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Abstract

The goal of this work is to treat the inhomogeneous Dirichlet problem for the Stokes system
in a Lipschitz domain Ω ⊆ Rn, n ≥ 2. Our main result is a well-posedness result formulated on
the scales of Besov-Triebel-Lizorkin spaces, in the case in which the outward unit normal ν to
Ω has small mean oscillation.

1 Introduction

The aim of this paper is to discuss the well-posedness of the inhomogeneous Dirichlet problem for
the Stokes system of linearized hydrostatics in an arbitrary bounded Lipschitz domain Ω ⊆ Rn,
n ≥ 2, when both the solution and the data belong to Besov spaces:

∆~u−∇π = ~f ∈ Bp,q

s+ 1
p
−2

(Ω), div ~u = g ∈ Bp,q

s+ 1
p
−1

(Ω),

~u ∈ Bp,q

s+ 1
p

(Ω), π ∈ Bp,q

s+ 1
p
−1

(Ω), Tr ~u = ~h ∈ Bp,q
s (∂Ω).

(1.1)

As usual, ~u is the velocity field and π stands for the pressure function. Under the assumption that
the outward unit normal ν of Ω has sufficiently small mean oscillation, relative to p, q, s and the
Lipschitz constant of ∂Ω, our main result states that the problem (1.1) is uniquely solvable, granted
that the data satisfies some necessary compatibility conditions. We are also interested in the case
in which the smoothness is measured on the Triebel-Lizorkin scale. More specifically, we have the
following result (for notation, definitions and background material see § 2).

Theorem 1.1 Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, of arbitrary topology, and
denote by ν, σ, the outward unit normal and surface measure on ∂Ω, respectively. Assume that
n−1

n < p ≤ ∞, 0 < q ≤ ∞, (n − 1)(1
p − 1)+ < s < 1, and consider the inhomogeneous Dirichlet

problem for the Stokes system with (1.1), subject to the (necessary) compatibility condition
∫

∂O
〈ν,~h〉 dσ =

∫

O
g(X) dX, for every component O of Ω. (1.2)

Then there exists δ > 0 which depends only on the Lipschitz character of Ω and the exponent p,
with the property that if

{ν}Osc(∂Ω) := lim
ε→0

(
sup
Bε

∫
−
Bε∩∂Ω

∫
−
Bε∩∂Ω

∣∣∣ ν(X)− ν(Y )
∣∣∣ dσ(X)dσ(Y )

)
< δ, (1.3)
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where the supremum is taken over the collection {Bε} of disks with centers on ∂Ω and of radius ≤ ε,
then (1.1) is well-posed (with uniqueness modulo locally constant functions in Ω for the pressure).
Hence, in the particular case when the Lipschitz domain Ω is such that ν ∈ VMO(∂Ω), the problem
(1.1) is well-posed whenever

n−1
n < p ≤ ∞, 0 < q ≤ ∞ and (n− 1)(1

p − 1)+ < s < 1, (1.4)

(where (a)+ := max{a, 0}). Consider three Furthermore, the solution has an integral representation
formula in terms of hydrostatic layer potential operators and satisfies natural estimates. Concretely,
there exists a finite, positive constant C = C(Ω, p, q, s, n) such that

‖~u‖Bp,q

s+ 1
p
(Ω) + inf

c
‖π − c‖Bp,q

s+ 1
p−1

(Ω) ≤ C‖~f‖Bp,q

s+ 1
p−2

(Ω) + C‖g‖Bp,q

s+ 1
p−1

(Ω) + C‖~h‖Bp,q
s (∂Ω), (1.5)

where the infimum is taken over all locally constant functions c in Ω.
Moreover, analogous well-posedness results hold on the Triebel-Lizorkin scale, i.e. for the prob-

lem
∆~u−∇π = ~f ∈ F p,q

s+ 1
p
−2

(Ω), div ~u = g ∈ F p,q

s+ 1
p
−1

(Ω),

~u ∈ F p,q

s+ 1
p

(Ω), π ∈ F p,q

s+ 1
p
−1

(Ω), Tr ~u = ~g ∈ Bp,p
s (∂Ω),

(1.6)

where the data is, once again, made subject to (1.2). This time, in addition to the previous condi-
tions imposed on the indices p, q, it is also assumed that p, q <∞.

Above, the Besov and Triebel-Lizorkin scales Ap,q
s (Ω), A ∈ {B,F}, are defined by restricting

the (tempered) distributions from the corresponding spaces in Rn to the open set Ω. Also, Bp,q
s (∂Ω)

stands for the Besov class on the Lipschitz manifold ∂Ω, obtained by transporting (via a partition
of unity and pull-back) the standard scale Bp,q

s (Rn−1). The reader should be advised that we make
no notational distinction between these smoothness spaces of scalar-valued functions and their
natural counterparts for vector-valued functions. It should be noted that conditions (1.4) describe
the largest range of indices p, q, s for which the Besov spaces Bp,q

s (∂Ω) can be meaningfully defined
on the Lipschitz manifold ∂Ω.

Regarding the nature of our main result, a few comments are in order. First, no topologi-
cal restrictions have been imposed on the Lipschitz domain Ω (in particular, the boundary can
be disconnected). This is significant since our approach is via boundary layer potentials, whose
invertibility properties are directly affected by topological nature of the domain. We overcome
this difficulty by devising a suitable combination of such layer potentials. Second, appropriate
versions of the above results hold for unbounded Lipschitz domains with compact boundaries, for
which (1.3) holds, and for Neumann-type boundary conditions. Third, one can show that actually
{ν}Osc(∂Ω) ≈ dist (ν,VMO(∂Ω)), where the distance is taken in BMO(∂Ω). Then condition (1.3)
becomes equivalent to

dist (ν ,VMO(∂Ω)) < δ (1.7)

where the distance is measured in BMO (∂Ω). Fourth, codimension one surfaces in Rn whose
unit normal has small BMO norm have been studied by S. Semmes in [50] from the perspective of
Geometric Measure Theory, whereas, in the context of PDE’s, the class of Lipschitz domains for
which the smallness condition (1.3) holds has been first introduced by V. Maz’ya, M. Mitrea and T.
Shaposhnikova in [41] (where the authors have established the well-posedness of the inhomogeneous
Dirichlet problem for higher-order elliptic systems with bounded, complex-valued, coefficients).
Elliptic PDE’s (with Lp boundary data and non-tangential maximal function estimates for the
solution) in the class of (two-sided) NTA domains (in the sense of Jerison and Kenig, [25]) with
Ahlfors regular boundaries and satisfying the smallness condition (1.7) (with δ depending on p and
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the natural geometrical characteristics of the domain) have been recently treated by S. Hofmann,
M.Mitrea and M. Taylor in [24].

The problem we address in this paper has a long history and the literature dealing with related
issues is remarkably rich. When ∂Ω is sufficiently smooth, various cases (typically corresponding to
Sobolev spaces with an integer amount of smoothness) have been dealt with by V.A. Solonnikov [54],
L. Cattabriga [10], R.Temam [57], Y. Giga [23], W. Varnhorn [58], R. Dautray and J.-L. Lions [18],
among others, when ∂Ω is at least of class C2. This has been subsequently extended by C.Amrouche
and V. Girault [6] to the case when ∂Ω ∈ C1,1 and, further, by G.P.Galdi, C.G. Simader and H. Sohr
[21] when ∂Ω is Lipschitz, with a small Lipschitz constant. There is also a wealth of results related
to Theorem 1.1 in the case when Ω is a polygonal domain in R2, or a polyhedral domain in
R3. An extended account of this field of research can be found in V.A. Kozlov, V.G.Maz’ya and
J.Rossmann’s monograph [35], which also contains pertinent references to earlier work. Here we
also wish to mention the recent work by V. Maz’ya and J.Rossmann [42].

