w2
∥∥
L2(Kr\Kr/e)

6 Cεr(2π/ϕ)−ε.

Hereε is an arbitrary positive number.

We reformulate this theorem in the coordinates (t,θ).

Theorem 8.2. Let u ∈ H2
loc([t0,∞) × [0,ϕ]) be a solution of(29), (30). Then one of the alternatives

holds:

(i) (unbounded solution)

u(t) =

∫ t

t0

(∫ τ

t0

A(s) ds
)−1

dτ + c1 + ρ(t,θ), (80)
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wherec1 is a constant and

‖ρ‖H2(Ct) 6 Ct
−1 log t for t > t0; (81)

(ii) (bounded solution)

u(t,θ) = c2 + c3e−(π/ϕ)t cos(πθ/ϕ) + ρ(t,θ), (82)

where

‖ρ‖H2(Ct) 6 Cεe
−((2π/ϕ)−ε)t for t > t0.

Proof. (i) Suppose that the alternative (i) in Proposition 7.4 is valid. By (75),

h(t) =

∫ t

t0

(∫ τ

t0

A(s) ds
)−1

dτ + c1 + h1(t),

where‖h1‖H2(t,t+1) 6 Ct−1 log t. This, together with (68), implies (80) and (81) withρ = h1 + v.
(ii) Let estimate (76) hold. Then we can rewrite problem (29), (30) as{

(∂2
t + ∂2

θ)u = f (t,θ) for t > t0, θ ∈ (0,ϕ),
∂θu = 0 for θ = 0,ϕ and fort > t0,

(83)

wheref satisfies‖f‖L2(t,t+1) 6 Ce−2(π/ϕ)t. By (76) and (71),

‖v‖H2(Ct) = o
(
e−(π/ϕ)t) for larget.

Representation (82) follows from well-known results on asymptotic behaviour of solutions to elliptic
problems in a strip (see, for example, [3, Theorem 5.4.1]).2

9. Complete asymptotic expansion

Let us consider Eq. (1) with constant coefficientsα, β andγ. In this case one can write the whole
asymptotic representation foru.

Theorem 9.1. If α, β andγ are constant then an arbitrary unbounded solutionu of (1), (2) admits the
asymptotic expansion

u(x) = d log logr−1 + c+
N∑
k=1

Pk(log logr−1,θ)
(logr−1)k

+RN (x1,x2),

whered is given by(8) andPk(ξ,θ) are polynomials of degree6k in ξ whose coefficients are smooth
functions ofθ ∈ [0,ϕ]. The remainder termRN satisfies

∑
k+j62

rk+j−1∥∥∂kx1
∂jx2

RN
∥∥
L2(Kr\Kr/e)

6 CN
(log logr−1)N+1

(logr−1)N+1 for smallr.
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In order to prove Theorem 9.1 we need two lemmas.

Lemma 9.2. Letχ be a solution of the equation

χ̇(t) + d−1χ2(t) + g(t) = 0 for t > t0 > 1, (84)

subject to

χ(t) =
d

t
+ O

(
log t
t2

)
. (85)

Assume that

g(t) =
κ

t3
+

N∑
k=4

qk−2(log t)
tk

+ O
(

(log t)N−1

tN+1

)
, (86)

whereκ = constandqs are polynomials of degree6s. Then

χ(t) =
d

t
+
N−1∑
k=2

pk−1(log t)
tk

+ χN (t), (87)

whereps are polynomials of degree6s and

χN (t) = O
(

(log t)N−1

tN

)
. (88)

Proof. By puttingχ(t) = dt−1 + t−2ψ(t) we arrive at the equation

ψ̇ = −d−1t−2ψ2− t2g for t > t0, (89)

whereψ(t) = O(logt). By integrating (89) over (t0, t) we obtain

ψ(t) = −κ log t+ const+ ψ1(t),

whereψ1(t) = O(t−1(log t)2). This gives (87) withN = 3,χ3(t) = t−2ψ1(t) andp1(ξ) = −κξ + const.
Clearly,

ψ1(t) = d−1
∫ ∞
t

τ−2(−κ logτ + const+ ψ1(τ )
)2

dτ +

∫ ∞
t

(
τ2g(τ ) + κτ−1)dτ. (90)

The result follows from (90) by induction inN . 2

Lemma 9.3. Letv be a solution of(55) with

F (t,θ) =
N∑
k=2

fk−2(log t,θ)
tk

+ FN (t,θ), (91)



76 V. Kozlov and V. Maz’ya / Angle singularities of solutions to the Neumann problem

wherefs are polynomials inξ of degree6s with smooth coefficients on[0,ϕ] and

‖FN‖L2(Ct) = O
(

(log t)N−1

tN+1

)
. (92)

Also let∫ ϕ

0
v(t,θ) dθ = 0 (93)

and‖v‖H2(Ct) = O(1) for large t. Then

v(t,θ) =
N∑
k=2

vk−2(log t,θ)
tk

+ VN (t,θ), (94)

wherevs(ξ,θ) are polynomials inξ of degree6s with smooth coefficients on[0,ϕ] and

‖VN‖H2(Ct) = O
(

(log t)N−1

tN+1

)
(95)

for large t.

