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Abstract

A second-order regularity theory is developed for solutions to a class of quasilinear elliptic
equations in divergence form, including the p-Laplace equation, with merely square-integrable
right-hand side. Our results amount to the existence and square integrability of the weak
derivatives of the nonlinear expression of the gradient under the divergence operator. This
provides a nonlinear counterpart of the classical L2-coercivity theory for linear problems,
which is missing in the existing literature. Both local and global estimates are established.
The latter apply to solutions to either Dirichlet or Neumann boundary value problems.
Minimal regularity on the boundary of the domain is required. If the domain is convex, no
regularity of its boundary is needed at all.

1 Introduction

A prototypal result in the theory of elliptic equations asserts that, if Ω is a bounded open set
in Rn, n ≥ 2, with ∂Ω ∈ C2, and u is the weak solution to the Dirichlet problem for the
inhomegenous Laplace equation whose right-hand side f ∈ L2(Ω), then u ∈W 2,2(Ω). Moreover,
a two-sided coercivity estimate for ‖∇2u‖L2(Ω) holds in terms of ‖f‖L2(Ω), up to multiplicative
constants. This can be traced back to [Be] for n = 2, and to [Sch] for n ≥ 3. A comprehensive
analysis of this topic can be found in [ADN], [Hö, Chapter 10], [LaUr, Chapter 3], [MazSh,
Chapter 14].

The regularity theory for (possibly degenerate or singular) nonlinear equations in divergence
form, extending the Laplace equation, whose prototype is the p-Laplace equation, has thoroughly
been developed in the last fifty years. Regularity properties of solutions and of their first-order
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derivatives have been investigated in a number of contributions, including the classics [ChDi,
Di, DiMa, Ev, Iw, KiMa, Le, Li, Si,L., To, Uh, Ur] and the more recents advances [BCDKS,
BDS, CKP, CiMa2, BDS, DuMi1, KuMi].

Despite the huge amount of work devoted to this kind of equations, the picture of second-
order regularity for their solutions is apparently still quite incomplete. A result is available for
p-harmonic functions, namely local solutions u to the homogenous equation

−div(|∇u|p−2∇u) = 0 in Ω ,

and asserts that the nonlinear expression of the gradient |∇u|
p−2
2 ∇u ∈ W 1,2

loc (Ω) – see [Uh] for
p ∈ (2,∞), and [ChDi] for every p ∈ (1,∞). If p ∈ (1, 2), coupling this property with the
local boundedness of ∇u in Ω ensures that u ∈ W 2,2

loc (Ω). On the other hand, the existence of
second-order weak derivatives of p-harmonic functions is an open problem for p ∈ (2,∞).

Information on this issue concerning inhomogeneous equations is even more limited. In fact,
this case seems to be almost unexplored. With this regard, let us mention that (global) twice weak
differentiability of solutions to Dirichlet problems for the inhomogeneous p-Laplace equation is
proved in [BeCr] under the assumption that p is smaller than, and sufficiently close to 2, and relies
upon the linear theory, via a perturbation argument. Fractional-order regularity for the gradient
of solutions to a class of nonlinear inhomogeneous equations, modelled upon the p-Laplacian, is
established in [Mi]. An earlier contribution in this direction is [Si,J.]

The present paper offers a second-order regularity principle for a class of quasilinear elliptic
problems in divergence form, that encompasses the inhomegenous p-Laplace equation

−div(|∇u|p−2∇u) = f(x) in Ω ,

for any p ∈ (1,∞) and any right-hand side f ∈ L2(Ω). In contrast with the customary results
recalled above, our statements involve exactly the nonlinear function of ∇u appearing under
divergence in the relevant elliptic operators. In the light of our conclusions, this turns out to be
the correct expression to call into play, inasmuch as it admits a two-sided L2-estimate in terms
of the datum on the right-hand side of the equation, and hence exhibits a regularity-preserving
property.

Both local solutions, and solutions to Dirichlet and Neumann boundary value problems are
addressed. A distinctive trait of our results is the minimal regularity imposed on ∂Ω when dealing
with global bounds. In particular, if Ω is convex, no additional regularity has to be required on
∂Ω. However, we stress that the results to be proved are new even for smooth domains.

An additional striking feature is that they apply to a very weak notion of solutions, which
has to be adopted since the right-hand side of the equations is allowed to enjoy a low degree of
integrability.

To conclude this preliminary overview, let us point out that the validity of second-order
L2-estimates raises the natural question of a more general second-order theory in Lq for q 6= 2,
or in other function spaces. This would amount to a second-order nonlinear Calderón-Zygmund
theory, namely an analogue of the corpus of gradient estimates for p-Laplacian type equations,
with right-hand side in divergence form, whose study was initiated in [Iw].

2 Main results

Although our main focus is on global estimates for solutions to boundary value problems, we
begin our discussion with a local bound for local solutions, of independent interest. The equations
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under consideration have the form

(2.1) −div(a(|∇u|)∇u) = f(x) in Ω

where Ω is any open set in Rn, and f ∈ L2
loc(Ω). The function a : (0,∞) → (0,∞) is of class

C1(0,∞), and such that

(2.2) −1 < ia ≤ sa <∞,

where

(2.3) ia = inf
t>0

ta′(t)

a(t)
and sa = sup

t>0

ta′(t)

a(t)
,

and a′ stands for the derivative of a. Assumption (2.2) ensures that the differential operator
in (2.1) satisfies ellipticity and monotonicity conditions, not necessarily of power type [CiMa1,
CiMa2]. Regularity for equations governed by generalized nonlinearities of this kind has also
been extensively studied – see e.g. [Ba, BSV, Ci2, Ci3, DKS, DSV, Ko, Li, Mar, Ta]. Observe
that the standard p-Laplace operator corresponds to the choice a(t) = tp−2, with p > 1. Clearly,
ia = sa = p− 2 in this case.

As already warned in Section 1, due to the mere square summability assumption on the
function f , solutions to equation (2.1) may have to be understood in a suitable generalized
sense, even in the case of the p-Laplacian. We shall further comment on this at the end of this
section. Precise definitions can be found in Sections 4 and 5.

In what follows, Br(x) denotes the ball with radius r > 0, centered at x ∈ Rn. The simplified
notation Br is employed when information on the center is irrelevant. In this case, balls with
different radii appearing in the same formula (or proof) will be tacitly assumed to have the same
center.

Theorem 2.1 [Local estimate] Assume that the function a ∈ C1(0,∞), and satisfies condi-
tion (2.2). Let Ω be any open set in Rn, with n ≥ 2, and let f ∈ L2

loc(Ω). Let u be a generalized
local solution to equation (2.1). Then

(2.4) a(|∇u|)∇u ∈W 1,2
loc (Ω),

and there exists a constant C = C(n, ia, sa) such that

(2.5) ‖a(|∇u|)∇u‖W 1,2(BR) ≤ C
(
‖f‖L2(B2R) +R−

n
2 ‖a(|∇u|)∇u‖L1(B2R)

)
for any ball B2R ⊂⊂ Ω.

Remark 2.2 Observe that the expression a(|∇u|)∇u agrees with |∇u|p−2∇u when the differ-
ential operator in equation (2.1) is the p-Laplacian, and hence differs in the exponent of |∇u|
from the results recalled above about p-harmonic functions.

Our global results concern Dirichlet or Neumann problems, with homogeneous boundary
data, associated with equation (2.1). Namely, Dirichlet problems of the form

(2.6)

{
−div(a(|∇u|)∇u) = f(x) in Ω

u = 0 on ∂Ω
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and Neumann problems of the form

(2.7)

−div(a(|∇u|)∇u) = f(x) in Ω
∂u

∂ν
= 0 on ∂Ω .

Here, Ω is a bounded open set in Rn, ν denotes the outward unit vector on ∂Ω, f ∈ L2(Ω), and
a : (0,∞)→ (0,∞) is as above. Of course, the compatibility condition

(2.8)

∫
Ω
f(x) dx = 0

has to be required when dealing with (2.7).
A basic version of the global second-order estimates for the solutions to (2.6) and (2.7) holds

in any bounded convex open set Ω ⊂ Rn.

Theorem 2.3 [Global estimate in convex domains] Assume that the function a ∈ C1(0,∞),
and satisfies condition (2.2). Let Ω be any convex bounded open set in Rn, with n ≥ 2, and let
f ∈ L2(Ω). Let u be the generalized solution to either the Dirichlet problem (2.6), or the Neu-
mann problem (2.7). Then

(2.9) a(|∇u|)∇u ∈W 1,2(Ω).

Moreover,

(2.10) C1‖f‖L2(Ω) ≤ ‖a(|∇u|)∇u‖W 1,2(Ω) ≤ C2‖f‖L2(Ω)

for some constants C1 = C1(n, sa) and C2 = C2(Ω, ia, sa).

Heuristically speaking, the validity of a global estimate in Theorem 2.3 is related to the fact
that the second fundamental form on the boundary of a convex set is semidefinite. In the main
result of this paper, the convexity assumption on Ω is abandoned. Dropping signature informa-
tion on the (weak) second fundamental form on ∂Ω calls for an assumption on its summability.
We assume that the domain Ω is locally the subgraph of a Lipschitz continuous function of
(n− 1) variables, which is also twice weakly differentiable. The second-order derivatives of this
function are required to belong to either the weak Lebesgue space Ln−1, called Ln−1,∞, or the
weak Zygmund space L logL, called L1,∞ logL, according to whether n ≥ 3 or n = 2. This will
be denoted by ∂Ω ∈ Ln−1,∞, and ∂Ω ∈ L1,∞ logL, respectively. As a consequence, the weak
second fundamental form B on ∂Ω belongs to the same weak type spaces with respect to the
(n − 1)-dimensional Hausdorff measure Hn−1 on ∂Ω . Our key summability assumption on B
amounts to:

(2.11) lim
r→0+

(
sup
x∈∂Ω

‖B‖Ln−1,∞(∂Ω∩Br(x))

)
< c if n ≥ 3,

or

(2.12) lim
r→0+

(
sup
x∈∂Ω

‖B‖L1,∞ logL(∂Ω∩Br(x))

)
< c if n = 2,

for a suitable constant c = c(LΩ, dΩ, n, ia, sa). Here, LΩ denotes the Lipschitz constant of Ω, and
dΩ its diameter. Let us emphasize that such an assumption is essentially sharp – see Remark
2.5 below.
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Theorem 2.4 [Global estimate in minimally regular domains] Assume that the function
a ∈ C1(0,∞), and satisfies condition (2.2). Let Ω be a Lipschitz bounded domain in Rn, n ≥ 2
such that ∂Ω ∈ W 2Ln−1,∞ if n ≥ 3, or ∂Ω ∈ W 2L1,∞ logL if n = 2 . Assume that f ∈ L2(Ω),
and let u be the generalized solution to either the Dirichlet problem (2.6), or the Neumann
problem (2.7). There exists a constant c = c(LΩ, dΩ, n, ia, sa) such that, if Ω fulfils (2.11) or
(2.12) for such a constant c, then

(2.13) a(|∇u|)∇u ∈W 1,2(Ω).