In the case of a bounded Lipschitz domain Ω ⊆ Rn, n ≥ 2, the Dirichlet and Regularity problem,
with Lp nontangential maximal function estimates for the solution, have been solved when |p− 2|
is small by E.B. Fabes, C.E. Kenig and G.C. Verchota in [20], and when n = 3 and 2− ε < p <∞
by Z. Shen in [52]. Higher dimensional versions of the results in [52] have been worked out by J.
Kilty in [31]. More recently, the homogeneous and inhomogeneous problem for the Stokes system
equipped with Dirichlet, Neumann and transmission boundary conditions in arbitrary Lipschitz
domains in Rn, n ≥ 2, has been solved by M. Mitrea and M.Wright in [47]. To describe the portion
of this work pertaining to the case of the inhomogeneous Dirichlet problem, for each ε ∈ (0, 1]
and n ≥ 2 consider the two-dimensional region Rn,ε in the (s, 1/p)-plane, which depends on the
dimension as follows:
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Rn,ε for n = 2
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Rn,ε for n = 3
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Figure 3:
Rn,ε for n ≥ 4

It has been shown in [47] that, given a bounded Lipschitz domain Ω ⊆ Rn, n ≥ 2, there exists
ε = ε(Ω) ∈ (0, 1] such that the problem (1.1) (subject to the compatibility conditions (1.2)) is
well-posed whenever 0 < q ≤ ∞ and the pair (s, 1/p) belongs to the region Rn,ε, depicted above.
Also, a similar result holds for (1.6) provided p, q < ∞. Related earlier results by R.M.Brown
and Z. Shen for three-dimensional Lipschitz domains can be found in [9]. For Lipschitz and C1

subdomains of Riemannian manifolds, see also the paper [19] by M. Dindoš and M. Mitrea, and
the paper [46] by M. Mitrea and M.Taylor.

Examples of domains satisfying the hypotheses of Theorem 1.1 are:

(1) domains of class C1 or, more generally, domains whose boundaries are locally the graphs of
Lipschitz functions with gradients in VMO;

(2) domains whose boundaries are locally the graphs of Lipschitz functions with gradients suffi-
ciently close – relatively to the exponent p – to VMO (in particular, of small BMO norm);
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(3) Lipschitz domains with a sufficiently small Lipschitz constant (relatively to the exponent p);

(4) Lipschitz polyhedral domains with dihedral angles sufficiently close (depending on p) to π.

(5) polygonal domains with angles sufficiently close (relatively to the exponent p) to π.

The way in which one should interpret example (5) is as follows. Given an integrability exponent
p ∈ (n−1

n ,∞), there exists a small constant c > 0 which depends on p and the Lipschitz constant
of the polygonal domain in question with the property that if its angles differ from π by at most c
then the inhomogeneous Dirichlet problem (1.1), subject to the (necessary) compatibility conditions
(1.2), is well-posed in that polygon (a remarkable feature is the fact that only the exponent p, and
not the indices q and s, plays a role – compare with [41]). Similar interpretations apply to examples
(2)-(4). In the case of example (1), the aforementioned problem is solvable for the full range
of exponents p, q, s for which the intervening Besov and Triebel-Lizorkin spaces are meaningfully
defined in the class of Lipschitz domains. In the case of example (5), our result is consistent with
the predictions of the theory of BVP’s in polygonal domains (where concrete calculations can be
carried out, based on Mellin transform techniques).

We should also mention here that, if p is near 2, then no restriction on the size of the oscillation
of the outward unit normal is necessary (that is, if |p− 2| is small and 0 < q ≤ ∞, 0 < s < 1, then
the above well-posedness result is valid in any Lipschitz domain). This follows from the work of
E. Fabes, C. Kenig and G. Verchota, [20], according to which both the Dirichlet and the Regularity
problem for the Stokes system in arbitrary Lipschitz domains are solvable (with nontangential
maximal function Lp-estimates) when p is near 2 in any Lipschitz domain. Using a different
approach (based on certain estimates obtained by G. Savaré in [49] and, more recently, by relying
on certain stability interpolation results due to I. Ya. Šneiberg), M. Agranovich has extended in
a series of papers, [2], [3], [4], [5], the scope of this type of result (i.e., when |p − 2| is small, and
0 < s < 1) as to allow more general strongly elliptic systems with a Hermitian principal symbol,
in arbitrary Lipschitz domains (Agranovich’s results also touch on a number of other significant
topics, such as resolvent estimates for spectral problems non-stationary problems, and transmission
problems).

We also wish to note that one significant feature of our work is the fact that values of p below 1
are allowed. This is important since, in contrast with the scale of standard Sobolev spaces for which
p is naturally restricted to [1,∞], the scales of Besov and Triebel-Lizorkin spaces continue to make
sense for p below 1. For example, Triebel-Lizorkin spaces with p ≤ 1, q = 2 and zero smoothness
correspond to Hardy spaces. This is relevant since, for example, E. Stein and collaborators have
treated in [11], [12], [13] the inhomogeneous Dirichlet problem for the Laplacian in smooth domains
with data from Hardy spaces. In the process, they have conjectured that the smoothness condition
on the domain can be relaxed considerably (depending on how much p is smaller than 1). Our
main result contains, as a particular case, an answer to this conjecture (for the Stokes system) in
the sense that the inhomogeneous Dirichlet problem for the Stokes system in a Lipschitz domain
Ω ⊂ Rn with data f from the Hardy space Hp(Ω) = F p,2

0 (Ω) is well-posed whenever n−1
n < p ≤ 1

provided the outward unit normal ν of Ω belongs to VMO(∂Ω).
In closing, it is worth mentioning that results of a somewhat similar nature have been proved

in the case of the Laplace operator in [26], [44], [45], [59].

2 Background material

By a special Lipschitz domain Ω in Rn (in the sense of E. Stein [55]) we shall simply understand
the over-graph region for a Lipschitz function ϕ : Rn−1 → R. Also, call Ω a bounded Lipschitz
domain in Rn if there exists a finite open covering {Oj}1≤j≤N of ∂Ω with the property that, for
every j ∈ {1, ..., N}, Oj ∩Ω coincides with the portion of Oj lying in the over-graph of a Lipschitz
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function ϕj : Rn−1 → R (where Rn−1×R is a new system of coordinates obtained from the original
one via a rigid motion). We then define the Lipschitz constant of a bounded Lipschitz domain
Ω ⊂ Rn as

inf
(
max{‖∇ϕj‖L∞(Rn−1) : 1 ≤ j ≤ N}

)
, (2.1)

where the infimum is taken over all possible families {ϕj}1≤j≤N as above. As is well-known, for a
Lipschitz domain Ω, the surface measure dσ is well-defined on ∂Ω and that there exists an outward
pointing normal vector ν = (ν1, · · · , νn) at almost every point on ∂Ω. For each p ∈ (0,∞], Lp(∂Ω)
will denote the Lebesgue scale of σ-measurable, p-th power integrable functions on ∂Ω.

Assume that Ω ⊂ Rn is a Lipschitz domain and consider the first-order tangential derivative
operators ∂τjk

acting on a compactly supported function ψ of class C1 in a neighborhood of ∂Ω by

∂τjk
ψ := νj(∂kψ)

∣∣∣
∂Ω
−νk(∂jψ)

∣∣∣
∂Ω
, j, k = 1, . . . , n. (2.2)

Repeated integrations by parts then show that, for every j, k ∈ {1, . . . , n},
∫

∂Ω
ϕ (∂τjk

ψ) dσ =
∫

∂Ω
(∂τkj

ϕ)ψ dσ, ∀ϕ,ψ ∈ C1
0 (Rn). (2.3)

Assume that Ω ⊂ Rn is a Lipschitz domain and that 1 < p, p′ <∞ satisfy 1
p + 1

p′ = 1. Inspired by
(2.3), we then define the following Lp-based Sobolev space of order one on ∂Ω:

Lp
1(∂Ω) :=

{
f ∈ Lp(∂Ω) : there exists a constant c > 0 such that if ψ ∈ C1

0 (Rn)

then
∣∣∣∣
∫

∂Ω
f (∂τjk

ψ) dσ
∣∣∣∣ ≤ c‖ψ‖Lp′ (∂Ω) for j, k = 1, . . . , n

}
. (2.4)

