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0. Introduction

Construction of asymptotic formulae for solutions to linear elliptic bound-
ary value problems in domains with corner and conic points has been devel-
oped in numerous publications (see, for instance [1], [2] and the bibliography
there). Less attention was paid to the asymptotics of solutions to nonlin-
ear boundary value problems. In more detail properties of solutions to the
p-Laplace equation were investigated (see [3] – [8]). In the case of weak
singularities, when the problem can be linearized near the corner, boundary
value problems for semilinear and more general quasilinear equations were
considered in [9] – [11]. As for strong singularities, which correspond to
boundary sources, the situation is quite different, since the principal terms
of the asymptotics are determined by a nonlinear operator as a whole. This
case was deal with [12], [13], where results relating some special equations
of the type we investigate in the present paper were given without proofs.
Description of asymptotic behavior of all solutions to the Neumann prob-
lem for the two-dimensional Riccatti equation near an angle point is given in
[14]. Solutions to some nonlinear other equations having strong singularities
were studied in [15] – [18].

The present paper concerns the equation

R(U(x)) = 0, x ∈ G, (0.1)

where G is a domain in the plane R2 and x = (x1, x2) is a point of R2. By
R we denote an operator defined by

R(U(x))=
2∑

i,j=1

kij(x,U)
∂2U

∂xi∂xj
+

2∑

i,j=1

mij(x,U)
∂U
∂xi

∂U
∂xj

,

where {kij}2
i,j=1, {mij}2

i,j=1 are positive symmetric matrices. The part of
the domain G coincides with an angle in a small disk D centered at the
origin O. Our goal is to construct an asymptotic solution of the Dirichlet
problem to (0.1) which has a strong singularity at O.

We assume that the coefficients kij(x,U) and mij(x,U) of the equation
(0.1) approach some functions k•ij(x) and m•

ij(x) exponentially as U → +∞.
Without loss of generality we admit that

k•11(0) = k•22(0) = 1, k•12(0) = k•21(0) = 0.

At the boundary ∂G, the function U satisfies the Dirichlet boundary
condition

U = g, (0.2)
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where g ∈ C∞(∂G) and g vanishes on ∂G ∩ D.
Let (r, θ) denote polar coordinates with the origin O , |θ| < π. We put

G ∩ D = {(r, θ) : 0 < r < r0, |θ| < θ0}.
We do not investigate the solvability of problem (0.1), (0.2) restricting

ourselves to a construction of the asymptotic solution which is defined as
follows.

Definition 1. A function U(x) is called the asymptotic solution of problem
(0.1), (0.2) if for a certain ε > 0

|R(U(x))| = O(D(x)ε−2)

with D(x) = dist(x, ∂G), and

U(r,±θ0) = O(rε). (0.3)

We shall treat a simple model problem which can be solved explicitly and
therefore gives a hint for the subsequent discussion of the general situation.

Example. Consider the equation

∂2U
∂x2

1

+
∂2U
∂x2

2

+ A

((
∂U
∂x1

)2

+
(

∂U
∂x2

)2 )
= 0 (0.4)

in the domain G, where A is a constant, A 6= 0. Let U be subject to the
boundary condition (0.2).

In order to construct a solution to problem (0.4), (0.2), one can linearize
equation (0.4) by the substitution

U = A−1 log V. (0.5)

The function V is positive in G and satisfies the Dirichlet problem

∆V = 0, x ∈ G,

V = eAg, x ∈ ∂G.
(0.6)

It is a simple exercise to verify that any positive solution of problem (0.6)
has the form

V (x) = αH(x) + V(x),
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where V satisfies (0.6) and belongs to C(G), α is an arbitrary nonnegative
constant and H is the solution of the homogeneous problem (0.6) which has
the asymptotic form

H(r, θ) = r−π/θ0 cos(πθ/θ0) + O(rπ/θ0).

We have

V = 1 + O(rπ/θ0) (0.7)

as r → 0. Hence the solution U of the original nonlinear problem, admits
the asymptotic representation

U(r, θ) = A−1 log
(
αr−π/θ0 cos(πθ/θ0) + 1 + O(rπ/θ0)

)
. (0.8)

Thus, each value α > 0 generates a solution of problem (0.4), (0.2) which is
unbounded in any neighbourhood of the origin O and is defined by (0.8).