Moreover,

(2.14) C1‖f‖L2(Ω) ≤ ‖a(|∇u|)∇u‖W 1,2(Ω) ≤ C2‖f‖L2(Ω)

for some positive constants C1 = C1(n, sa) and C2 = C2(Ω, ia, sa).

We conclude this section with some remarks on Theorems 2.1, 2.3 and 2.4.

Remark 2.5 Assumption (2.11), or (2.12), cannot be weakened in Theorem 2.4 for all equations
of the form appearing in (2.6) and (2.7). This can be shown by taking into account the linear
problem corresponding to the case when the function a is constant. Indeed, domains Ω can be
exhibited such that ∂Ω ∈ W 2Ln−1,∞ if n ≥ 3 [Maz4], or ∂Ω ∈ W 2L1,∞ logL if n = 2 [Maz3],
but the limit in (2.11) or (2.12) exceeds some explicit threshold, and the corresponding solution
u to the Dirichlet problem for the Laplace equation fails to belong to W 2,2(Ω) (see also [MazSh,
Section 14.6.1] in this connection).

Remark 2.6 Condition (2.11) is certainly fulfilled if ∂Ω ∈W 2,n−1, and (2.12) is fulfilled if ∂Ω ∈
W 2L logL, or, a fortiori, if ∂Ω ∈W 2,q for some q > 1. This follows from the embedding of Ln−1

into Ln−1,∞ and of L logL (or Lq) into L1,∞ logL for q > 1, and from the absolute continuity
of the norm in any Lebesgue and Zygmund space. Notice also that, since the Lorentz space
Ln−1,1 $ Ln−1, assumption (2.11) is, in particular, weaker than requiring that ∂Ω ∈W 2Ln−1,1.
The latter condition has been shown to ensure the global boundedness of the gradient of the
solutions to problems (2.6) or (2.7), for n ≥ 3, provided that f belongs to the Lorentz space
Ln,1(Ω) [CiMa1, CiMa2]. Note that hypothesis (2.11) does not imply that ∂Ω ∈ C1,0, a property
that is instead certainly fulfilled under the stronger condition that ∂Ω ∈W 2Ln−1,1.

Remark 2.7 The gloal gradient bound mentioned in Remark 2.6 enables one to show, via a
minor variant in the proof of Theorems 2.3–2.4, that the solutions to problems (2.6) and (2.7)
are actually in W 2,2(Ω), provided that

(2.15) inf
t∈[0,M ]

a(t) > 0

for every M > 0, and f and Ω have the required regularity for the relevant gradient bound to
hold. A parallel result holds for local solutions to the equation (2.1), thanks to a local gradient
estimate from [Ba], extending [DuMi1]. To be more specific, if f ∈ Ln,1loc (Ω), and u is a generalized
local solution to equation (2.1), then

(2.16) u ∈W 2,2
loc (Ω).

Moreover, if n ≥ 3, f ∈ Ln,1(Ω), ∂Ω ∈W 2Ln−1,1, and u is the generalized solution to either the
Dirichlet problem (2.6), or the Neumann problem (2.7), then

(2.17) u ∈W 2,2(Ω).
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Equation (2.17) continues to hold if Ω is any bounded convex domain in Rn, whatever ∂Ω is.
Let us stress that these conclusion may fail if assumption (2.15) is dropped. This can be verified,
for instance, on choosing a(t) = tp−2, i.e. the p-Laplace operator, and considering functions of the
form u(x) = |x1|β, where x = (x1, . . . , xn) and β > 1. These functions are local solutions to (2.1)
with f ∈ Ln,1loc (Rn) (and even f ∈ L∞loc(Rn)) provided that p is large enough, but u /∈ W 2,2

loc (Rn)

if β ≤ 3
2 . In fact, u /∈W 2,q

loc (Rn) for any given q > 1, if β is sufficiently close to 1.

Remark 2.8 Weak solutions to problems (2.6) or (2.7), namely distributional solutions belong-
ing to the energy space associated with the relevant differential operator, need not exist if f is
merely in L2(Ω). This phenomenon is well-known to occur in the model case of the p-Laplace
equation, if p is not large enough for L2(Ω) to be contained in the dual of W 1,p(Ω). Yet, weaker
definitions of solutions to boundary value problems for this equation, ensuring their uniqueness,
which apply to any p ∈ (1,∞) and even to right-hand sides f ∈ L1(Ω), are available in the
literature[ACMM, BBGGPV, BoGa, DaA, DuMi1, LiMu, Maz5, Mu]. Among the diverse, but
a posteriori equivalent, definitions, we shall adopt that (adjusted to the framework under con-
sideration in this paper) of a solution which is the limit of a sequence of solutions to problems
whose right-hand sides are smooth and converge to f [DaA]. This will be called a generalized
solution throughout. A parallel notion of generalized local solution to (2.1) will be empolyed. A
generalized solution need not be weakly differentiable. However, it is associated with a vector-
valued function on Ω, which plays the role of a substitute for its gradient in the distributional
definition of solution. With some abuse of notation, this is the meaning attributed to ∇u in the
statements of Theorems 2.1, 2.3 and 2.4.
A definition of generalized solution to problem (2.6) and to problem (2.7) is given in Section 4,
where an existence, uniquess and first-order summability result from [CiMa3] is also recalled.
Note that, owing to its uniqueness, this kind of generalized solution agrees with the weak solu-
tion whenever f is summable enough, depending on the nonlinearity of the differential operator,
for a weak solution to exist. Generalized local solutions to equation (2.1) are defined in Section
5.

3 A differential inequality

The subject of this section is a lower bound for the square of the differential operator on the
left-hand side of the equations in (2.6) and (2.7) in terms of an operator in divergence form,
plus (a positive constant times) derivatives of a(|∇u|)∇u squared. This is a critical step in the
proof of our main results, and is the content of the following lemma.

Lemma 3.1 Assume that a ∈ C1[0,∞), and that the first inequality in (2.2) holds. Then there
exists a positive constant C = C(n, ia) such that

(
div(a(|∇u|)∇u)

)2 ≥ n∑
j=1

(
a(|∇u|)2uxj∆u

)
xj

(3.1)

−
n∑
i=1

(
a(|∇u|)2

n∑
j=1

uxjuxixj

)
xi

+ Ca(|∇u|)2|∇2u|2

for every function u ∈ C3(Ω). Here, |∇2u| =
(∑n

i,j=1 u
2
xixj )

1
2 .
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Proof. Let u ∈ C3(Ω). Computations show that(
div(a(|∇u|)∇u)

)2
=
(
a(|∇u|)∆u+ a′(|∇u|)∇|∇u| · ∇u

)2
(3.2)

= a(|∇u|)2
(
(∆u)2 − |∇2u|2

)
+ a(|∇u|)2|∇2u|2+

+ a′(|∇u|)2(∇|∇u| · ∇u)2 + 2a(|∇u|)a′(|∇u|)∆u∇|∇u| · ∇u

= a(|∇u|)2
( n∑
j=1

(uxj∆u)xj −
n∑

i,j=1

(uxjuxixj )xi
)

+ a(|∇u|)2|∇2u|2

+ a′(|∇u|)2(∇|∇u| · ∇u)2 + 2a(|∇u|)a′(|∇u|)∆u∇|∇u| · ∇u

=

n∑
j=1

(a(|∇u|)2uxj∆u)xj −
n∑

i,j=1

(a(|∇u|)2uxjuxixj )xi

− 2a(|∇u|)a′(|∇u|)
(
∆u∇|∇u| · ∇u−

n∑
i,j=1

|∇u|xiuxjuxixj
)

+ a(|∇u|)2|∇2u|2 + a′(|∇u|)2(∇|∇u| · ∇u)2 + 2a(|∇u|)a′(|∇u|)∆u∇|∇u| · ∇u

=

n∑
j=1

(a(|∇u|)2uxj∆u)xj −
n∑

i,j=1

(a(|∇u|)2uxjuxixj )xi

+ 2a(|∇u|)a′(|∇u|)
n∑

i,j=1

|∇u|xiuxjuxixj + a(|∇u|)2|∇2u|2 + a′(|∇u|)2(∇|∇u| · ∇u)2 ,

where “ · ” stands for scalar product in Rn. After relabeling the indices, one has that

a′(|∇u|)2(∇|∇u| · ∇u)2 + 2a(|∇u|)a′(|∇u|)
n∑

i,j=1

|∇u|xiuxjuxixj + a(|∇u|)2|∇2u|2(3.3)

= a(|∇u|)2

[(
|∇u|a′(|∇u|)
a(|∇u|)

)2( n∑
i,k=1

uxkuxi
|∇u|2

uxkxi

)2

+ 2
n∑

i,j,k=1

|∇u|a′(|∇u|)
a(|∇u|)

uxkuxi
|∇u|2

uxkxjuxixj +
n∑

i,j=1

u2
xixj

]
.

Now, set

ωu =
∇u
|∇u|

, ϑu =
|∇u|a′(|∇u|)
a(|∇u|)

, Hu = ∇2u.