Riesz’s Theorem shows that if f ∈ Lp
1(∂Ω) then for every j, k ∈ {1, . . . , n} there exists gjk ∈ Lp(∂Ω)

such that
∫

∂Ω
f (∂τjk

ψ) dσ =
∫

∂Ω
gjk ψ dσ, ∀ψ ∈ C1

0 (Rn). (2.5)

In this situation, we agree to set ∂τkj
f := gjk. It follows that if Ω is a Lipschitz domain in Rn

then the operators ∂τkj
: Lp

1(∂Ω) → Lp(∂Ω), 1 ≤ j, k ≤ n, are well-defined and bounded. Also, the
following integration by parts formula holds:

∫

∂Ω

(∂τjk
f) g dσ =

∫

∂Ω

f (∂τkj
g) dσ, 1 ≤ j, k ≤ n, (2.6)

for every f ∈ Lp
1(∂Ω) and g ∈ Lp′

1 (∂Ω) if 1 < p, p′ < ∞ satisfy 1/p + 1/p′ = 1. It can be easily
shown that Lp

1(∂Ω) becomes a Banach space when equipped with the natural norm

‖f‖Lp
1(∂Ω) := ‖f‖Lp(∂Ω) +

n∑

j,k=1

‖∂τjk
f‖Lp(∂Ω). (2.7)

From (2.2) and the fact that (cf. [43] for a proof)

C∞(Rn)
∣∣∣
∂Ω

↪→ Lp
1(∂Ω) densely, whenever 1 < p <∞, (2.8)

one can check that if Ω is a Lipschitz domain in Rn, 1 < p <∞, and f ∈ Lp
1(∂Ω), then

∂τjk
f = νj(∇tanf)k − νk(∇tanf)j , j, k = 1, ..., n, (2.9)
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σ-a.e. on ∂Ω, where

∇tanf :=
( n∑

k=1

νk∂τkj
f
)

1≤j≤n
, f ∈ Lp

1(∂Ω). (2.10)

As a consequence of (2.9) and (2.10), we note that for each p ∈ (1,∞),

‖f‖Lp
1(∂Ω) ≈ ‖f‖Lp(∂Ω) + ‖∇tanf‖Lp(∂Ω) uniformly in f ∈ Lp

1(∂Ω). (2.11)

Moving on, let Ω be a Lipschitz domain in Rn and fix a sufficiently large constant κ > 0.
We define the non-tangential maximal operator as the mapping which associates to a function
u : Ω → R the function M(u) : ∂Ω → [0,∞] given by

M(u)(X) := sup {|u(Y )| : Y ∈ Ω, |X − Y | < (1 + κ) dist (Y, ∂Ω)}, X ∈ ∂Ω. (2.12)

We also introduce the non-tangential restriction to the boundary of a function u : Ω → R as

u
∣∣∣
∂Ω

(X) := lim
Ω3Y→X

|X−Y |<(1+κ) dist (Y,∂Ω)

u(Y ), X ∈ ∂Ω, (2.13)

whenever the limit exists.
Let us briefly digress for the purpose of recalling the VMO space on the boundary of a bounded

Lipschitz domain Ω ⊆ Rn. For a measurable set S ⊆ ∂Ω we set
∫
−

S
f(Y ) dσ(Y ) :=

1
|S|

∫

S
f(Y ) dσ(Y ), where |S| := σ(S). (2.14)

Call ∆r a surface ball of radius r > 0 if there exists X ∈ ∂Ω such that ∆r := ∂Ω∩B(X, r). Now, for
some fixed η ∈ (0, diam (∂Ω)), the John-Nirenberg space of functions of bounded mean oscillations
on ∂Ω is defined as

f ∈ BMO(∂Ω)
def⇐⇒ f ∈ L2(∂Ω) and sup

∆r surface ball
with r ≤ η

∫
−

∆r

|f − f∆r | dσ <∞ (2.15)

where f∆r :=
∫−∆r

f dσ, and is equipped with the natural norm

‖f‖BMO(∂Ω) := ‖f‖L2(∂Ω) +


 sup

∆r surface ball
with r ≤ η

∫
−

∆r

|f − f∆r | dσ


 . (2.16)

Sarason’s space of functions of vanishing mean oscillation on ∂Ω is then defined by the demand

f ∈ VMO(∂Ω)
def⇐⇒ f ∈ BMO(∂Ω) and lim

R→0


 sup

∆r surface ball
with r ≤ R

∫
−

∆r

|f − f∆r | dσ


 = 0. (2.17)

Given a Lipschitz domain Ω ⊂ Rn, denote by D′(Ω) the space of distributions in Ω. Let Bp,q
α (Rn)

and F p,q
α (Rn) denote the standard Besov and Triebel-Lizorkin scales of spaces in Rn. There is a

wealth of material pertaining to this topic and the interested reader is referred to the monographs
[8] by J. Bergh and J. Löfström, and [56] by H. Triebel. If 0 < p, q ≤ ∞, α ∈ R, we set

Bp,q
α (Ω) := {u ∈ D′(Ω) : ∃ v ∈ Bp,q

α (Rn) with v|Ω = u},
F p,q

α (Ω) := {u ∈ D′(Ω) : ∃ v ∈ F p,q
α (Rn) with v|Ω = u}. (2.18)
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For a ∈ R set (a)+ := max{a, 0}. Consider three parameters p, q, s subject to the conditions in
(1.4) and assume that Ω ⊂ Rn is the over-graph of a Lipschitz function ϕ : Rn−1 → R. We
then define Bp,q

s (∂Ω) as the space of locally integrable functions f on ∂Ω for which the mapping
Rn−1 3 x′ 7→ f(x′, ϕ(x′)) belongs to Bp,q

s (Rn−1). We then define

‖f‖Bp,q
s (∂Ω) := ‖f(·, ϕ(·))‖Bp,q

s (Rn−1). (2.19)

As is well-known, the case when p = q = ∞ corresponds to the usual (non-homogeneous) Hölder
spaces Cs(∂Ω).

As far as Besov spaces with a negative amount of smoothness are concerned, in the same context
as above we set

f ∈ Bp,q
s−1(∂Ω) ⇐⇒ f(·, ϕ(·))

√
1 + |∇ϕ(·)|2 ∈ Bp,q

s−1(R
n−1), (2.20)

‖f‖Bp,q
s−1(∂Ω) := ‖f(·, ϕ(·))

√
1 + |∇ϕ(·)|2‖Bp,q

s−1(Rn−1). (2.21)

The above definitions then readily extend to the case of bounded Lipschitz domains in Rn via a
standard partition of unity argument. The Besov scale on ∂Ω has been defined in such a way that
a number of basic properties from the Euclidean setting carry over to spaces defined on ∂Ω in a
rather direct fashion. We recall some of these properties below.

Proposition 2.1 For (n− 1)/n < p ≤ ∞ and (n− 1)(1/p− 1)+ < s < 1,

‖f‖Bp,p
s (∂Ω) ≈ ‖f‖Lp(∂Ω) +

(∫

∂Ω

∫

∂Ω

|f(X)− f(Y )|p
|X − Y |n−1+sp

dσ(X)dσ(Y )
)1/p

. (2.22)

See [40] for a proof of the equivalence (2.22).
We continue by recording an interpolation result which is going to be very useful for us here.

To state it, recall that (·, ·)θ,q and [·, ·]θ stand for the real and complex interpolation brackets.

Proposition 2.2 Suppose that Ω is a bounded Lipschitz domain in Rn. Then

(Lp(∂Ω), Lp
1(∂Ω))θ,q = Bp,q

θ (∂Ω), (2.23)

if 1 < p, q <∞ and 0 < θ < 1.

The case p = q of (2.23) appears on p. 200 of [26] but this restriction is inessential. The trace
theorem below appears in [39], [40] (for related results, in more general domains but for more
restrictive ranges of indices, the reader is also referred to [27]).