Since a substitution of type (0.5), linearizing (0.1), is, in general, un-
known and, most probably, does not exist, one can hardly hope to get an
asymptotic formula for solutions of equation (0.1) in a form similar to (0.8).
However, a way to construct an asymptotic solution of (0.1) can be antici-
pated by rewriting (0.8) in the form

U(r, θ) = v(r, θ) +
∑
±

w±(r−π/θ0(θ0 ∓ θ)) + O(rπ/θ0), (0.9)

where the term

v(r, θ) = A−1(π/θ0 log 1/r + log cosπθ/θ0 + log α)

describes the solution U(r, θ) in any angle |θ| < θ0 − ε, ε > 0, and the two
terms of boundary layer type

w±(r−π/θ0(θ0 ∓ θ)) = A−1 log

(
1 +

rπ/θ0

(θ0 ∓ θ)α

)

characterize the asymptotic behavior of U(r, θ) near the lines θ = ±θ0.
The above example shows the way to a treatment of the general equation

(0.1). We shall construct the following asymptotic solution U of problem
(0.1), (0.2) which contains (0.9) as a particular case

U(r, θ) = Λ log 1/r + C + Z(θ) +
∑
±

w±
(
(θ0 ∓ θ)rΛc±

)
. (0.10)
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Here w± are polynomials in log r. The functions w± tend to zero as (θ0 ±
θ)rΛc± → +∞, i.e. the functions w± describe the boundary layers near the
rays θ = ∓θ0. In (0.10), C is an arbitrary constant and Λ is a single positive
number, for which there exists a solution Z of the problem





Z′′(θ) + Λ2a(θ) + 2Λb(θ)Z′(θ) + c(θ)(Z′(θ))2 = 0,

Z(±θ0) = −∞, Z(0) = 0,

where

a(θ) = m•
11(0) cos2 θ + 2m•

12(0) sin θ cos θ + m•
22(0) sin2 θ,

b(θ) = (m•
11(0)−m•

22(0)) sin θ cos θ −m•
12(0)(cos2(θ)− sin2 θ),

c(θ) = m•
11(0) sin2 θ − 2m•

12(0) sin θ cos θ + m•
22(0) cos2 θ.

By c± in (0.10) we denote the number c(±θ0).
It is convenient to map the domain G ∩ D onto the semistrip Π =

(0,+∞) × (−l/2, l/2, ) changing the variables x 7→ t = (t1, t2) = (y, z),
where

y = θl/2θ0, z = log r−1 − log r−1
0 .

We shall use the coordinates (y, z) throughout the text.
We obtain an asymptotic solution of the first boundary value problem

in the semistrip Π. The asymptotic solution U results from the asymptotic
solution in the semistrip after passing from the coordinates (y, z) to the
coordinates (r, θ) by the formulae

r = r0e
−z, θ = 2θ0y/l .

We consider a more general boundary value problem in Π. Suppose that

R(u(t)) = 0, t ∈ Π, (0.11)

where

R(u(t))=
2∑

i,j=1

kij(t, u)
∂2u

∂ti∂tj
+

2∑

j=1

lj(t, u)
∂u

∂tj

+
2∑

i,j=1

mij(t, u)
∂u

∂ti

∂u

∂tj
,

(0.12)
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and {kij}2
i,j=1, {mij}2

i,j=1 are symmetric positive-definite matrices. We as-
sume that lj(t, u) decay exponentially as u → +∞ and kij(t, u),mij(t, u)
approach some functions k•ij ,m

•
ij exponentially as u → +∞ (see (1.4), (1.5)

below).
Suppose that u vanishes on the lateral sides of the semistrip

u(±l/2, z) = 0. (0.13)

Definition 2. A function U(y, z) is called the asymptotic solution of prob-
lem (0.11), (0.13) if there exists ε > 0, such that

|R(U(y, z))| = O(e−εz(l − 2|y|)ε−2),

for 2|y| < l , and

U(±l/2, z) = O(e−εz).