Observe that ωu ∈ Rn, with |ωu| = 1, Hu is a symmettic matrix in Rn×n, and, by (2.2), ϑu ≥ ia.
With this notation in place, the expression in square brackets on the right-hand side of (3.3)
takes the form

ϑ2
u(Hωu · ωu)2 + 2ϑuHωu ·Hωu + tr

(
H2
u

)
,(3.4)

where “tr” denotes the trace of a matrix. The proof of inequality (3.1) is thus reduced to showing
that

ϑ2
u(Hωu · ωu)2 + 2ϑuHωu ·Hωu + tr

(
H2
u

)
≥ Ctr

(
H2
u

)
(3.5)

for some positive constant C = C(n, ia). To establish inequality (3.5), define the function ψ :
R× Rn × (Rn×n \ {0})→ R as

ψ(ϑ, ω,H) = ϑ2 (Hω · ω)2

tr
(
H2
) + 2ϑ

Hω ·Hω
tr
(
H2
) + 1
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for (ϑ, ω,H) ∈ R×Rn× (Rn×n \{0}), and note that (3.5) will follow if we show that there exists
a positive constant C such that

(3.6) ψ(ϑ, ω,H) ≥ C

if ϑ ≥ ia, |ω| = 1 and H is any non-vanishing symmetric matrix H. For each fixed ω and H, the
quadratic function ϑ 7→ ψ(ϑ, ω,H) attains its minimum at ϑ = − Hω·Hω

(Hω·ω)2
. We claim that

(3.7) − Hω ·Hω
(Hω · ω)2

≤ −1.

To verify equation (3.7), choose a basis in Rn in which H has diagonal form diag(λ1, . . . λn), and
let (ω1, . . . , ωn) denote the vector of the components of ω with respect to this basis. Then

Hω ·Hω =

n∑
i=1

λ2
iω

2
i , Hω · ω =

n∑
i=1

λiω
2
i ,

whence (3.7) follows, since

(3.8)
( n∑
i=1

λiω
2
i

)2 ≤ ( n∑
i=1

λ2
iω

2
i

)( n∑
i=1

ω2
i

)
=
( n∑
i=1

λ2
iω

2
i

)
,

by Schwarz’ inequality. Note that the equality holds in (3.8) inasmuch as
∑n

i=1 ω
2
i = 1. Owing

to (3.7), ψ(ϑ, ω,H) is a stricly increasing function of ϑ for ϑ ≥ −1. Hence, by the first inequality
in (2.2),

(3.9) ψ(ϑ, ω,H) ≥ ψ(ia, ω,H) > ψ(−1, ω,H)

if ϑ ≥ ia and |ω| = 1 . Assume, for a moment, that we know that

(3.10) ψ(−1, ω,H) ≥ 0

if |ω| = 1 and H is any symmetric matrix. Since ψ is a continuous function, we deduce from
(3.9) and (3.10) that

(3.11) ψ(ϑ, ω,H) ≥ ψ(ia, ω,H) ≥ inf
|ω|=1, H sym

ψ(ia, ω,H) = min
|ω|=1, H sym, |H|=1

ψ(ia, ω,H) > 0

if |ω| = 1 and H is symmetric and different from 0. Hence (3.6) follows. Observe that the equality
holds in (3.11) since ψ is a homogenenous function of degree 0 in H.
It remains to prove inequality (3.10), namely that

(3.12) (Hω · ω)2 − 2Hω ·Hω + tr
(
H2
)
≥ 0

if |ω| = 1 and H is symmetric. After diagonalizing H as above, inequality (3.12) reads

(3.13)

n∑
i=1

(ω2
i − 1)2λ2

i + 2
∑

1≤i<j≤n
ω2
i ω

2
jλiλj ≥ 0 ,

if
∑n

i=1 ω
2
i = 1 and λi ∈ R for i = 1, . . . , n. Inequality (3.13) is a consequence of the following

lemma.
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Lemma 3.2 Assume that ηi ∈ R are such that ηi ≥ 0, i = 1, . . . n, and
∑n

i=1 ηi ≤ 1. Then

(3.14)
n∑
i=1

(ηi − 1)2λ2
i + 2

∑
1≤i<j≤n

ηiηjλiλj ≥ 0

for every λi ∈ R, i = 1, . . . n.

Proof. By Sylvester’s criterion, it suffices to show that the determinants of the north-west
minors of the n× n matrix

(3.15)


(η1 − 1)2 η1η2 . . . η1ηn
η2η1 (η2 − 1)2 . . . η2ηn

...
...

. . .
...

ηnη1 ηnη2 . . . (ηn − 1)2

 ,

associated with the quadratic form on the left-hand side of (3.14), are nonnegative for every
ηi ≥ 0, i = 1, . . . , n, with

∑n
i=1 ηi ≤ 1. Since every minor of this kind has the same structure

as the entire matrix, and
∑2

i=1 ηi ≤
∑3

i=1 ηi ≤ . . . ≤
∑n

i=1 ηi ≤ 1, it suffices to prove that just
the determinant of the whole matrix in (3.15) is nonnegative. To this purpose, let us begin by
showing that

det


(η1 − 1)2 η1η2 . . . η1ηn
η2η1 (η2 − 1)2 . . . η2ηn

...
...

. . .
...

ηnη1 ηnη2 . . . (ηn − 1)2


(3.16)

= η2
1(1− 2η2)(1− 2η3)× · · · × (1− 2ηn) + η2

2(1− 2η1)(1− 2η3)× · · · × (1− 2ηn) + · · ·
· · ·+ η2

n(1− 2η1)(1− 2η2)× · · · × (1− 2ηn−1) + (1− 2η1)(1− 2η2)× · · · × (1− 2ηn).

Equation (3.16) can be verified by induction on n. The case when n = 2 is trivial. Assume that
(3.16) holds with n replaced by n− 1. We have that

(3.17) det


(η1 − 1)2 η1η2 . . . η1ηn
η2η1 (η2 − 1)2 . . . η2ηn

...
...

. . .
...

ηnη1 ηnη2 . . . (ηn − 1)2



= det


η2

1 η1η2 . . . η1ηn
η2η1 (η2 − 1)2 . . . η2ηn

...
...

. . .
...

ηnη1 ηnη2 . . . (ηn − 1)2

+ det


(1− 2η1) η1η2 . . . η1ηn

0 (η2 − 1)2 . . . η2ηn
...

...
. . .

...
0 ηnη2 . . . (ηn − 1)2


Our induction assumption tells us that

det


(1− 2η1) η1η2 . . . η1ηn

0 (η2 − 1)2 . . . η2ηn
...

...
. . .

...
0 ηnη2 . . . (ηn − 1)2


(3.18)
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= (1− 2η1) det

(η2 − 1)2 . . . η2ηn
...

. . .
...

ηnη2 . . . (ηn − 1)2


= η2

2(1− 2η1)(1− 2η3)× · · · × (1− 2ηn) + · · ·+ η2
n(1− 2η1)(1− 2η2)× · · · × (1− 2ηn−1)

+ (1− 2η1)(1− 2η2)× · · · × (1− 2ηn).

On the other hand, we claim that

(3.19) det


η2

1 η1η2 . . . η1ηn
η2η1 (η2 − 1)2 . . . η2ηn

...
...

. . .
...

ηnη1 ηnη2 . . . (ηn − 1)2

 = η2
1(1− 2η2)(1− 2η3) · · · (1− 2ηn).

Equation (3.19) can be proved by induction again. If n = 2, this equation can be verified via a
direct computation. Assume now that it holds with n replaced by (n− 1). Then,

det


η2

1 η1η2 η1η3 . . . η1ηn
η2η1 (η2 − 1)2 η2η3 . . . η2ηn
η3η1 η3η2 (η3 − 1)2 . . . η3ηn

...
...

...
. . .

...
ηnη1 ηnη2 ηnη3 . . . (ηn − 1)2

(3.20)

= det


η2

1 η1η2 η1η3 . . . η1ηn
η2η1 η2

2 η2η3 . . . η2ηn
η3η1 η3η2 (η3 − 1)2 . . . η3ηn

...
...

...
. . .

...
ηnη1 ηnη2 ηnη3 . . . (ηn − 1)2



+ det


η2

1 0 η1η3 . . . η1ηn
η2η1 1− 2η2 η2η3 . . . η2ηn
η3η1 0 (η3 − 1)2 . . . η3ηn

...
...

...
. . .

...
ηnη1 0 ηnη3 . . . (ηn − 1)2



= 0 + (1− 2η2) det


η2

1 η1η3 . . . η1ηn
η3η1 (η3 − 1)2 . . . η3ηn

...
...

. . .
...

ηnη1 ηnη3 . . . (ηn − 1)2


= η2

1(1− 2η2)(1− 2η3) · · · (1− 2ηn).

Note that in the last equality we have made use of the induction assumption, and of the fact
that the determinant of a matrix with a couple of linearly dependent columns vanishes. Equation
(3.16) follows from (3.17), (3.18) and (3.19).
With equation (3.16) at disposal, let us define the function φ : Rn → R as

φ(η) = η2
1(1− 2η2)× · · · × (1− 2ηn) + · · ·+ η2

n(1− 2η1)× · · · × (1− 2ηn−1)(3.21)

+ (1− 2η1)(1− 2η2)× · · · × (1− 2ηn)
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for η ∈ Rn, where we have set η = (η1, . . . , ηn). Define

A =
{
η ∈ Rn : ηi ≥ 0, i = 1, . . . , n,

n∑
i=1

ηi ≤ 1
}
.

We have to show that

(3.22) φ(η) ≥ 0 for every η ∈ A .

On performing the products on the right-hand side of (3.21), and rearranging the resulting
terms, one can verify that

φ(η) = η2
1

[
1 + (−2)

∑
i 6=1

ηi + (−2)2
∑
i1<i2
i1,i2 6=1

ηi1ηi2 + · · ·

(3.23)

· · ·+ (−2)k
∑

i1<i2<···<ik
i1,··· ,ik 6=1

ηi1ηi2 · · · ηik + · · ·+ (−2)n−1η2 · · · ηn
]

+ · · ·

...