Proof. From (93) and (55) one derives∫ ϕ

0
fs(ξ,θ) dθ =

∫ ϕ

0
FN (t,θ) dθ = 0

for s = 0, 1,. . . ,N −2 and for allξ andt > t0. Inserting (94) and (91) into (55) and equating terms with
the same power oft we get{

−∂2
θvk−2 = (k − 2)(k − 1)vk−4− (2k − 3)v̇k−4 + v̈k−4 + fk−2,

∂θvk−2|θ=0,ϕ = 0
(96)

for k = 2, 3,. . . ,N (herev−2 = v−1 = 0) and

{
−(∂2

t + ∂2
θ)VN = FN +

∑N
k=N−1(k(k + 1)vk−2− (2k + 1)v̇k−2 + v̈k−2)t−k−2,

∂θVN |θ=0,ϕ = 0.
(97)

From (96) one can find allvs, s = 0, 1,. . . ,N − 2, subject to
∫ ϕ

0 vs(ξ,θ) dθ = 0. Applying Theorem 6.2
to (97) we obtain estimate (95) forVN . 2

Proof of Theorem 9.1. By Theorem 8.2 it suffices to obtain the required asymptotic expansion for the
solutionu of (29), (30) given by (80). This means thata priori u is given by

u(t,θ) = d log t+ c+ ρ(t,θ),
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whereρ satisfies (81). By (32) it is sufficient to establish the following asymptotic representation forḣ
andv:

ḣ(t) =
d

t
+
N+1∑
k=2

pk−1(log t)
tk

+ O
(

(log t)N+1

tN+2

)
, (98)

v(t) =
N∑
k=2

vk−2(log t,θ)
tk

+ VN (t,θ), (99)

whereps(ξ) andvs(ξ,θ) are polynomials inξ of degree6s. The coefficients ofvs are smooth functions
of θ ∈ [0,ϕ]. The remainder termVN should satisfy estimate (95). Sinceu is unbounded,̇h satisfies (75)
which becomes in our case

ḣ = dt−1 + O
(
t−2 log t

)
.

By this and (68) we obtain the asymptotic representation for the right-hand side in (37):

(
d−1−A

)d2

t2
+ O

(
t−3 log t

)
.

Applying Theorem 6.2 we get

v(t,θ) = v0(θ)t−2 + O
(
t−3 log t

)
, (100)

wherev0 is the solution of

{
∂2
θv0(θ) = d2(d−1−A(θ)) on (0,ϕ),
∂θv0|θ=0,ϕ = 0,

subject to the orthogonality condition
∫ ϕ

0 v0(θ) dθ = 0. By (36) and (100) the functionf in (35) has the
asymptotics

f (t) =
2ḣ(t)
ϕt2

∫ ϕ

0
B(θ)∂θv0(θ) dθ + O

(
t−4 log t

)
.

Using Lemma 9.2 we obtain

ḣ(t) = dt−1 +
p1(log t)

t2
+ O

(
(log t)2

t3

)
,

wherep1 is a linear polynomial in logt. Now we can improve the asymptotic representation for the right-
hand side in (37) and then the asymptotics forv. Continuing this iterative procedure we arrive at (98)
and (99). 2
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Theorem 9.4. If α, β and γ are constant functions then an arbitrary bounded solutionu of (1), (2)
admits the asymptotic expansion

u(x) = c0 +
N∑
k=1

rkπ/ϕpk−1(logr,θ) + wN (r,θ),

wherec0 is a constant,ps(ξ,θ) is a polynomial of degree6s in ξ whose coefficients are smooth of
θ ∈ [0,ϕ] and∑

k+j62

rk+j−1∥∥∂kx1
∂jx2

wN
∥∥
L2(Kr\Kr/e)

6 CNr(N+1)π/ϕ| logr|N

for smallr.

Proof. By Theorem 8.1, representation (79) is valid. The result follows from Lemma 5.1.6 and Theorem
5.4.1 in [3]. 2

10. Existence of a solution with prescribed asymptotics

We begin with an existence result from [2] (see Theorem 2.2) adjusted to problem (33), (34), (37). Let
F denote the right-hand side in (37). The only information onF we need is the trivial inequality

‖F‖L2(Ct) 6 C
(∥∥ḣ∥∥L2(t,t+1) + ‖v‖H2(Ct)

)2
.

Here the constantC depends only onΛ.

Theorem 10.1. Lets be a continuous function on[t0,∞) satisfying

s(t) > C
∫ ∞
t0−1

e(π/ϕ)|t−τ |(∥∥ḣ∥∥L2(τ ,τ+1) + s(τ )
)

dτ , (101)

whereC is a constant depending onΛ andϕ. Let also

s(t) = o
(
e−(π/ϕ)t) ast→∞.

Then problem(33), (34), (37) has a solutionv ∈ H2
loc([t0,∞)× [0,ϕ]) such that

‖v‖H2(Ct) 6 s(t).

Corollary 10.2. Let t0 be sufficiently large and leth ∈ C1(t0,∞) be subject to∣∣ḣ(t)
∣∣ 6 2(λt)−1 (102)

for t > t0. Then there exists a solution of problem(33), (34), (37) satisfying

‖v‖H2(Ct) 6 Ct
−2 for t > t0.
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Proof. Due to (102) inequality (101) has the solutions(t) = ct−2 with c depending only onλ, Λ andϕ.
The result follows from Theorem 10.1.2

We prove the main existence result of the present section.

Theorem 10.3. For sufficiently smallδ there exists a solution of(1), (2) with the asymptotics

u(x) = Q(r) + o(1).

Proof. We are looking for a solutionh of (34) in the form

ḣ =

(∫ t

t0

A(τ ) dτ
)−1(

1 + z(t)
)
,

wherez is subject toz(t) 6 Ct−1/2 for t > t0 with a fixed constantC. Then for a sufficiently larget0
the functionḣ is subject to (102) andz satisfies the equation

ż(t) +A(t)
(∫ t

t0

A(τ ) dτ
)−1(

z(t) + z2(t)
)

+ F(z)(t) = 0,

whereF is a nonlinear operator subject to the estimate|F(z)(t)| 6 Ct−2 by Corollary 10.2 and by (35).
Now the result follows by a standard fixed point argument.2
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