Theorem 2.3 Suppose that Ω is a bounded Lipschitz domain in Rn and assume that the indices
p, s satisfy n−1

n < p ≤ ∞ and (n− 1)(1
p − 1)+ < s < 1. Then the following hold:

(i) The restriction to the boundary extends to a linear, bounded operator

Tr : Bp,q

s+ 1
p

(Ω) −→ Bp,q
s (∂Ω) for 0 < q ≤ ∞. (2.24)

Moreover, for this range of indices, Tr is onto and has a bounded right-inverse.
(ii) Similar considerations hold for Tr : F p,q

s+ 1
p

(Ω) → Bp,p
s (∂Ω) with the convention that q = ∞

if p = ∞. More specifically, this is a bounded operator which has a linear, bounded right-inverse.

We continue to assume that Ω ⊆ Rn, n ≥ 2, is an arbitrary Lipschitz domain. When equipped
with the surface measure and the Euclidean distance, ∂Ω becomes a space of homogeneous type, in
the sense of Coifman-Weiss [15]. Hence, if n−1

n < p ≤ 1, we may consider the atomic Hardy space
hp

at(∂Ω), as well as the Hardy-based Sobolev space of order one, h1,p
at (∂Ω). For further reference, it

is then convenient to introduce

Hp(∂Ω) :=

{
hp

at(∂Ω) if n−1
n < p ≤ 1,

Lp(∂Ω) if p > 1,
Hp

1 (∂Ω) :=

{
h1,p

at (∂Ω) if n−1
n < p ≤ 1,

Lp
1(∂Ω) if p > 1.

(2.25)
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3 The Mikhlin-Calderón-Zygmund theory of singular integral op-
erators associated with the Stokes system

In this section we discuss the nature of the singular integral operators of layer potential type which
are most relevant in the treatment of the Stokes system in Lipschitz domains.

3.1 Bilinear forms and conormal derivatives

For λ ∈ R fixed, let aαβ
jk (λ) := δjkδαβ +λ δjβδkα for 1 ≤ j, k, α, β ≤ n, and, adopting the summation

convention over repeated indices, consider the differential operator Lλ given by

(Lλ~u)α := ∂j(a
αβ
jk (λ)∂kuβ) = ∆uα + λ∂α(div ~u), 1 ≤ α ≤ n. (3.1)

Consider the linear first-order differential operator Du := (∂kuβ)1≤k,β≤n if u = (uβ)1≤β≤n along
with the zero-order linear operator Av := (aαβ

j,k(λ)vkβ)1≤j,α≤n if v = (vkβ)1≤k,α≤n. Then we have
D∗v = −(∂kvkβ)1≤β≤n and, consequently,

Lλu = −D∗ADu =
(
∂j(a

αβ
jk (λ)∂kuβ)

)
1≤α≤n

. (3.2)

One aspect which is directly affected by the choice of the parameter λ is the format of the conormal
derivative for the Stokes system, which we define as

∂λ
ν (~u, π) :=

(
νja

αβ
jk (λ)∂kuβ − ναπ

)
1≤α≤n

=
[
(∇~u)> + λ(∇~u)

]
ν − πν on ∂Ω, (3.3)

where ∇~u = (∂kuj)1≤j,k≤n denotes the Jacobian matrix of the vector-valued function ~u, and >
stands for transposition of matrices. As we shall see momentarily, the algebraic format of the
conormal derivative affects the functional analytic properties of the double layer operator.

3.2 Hydrostatic layer potential operators

We continue to review background material by recalling the definitions and some basic properties
of the layer potentials for the Stokes system in an arbitrary Lipschitz domain Ω ⊂ Rn, n ≥ 2. Let
ωn−1 denote the surface measure of Sn−1, the unit sphere in Rn, and let E(X) = (Ejk(X))1≤j,k≤n

be the Kelvin matrix of fundamental solutions for the Stokes system, where

Ejk(X) := − 1
2ωn−1

(
1

n− 2
δjk

|X|n−2
+
xjxk

|X|n
)
, X = (xj)1≤j≤n ∈ Rn \ {0}, n ≥ 3, (3.4)

with 1
n−2

δjk

|X|n−2 replaced by log |X| when n = 2. Let us also introduce a pressure vector given by

~q(X) = (qj(X))1≤j≤n := − 1
ωn−1

X

|X|n , X ∈ Rn \ {0}. (3.5)

Then, for X ∈ Rn \ {0}, we have

∂kEjk(X) = 0 for 1 ≤ j ≤ n and ∂jEjk(X) = 0 for 1 ≤ k ≤ n, (3.6)

∆Ejk(X) = ∆Ekj(X) = ∂kqj(X) = ∂jqk(X) for 1 ≤ j, k ≤ n. (3.7)

Now, fix −1 < λ ≤ 1, and define the single and double layer potential operators S and Dλ by

S ~f(X) :=
∫

∂Ω

E(X − Y ) ~f(Y ) dσ(Y ), X ∈ Ω, (3.8)

Dλ
~f(X) :=

∫

∂Ω

[∂λ
ν(Y ){E, ~q}(Y −X)]> ~f(Y ) dσ(Y ), X ∈ Ω, (3.9)
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where ∂λ
ν(Y ){E, ~q} is defined to be the matrix obtained by applying ∂λ

ν , in the variable Y , to each
pair consisting of the j-th column in E and the j-th component of ~q. More concretely,

(∂λ
ν(Y ){E, ~q}(Y −X))jk := να(Y )(∂αEkj)(Y −X)

+λνα(Y )(∂kEαj)(Y −X)− qj(Y −X)νk(Y ). (3.10)

Let us also define corresponding potentials for the pressure by

Q~f(X) :=
∫

∂Ω

〈~q(X − Y ), ~f(Y )〉 dσ(Y ), X ∈ Ω, (3.11)

Pλ
~f(X) := (1 + λ)

∫

∂Ω

νj(Y )〈(∂j~q)(Y −X), ~f(Y )〉 dσ(Y ), X ∈ Ω. (3.12)

Then

∆S ~f −∇Q~f = 0 and divS ~f = 0 in Ω, (3.13)

and for each λ ∈ R,

∆Dλ
~f −∇Pλ

~f = 0 and divDλ
~f = 0 in Ω. (3.14)

Let us also consider the fundamental solution for the Laplacian in Rn,

E∆(X) := − 1
(n− 2)ωn−1|X|n−2

, X 6= 0, (3.15)

if n ≥ 3 (with the usual modification if n = 2), and the corresponding single and double harmonic
layer potentials

S∆f(X) :=
∫

∂Ω

E∆(X − Y )f(Y ) dσ(Y ), X ∈ Ω, (3.16)

D∆f(X) :=
∫

∂Ω

∂ν(Y )E∆(X − Y )f(Y ) dσ(Y ), X ∈ Ω. (3.17)

Then ~q = −∇E∆ in Rn \ {0} so

Q~f = −
n∑

k=1

∂k(S∆fk) = −divS∆
~f and Pλ

~f = (1 + λ)divD∆
~f. (3.18)

Let us now record a basic result from the theory of singular integral operators of Mikhlin-
Calderón-Zygmund type on Lipschitz domains. In the present format, this result has been estab-
lished in [44], following the work in [14] and [59].

Proposition 3.1 Let Ω ⊆ Rn be an arbitrary Lipschitz domain. There exists a positive integer
N = N(n) with the following significance. Let Ω be a Lipschitz domain in Rn, fix some function

k ∈ CN (Rn \ {0}) with k(−X) = −k(X) and k(λX) = λ−(n−1)k(X) ∀λ > 0, (3.19)

and define the singular integral operator

T f(X) :=
∫

∂Ω
k(X − Y )f(Y ) dσ(Y ), X ∈ Ω. (3.20)
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Then for each p ∈ (n−1
n ,∞) there exists a finite constant C = C(p, n, ∂Ω) > 0 such that

‖M(T f)‖Lp(∂Ω) ≤ C‖k|Sn−1‖CN ‖f‖Hp(∂Ω). (3.21)

Furthermore, for each p ∈ (1,∞), f ∈ Lp(∂Ω), the limit

Tf(X) := p.v.
∫

∂Ω
k(X − Y )f(Y ) dσ(Y ) := lim

ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

k(X − Y )f(Y ) dσ(Y ) (3.22)

exists for a.e. X ∈ ∂Ω, and the jump-formula

T f
∣∣∣
∂Ω

(X) = 1
2
√−1

F(k)(ν(X))f(X) + Tf(X) (3.23)

is valid at a.e. X ∈ ∂Ω, where F denotes the Fourier transform.