· · ·+ η2
n

[
1 + (−2)

∑
i 6=n

ηi + (−2)2
∑
i1<i2
i1,i2 6=n

ηi1ηi2 + · · ·

· · ·+ (−2)k
∑

i1<i2<···<ik
i1,··· ,ik 6=n

ηi1ηi2 · · · ηik + · · ·+ (−2)n−1η1 · · · ηn−1

]

+ 1 + (−2)
∑

i=1,··· ,n
ηi + (−2)2

∑
i1<i2

ηi1ηi2 + (−2)3
∑

i1<i2<i3

ηi1ηi2ηi3 + · · ·+ (−2)nη1 · · · ηn .

Let us denote by Sk, for k = 1, . . . , n, the elementary symmetric functions of the n numbers
η1, . . . , ηn. Namely,

Sk =
∑

i1<i2<···<ik

ηi1ηi2 · · · ηik .

Observe that

(1− S1)2 =
(

1−
n∑
i=1

ηi

)2
= 1− 2

n∑
i=1

ηi + 2
∑
i1<i2

ηi1ηi2 +
n∑
i=1

η2
i .(3.24)

Moreover,

S1Sk =
∑

i=1,...n

ηi
∑

i1<···<ik

ηi1ηi2 · · · ηik

(3.25)

= η2
1

∑
i1<i2<···<ik−1
i1,··· ,ik−1 6=1

ηi1ηi2 · · · ηik−1
+ · · · + η2

n

∑
i1<i2<···<ik−1
i1,··· ,ik−1 6=n

ηi1ηi2 · · · ηik−1

+ (k + 1)
∑

i1<i2<···<ik+1

ηi1ηi2 · · · ηik+1
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= η2
1

∑
i1<i2<···<ik−1
i1,··· ,ik−1 6=1

ηi1ηi2 · · · ηik−1
+ . . . + η2

n

∑
i1<i2<···<ik−1
i1,··· ,ik−1 6=n

ηi1ηi2 · · · ηik−1
+ (k + 1)Sk+1

for k = 2, . . . , n− 1, and

S1Sn =

( ∑
i=1,...n

ηi

)
η1 · · · ηn = η2

1η2 · · · ηn + . . . + η2
nη1 · · · ηn−1 .(3.26)

On making use of equations (3.24), (3.25) and (3.26), one can combine the terms on the right-
hand side of equation (3.23) and infer that

φ(η) = (1− S1)

[
1 +

n∑
k=1

(−1)k2k−1Sk
]

+

n∑
k=3

(−1)k−1(k − 2)2k−2Sk.(3.27)

Since S1 =
∑n

i=1 ηi, we have that

(3.28) 1− S1 ≥ 0 for η ∈ A.

The sums on the right-hand side of equation (3.27) can be estimated from below via the inequality

(3.29) Sk+1 ≤
n− k
n(k + 1)

SkS1 ≤
n− k
n(k + 1)

Sk for η ∈ A,

and k = 1, . . . , n− 1. Note that the second inequality in (3.29) holds by (3.28), whereas the first
one follows via an iterated use of Newton’s inequality [HLP, Theorem 51]. We claim that

(3.30) 1 +
n∑
k=1

(−1)k2k−1Sk = 1− S1 +
n∑
k=2

(−1)k2k−1Sk ≥ 0 for η ∈ A.

Indeed, by (3.29),

(3.31) 22h−1S2h − 22hS2h+1 ≥ 0,

if 1 ≤ h ≤ n−1
2 . When n is odd, the sum starting from k = 2 in (3.30) is exhausted by differences

of the form appearing in (3.31). When n is even, this sum contains an additional nonnegative
term. Hence, inequality (3.30) follows. We next observe that

n∑
k=3

(−1)k−1(k − 2)2k−2Sk ≥ 0 for η ∈ A.(3.32)

Actually, inequality (3.29) again ensures that

(2h− 1)22h−1S2h+1 − 2h22hS2h+2 ≥ 0,(3.33)

if 1 ≤ h ≤ n−2
2 . When n is even, the sum in (3.32) is exhausted by differences of the form

appearing in (3.33). When n is odd, this sum contains an additional nonnegative term. Inequality
(3.32) is thus established. Inequality (3.22) follows from (3.27), via (3.28), (3.30) and (3.32). Note
that, in fact,

min
η∈A

φ(η) = 0,

inasmuch as φ(η) = 0 whenever η is a vector all of whose components vanish, but just one, and
the latter equals one. The proof is complete.
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4 Global estimates

This section is devoted to proving Theorems 2.3 and 2.4. As a preliminary, we briefly discuss the
notion of generalized solutions adopted in our results, and recall some of their basic properties.

When the function f appearing on the right-hand side of the equation in problems (2.6) or
(2.7) has a sufficiently high degree of summability to belong to the dual of the Sobolev type
space associated with the function a, weak solutions to the relevant problems are well defined.
In particular, the existence and uniqueness of these solutions can be established via standard
monotonicity methods. We are not going to give details in this connection, since they are not
needed for our purposes, and refer the interested reader to [CiMa3] for an account on this
issue. We rather focus on the case when f merely belongs to Lq(Ω) for any q ≥ 1. A definition
of generalized solution in this case involves the use of spaces that consist of functions whose
truncations are weakly differentiable. Specifically, given any t > 0, let Tt : R → R denote the
function defined as Tt(s) = s if |s| ≤ t, and Tt(s) = t sign(s) if |s| > t. We set

(4.1) T 1,1
loc (Ω) =

{
u is measurable in Ω : Tt(u) ∈W 1,1

loc (Ω) for every t > 0
}
.

The spaces T 1,1(Ω) and T 1,1
0 (Ω) are defined accordingly, on replacing W 1,1

loc (Ω) with W 1,1(Ω)

and W 1,1
0 (Ω), respectively, on the right-hand side of (4.1).

If u ∈ T 1,1
loc (Ω), there exists a (unique) measurable function Zu : Ω→ Rn such that

(4.2) ∇
(
Tt(u)

)
= χ{|u|<t}Zu a.e. in Ω

for every t > 0 – see [BBGGPV, Lemma 2.1]. Here χE denotes the characteristic function of
the set E. As already mentioned in Section 1, with abuse of notation, for every u ∈ T 1,1

loc (Ω) we
denote Zu simply by ∇u.

Assume that f ∈ Lq(Ω) for some q ≥ 1. A function u ∈ T 1,1
0 (Ω) will be called a generalized

solution to the Dirichlet problem (2.6) if a(|∇u|)∇u ∈ L1(Ω),

(4.3)

∫
Ω
a(|∇u|)∇u · ∇ϕdx =

∫
Ω
fϕ dx

for every ϕ ∈ C∞0 (Ω), and there exists a sequence {fk} ⊂ C∞0 (Ω) such that fk → f in Lq(Ω)
and the sequence of weak solutions {uk} to the problems (2.6) with f replaced by fk satisfies

uk → u a.e. in Ω.

In (4.3), ∇u stands for the function Zu fulfilling (4.2).
By [CiMa3], there exists a unique generalized solution u to problem (2.6), and

(4.4) ‖a(|∇u|)∇u‖L1(Ω) ≤ C‖f‖L1(Ω)

for some constant C = C(|Ω|, n, ia, sa). Moreover, if {fk} is any sequence as above, and {uk} is
the associated sequence of weak solutions, then

(4.5) uk → u and ∇uk → ∇u a.e. in Ω,

up to subsequences.

The definition of generalized solutions to the Neumann problem (2.7) can be given analo-
gously. Assume that f ∈ Lq(Ω) for some q ≥ 1, and satisfies (2.8). A function u ∈ T 1,1(Ω) will
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be called a generalized solution to problem (2.7) if a(|∇u|)∇u ∈ L1(Ω), equation (4.3) holds for
every ϕ ∈ C∞(Ω) ∩W 1,∞(Ω), and there exists a sequence {fk} ⊂ C∞0 (Ω), with

∫
Ω fk(x) dx = 0

for k ∈ N, such that fk → f in Lq(Ω) and the sequence of (suitably normalized by additive
constants) weak solutions {uk} to the problems (2.7) with f replaced by fk satisfies

uk → u a.e. in Ω.

Owing to [CiMa3], if Ω is a bounded Lipschitz domain, then there exists a unique (up to addive
constants) generalized solution u to problem (2.7), and

(4.6) ‖a(|∇u|)∇u‖L1(Ω) ≤ C‖f‖L1(Ω)

for some constant C = C(LΩ, dΩ, n, ia, sa). Moreover, {fk} is any sequence as above, and {uk}
is the associated sequence of (normalized) weak solutions, then

(4.7) uk → u and ∇uk → ∇u a.e. in Ω,

up to subsequences.
We conclude our background by recalling the definitions of Marcinkiewicz, and, more gener-

ally, Lorentz spaces that enter in our results. Let (R,m) be a σ-finite non atomic measure space.
Given q ∈ [1,∞], the Marcinkiewicz space Lq,∞(R,m), also called weak Lq(R,m) space, is the
Banach function space endowed with the norm defined as

(4.8) ‖ψ‖Lq,∞(R,m) = sup
s∈(0,m(R))

s
1
qψ∗∗(s)

for a measurable function ψ on R. Here, ψ∗ denotes the decreasing rearrangement of ψ, and
ψ∗∗(s) = ∫ s0 ψ∗(r) dr for s > 0. The space Lq,∞(R,m) is borderline in the family of Lorentz
spaces Lq,σ(R), with q ∈ [1,∞] and σ ∈ [1,∞], that are equipped with the norm given by

(4.9) ‖ψ‖Lq,σ(R) = ‖s
1
q
− 1
σψ∗∗(s)‖Lσ(0,m(R))

for ψ as above. Indeed, one has that

(4.10) Lq,σ1(R) $ Lq,σ2(R) if q ∈ [1,∞] and 1 ≤ σ1 < σ2 ≤ ∞.

Also
Lq,q(R) = Lq(R) for q ∈ (1,∞],

up to equivalent norms. In the limiting case when q = 1, the Marcinkiewicz type space L1,∞ logL(R,m)
comes into play in our results as a replacement for L1,∞(R,m), which agrees with L1(R,m). A
norm in L1,∞ logL(R,m) is defined as

(4.11) ‖ψ‖L1,∞ logL(R,m) = sup
s∈(0,m(R))

s log
(
1 + C

s

)
ψ∗∗(s),

for any constant C > m(R). Different constants C result in equivalent norms in (4.11).