We construct an asymptotic solution of problem (0.11), (0.13) in the
form

λz + Z(y) + C +
∑
±

w±((l/2∓ y)eλq±z).

Here C is an arbitrary constant, λ is an unique positive number, for which
the following problem is solvable





k•22(y)Z ′′(y) + λ2m•
11(y) + 2λm•

12(y)Z ′(y) + m•
22(Z

′(y))2 = 0

Z(±l/2) = −∞, Z(0) = 0,
(0.14)

and

q± = m•
22(±l/2)/k•22(±l/2).

We note that the solution (Z, λ) of problem (0.14) is defined in the case
of constant coefficients k•22,m

•
11,m

•
12, m

•
22 by the formulae

Z(y) =
k•22

m•
22

log cos
πy

l
− πm•

12k
•
22y

lm•
22(m

•
11m

•
22 −m•

12
2)

,

λ =
πk•22

l(m•
11m

•
22 −m•

12
2)

.
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1. Inner part of the asymptotic solution

Let us consider the boundary value problem

R(u) = 0, (1.1)

u(±l/2, z) = 0, (1.2)

in the semistrip Π. We use the notation

R(u) = Tr(K∇2u) + (L,∇u) + (M∇u,∇u), (1.3)

where

∇2 =




∂2

∂y2

∂2

∂y∂z

∂2

∂y∂z

∂2

∂z2




,

and K,M are symmetric matrices with elements kij ,mij which are bounded
functions of the variables e−z, y, u defined on the set Σ = (0, +∞)×[−l/2, l/2]
× (0,+∞). By L we denote a vector functions of the same variables with
bounded components lj on Σ. We note that (1.3) is a different form of
(0.12).

Here and elsewhere, the indices i, j take values 1, 2.
Suppose that

kij(0, y, u)− k•ij(y) = O(e−νu),
mij(0, y, u)−m•

ij(y) = O(e−νu)
(1.4)

for large positive values of u, where k•ij and m•
ij are bounded functions on

[−l/2, l/2]. Furthermore, we assume, that

lj(0, y, u) = O(e−νu). (1.5)

Constructing an asymptotic solution of problem (1.1), (1.2), we require

|kij(ez, y, ζ)− kij(0, y, ζ)| ≤ const e−δz, (1.6)

|kij(0, y, ζ)− kij(0,±l/2, ζ)| ≤ const (l/2∓ y)δ, (1.7)
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|kij(0, y, ζ1)− kij(0, y, ζ2)| ≤ const|ζ1 − ζ2|δ, (1.8)

where |ζ1 − ζ2| ≤ 1 and 0 < δ ≤ 1. The inequalities (1.6) and (1.8) hold
uniformly in y, ζ and (1.7) is supposed to hold uniformly in ζ.

Let the coefficients mij , lj of R satisfy conditions (1.6), (1.7), (1.8) and
let the functions m•

ij , k•ij be subject to (1.7).
By analogy with the model problem considered in Introduction, we look

for an asymptotic solution of the equation (1.1), as z → +∞, in an arbitrary
semistrip Πd = {(y, z) : z ≥ 0, l/2− |y| > d}, d > 0, in the form

v(y, z) = λz + C + Z(y). (1.9)

Here C is an arbitrary constant and the relations for the number λ and the
function Z are to be found.

Substituting v into (1.3), we obtain the expression

k22Z
′′ + λ2m11 + 2λm12Z

′ + m22(Z ′)2 + l1λ + l2Z
′. (1.10)

By (1.9), (1.4) and (1.6) we note that in the semistrip Πd:

k22(e−z, y, v) = k•22(y) + O(e−β0z),
m22(e−z, y, v) = m•

ij(y) + O(e−β0z),
lj(e−z, y, v) = O(e−β0z),

(1.11)

where β0 = min{νλ, δ}. Therefore, owing to (1.1) and (1.10), we define the
pair (λ,Z) satisfying

k•22Z
′′ + λ2m•

11 + 2λm•
12Z

′ + m•
22(Z

′)2 = 0. (1.12)

Since the constant C in (1.9) is arbitrary, we may put Z(0) = 0.
Let the function Z satisfy the boundary condition

lim
y→−l/2

Z(y) = lim
y→l/2

Z(y) = −∞. (1.13)

Lemma 1. There exists one and only one positive number λ, such that
problem (1.12), (1.13) is uniquely solvable.