Let us now specialize the jimp-formula (3.23) to the case of hydrostatic layer potentials.

Proposition 3.2 Let Ω ⊂ Rn, n ≥ 2, be an arbitrary Lipschitz domain and assume that 1 < p <
∞. Then for each λ ∈ R, ~f ∈ Lp(∂Ω), and a.e. X ∈ ∂Ω,

Q~f
∣∣∣
∂Ω

(X) = 1
2〈ν(X), ~f(X)〉+ p.v.

∫

∂Ω
〈~q(X − Y ), ~f(Y )〉 dσ(Y ), (3.24)

Dλ
~f
∣∣∣
∂Ω

(X) =
(

1
2I +Kλ

)
~f(X), (3.25)

where I denotes the identity operator, the traces are taken in the sense of (2.13), and

Kλ
~f(X) := p.v.

∫

∂Ω

[∂λ
ν(Y ){E, ~q}(Y −X)]> ~f(Y ) dσ(Y ), X ∈ ∂Ω. (3.26)

Proof. Recall that if m is an integer and Pj is a harmonic, homogeneous polynomial of degree j ≥ 0
in Rn then, as is well-known (cf., e.g., p. 73 in [55]),

F(Qj)(X) =
Pj(X)

|X|j+n−m
(3.27)

where, with Γ denoting the standard Gamma function,

Qj(X) := (−1)jγj,m
Pj(X)
|X|j+m

and γj,m := (−1)j/2π
n
2
−m Γ( j

2 + m
2 )

Γ( j
2 + n

2 − m
2 )
, (3.28)

provided either 0 < m < n, or m ∈ {0, n} and j ≥ 1. Based on this and (3.23), a straightforward
calculation gives the following trace formulas (with the boundary restriction considered in the sense
of (2.13))

∂j

(
Sαβ g

)∣∣∣
∂Ω

(X) = −1
2νj(X)

(
δαβ − να(X)νβ(X)

)
g(X) + ∂jSαβ g(X) (3.29)

valid at a.e. X ∈ ∂Ω, for every g ∈ Lp(∂Ω), 1 < p <∞, where for each α, β, j ∈ {1, ..., n}, we have
used the abbreviations

Sαβ g(X) :=
∫

∂Ω
Eαβ(X − Y )g(Y ) dσ(Y ), X ∈ Ω, (3.30)

∂jSαβ g(X) := p.v.
∫

∂Ω
(∂jEαβ)(X − Y )g(Y ) dσ(Y ), X ∈ ∂Ω. (3.31)
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Since, from (3.10) we have that

(Dλ
~f)j = −∂αSkj(ναfk)− λ∂kSαj(ναfk)− ∂jS∆(νkfk) (3.32)

for j ∈ {1, ..., n}, on account of (3.29) and the fact that

∂jS∆g
∣∣∣
∂Ω

(X) = −1
2νj(X) g(X) + p.v.

∫

∂Ω

(∂jE∆)(X − Y )g(Y ) dσ(Y ), (3.33)

for a.e. X ∈ ∂Ω, we obtain (with the boundary restriction taken as in (2.13))

(Dλ
~f)j

∣∣∣
∂Ω

= 1
2να

(
δkj − νkνj

)
ναfk − (∂αSkj)(ναfk)

+1
2λνk

(
δαj − νανj

)
ναfk − λ(∂kSαj)(ναfk)

+1
2νjνkfk − (∂jS∆)(νkfk), (3.34)

where ∂jS∆ is the principal-value singular integral operator with kernel (∂jE∆)(X − Y ). Since

1
2να

(
δkj − νkνj

)
ναfk + 1

2λνk

(
δαj − νανj

)
ναfk + 1

2νjνkfk = 1
2fj (3.35)

and

−(∂αSkj)(ναfk)− λ(∂kSαj)(ναfk)− (∂jS∆)(νkfk) =
(
Kλ

~f
)

j
, (3.36)

formula (3.25) follows. Formula (3.24) is proved in a similar fashion. ¤

Corollary 3.3 Let Ω ⊆ Rn, n ≥ 2, be a bounded Lipschitz domain, and fix λ ∈ R. Define

S ~f := S ~f
∣∣∣
∂Ω
. (3.37)

Then the operators

Kλ : Lp(∂Ω) −→ Lp(∂Ω), S : Lp(∂Ω) −→ Lp
1(∂Ω) (3.38)

are well-defined, linear, and bounded whenever 1 < p <∞.

Proof. The Lp-boundedness of Kλ is a consequence of Proposition 3.2 and Proposition 3.1. That S
maps Lp(∂Ω) boundedly into Lp

1(∂Ω) follows upon noticing that ∂τjk
S is a singular integral operator

of the type treated in Proposition 3.1. ¤
Next, we wish to discuss the action of these operators on Sobolev-Hardy spaces. We first note

that, from (3.9)-(3.10), for each λ ∈ R, j ∈ {1, ..., n}, and ~f ∈ Lp(∂Ω), 1 < p <∞,

(
Dλ

~f
)

j
(X) =

∫

∂Ω

(
να(Y )(∂αEjk)(Y −X) + λ να(Y )(∂jEαk)(Y −X)

−νj(Y )qk(Y −X)
)
fk(Y ) dσ(Y ), X ∈ Ω. (3.39)

Then for each ~f ∈ Hp
1 (∂Ω), n−1

n < p < ∞, r, j ∈ {1, ..., n}, and X ∈ Ω, we may write (based on
(3.6)-(3.7) and integrations by parts – cf. (2.6))

∂r(Dλ
~f)j = −∂αSjk(∂ταrfk)− λ∂jSαk(∂ταrfk)− ∂kS∆(∂τjrfk) in Ω. (3.40)
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The same type of reasoning applies to (3.12). Specifically, we have for each X ∈ Ω,

Pλ
~f(X) = (1 + λ)

∫

∂Ω

(∂rE∆)(Y −X)(∂τrk
fk)(Y ) dσ(Y ) = (1 + λ)∂rS∆(∂τrk

fk)(X), (3.41)

whenever ~f ∈ Hp
1 (∂Ω), n−1

n < p < ∞. With these identities in mind, we can prove the following
results.

Proposition 3.4 Fix λ ∈ R. Then for Lipschitz domain Ω ⊆ Rn, n ≥ 2, and n−1
n < p <∞, there

exists a finite constant C = C(∂Ω, p) > 0 such that

‖M(∇Dλ
~f)‖Lp(∂Ω) + ‖M(Pλ

~f)‖Lp(∂Ω) ≤ C‖~f‖Hp
1 (∂Ω), ∀~f ∈ Hp

1 (∂Ω). (3.42)

Proof. This is a direct consequence of Proposition 3.1, (3.40), (3.41) and the fact that for each
j, k ∈ {1, ..., n}, the operator ∂τjk

: Hp
1 (∂Ω) → Hp(∂Ω) is bounded if n−1

n < p <∞. ¤

Proposition 3.5 Let Ω ⊂ Rn, n ≥ 2, be a Lipschitz domain. Then for each λ ∈ R,

Kλ : Hp
1 (∂Ω) −→ Hp

1 (∂Ω) (3.43)

is a well-defined, bounded operator for every p ∈ (n−1
n ,∞).