Proof of Theorem 2.4. We begin with a proof in the case when u is the generalized solution
to the Dirichlet problem (2.6). The needed variants for the solution to the Neumann problem
(2.7) are indicated at the end.
The proof is split in steps. In Step 1 we establish the result under some additional regularity
assumptions on a, Ω and f . The remaining steps are devoted to removing the extra assumptions,
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by approximation.
Step 1. Here, we assume that the following extra conditions are in force:

(4.12) f ∈ C∞0 (Ω);

(4.13) ∂Ω ∈ C∞;

(4.14) a : [0,∞)→ [0,∞) and c1 ≤ a(t) ≤ c2 for t ≥ 0,

for some constants c2 > c1 > 0; the function A : Rn → [0,∞), defined as A(η) = a(|η|) for
η ∈ Rn, is such that

(4.15) A ∈ C∞(Rn).

Standard regularity results then ensure that the solution u to problem (2.6) is classical, and
u ∈ C∞(Ω) (see e.g. [CiMa1, Proof of Theorem 1.1] for details). Let ξ ∈ C∞0 (Rn). Squaring both
sides of the equation in (2.6), multiplying through the resulting equation by ξ2, integrating both
sides over Ω, and making use of inequality (3.1) yield∫

Ω
ξ2f2 dx =

∫
Ω
ξ2
(
div(a(|∇u|)∇u)

)2
dx(4.16)

≥
∫

Ω
ξ2

[ n∑
j=1

(
a(|∇u|)2uxj∆u

)
xj
−

n∑
i=1

(
a(|∇u|)2

n∑
j=1

uxjuxixj

)
xi

]
dx

+ C

∫
Ω
ξ2a(|∇u|)2|∇2u|2 dx

for some constant C = C(n, ia). Now, [Gr, Equation (3,1,1,2)] tells us that

(4.17) ∆u
∂u

∂ν
−

n∑
i,j=1

uxixjuxiνj

= divT

(
∂u

∂ν
∇Tu

)
− trB

(
∂u

∂ν

)2

− B(∇T u,∇T u)− 2∇T u · ∇T
∂u

∂ν
on ∂Ω,

where B is the second fundamental form on ∂Ω, trB is its trace, divT and ∇T denote the
divergence and the gradient operator on ∂Ω, respectively, and νj stands for the j-th component
of ν. From the divergence theorem and equation (4.17) we deduce that∫

Ω
ξ2
[ n∑
j=1

(
a(|∇u|)2uxj∆u

)
xj
−

n∑
i=1

(
a(|∇u|)2

n∑
j=1

uxjuxixj
)
xi

]
dx(4.18)

=

∫
∂Ω
ξ2a(|∇u|)2

[
∆u

∂u

∂ν
−

n∑
i,j=1

uxixjuxiνj

]
dHn−1(x)

− 2

∫
Ω
a(|∇u|)2ξ∇ξ ·

[
∆u∇u−

n∑
j=1

uxj∇uxj
]
dx

=

∫
∂Ω
ξ2a(|∇u|)2

[
divT

(
∂u

∂ν
∇Tu

)
− trB

(
∂u

∂ν

)2



16

− B(∇T u,∇T u)− 2∇T u · ∇T
∂u

∂ν

]
dHn−1(x)

− 2

∫
Ω
a(|∇u|)2ξ∇ξ ·

[
∆u∇u−

n∑
j=1

uxj∇uxj
]
dx .

By Young’s inequality, there exists a constant C = C(n) such that

2

∣∣∣∣ ∫
Ω
a(|∇u|)2ξ∇ξ ·

[
∆u∇u−

n∑
j=1

uxj∇uxj
]
dx

∣∣∣∣(4.19)

≤ εC
∫

Ω
ξ2a(|∇u|)2|∇2u|2 dx+

C

ε

∫
Ω
|∇ξ|2a(|∇u|)2|∇u|2 dx

for every ε > 0. Equations (4.16), (4.18) and (4.19) ensure that there exist constants C = C(n, ia)
and C ′ = C ′(n, ia) such that

C(1− ε)
∫

Ω
ξ2a(|∇u|)2|∇2u|2 dx ≤

∫
Ω
ξ2f2 dx+

C ′

ε

∫
Ω
|∇ξ|2a(|∇u|)2|∇u|2 dx(4.20)

+

∣∣∣∣ ∫
∂Ω
ξ2a(|∇u|)2

[
divT

(
∂u

∂ν
∇Tu

)
− trB

(
∂u

∂ν

)2

− B(∇T u,∇T u)− 2∇T u · ∇T
∂u

∂ν

]
dHn−1(x)

∣∣∣∣ .
On the other hand, owing to the Dirichlet boundary condition, ∇Tu = 0 on ∂Ω, and hence∣∣∣∣ ∫

∂Ω
ξ2a(|∇u|)2

[
divT

(
∂u

∂ν
∇Tu

)
− trB

(
∂u

∂ν

)2

(4.21)

− B(∇T u,∇T u)− 2∇T u · ∇T
∂u

∂ν

]
dHn−1(x)

∣∣∣∣
=

∣∣∣∣− ∫
∂Ω
ξ2a(|∇u|)2trB

(
∂u

∂ν

)2

dHn−1(x)

∣∣∣∣
≤ C

∫
∂Ω
ξ2a(|∇u|)2|∇u|2|B| dHn−1(x) ,

for some constant C = C(n). Here, |B| denotes the norm of B. Next, assume that

(4.22) ξ ∈ C∞0 (Br(x))

for some x ∈ Ω and r > 0.
First, suppose that x ∈ ∂Ω. Let us distinguish the cases when n ≥ 3 or n = 2. When n ≥ 3, set

(4.23) Q(r) = sup
x∈∂Ω

sup
E⊂∂Ω∩Br(x)

∫
E |B| dH

n−1(y)

cap(E)
for r > 0,

where cap(E) stands for the capacity of the set E given by

(4.24) cap(E) = inf

{∫
Rn
|∇v|2 dy : v ∈ C1

0 (Rn), v ≥ 1 on E

}
.
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A weighted trace inequality on half-balls [Maz1, Maz2] (see also [Maz6, Section 2.5.2]), combined
with a local flattening argument for Ω on a half-space, and with an even-extension argument
from a half-space into Rn, ensures that there exists a constant C = C(LΩ, dΩ, n) such that

(4.25)

∫
∂Ω∩Br(x)

v2 |B| dHn−1(y) ≤ CQ(r)

∫
Ω∩Br(x)

|∇v|2 dy

for every x ∈ ∂Ω, r > 0 and v ∈ C1
0 (Br(x)). Furthermore, a standard trace inequality tells us

that that there exists a constant C = C(LΩ, dΩ, n) such that

(4.26)

(∫
∂Ω∩Br(x)

|v|
2(n−1)
n−2 dHn−1(y)

)n−2
n−1

≤ C
∫

Ω∩Br(x)
|∇v|2 dy

for every x ∈ ∂Ω, r > 0 and v ∈ C1
0 (Br(x)). By definition (4.24), choosing trial functions v in

(4.26) such that v ≥ 1 on E implies that

(4.27) Hn−1(E)
n−2
n−1 ≤ C cap(E)

for every set E ⊂ ∂Ω. By a basic property of the decreasing rearrangement (with respect to
Hn−1) [BeSh, Chapter 2, Lemma 2.1], and (4.27),

Q(r) ≤ sup
x∈∂Ω

sup
E⊂∂Ω∩Br(x)

∫Hn−1(E)
0 (|B||∂Ω∩Br(x))

∗(r) dr

cap(E)
(4.28)

≤ C sup
x∈∂Ω

sup
s>0

∫ s
0 (|B||∂Ω∩Br(x))

∗(r) dr

s
n−2
n−1

= C sup
x∈∂Ω

‖B‖Ln−1,∞(∂Ω∩Br(x))

for some constant C = C(LΩ, dΩ, n), for every x ∈ ∂Ω and r > 0. An application of inequality
(4.25) with v = ξ a(|∇u|)uxi , for i = 1, . . . n, yields, via (4.28),

(4.29)

∫
∂Ω
ξ2 a(|∇u|)2|∇u|2|B| dHn−1(x)

≤ C sup
x∈∂Ω

‖B‖Ln−1,∞(∂Ω∩Br(x))

(∫
Ω
ξ2a(|∇u|)2|∇2u|2 dx+

∫
Ω
|∇ξ|2a(|∇u|)2|∇u|2 dx

)
for some constant C = C(LΩ, dΩ, n, sa). Note that here we have made use of the second inequality
in (2.2) to infer that

(4.30) |∇(a(|∇u|)uxi)| ≤ C a(|∇u|)|∇2u| in Ω,

for i = 1, . . . , n, and for some constant C = C(n, sa). Combining equations (4.20) and (4.29)
tells us that

(4.31)
[
C1(1− ε)− C2 sup

x∈∂Ω
‖B‖Ln−1,∞(∂Ω∩Br(x)

] ∫
Ω
ξ2a(|∇u|)2|∇2u|2 dx

≤
∫

Ω
ξ2f2 dx+

[
C2 sup

x∈∂Ω
‖B‖Ln−1,∞(∂Ω∩Br(x) +

C3

ε

] ∫
Ω
|∇ξ|2a(|∇u|)2|∇u|2 dx

for some constants C1 = C1(n, ia), C2 = C2(LΩ, dΩ, n, sa) and C3 = C3(n). If condition (2.11)
is fulfilled with c = C1

C2
, then there exists r0 > 0 such that

C1(1− ε)− C2 sup
x∈∂Ω

‖B‖Ln−1,∞(∂Ω∩Br(x) > 0
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if 0 < r ≤ r0 and ε is sufficiently small. Therefore, by inequality (4.31),∫
Ω
ξ2a(|∇u|)2|∇2u|2 dx ≤ C

∫
Ω
ξ2f2 dx+ C

∫
Ω
|∇ξ|2a(|∇u|)2|∇u|2 dx(4.32)

for some constant C = C(LΩ, dΩ, n, ia, sa), if 0 < r ≤ r0 in (4.22).
In the case when n = 2, define

(4.33) Q1(r) = sup
x∈∂Ω

sup
E⊂∂Ω∩Br(x)

∫
E |B| dH

1(y)

capB1(x)(E)
for r ∈ (0, 1),

where capB1(x)(E) stands for the capacity of the set E given by

(4.34) capB1(x)(E) = inf

{∫
B1(x)

|∇v|2 dy : v ∈ C1
0 (B1(x)), v ≥ 1 on E

}
.