Proof. Let Φ(y) = Λ−1Z ′(y). Then (1.12) can be rewritten as

k•22Φ
′ + λ(m•

11 + 2m•
12Φ + m•

22Φ
2) = 0. (1.14)

By (1.12) and the positivity of the quadratic form m•
11ξ

2
1 +m•

12ξ1ξ2 +m•
22ξ

2
2 ,

relations (1.13) imply the boundary conditions

Φ(−l/2) = +∞, Φ(l/2) = −∞.
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By Φλ we denote a solution of (1.14) satisfying the initial condition Φ(−l/2)
= +∞. The substitution Ψλ = 1/Φλ leads to the initial value problem

k•22Ψ
′
λ = λ(m•

11Ψ
2
λ + 2m•

12Ψλ + m•
22), (1.15)

Ψλ(−l/2) = 0.

This problem is uniquely solvable in a small neighborhood of the point y =
−l/2. Therefore, Φλ is uniquely defined near this point. Let (0, P (λ)) be
the maximum interval where Φλ exists. Obviously, Φλ(P (λ)) = −∞. We
show that Φλ is a strictly decreasing function of λ. Let λ1 < λ2. By (1.15),
k•22(−l/2)Ψ′(−l/2) = λm•

22(−l/2) and consequently the inequality Ψλ1 <
Ψλ2 holds near y = −l/2. Thus, Φλ1 > Φλ2 in the same neighbourhood of
y = −l/2. By y0 we denote the first positive number such, that both Φλ1

and Φλ2 are defined and the inequality Φλ1 > Φλ2 holds. Then it follows
from (1.14), that Φ′λ1

(y0) > Φ′λ2
(y0). Let the number y1, y1 > y0, be so close

to y0 that Φ′λ1
(y) > Φ′λ2

(y) for y ∈ (y0, y1). Since

Φλj (y1)− Φλj (y0) =

y0∫

y1

Φ′λj
(y)dy,

and Φλ1(y0) = Φλ2(y0), we arrive at

Φλ1(y1)− Φλ2(y1) =

y0∫

y1

(Φ′λ2
(y)− Φ′λ1

(y))dy < 0.

The contradiction obtained shows that the inequality Φλ1 > Φλ2 holds over
the whole domain of both functions. This implies the inequality P (λ2) <
P (λ1). Thus P is a strictly decreasing function on (0, +∞). The smooth-
ness of P (λ) follows from the implicit function theorem and the relations
Ψλ(P (λ)) = 0, dΨλ/dy > 0. According to (1.14),

λP (λ) =

+∞∫

−∞

k•22dΦ
m•

11 + 2m•
12Φ + m•

22Φ2
.

Let γ be a positive constant such that

γ−1k•22(y) ≤ m•
11(y)ξ2

1 + m•
12(y)ξ1ξ2 + m•

22(y)ξ2
2

ξ2
1 + ξ2

2

≤ γk•22(y)
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for all y ∈ (−l/2, l/2) and any real ξ1, ξ2. Then

πγ−1 ≤ λP (λ) ≤ πγ.

Therefore, the positive semiaxis is the domain of the function P . The exis-
tence of a unique root of the equation P (λ) = l follows from the monotonicity
and continuity of P . £
Lemma 2. The solution Z of problem (1.12), (1.13) and its derivatives have
the asymptotic representations

Z(y) = q−1
± log(l/2∓ y) + c± + Z±0 , (1.16)

(djZ/dyj)(y) = q−1
± (−1)j+1(l/2∓ y)−j + Z±j , j = 1, 2, (1.17)

in a small neighborhood of the points y = ±l/2. Here, the functions Z±p , p =
0, 1, 2 satisfy

|Z±p (y)| ≤ (l/2∓ y)δ−p. (1.18)

Proof. Near the points y = ±l/2, the solution Ψλ of the initial value
problem (1.15) admits the representation