Proof. Note that for each j ∈ {1, ..., n} we have

∂τrs(Kλ
~f)j(X) = ∂τrs(

1
2
~f +Kλ

~f)j(X)− 1
2∂τrsfj(X)

= νr(∂sDλ
~f)j

∣∣∣
∂Ω

(X)− νs(∂rDλ
~f)j

∣∣∣
∂Ω

(X)− 1
2∂τrsfj(X), (3.44)

at almost every X ∈ ∂Ω. Now, if ∂jS∆ stands for the principal-value integral operator on ∂Ω with
kernel (∂jE∆)(X − Y ), then at almost every point on ∂Ω, we have from (3.40) and (3.29)

∂s(Dλ
~f)j

∣∣∣
∂Ω

= 1
2να(δjk − νjνk)∂ταsfk − ∂αSjk(∂ταsfk)

+λ 1
2νj(δαk − νανk)∂ταsfk − λ∂jSαk(∂ταsfk)

−1
2νk∂τsjfk + ∂kS∆(∂τsjfk), (3.45)

with a similar formula for ∂r(Dλ
~f)j

∣∣∣
∂Ω

. Note that

να(δjk − νjνk)∂ταsfk = να(δjk − νjνk)(να(∇tanfk)s − νs(∇tanfk)α)

= (∇tanfj)s − νjνk(∇tanfk)s, (3.46)

and similarly,

νj(δαk − νανk)∂ταsfk = −νjνs(∇tanfk)k, (3.47)

νk∂τsjfk = νkνs(∇tanfk)j − νkνj(∇tanfk)s. (3.48)

Thus, the jump-terms in νr∂s(Dλ
~f)j

∣∣∣
∂Ω
−νs∂r(Dλ

~f)j

∣∣∣
∂Ω

amount to 1
2J1 + λ

2J2 − 1
2J3 where

J1 := νr(∇tanfj)s − νs(∇tanfj)r − νrνjνk(∇tanfk)s + νsνjνk(∇tanfk)r

= ∂τrsfj − νjνk∂τrsfk, (3.49)
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J2 := −νsνjνr(∇tanfk)k + νrνjνs(∇tanfk)k = 0, (3.50)

and

J3 := νrνkνs(∇tanfk)j − νrνkνj(∇tanfk)s − νsνkνr(∇tanfk)j + νsνkνj(∇tanfk)r

= −νjνk∂τrsfk. (3.51)

Thus, 1
2J1 + λ

2J2 − 1
2J3 = 1

2∂τrsfj , which cancels the last term in (3.44). In summary, all the
jump-terms cancel out, and we arrive at the identity

∂τrs(Kλ
~f)j = νs∂αSjk(∂ταrfk) + λ νs∂jSαk(∂ταrfk)− νs∂kS∆(∂τrjfk)

−νr∂αSjk(∂ταsfk)− λ νr∂jSαk(∂ταsfk) + νr∂kS∆(∂τsjfk), (3.52)

valid at almost every boundary point. Since we have that ∂ταβ
fk ∈ Hp(∂Ω), the desired conclusion

follows easily from this identity and the mapping properties of the operators involved. ¤

4 Singular integral operators on Besov-Triebel-Lizorkin spaces

In this section we extend the scope of our previous results in order to deduce some useful mapping
properties for the singular integral operators associated with the Stokes system on the scales of
Besov and Triebel-Lizorkin spaces.

4.1 Spaces of null-solutions of elliptic operators

Let L =
∑
|γ|=m aγ∂

γ be a constant coefficient, elliptic differential operator of order m ∈ 2N in
Rn. For a fixed, bounded Lipschitz domain Ω ⊆ Rn, n ≥ 2, denote by KerL the space of functions
satisfying Lu = 0 in Ω. Then, for 0 < p ≤ ∞ and α ∈ R, introduce Hp

α(Ω;L) the space of functions
u ∈ KerL subject to the condition

‖u‖Hp
α(Ω;L) := ‖δ〈α〉−α|∇〈α〉u|‖Lp(Ω) +

〈α〉−1∑

j=0

‖∇ju‖Lp(Ω) < +∞. (4.1)

Above, ∇j stands for vector of all mixed-order partial derivatives of order j and 〈α〉 is the smallest
nonnegative integer greater than or equal to α. The following theorem has been established in
[40] and [28]. It extends results from [26], where the authors have dealt with the case in which
1 < p, q <∞, s > 0, L = ∆, and [1] where the case 1 < p, q <∞, s > 0, L = ∆2 is treated.

Theorem 4.1 Assume that L is a homogeneous, constant coefficient, elliptic differential operator
and that Ω ⊂ Rn, n ≥ 2, is a bounded Lipschitz domain. Then

Hp
α(Ω;L) = F p,q

α (Ω) ∩KerL (4.2)

for every α ∈ R, 0 < p <∞, and 0 < q <∞. In particular, for each fixed α ∈ R and 0 < p <∞,
the space F p,q

α (Ω) ∩KerL is independent of q ∈ (0,∞).
Furthermore, corresponding to p = ∞, for each k ∈ N0 and s ∈ (0, 1) one has

H∞k+s(Ω;L) = B∞,∞
k+s (Ω) ∩KerL. (4.3)
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4.2 Operator estimates on Besov-Triebel-Lizorkin scales

Here we record some results describing mapping properties on Besov spaces of integral operators.
The first such result is modeled upon the harmonic and hydrostatic double layer potential operators.

Proposition 4.2 Let Ω be a Lipschitz domain in Rn, n ≥ 2, and consider an integral operator

Tf(X) :=
∫

∂Ω
K(X,Y )f(Y )dσ(Y ), X ∈ Ω, (4.4)

with the property that T1 is a constant function in Ω and

|∇k
XK(X,Y )| ≤ C|X − Y |−(n+k−1), k = 1, ..., N, (4.5)

for some positive integer N . Then, with δ := dist (·, ∂Ω),

‖δk− 1
p
−s|∇kTf |‖Lp(Ω) +

k−1∑

j=0

‖∇jTf‖Lp(Ω) ≤ C‖f‖Bp,p
s (∂Ω), (4.6)

granted that k ∈ {1, ..., N}, n−1
n < p ≤ ∞, and (n− 1)(1

p − 1)+ < s < 1.

For a proof of Proposition 4.2 see [40]. The next result gives an analogue of Theorem 4.2 for
single layer-like integral operators. Once again, see [40] for a proof.

Proposition 4.3 Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, and consider the integral
operator

Rf(X) :=
∫

∂Ω
K(X,Y )f(Y )dσ(Y ), X ∈ Ω, (4.7)

whose kernel satisfies the conditions

|∇k
X∇j

YK(X,Y )| ≤ C|X − Y |−(n−2+k+j), j = 0, 1, (4.8)

for k = 1, 2, ..., N , where N is some positive integer. Then

‖δk− 1
p
−s|∇kRf |‖Lp(Ω) +

k−1∑

j=0

‖∇jRf‖Lp(Ω) ≤ C‖f‖Bp,p
s−1(∂Ω), k = 1, 2, ..., N, (4.9)

granted that n−1
n < p ≤ ∞ and (n− 1)(1

p − 1)+ < s < 1.

We are now ready to discuss the mapping properties for the hydrostatic layer potentials on
Besov and Triebel-Lizorkin spaces in Lipschitz domains.

Theorem 4.4 Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, and assume that λ ∈ R,
n−1

n < p ≤ ∞, (n− 1)(1
p − 1)+ < s < 1, and 0 < q ≤ ∞. Then

Dλ : Bp,q
s (∂Ω) −→ Bp,q

s+ 1
p

(Ω), Dλ : Bp,p
s (∂Ω) −→ F p,q

s+ 1
p

(Ω), (4.10)

Pλ : Bp,q
s (∂Ω) −→ Bp,q

s+ 1
p
−1

(Ω), Pλ : Bp,p
s (∂Ω) −→ F p,q

s+ 1
p
−1

(Ω), (4.11)

Q : Bp,q
s−1(∂Ω) −→ Bp,q

s+ 1
p
−1

(Ω), Q : Bp,p
s (∂Ω) −→ F p,q

s+ 1
p
−1

(Ω), (4.12)

S : Bp,q
s−1(∂Ω) −→ Bp,q

s+ 1
p

(Ω), S : Bp,p
s−1(∂Ω) −→ F p,q

s+ 1
p

(Ω), (4.13)

are well-defined, bounded operators (with the additional demand that p 6= ∞ in the case of Triebel-
Lizorkin spaces).
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Proof. From Proposition 4.2 and Proposition 4.1 it follows that

Dλ : Bp,p
s (∂Ω) −→ Hp

s+ 1
p

(Ω;∆2) = F p,q

s+ 1
p

(Ω) ∩Ker∆2 (4.14)

is well-defined and bounded whenever 0 < p, q ≤ ∞, (n − 1)(1
p − 1)+ < s < 1, provided q = ∞ if

p = ∞. This and real interpolation then give that the operators (4.10) are bounded (in the second
case, we also use monotonicity of the Triebel-Lizorkin scale in the second index to cover the case
q = ∞). The operators (4.11)-(4.13) are handled similarly. ¤

Proposition 4.5 Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2. If p, q, s are as in (1.4) and
λ ∈ R, then the operators

Kλ : Bp,q
s (∂Ω) −→ Bp,q

s (∂Ω), S : Bp,q
s−1(∂Ω) −→ Bp,q

s (∂Ω), (4.15)

are well-defined, linear, and bounded.