A counterpart of inequality (4.25) reads

(4.35)

∫
∂Ω∩Br(x)

v2 |B| dH1(y) ≤ CQ1(r)

∫
Ω∩Br(x)

|∇v|2 dy

for every x ∈ ∂Ω, r ∈ (0, 1) and v ∈ C1
0 (Br(x)), where C = C(LΩ, dΩ).

A borderline version of the trace inequality – see e.g. [AdHe, Section 7.6.4] – ensures that there
exists a constant C = C(LΩ, dΩ, n) such that

(4.36) sup
E⊂∂Ω∩B1(x)

(
1

H1(E)

∫
E v dH

1(y)
)2

log
(
1 + H1(∂Ω∩B1(x))

H1(E)

) ≤ C ∫
Ω∩B1(x)

|∇v|2 dy

for every x ∈ ∂Ω, and v ∈ C1
0 (B1(x)). Notice that the left-hand side of (4.36) is equivalent to the

norm in an Orlicz space associated with the Young function et
2−1. The choice of trial functions

v in (4.36) such that v ≥ 1 on E yields, via definition (4.34),

(4.37)
1

log
(
1 + C

H1(E)

) ≤ CcapB1(x)(E) ,

for some constant C = C(LΩ, dΩ), and for every set E ⊂ ∂Ω ∩ B1(x). Thanks to (4.37) and to
the Hardy-Littlewood inequality again,

Q1(r) ≤ sup
x∈∂Ω

sup
E⊂∂Ω∩Br(x)

∫H1(E)
0 (|B||∂Ω∩Br(x))

∗(r) dr

capB1(x)(E)
(4.38)

≤ C sup
x∈∂Ω

sup
s∈(0,H1(∂Ω∩Br(x)))

log
(

1 +
C

s

)∫ s

0
(|B||∂Ω∩Br(x))

∗(r) dr

= C sup
x∈∂Ω

‖B‖L1,∞ logL(∂Ω∩Br(x))

for some constant C = C(LΩ, dΩ), and for r ∈ (0, 1). On exploiting (4.38) instead of (4.28), and
arguing as in the case when n ≥ 3, yield (4.32) also for n = 2.
When Br(x) ⊂⊂ Ω, the derivation of (4.32) is even simpler, and follows directly from (4.16),
(4.18) and (4.19), since the boundary integral on the rightmost side of (4.18) vanishes in this
case.
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Now, let {Brk}k∈K be a finite covering of Ω by balls Brk , with rk ≤ r0, such that either Brk
is centered on ∂Ω, or Brk ⊂⊂ Ω. Note that this covering can be chosen in such a way that
the multiplicity of overlapping of the balls Brk only depends on n. Let {ξk}k∈K be a family
of functions such that ξk ∈ C∞0 (Brk) and {ξ2

k}k∈K is a partition of unity associated with the
covering {Brk}k∈K . Thus

∑
k∈K ξ

2
k = 1 in Ω. On applying inequality (4.32) with ξ = ξk for each

k, and adding the resulting inequalities one obtains that∫
Ω
a(|∇u|)2|∇2u|2 dx ≤ C

∫
Ω
f2 dx+ C

∫
Ω
a(|∇u|)2|∇u|2 dx(4.39)

for some constant C = C(LΩ, dΩ, n, ia, sa).
A version of the Sobolev inequalty entails that, for every σ > 0, there exists a constant C =
C(LΩ, dΩ, n, σ) such that ∫

Ω
v2 dx ≤ σ

∫
Ω
|∇v|2 dx+ C

(∫
Ω
|v| dx

)2

(4.40)

for every v ∈ W 1,2(Ω) (see e.g. [Maz6, Proof of Theorem 1.4.6/1]). Applying inequality (4.40)
with v = a(|∇u|)uxi , i = 1, . . . , n, an recalling (4.30) tell us that∫

Ω
a(|∇u|)2|∇u|2 dx ≤ σC1

∫
Ω
a(|∇u|)2|∇2u|2 dx+ C2

(∫
Ω
a(|∇u|)|∇u| dx

)2

(4.41)

for some constant C1 = C1(n, sa) and C2 = C2(LΩ, dΩ, n, sa, σ). On choosing σ = 1
2CC1

, where
C is the constant appearing in (4.39), and combining inequalities (4.39), (4.41) and (4.4) we
conclude that ∫

Ω
a(|∇u|)2|∇2u|2 dx ≤ C

∫
Ω
f2 dx(4.42)

for some constant C = C(LΩ, dΩ, n, ia, sa). Inequalities (4.41), (4.42) and (4.4) imply, via (4.30),
that

(4.43) ‖a(|∇u|)∇u‖W 1,2(Ω) ≤ C‖f‖L2(Ω)

for some constant C = C(LΩ, dΩ, n, ia, sa). In particular, the dependence of the constant C in
(4.43) is in fact just through an upper bound for the quantities LΩ, dΩ, sa, and through a lower
bound for ia. This is crucial in view of the next steps.

Step 2. Here we remove assumptions (4.14) and (4.15). To this purpose, we make use of a family
of functions {aε}ε∈(0,1), with aε : [0,∞)→ (0,∞), satisfying the following properties:

(4.44) aε : [0,∞)→ [0,∞) and ε ≤ aε(t) ≤ ε−1 for t ≥ 0;

(4.45) min{ia, 0} ≤ iaε ≤ saε ≤ max{sa, 0};

(4.46) lim
ε→0

aε(|ξ|)ξ = a(|ξ|)ξ uniformly in {ξ ∈ Rn : |ξ| ≤M} for every M > 0;

the function Aε : Rn → [0,∞), defined as Aε(η) = aε(|η|) for η ∈ Rn, is such that

(4.47) Aε ∈ C∞(Rn).
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The construction of a family of functions enjoying these properties can be accomplished on
combining [CiMa1, Lemma 3.3] and [CiMa2, Lemma 4.5]. Now, let uε be the solution to the
problem

(4.48)

{
−div(aε(|∇uε|)∇uε) = f(x) in Ω

uε = 0 on ∂Ω .

Owing to (4.44) and (4.47), the assumptions of Step 1 are fulfilled by problem (4.48). Thus, as
a consequence of (4.43), there exists a constant C = C(LΩ, dΩ, n, ia, sa) such that

(4.49) ‖aε(|∇uε|)∇uε‖W 1,2(Ω) ≤ C‖f‖L2(Ω)

for ε ∈ (0, 1). Observe that the constant C in (4.49) is actually independent of ε, thanks to (4.45).
By (4.49), there exists a sequence {εk} and a function U : Ω→ Rn such that U ∈W 1,2(Ω),

(4.50) aεk(|∇uεk |)∇uεk → U in L2(Ω) and aεk(|∇uεk |)∇uεk ⇀ U in W 1,2(Ω),

where the arrow “ ⇀ ” stands for weak convergence. On the other hand, a global estimate for
‖uεk‖L∞(Ω) following from a result of [Ta], coupled with a local gradient estimate of [Li, Theorem

1.7] ensures that uεk ∈ C
1,α
loc (Ω), and that for any open set Ω′ ⊂⊂ Ω there exists a constant C

such that

‖uεk‖C1,α(Ω′) ≤ C(4.51)

for k ∈ N. Thus, there exists a function v ∈ C1(Ω) such that, on taking, if necessary, a subse-
quence,

(4.52) uεk → v and ∇uεk → ∇v pointwise in Ω.

In particular,

(4.53) a(|∇v|)∇v = U,

and hence

(4.54) a(|∇u|)∇u ∈W 1,2(Ω) .

Testing the equation in (4.48) with any function ϕ ∈ C∞0 (Ω) yields

(4.55)

∫
Ω
aεk(|∇uεk |)∇uεk · ∇ϕdx =

∫
Ω
f ϕ dx .

Owing to (4.50) and (4.53), on passing to the limit in (4.55) as k →∞ one deduces that

(4.56)

∫
Ω
a(|∇v|)∇v · ∇ϕdx =

∫
Ω
f ϕ dx .

Thus v = u, the weak solution to problem (2.6). Furthermore, by (4.49), we obtain via (4.50)
and (4.53) that

(4.57) ‖a(|∇u|)∇u‖W 1,2(Ω) ≤ C‖f‖L2(Ω)

for some constant C = C(LΩ, dΩ, n, ia, sa).
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Step 3. Here, we remove assumption (4.13). Via smooth approximation of the functions which
locally describe ∂Ω, one can construct a sequence {Ωm} of open sets in Rn such that ∂Ωm ∈ C∞,
Ω ⊂ Ωm, limm→∞ |Ωm \ Ω| = 0, and the Hausdorff distance between Ωm and Ω tends to 0 as
m→∞. Also, there exists a constant C = C(Ω) such that

(4.58) LΩm ≤ CLΩ and dΩm ≤ CdΩ

for m ∈ N. Moreover, although smooth functions are neither dense in W 2Ln−1,∞ if n ≥ 3, nor
in W 2L1,∞ logL if n = 2, one has that

sup
x∈∂Ω

‖Bm‖Ln−1,∞(∂Ωm∩Br(x)) ≤ C sup
x∈∂Ω

‖B‖Ln−1,∞(∂Ω∩Br(x)) if n ≥ 3,

or
sup
x∈∂Ω

‖Bm‖L1,∞ logL(∂Ωm∩Br(x)) ≤ C sup
x∈∂Ω

‖B‖L1,∞ logL(∂Ω∩Br(x)) if n = 2,

for some constant C = C(Ω), where Bm denotes the second fundamental form on ∂Ωm.
Let um be the weak solution to the Dirichlet problem

(4.59)

{
−div(a(|∇um|)∇um) = f(x) in Ωm

um = 0 on ∂Ωm ,

where f still fulfils (4.12), and is extended by 0 outside Ω. By inequality (4.57) of Step 2,

(4.60) ‖a(|∇um|)∇um‖W 1,2(Ωm) ≤ C‖f‖L2(Ωm) = C‖f‖L2(Ω),

the constant C being independent of m, by the properties of Ωm mentioned above.
Thanks to (4.60), the sequence {a(|∇um|)∇um} is bounded in W 1,2(Ω), and hence there exists
a subsequence, still denoted by {um} and a function U : Ω→ Rn such that U ∈W 1,2(Ω),

(4.61) a(|∇um|)∇um → U in L2(Ω) and a(|∇um|)∇um ⇀ U in W 1,2(Ω).