Ψλ(y) = λq±(l/2∓ y) + Ξλ(y), (1.19)

where Ξλ is a function satisfying (1.18) with p = −1. After returning from
Ψ to Z in (1.19), we get (1.17) for j = 1 and (1.16). Equality (1.17) follows
from (1.14) for j = 2 and from (1.17) for j = 1. £

2. Boundary layers near the lateral sides of the semistrip

By (1.13), function (1.9) equals −∞ on the lateral sides of the semistrip
Π. In order to obtain an asymptotic solution satisfying the boundary con-
dition (1.2), we construct some boundary layers w+ and w−. The sign plus
corresponds to the line y = l/2 and minus stands for the line y = −l/2.

We suppose that the boundary layers w± and their first and second order
derivatives tend to zero as z → +∞ for any fixed y > 0. By U we denote
the sum of w+ , w− and v. We substitute U into (1.1), (1.2). Making the
principal terms (1.2) and the principal terms in (1.1) near the sides y = ±l/2
of the semistrip Π equal to zero, we find the boundary layers w+ and w−.
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In order to determine w+ and w−, we pass in (1.1), (1.2) to the coordi-
nates (ξ, η+) or (ξ, η−) defined by

ξ = z , η± = (l/2∓ y)eq±(λz+c±+C). (2.1)

According to (1.16) and (2.1)

v(ξ, η±) = q−1
± log η± + o(1), asη± → 0. (2.2)

By assumption, the boundary layers w+ and w− tend to zero far from the
sides y = l/2 and y = −l/2. Therefore, in view of (1.2) and (2.2), we have
the boundary condition:

lim
η±→0

{w±(ξ, η±) + q−1
± log η±} = 0. (2.3)

Clearly,

∂

∂z
=

∂

∂ξ
+ q±λη±

∂

∂η±
,

∂

∂y
= ∓eq±(λz+c±+C) ∂

∂η±
. (2.4)

As ξ → +∞, the coefficients kij of (1.3) have the representations

kij(e−ξ,±(l/2− η±e−q±(λξ+c±+C)), U(ξ, η±))

= kij(0,±l/2, w±(ξ, η±) + q−1
± log η±) + o(1)

(2.5)

near the sides y = ±l/2 of the semistrip Π. Formula (2.5) follows from (2.2)
and conditions (1.6), (1.7), (1.8).

Taking into account (2.4), (1.17), and (2.5), we rewrite R(u) in the
coordinates (ξ, η+) and (ξ, η−). The principal term of R(u) is O(e2λq±ξ)
near the lines y = ±l/2. Therefore, the equations for the boundary layers
w± have the form

N±(w±) = 0, (2.6)

with

N±(w±) =
d2w±
dη2±

+ Q±

((
dw±
dη±

)2

+
2

q±η±
dw±
dη±

)

+
1

q±η2±

(
Q±
q±

− 1
)

,

(2.7)
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where

Q±(W±(η±)) = m22(0,±l/2,W±(η±))/k22(0,±l/2,W±(η±))

and

W±(η±) = w±(η±) + q−1
± log η±. (2.8)

Thus, the boundary layers w± near the sides y = ±l/2 are solutions of
problem (2.6), (2.3).

By (2.6), (2.3), function (2.8) satisfies the equation

d2W±
dη2±

(η±) + Q± (W± (η±))
(

dW±
dη±

(η±)
)2

= 0 (2.9)

and the boundary condition

lim
η±→0

W±(η±) = 0. (2.10)

From (2.9), we obtain

dW±
dη±

(η±) = exp


−

W±(η±)∫

0

Q±(ρ)dρ + const


 . (2.11)

Thus, by (2.11), (2.10), the solution W± of (2.9) satisfies

W±(η±)∫

0

exp




ζ∫

0

Q±(ρ)dρ


 dζ = κη±, (2.12)

where κ is a constant to be determined. It follows from (2.8) and the
condition lim

η±→+∞ w±(η±) = 0 that

lim
η±→+∞(W±(η±)− q−1

± log η±) = 0. (2.13)

Let η± → +∞ in (2.11). By (2.12) and the equality lim
η±→+∞Q± = q±, we

arrive at

lim
η±→+∞{e

(q±W±(η±)+h±) − 1− κq±η±} = 0,
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where

h± =

+∞∫

0

(Q±(η)− q±)dη.