Proof. Since Tr ◦ Dλ = 1
2I + Kλ and Tr ◦ S = S the claim about the operators in (4.15) follows

from Proposition 4.4 and Theorem 2.3. ¤

5 The proof of Theorem 1.1

We debut with a few preliminaries. Given a bounded Lipschitz domain Ω ⊂ Rn, n ≥ 2, we set
(with χE denoting the characteristic function of E):

R∂Ω :=
{∑

j

cjχΣj : cj ∈ R and Σj connected component of ∂Ω
}
, (5.1)

RΩ+ :=
{∑

j

cjχOj : cj ∈ R and Oj connected component of Ω
}
, (5.2)

and set

νR∂Ω := {ψν : ψ ∈ R∂Ω}, R∂Ω+ := (RΩ+)
∣∣∣
∂Ω
, νR∂Ω+ := {ψν : ψ ∈ R∂Ω+}. (5.3)

Next, let Ψ be the n(n + 1)/2-dimensional linear space of Rn-valued functions ψ = (ψj)1≤j≤n

defined in Rn and satisfying ∂jψk + ∂kψj = 0 for 1 ≤ j, k ≤ n, and note that

Ψ =
{
ψ(X) = AX + ~a : A, n× n antisymmetric matrix, and ~a ∈ Rn

}
. (5.4)

Finally, set

Ψ(∂Ω+) :=
{∑

j

ψjχ∂Oj
: ψj ∈ Ψ, Oj bounded component of Ω

}
. (5.5)

To proceed, we shall now introduce some versions of the boundary Besov spaces which are
well-suited for the formulation and treatment of boundary value problems for the Stokes system in
Lipschitz domains. Concretely, if Ω is a bounded Lipschitz domain in Rn, n ≥ 2, and (n− 1)/n <
p ≤ ∞, (n− 1)(1

p − 1)+ < s < 1, 0 < q ≤ ∞, we set:

Bp,q
s,ν+

(∂Ω) :=
{
~f ∈ Bp,q

s (∂Ω) :
∫

∂Ω
〈ψ, ~f〉 dσ = 0, ∀ψ ∈ ν R∂Ω+

}
, (5.6)

Bp,q
s,ν (∂Ω) :=

{
~f ∈ Bp,q

s (∂Ω) :
∫

∂Ω
〈ψ, ~f〉 dσ = 0, ∀ψ ∈ ν R∂Ω

}
. (5.7)
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The key analytical step in the proof of Theorem 1.1 is establishing the fact that, under the
hypotheses stipulated in the statement of this theorem, there exists λ ∈ (−1, 1] such that

1
2I +Kλ : Bp,q

s,ν+
(∂Ω)/Ψλ(∂Ω+) −→ Bp,q

s,ν+
(∂Ω)/Ψλ(∂Ω+) is invertible. (5.8)

Once this has been justified more elementary and well-understood considerations (cf. [47] for
details) yield that

S : Bp,q
s−1(∂Ω)/νR∂Ω −→ Bp,q

s,ν (∂Ω) is invertible if n ≥ 3. (5.9)

We proceed to complete the proof of Theorem 1.1 before returning to the claim (5.8). To this end,
consider the integral operators

Π~u(X) :=
∫

Rn

E(X − Y )~u(Y ) dY, Θ~u(X) :=
∫

Rn

〈q(X − Y ), ~u(Y )〉 dY, X ∈ Rn. (5.10)

Then these are smoothing operators of order two and one, respectively, both on the Besov and
Triebel-Lizorkin scale. Furthermore,

∆Π−∇Θ = I, div Π = 0, ∆Π∆ = I, (5.11)

where I stands for the identity operator. Thanks to the extension results in [48], any distribution
can be extended from Ω to the entire Euclidean space with preservation of smoothness on the Besov
and Triebel-Lizorkin scales. Below, we shall use such extensions tacitly, whenever convenient. Let
~v be such that ~v ∈ Bp,q

s+ 1
p
−1

(Ω) and div~v = g in Ω. For example, we may take ~v := ∇Π∆g where

Π∆ : Bp,q

s+ 1
p
−1

(Ω) → Bp,q

s+ 1
p
+1

(Ω) is the harmonic Newtonian potential in Ω (i.e., the operator of

convolution with E∆ from (3.15)). Next, consider ~w, ρ for which

(~w, ρ) ∈ Bp,q

s+ 1
p

(Ω)⊕Bp,q

s+ 1
p
−1

(Ω), ∆~w −∇ρ = ~f −∆~v and div ~w = 0 in Ω. (5.12)

For this, we may take ~w := Π(~f −∆~v) and ρ := Θ(~f −∆~v), where Π, Θ are as in (5.10). We now
claim that

Tr~v + Tr ~w − ~h ∈ Bp,q
s,ν+

(∂Ω). (5.13)

To see this, we first observe that Tr~v+ Tr ~w−~h ∈ Bp,q
s (∂Ω). To check the orthogonality condition

on νR∂Ω+ , by virtue of (5.3) it suffices to note that for every ψ ∈ RΩ+ we have
∫

∂Ω
〈(Tr~v + Tr ~w) , ν〉ψ dσ =

∫

Ω
ψ div (~v + ~w) dX =

∫

Ω
g ψ dX =

∫

∂Ω
〈ν,~h〉ψ dσ, (5.14)

by (1.2). This proves the claim made in (5.13). Next, we make the claim that if n ≥ 3, then

T : Bp,q
s,ν+

(∂Ω)⊕Bp,q
s−1(∂Ω) → Bp,q

s,ν+
(∂Ω), T (~g1, ~g2) := (1

2I +Kλ)~g1 + S~g2 is onto. (5.15)

To justify this claim, observe that

Ψλ(∂Ω+) ↪→ Bp,q
s,ν (∂Ω). (5.16)

Consider next an arbitrary ~f ∈ Bp,q
s,ν+(∂Ω). Then (5.8) gives that there exists ~g1 ∈ Bp,q

s,ν+(∂Ω) such
that ~ψ := ~f− (1

2I+Kλ)~g1 ∈ Ψλ(∂Ω+). This, (5.16), and (5.9) then guarantee the existence of some
~g2 ∈ Bp,q

s−1(∂Ω) with the property that S~g2 = ~ψ. Consequently, T (~g1, ~g2) = ~f , proving the claim.
Having established (5.13) and (5.15), we can now produce a solution for (1.1) in the form

~u := ~v + ~w +Dλ~g1 + S~g2, π := ρ+ Pλ~g1 +Q~g2, (5.17)
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where

(~g1, ~g2) ∈ Bp,q
s,ν+

(∂Ω)⊕Bp,q
s−1(∂Ω) is such that T (~g1, ~g2) = ~h− Tr~v − Tr ~w. (5.18)

Furthermore, it is implicit in the above construction that (1.5) holds. The case n = 2 is handled
analogously. Finally, uniqueness can be established in a more straightforward fashion, using the
the existence part. For the Triebel-Lizorkin scale a very similar approach works as well.

Thus, the proof of the theorem is complete at this point, modulo the claim (5.8). Note that
we only need to know the invertibility of 1

2I + Kλ for just one value of λ ∈ (−1, 1]. Due to
space limitations, we shall indicate how (5.8) can be proved for λ = 1 when n−1

n < p ≤ ∞,
(n − 1)(1

p − 1)+ < s < 1 and 0 < q ≤ ∞, in the case in which ν ∈ VMO(∂Ω), and then comment
on the necessary alterations in the perturbation case when (1.7) holds. In this vein, the following
theorem, itself a particular case of a more general result from from [24], is most useful. To state
it, denote by L(X ) the Banach space of bounded linear operators from the Banach space X into
itself, and by Comp (X ) the closed two-sided ideal consisting of compact mappings of X into itself.