By the local gradient estimate recalled in Step 2, there exists α ∈ (0, 1) such that um ∈ C1,α
loc (Ω),

and for every open set Ω′ ⊂⊂ Ω there exists a constant C, independent of m, such that

‖um‖C1,α(Ω′) ≤ C .(4.62)

Thus, on taking, if necessary, a further subsequence,

(4.63) um → v and ∇um → ∇v pointwise in Ω,

for some function v ∈ C1(Ω). In particular,

(4.64) a(|∇um|)∇um → a(|∇v|)∇v pointwise in Ω.

By (4.64) and (4.61),

(4.65) a(|∇v|)∇v = U ∈W 1,2(Ω) .

Given any function ϕ ∈ C∞0 (Ω), on passing to the limit as m → ∞ in the weak formulation of
problem (4.59), namely in the equation

(4.66)

∫
Ωm

a(|∇um|)∇um · ∇ϕdx =

∫
Ωm

f ϕ dx ,
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we infer from (4.61) and (4.65) that∫
Ω
a(|∇v|)∇v · ∇ϕdx =

∫
Ω
f ϕ dx .

Therefore, u = v, the weak solution to problem (2.6). Furthermore, owing to (4.60), (4.61) and
(4.30),

(4.67) ‖a(|∇u|)∇u‖W 1,2(Ω) ≤ C‖f‖L2(Ω)

for some constant C = C(LΩ, dΩ, n, ia, sa).

Step 4. We conclude by removing the remaining additional assumption (4.12). Let f ∈ L2(Ω).
Owing to (4.5), given any sequence {fk} ⊂ C∞0 (Ω) such that fk → f in L2(Ω), the sequence
{uk} of the weak solutions to the Dirichlet problems

(4.68)

{
−div(a(|∇uk|)∇uk) = fk in Ω

uk = 0 on ∂Ω ,

fullfils

(4.69) uk → u and ∇uk → ∇u a.e. in Ω.

By inequality (4.67) of the previous step, we have that a(|∇uk|)∇uk ∈W 1,2(Ω), and there exist
constants C1 and C2, independent of k, such that

‖a(|∇uk|)∇uk‖W 1,2(Ω) ≤ C1‖fk‖L2(Ω) ≤ C2‖f‖L2(Ω) .(4.70)

Hence, the sequence {a(|∇uk|)∇uk} is uniformly bounded in W 1,2(Ω), and there exists a subse-
quence, still indexed by k, and a function U : Ω→ Rn such that U ∈W 1,2(Ω) and

(4.71) ak(|∇uk|)∇uk → U in L2(Ω) and ak(|∇uk|)∇uk ⇀ U in W 1,2(Ω).

From (4.69) we thus infer that a(|∇u|)∇u = U ∈ W 1,2(Ω), and the second inequality in (2.14)
follows via (4.70) and (4.71). The first inequality is easily verified, via (4.30). The statement
concerning the solution to the Dirichlet problem (2.6) is thus fully proved.

We point out hereafter the changes required for the solution to the Neumann problem (2.7).
Step 1. The additional assumption (2.8) has to be coupled with (4.12). Moreover, since ∂u

∂ν = 0
on ∂Ω, the middle term in the chain (4.21) is replaced with∣∣∣∣− ∫

∂Ω
ξ2a(|∇u|)2B(∇T u,∇T u) dHn−1(x)

∣∣∣∣ .
Step 2. The Dirichlet boundary condition in problem (4.48) must, of course, be replaced with
the Neumann condition ∂uε

∂ν = 0. The solution of the resulting Neumann problem is only unique
up to additive constants. A bound of the form ‖uεk − ck‖L∞(Ω) ≤ C now holds for a suitable
sequence {ck} with ck ∈ R [Ci1]. Hence, uεk has to be replaced with uεk − ck in equations (4.51)
and (4.52). Moreover, the test functions ϕ in equation (4.55) now belong to W 1,∞(Ω).

Step 3. The Dirichlet problem (4.59) has to be replaced with the Neumann problem with bound-
ary condition ∂um

∂ν = 0. Accordingly, the corresponding sequence of solutions {um} has to be
normalized by a suitable sequence of additive constants.
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Passage to the limit as m → ∞ in equation (4.66) can be justified as follows. Extend any test
function ϕ ∈ W 1,∞(Ω) to a function in W 1,∞(Rn), still denoted by ϕ. The left-hand side of
equation (4.66) can be split as

(4.72)

∫
Ωm

a(|∇um|)∇um · ∇ϕdx =

∫
Ω
a(|∇um|)∇um · ∇ϕdx+

∫
Ωm\Ω

a(|∇um|)∇um · ∇ϕdx .

The first integral on the right-hand side of (4.72) converges to∫
Ω
a(|∇v|)∇v · ∇ϕdx

as m → ∞, owing to (4.61) and (4.65). The second integral tends to 0, by (4.60) and the fact
that |Ωm \ Ω| → 0.

Step 4. The sequence of approximating functions {fk} has to fulfill the additional compatibility
condition ∫Ω fk(x) dx = 0 for k ∈ N. Moreover, the Dirichlet boundary condition in problem
(4.68) has to be replaced with the Neumann condition ∂uk

∂ν = 0 on ∂Ω.

Proof of Theorem 2.3. The proof parallels (and is even simpler than) that of Theorem 2.4.
We limit oureselves to pointing out the variants and simplifications needed.
Step 1. Assume that Ω, a and f are as in Step 1 of the proof of Theorem 2.4 and that, in
addition, Ω is convex. One can proceed as in that proof, and exploit the fact that the right-hand
side of equation (4.17) is nonnegative owing to the convexity of Ω, since it reduces to either

−trB
(
∂u

∂ν

)2

≥ 0 or − B(∇T u,∇T u) ≥ 0 on ∂Ω ,

according to whether u is the solution to the Dirichlet problem (2.6), or to the Neumann problem
(2.7). Therefore, inequality (4.20) can be replaced with the stronger inequality

C(1− ε)
∫

Ω
ξ2a(|∇u|)2|∇2u|2 dx ≤

∫
Ω
ξ2f2 dx+

C ′

ε

∫
Ω
|∇ξ|2a(|∇u|)2|∇u|2 dx .(4.73)

Starting from this inequality, instead of (4.20), estimate (4.65) follows analogously.

Step 2. The proof is the same as that of Theorem 2.4.

Step 3. The proof is analogous to that of Theorem 2.4, save that the approximating domains
Ωm have to be chosen in such a way that they are convex.

Step 4. The proof is the same as that of Theorem 2.4.

5 Local estimates

Here, we provide a proof of Theorem 2.1. The generalized local solutions to equation (2.1)
considered in the statement can be defined as follows.

Assume that f ∈ Lqloc(Ω) for some q ≥ 1. A function u ∈ T 1,1
loc (Ω) is called a generalized local

solution to equation (2.1) if a(|∇u|)∇u ∈ L1
loc(Ω), equation (4.3) holds for every ϕ ∈ C∞0 (Ω),

and there exists a sequence {fk} ⊂ C∞0 (Ω) and a correpsonding sequence of local weak solutions
{uk} to equation (2.1), with f replaced by fk, such that fk → f in Lq(Ω′),

(5.1) uk → u and ∇uk → ∇u a.e. in Ω,
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and

(5.2) lim
k→∞

∫
Ω′
a(|∇uk|)|∇uk| dx =

∫
Ω′
a(|∇u|)|∇u| dx

for every open set Ω′ ⊂⊂ Ω.
Note that, by the results from [CiMa3] recalled at the beginning of Section 4, the generalized

solutions to the boundary value problems (2.6) and (2.7) are, in particular, generalized local
solutions to equation (2.1).

Proof of Theorem 2.1. This proof follows the outline of that of Theorem 2.4. Some variants
are however required, due to the local nature of the result. Of course, the step concerning the
approximation of Ω by domains with a smooth boundary is not needed at all.

Step 1. Assume the additional conditions (4.12) on f , and (4.14) – (4.15) on a, and let u be
a local weak solution to equation (2.1). Thanks to the current assumption on a and f , the
function u is in fact a classical smooth solution. Let B2R be any ball such that B2R ⊂⊂ Ω,
and let R ≤ σ < τ ≤ 2R. An application of inequality (4.20), with ε = 1

2 and any function
ξ ∈ C∞0 (Bτ ) such that ξ = 1 in Bσ and |∇ξ| ≤ C/(τ − σ) for some constant C = C(n), tells us
that ∫

Bσ

a(|∇u|)2|∇2u|2 dx ≤ C
∫
B2R

f2 dx+
C

(τ − σ)2

∫
Bτ\Bσ

a(|∇u|)2|∇u|2 dx(5.3)

for some constant C = C(n, ia, sa). We claim that there exists a constant C = C(n) such that

(5.4)

∫
Bτ\Bσ

v2 dx ≤ δ2

(τ − σ)2

∫
Bτ\Bσ

|∇v|2 dx+
C(τ − σ)Rn−1

δn

(∫
Bτ\Bσ

|v| dx
)2

for every δ > 0 and every v ∈W 1,2(Bτ \Bσ), provided that R, τ and σ are as above. This claim
can be verified as follows. Denote by Qr a cube of sidelength r > 0. The inequality

(5.5)

∫
Q1

v2 dx ≤ C1

∫
Q1

|∇v|2 dx+ C2

(∫
Q1

|v| dx
)2

holds for every v ∈ W 1,2(Q1), for suitable constants C1 = C1(n) and C2(n). Given ε > 0, a
scaling argument tells us that a parallel inequality holds in Qε, with C1 replaced with C1ε