Combining the last formula with (2.13), we find κ = q−1
± eh± .

Hence, the boundary layers w± can be found from (2.8), where W± are
defined by (2.12) with κ = q−1

± eh± .

Remark 1. In the case of constant coefficients m22 and k22, the function
Q± in (2.7) is equal to the constant

Q± = q± = m•
22/k•22.

Therefore, the solution W± of problem (2.9), (2.10), (2.13) has the form
W±(η±) = q−1

± log(η± + 1). Hence

w± = q−1
± log(1 + 1/η±) (2.14)

(compare with Example in Introduction) .

Now, we estimate the boundary layers at infinity.

Lemma 3. (i) In the case ν 6= q±, the solutions w± of problem (2.6), (2.3)
vanishing at +∞ admit the estimate

w±(η±) = O(η−χ±
± ), (2.15)

where χ± = min{1, ν/q±}.
If ν = q±, then

w±(η±) = O(η−1
± log η±). (2.16)

(ii) The derivatives of the boundary layers w± satisfy

djw±/dηj
±(η±) = O(η−χ±−j

± ), ν 6= q±,

djw±/dηj
±(η±) = O(η−1−j

± log η±), ν = q±.

(2.17)

Proof. (i). By (1.4)

Q±(ζ) = q± + O(e−νζ), (2.18)
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which, along with (2.12), implies

1
q±

eq±W±(η±) + α±(W±(η±)) =
eh±

q±
η±,

where α(w) = O(e(q±−ν)W±). By the Banach principle we obtain

W±(η±) =
1
q±

log η± + O(η−χ±
± )

which completes the proof.
(ii). From (2.11), (2.18) and (2.15), (2.16), we obtain (2.17) with j = 1.

According to (2.9) and (2.17) with j = 1, the function d2w±/dη2± admits
estimate (2.17) with j = 2. £

3. Estimates of R(u0)

We define asymptotic solution U of problem (1.1), (1.2) in the form

U = λz + Z(y) + C + w+((l/2− y)eq+(λz+c++C))
+w−((l/2 + y)eq−(λz+c−+C)).

Here, the pair λ,Z is determined by (1.12), (1.13), and the boundary layers
w± satisfy (2.7). We prove that the discrepancy generated by U in equations
(1.1), (1.2) vanishes exponentially as z → +∞.

Let K0 and M0 be the matrices with the elements kij(0, y, u), mij(0, y, u)
and let L0 be the vector with the components lj(0, y, u). Also let

R0(u) = Tr(K0∇2u) + (L0,∇u) + (M0∇u,∇u). (3.1)

The next assertion is the main result of this section.

Theorem 1. For (y, z) ∈ Π, the functions R(U) and U(±l/2, z) satisfy

|R(U)(y, z)| dy = O(e−εz(l − 2|y|)−2+ε), (3.2)

and

U(±l/2, z) = O(z−εz) (3.3)

with a small positive ε.

Proof. By (1.16) and (2.3), one has

u(±l/2, z) = w∓(le−q±(λz+c±+C)). (3.4)
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The functions w∓ are represented in the form (2.15) as y → ±l/2. Hence,
(3.4) implies

U(±l/2, z) = O(zse−λq∓χ∓z),

with χ∓ = min{1, ν/q∓} and s = 1 when ν = q∓ and s = 0 in other cases.
Thus, we obtain (3.3).

Now, we prove (3.2). By Lemma 2 and Lemma 3, we have

∂i+jU

∂yi∂zj
= O

(
(min{1, η+}min{1, η−})δ

(l/2− |y|)2
)

(3.5)

which along with (1.6) implies

R(U)−R0(U) = O

(
e−δz (min{1, η+}min{1, η−})δ

(l/2− |y|)2
)

. (3.6)

According to (1.9) and (1.12), the equality

Tr(K0∇2v) + (M0∇v,∇v) = 0

holds. Hence

R0(U) = R0(U)− Tr(K0∇2v)− (M0∇v,∇v)
−

∑
±

k22(0,±l/2,W±)N±(w±).