Theorem 5.1 Let Ω be a bounded Lipschitz domain in Rn with unit normal vector ν and boundary
surface measure σ. Then for every ε > 0 the following holds. Given a function k ∈ C∞(Rn \ {0})
even and homogeneous of degree −n, set

Tf(X) := lim
ε→0

∫

|X−Y |>ε,Y ∈∂Ω
〈X − Y, ν(Y )〉k(X − Y )f(Y ) dσ(Y ), X ∈ ∂Ω. (5.19)

Then there exist an integer N = N(n), along with a small number δ > 0 which depends only on ε,
n, p, ‖k|Sn‖CN , and the Lipschitz character of Ω (more specifically, the geometrical characteristics
of Ω regarded as a non-tangentially accessible domain, in the sense of Jerison and Kenig [25]), with
the property that

dist (ν ,VMO(∂Ω)) < δ =⇒ dist (T , Comp (Lp(∂Ω)) < ε, (5.20)

where the distance in the right-hand side is measured in L(Lp(∂Ω, dσ)).
As a corollary, granted the initial geometrical assumptions on Ω and assuming that T is as

above, then for every p ∈ (1,∞) the following implication is valid:

ν ∈ VMO(∂Ω) =⇒ T : Lp(∂Ω) −→ Lp(∂Ω) is a compact operator. (5.21)

The proof in [24] of this result is rather long and involved. It relies on a splitting of ∂Ω (into
two pieces: one of which is close to a Lipschitz surface with small constant, and one which has
small surface measure), which is a sharper version of Semmes’ decomposition theorem (stated as
Proposition 5.1 on p. 212 of [51]; cf. also Theorem 4.1 on p. 398 of [30]), and other harmonic analysis
tools, such as “good-λ” inequalities.

Let us now discuss the prospect of using Theorem 5.1 for the principal value hydrostatic double
layer, i.e., for

Kλ
~f(X) := lim

ε→0+

∫

Y ∈∂Ω

|X−Y |>ε

[∂λ
ν(Y ){E, ~q}(Y −X)]> ~f(Y ) dσ(Y ), X ∈ ∂Ω. (5.22)

The integral kernel of the operator (5.22) is a n× n matrix whose (j, k)-entry is

−(1− λ)
δjk
ωn−1

〈X − Y, ν(Y )〉
|X − Y |n − (1 + λ)

n

ωn−1

〈X − Y, ν(Y )〉(xj − yj)(xk − yk)
|X − Y |n+2

−(1− λ)
1

ωn−1

(xj − yj)νk(Y )− (xk − yk)νj(Y )
|X − Y |n . (5.23)
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For λ = 1, in which case the operator (5.22) is known as the slip hydrostatic double layer (cf.,
e.g., [37]), the last term in (5.23) vanishes. Thus, for this particular choice of the parameter λ, the
operator (5.22) becomes of the type (5.19). Hence,

ν ∈ VMO(∂Ω) =⇒ K1 : Lp(∂Ω) → Lp(∂Ω) is a compact operator, ∀ p ∈ (1,∞). (5.24)

Extending this compactness property to the scale of boundary Besov spaces is done using Propo-
sition 2.2 and the following remarkable one-sided compactness property for the real method of
interpolation for (compatible) Banach couples proved by M. Cwikel in [16]:

Theorem 5.2 Assume that Xj, Yj, j = 0, 1, are two compatible Banach couples and suppose that
the linear operator T : Xj → Yj is bounded for j = 0 and compact for j = 1. Then the operator
T : (X0, X1)θ,q → (Y0, Y1)θ,q is compact for all θ ∈ (0, 1) and q ∈ [1,∞].

Granted (5.24), this shows that K1 is compact on Bp,q
s (∂Ω) for most of the portion of the Besov

scale consisting of Banach spaces, i.e., when 1 < p, q < ∞ and 0 < s < 1. There remains to treat
the case of quasi-Banach Besov spaces. Incidentally, let us note that the corresponding result in
Theorem 5.2 for the complex method of interpolation remains open. However, in [16] M. Cwikel
has shown that the property of being compact can be extrapolated on complex interpolation scales
of Banach spaces:

Theorem 5.3 Assume that Xj, Yj, j = 0, 1, are two compatible Banach couples and suppose that
T : Xj → Yj, j = 0, 1, is a bounded, linear operator with the property that there exists θ∗ ∈ (0, 1)
such that T : [X0, X1]θ∗ → [Y0, Y1]θ∗ is compact. Then T : [X0, X1]θ → [Y0, Y1]θ is compact for all
values of θ in (0, 1).

It is unclear whether a similar result holds for arbitrary compatible quasi-Banach couples. Nonethe-
less, in [28] the authors have shown that such an extrapolation result holds for the entire scale of
Besov spaces. More specifically, we have:

Theorem 5.4 Let Ω ⊆ Rn, n ≥ 2, be a Lipschitz domain and assume that R is an open, convex
subset of

{
(s, 1/p, 1/q) : n−1

n < p <∞, 0 < q ≤ ∞, (n− 1)(1
p − 1)+ < s < 1

}
. (5.25)

Also, assume that T is a linear operator such that

T : Bp,q
s (∂Ω) −→ Bp,q

s (∂Ω), (5.26)

is bounded whenever (s, 1/p, 1/q) ∈ R. If there exists (s∗, 1/p∗, 1/q∗) ∈ R such that T maps
Bp∗,q∗

s∗ (∂Ω) compactly into itself then the operator (5.26) is in fact compact for all (s, 1/p, 1/q) ∈ R.

In summary, the above analysis shows that if the bounded Lipschitz domain Ω is such that
ν ∈ VMO(∂Ω) then K1 is compact on Bp,q

s (∂Ω) whenever n−1
n < p < ∞, 0 < q ≤ ∞ and

(n− 1)(1
p − 1)+ < s < 1. In particular, in this case,

1
2I +K1 : Bp,q

s,ν+
(∂Ω)/Ψ1(∂Ω+) → Bp,q

s,ν+
(∂Ω)/Ψ1(∂Ω+) is Fredholm with index zero, (5.27)

from which (5.8) with λ = 1 now follows from routine arguments. Finally, when in place of
ν ∈ VMO(∂Ω) we only have (1.7), using (5.20) it can be be shows that (5.27) continues to hold,
so the same endgame in the proof of Theorem 1.1 works.

We conclude with some comments pertaining to the nature of condition (1.7) in the context of
Theorem 1.1. Consider the two-dimensional setting, when Ω is a bounded curvilinear polygon (i.e.,
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a piece-wise smooth domain). From the Mellin analysis of the structure of the spectra of singular
integral operators, it is well-known that the presence of any boundary angle θ 6= π prevents K1 from
being compact on Lp(∂Ω), for any p ∈ (1,∞). This failure of K1 to be compact can be quantified in
a more precise fashion. Concretely, consider the case when Ω is a curvilinear polygon with precisely
one angular point located at the origin 0 ∈ R2. Furthermore, assume that, in a neighborhood of
0, ∂Ω agrees with a sector of aperture θ ∈ (0, π) with vertex at 0. In particular, the outward unit
normal ν to Ω is smooth on ∂Ω\{0} and is piecewise constant near 0, where it assumes two values,
say, ν+ and ν−. As a result,

{ν}Osc(∂Ω) ≈ ‖ν+ − ν−‖ ≈
√

1 + cos θ, (5.28)

which shows that there exists a family of domains Ω = Ωθ as above for which

dist (ν,VMO(∂Ωθ)) −→ 0, as θ → π. (5.29)

Based on this analysis, we may conclude that for each δ > 0 there exists a bounded Lipschitz
domain Ω (whose Lipschitz character is controlled by a universal constant) with the property that
dist (ν,VMO(∂Ω)) < δ and yet for each p ∈ (1,∞) the operator K1 fails to be compact on Lp(∂Ω).
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