The right-hand side of the last equality can be represented as the sum
of nine terms

3∑

q=1

3∑

p=1

S(p)
q (3.7)

which will be described and estimated in what follows.
In order to treat S

(p)
q , we introduce the sets

Γ0
γ = {(y, z) : η+(y, z) ≥ aeγz, η−(y, z) ≥ aeγz},

Γ±γ = {(y, z) : η±(y, z) ≤ aeγz},
where a is a sufficiently large positive number and γ ∈ (0, λmin{q+, q−}).

Let us consider the functions

S
(1)
1 = Tr((K0(y, U)−K0(y,W+)−K0(y, W−) + K•(y))∇2U),

S
(2)
1 = (L0(y, U)− L0(y, W+)− L0(y, W−),∇U),

S
(3)
1 = ((M0(y, U)−M0(y,W+)−M0(y, W−) + M•(y))∇U,∇U),
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where K• and M• are the matrices with the elements k•ij(0, y, u), m•
ij(0, y, u).

We begin with the term S
(1)
1 on the set Γ±γ . Using (1.4) and the inequality

η∓(y, z) > leq∓λz for (y, z) ∈ Γ±γ (3.8)

we obtain the estimate

|kij(0, y,W∓)− k•ij(0, y)| ≤ ce−λνz, for (y, z) ∈ Γ±γ . (3.9)

Inequality (1.8) implies

|kij(0, y, U)− kij(0, y, W±)| ≤ c(|w∓|δ + |Z±0 |δ). (3.10)

Hence, by Lemmas 2 and 3, as well as the estimate

l/2∓y ≤ ce−(q∓λ−γ)z, for (y, z) ∈ Γ±γ (3.11)

we have

|kij(0, y, U)− kij(0, y, W±)| ≤ czδse−ε±z, (3.12)

where

ε± = min{(q±λ− γ)δ, λν, λq±},

s = 1 for ν = q±, and s = 0 in other cases. According to definition of the
asymptotic solution U , and Lemmas 2 and 3, there hold the inequalities

|U(y, z)| ≥ γ(min{q+, q−})−1z,

|W±(η±(y, z))| ≥ γ(min{q+, q−})−1z

(3.13)

for (y, z) ∈ Γ0
γ . Thus, by (1.4)

|kij(0, y, U)− kij(0, y,W+)− kij(0, y,W−) + k•(0, y)| = O(e−ε•z), (3.14)

where

ε• =
γν

min{q+, q−} .

The value

ε = min{ε•, ε+, ε−}
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which depends on γ, attains its minimum

ε1 := νλδ min{ q−
q+δ + ν

,
q+

q−δ + ν
}

if γ = γ1 with

γ1 =
q−q+λδ

δ max{q+, q−}+ ν
.

Note that γ1 satisfies the inequality

γ1 < λ min{q+, q−}.

Thus, (3.5), (3.9), (3.12) and (3.14) imply the estimate

∣∣∣S(1)
1

∣∣∣ = O

(
e−ε1zzδs (min{1, η+}min{1, η−})δ

(l/2− |y|)2
)

. (3.15)

The functions S
(2)
1 and S

(3)
1 are estimated in the same way.

The term S
(1)
2 is defined by the formula

S
(1)
2 = Tr((K0(y,W+) + K0(y, W−)−K•(y))∇2U)

−(k22(y,W+) + k22(y, W−)− k•(y))
∂2U

∂y2
.

Let us take γ = γ2, where

γ2 =
q−q+λ

max{q+, q−}+ ν
.

According to (3.5), (3.11) we have

∣∣∣S(1)
2

∣∣∣ = O

(
e−ε2zzs (min{1, η+}min{1, η−})δ

(l/2− |y|)2
)

, (3.16)

ε2 = νλ min{ q−
q+ + ν

,
q+

q− + ν
}

on the sets Γ±. In the case (y, z) ∈ Γ0 formula (3.16) follows from the
equalities ∂2U/∂x2 = ∂2U/∂x∂y = 0 and Lemma 3.
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Similar arguments lead to estimate (3.16) for the functions

S
(2)
2 = (L0(y,W+) + L0(y, W−),∇U),

S
(3)
2 = ((M0(y, W+) + M0(y, W−)−M•(y))∇U,∇U)− (m22(y, W+)

+m22(y, W−)−m•
22(y))

∂U

∂y

∂U

∂y
− (m22(y, W+) + m22(y, W−)

−m•
22(y))

∂v

∂x

∂v

∂x
− 2(m22(y, W+) + m22(y, W−)−m•

22(y))
∂U

∂y

∂v

∂x
,

S
(2)
3 = (m11(y, W+) + m11(y, W−)− 2m•

11(y))λ2.

Let us consider

S
(1)
3 =

(∑
±

k22(0, y, W±)− k•22(0, y)
)

∂2U

∂y2

−k•22(0, y)
∂2Z

∂y2
−

∑
±

{
k22(0,±l/2, W±)

∂2w±
∂y2

−(k22(0,±l/2,W±)− k•22(0,±l/2))
1

q±(l/2∓ y)2
}

.

In order to prove (3.15) in Γ±γ with γ = γ1, we divide S
(1)
3 into three parts.

The estimate (3.15) for

{
k22(0, y, W±)− k22(0,±l/2,W±)

}∂2w±
∂y2

+
{

k22(0, y, W±)
∂2Z

∂y2
+ k22(0,±l/2,W±)

1
q±(l/2∓ y)2

}

+
{

k•22(0, y)
∂2Z

∂y2
+ k•22(0,±l/2)

1
q±(l/2∓ y)2

}

follows from (3.11), (1.7) and (1.18). By (3.9), (3.5), we obtain the estimate
(3.15) for

(k22(0, y, W∓)− k•22(0, y))
∂2U

∂y2

−(k22(0,∓l/2,W∓) + k•22(0,∓l/2))
1

q∓(l/2± y)2
.

By (3.8) and Lemma 3, the function

k22(0, y,W±)
∂2

∂y2
w∓(η∓)
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satisfies (3.15) in Γ±γ .

Let us consider S
(1)
3 in Γ0

γ , γ = γ1. The inequality (3.9) implies (3.15)
for

(∑
±

k22(0, y, W±)− 2k•22(0, y)
)

∂2Z

∂y2

+
∑
±

(k22(0,±l/2,W±)− k•22(0,±l/2))
1

q±(l/2∓ y)2
.

The other parts of S
(1)
3 are estimated in Γ0

γ by Lemma 3. The last term in
(3.7)

S
(3)
3 =

(∑
±

m22(0, y, W±)−m•
22(0, y)

)(
∂U

∂y

)2

−m•
22(0, y)

(
∂Z

∂y

)2

+2λ

(∑
±

m12(0, y, W±)−m•
12(0, y)

)
∂U

∂y
− 2λm•

12(0, y)
∂Z

∂y

−
∑
±

{
m22(0,±l/2,W±)

(
∂w±
∂y

)2

−m22(0,±l/2,W±)
1

q±(l/2∓ y)2

(
2
∂w±
∂y

− 1
q±(l/2∓ y)2

)}

is majorized in the same way as S
(1)
3 .

By (3.15), (3.16) for S
(p)
q (p, q = 1, 2, 3), we arrive at the estimate

|R(U(y, z))| = O(zδse−ε1z(l − 2|y|)−2+δ). (3.17)

The proof is complete.
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[6] V. G. Maz’ya, A. S. Slutskǐı, V.A. Fomin, Asymptotic behavior of
the stress function near the vertex of a crack in the problem of torsion, Izv.
AN SSSR, Mekhanika Tverdogo Tela 21(4) (1986), 170 – 176.

[7] M. Dobrowolski, On quasilinear elliptic equations in domains with
conical boundary points, J. reine angew. Math. 394 (1989), 186 – 195.

[8] T. Iwaniec, J. J. Manfredi, Regularity of p-harmonic functions on the
plane, Rev. Math. Iberoamericana 5(1 – 2) (1989), 1 – 19.
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