2

and C2 replaced with C2ε
−n. A covering argument for Q1 by cubes of sidelength ε then yields

inequality (5.5) with C1 and C2 replaced by C1ε
2 and C2ε

−n, respectively. Another scaling
argument, applied to the resulting inequality in Q1, provides us with the inequality

(5.6)

∫
Qδ

v2 dx ≤ C1(εδ)2

∫
Qδ

|∇v|2 dx+ C2(εδ)−n
(∫

Qδ

|v| dx
)2

for every v ∈ W 1,2(Qδ). Via a covering argument for B2 \ B1 by (quasi)-cubes of suitable
sidelength δ, one infers from (5.6) that

(5.7)

∫
B2\B1

v2 dx ≤ Cε2

∫
B2\B1

|∇v|2 dx+ Cε−n
(∫

B2\B1

|v| dx
)2

for a suitable constant C = C(n). Inequality (5.4) can be derived from (5.7) on mapping B2 \B1

into Bτ \Bσ via the bijective map Φ : B2 \B1 → Bτ \Bσ defined as

Φ(x) =
x

|x|
[
σ + (|x| − 1)(τ − σ)

]
for x ∈ B2 \B1,



25

and making use of the fact that

c1(τ − σ)Rn−1 ≤ |det(∇Φ(x))| ≤ c2(τ − σ)Rn−1 for x ∈ B2 \B1

and
|∇(Φ−1)(y)| ≥ c1(τ − σ) for y ∈ Bτ \Bσ,

for suitable positive constants c1 = c1(n) and c2 = c2(n).
Choosing δ = (τ − σ)2 in inequality (5.4), and applying the resulting inequality with v =
a(|∇u|)uxi , for i = 1 . . . , n yields

(5.8)
1

(τ − σ)2

∫
Bτ\Bσ

a(|∇u|)2|∇u|2 dx

≤ C
∫
Bτ\Bσ

a(|∇u|)2|∇2u|2 dx+
CRn−1

(τ − σ)2n−1

(∫
Bτ\Bσ

a(|∇u|)|∇u| dx
)2

for some constant C = C(n, sa). Observe that in (5.8) we have also made use of equation (4.30).
Inequalities (5.3) and (5.8) imply that∫

Bσ

a(|∇u|)2|∇2u|2 dx ≤ C
∫
Bτ\Bσ

a(|∇u|)2|∇2u|2 dx(5.9)

+ C

∫
B2R

f2 dx+
CRn−1

(τ − σ)2n−1

(∫
B2R

a(|∇u|)|∇u| dx
)2

for some constant C = C(n, ia, sa). Adding the quantity C
∫
Bσ
a(|∇u|)2|∇2u|2 dx to both sides

of inequality (5.9), and dividing through the resulting inequality by (1 +C) enable us to deduce
that ∫

Bσ

a(|∇u|)2|∇2u|2 dx ≤ C

1 + C

∫
Bτ

a(|∇u|)2|∇2u|2 dx(5.10)

+ C ′
∫
B2R

f2 dx+
C ′Rn−1

(τ − σ)2n−1

(∫
B2R

a(|∇u|)|∇u| dx
)2

for positive constants C = C(n, ia, sa) and C ′ = C ′(n, ia, sa). Inequality (5.10), via a standard
iteration argument (see e.g. [Gi, Lemma 3.1, Chapter 5]), entails that∫

BR

a(|∇u|)2|∇2u|2 dx ≤ C
∫
B2R

f2 dx+
C

Rn

(∫
B2R

a(|∇u|)|∇u| dx
)2

(5.11)

for some constant C = C(n, ia, sa). On the other hand, a scaling argument applied to the Sobolev
inequality (4.40), with Ω = B1 and σ = 1, tells us that there exists a constant C = C(n, sa)
such that ∫

BR

a(|∇u|)2|∇u|2 dx ≤
∫
BR

a(|∇u|)2|∇2u|2 dx+
C

Rn

(∫
BR

a(|∇u|)|∇u| dx
)2

.(5.12)

Coupling inequality (5.11) with (5.12) yields

‖a(|∇u|)∇u‖W 1,2(BR) ≤ C
(
‖f‖L2(B2R) +R−

n
2 ‖a(|∇u|)∇u‖L1(B2R)

)
(5.13)

for some constant C = C(n, ia, sa).
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Step 2. Assume that u is a local solution to equation (2.1), with a as in the statement, and f
still fulfilling (4.12). One has that u ∈ L∞loc(Ω). This follows from [Ko, Theorem 5.1], or from

gradient regularity results of [Ba] or [DKS]. As a consequence, by [Li, Theorem 1.7], u ∈ C1,α
loc (Ω)

for some α ∈ (0, 1). Next, consider a family of functions {aε}ε∈(0,1) satisfying properties (4.44)
– (4.47). Denote by uε the solution to the problem

(5.14)

{
−div(aε(|∇uε|)∇uε) = f(x) in B2R

uε = u on ∂B2R .

Since u ∈ C1,α(B2R), by [Li, Theorem 1.7 and subsequent remarks]

(5.15) ‖uε‖C1,β(B2R) ≤ C

for some constant independent of ε. Hence, in particular,

(5.16) ‖a(|∇uε|)∇uε‖L1(B2R) ≤ C

for some constant independent of ε. The functions aε satisfy the assumptions imposed on a in
Step 1. Thus, by inequality (5.13),

‖aε(|∇uε|)∇uε‖W 1,2(BR) ≤ C
(
‖f‖B2R

+R−
n
2 ‖aε(|∇uε|)∇uε‖L1(B2R)

)
,(5.17)

where, owing to (4.45), the constant C = C(n, ia, sa), and, in particular, is indepedent of ε.
Inequalities (5.16) and (5.17) ensure that the sequence {aε(|∇uε|)∇uε} is bounded in W 1,2(BR),
and hence there exists a function U : BR → Rn, with U ∈W 1,2(BR), and a sequence {εk} such
that

(5.18) aεk(|∇uεk |)∇uεk → U in L2(BR) and aεk(|∇uεk |)∇uεk ⇀ U in W 1,2(BR).

Moreover, by (5.15), there exists a function v ∈ C1(B2R) such that, up to subsequences,

(5.19) uεk → v and ∇uεk → ∇v

pointwise in B2R. In particular,

(5.20) v = u on ∂B2R,

inasmuch as uεk = u on ∂B2R for every k ∈ R. Thanks to (5.18) and (5.19),

(5.21) a(|∇v|)∇v = U ∈W 1,2(BR).

The weak formulation of problem (5.14) amounts to

(5.22)

∫
B2R

aεk(|∇uεk |)∇uεk · ∇ϕdx =

∫
B2R

f ϕ dx

for every ϕ ∈ C∞0 (B2R). By (5.18) and (5.21), passing to the limit in (5.22) as k →∞ results in

(5.23)

∫
B2R

a(|∇v|)∇v · ∇ϕdx =

∫
B2R

f ϕ dx .

Thus v is the weak solution to the problem

(5.24)

{
−div(a(|∇v|)∇v) = f(x) in B2R

v = u on ∂B2R .
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Since u solves the same problem, u = v in B2R. Moreover, equations (5.17), (5.18) and (5.21)
entail that a(|∇u|)∇u ∈W 1,2(BR), and

‖a(|∇u|)∇u‖W 1,2(BR) ≤ C
(
‖f‖L2(B2R) +R−

n
2 ‖a(|∇u|)∇u‖L1(B2R)

)
.(5.25)

Step 3. Let a and f be as in the statement, let u be a generalized local solution to equation
(2.1), and let fk and uk be as in the definition of this kind of solution given at the begining of
the present section. An application of Step 2 to uk tells us that a(|∇uk|)∇uk ∈W 1,2(BR), and

‖a(|∇uk|)∇uk‖W 1,2(BR) ≤ C
(
‖fk‖L2(B2R) +R−

n
2 ‖a(|∇uk|)∇uk‖L1(B2R)

)
(5.26)

≤ C
(
‖fk‖L2(B2R) +R−

n
2 ‖a(|∇u|)∇u‖L1(B2R)

)
,

where the constant C is independent of k. Therefore, the sequence {a(|∇uk|)∇uk} is bounded
in W 1,2(BR), and hence there exists a function U : BR → Rn, with U ∈ W 1,2(BR), and a
subsequence, still indexed by k, such that

(5.27) a(|∇uk|)∇uk → U in L2(BR) and ak(|∇uk|)∇uk ⇀ U in W 1,2(BR).

By assumption (5.1), ∇uk → ∇u a.e. in Ω. Hence, owing to (5.27),

(5.28) a(|∇u|)∇u = U in BR,

and

(5.29) lim inf
k→∞

‖a(|∇uk|)∇uk‖W 1,2(BR) ≥ ‖a(|∇u|)∇u‖W 1,2(BR) .

Inequality (2.5) follows from (5.26) and (5.29).

References

[AdHe] D.R.Adams & L.I.Hedberg, “Function spaces and potential theory”, Springer, Berlin,
1996.

[ADN] S.Agmon, A.Douglis & L.Nirenberg, Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. I., Comm. Pure Appl.
Math. 12 (1959), 623–727.

[ACMM] A.Alvino, A.Cianchi, V.G.Maz’ya & A.Mercaldo, Well-posed elliptic Neumann prob-
lems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 27
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[DKS] L.Diening, P.Kaplický & S.Schwarzacher, BMO estimates for the p-Laplacian, Nonlinear
Anal. 75 (2012), 637–650.

[DSV] L.Diening, B.Stroffolini & A.Verde, Everywhere regularity of functionals with φ-growth,
Manus. Math. 129 (2009), 449–481.



29

[DuMi1] F.Duzaar & G.Mingione, Gradient estimates via non-linear potentials, Amer. J. Math.
133 (2011), 1093–1149.

[DuMi2] F.Duzaar & G.Mingione, Gradient continuity estimates, Calc. Var. Part. Diff. Equat.
39 (2010), 379–418.

[Ev] L.C.Evans, A new proof of local C1,α regularity for solutions of certain degenerate elliptic
P.D.E., J. Diff. Eq., 45 (1982), 356–373.

[Gi] M.Giaquinta, “Multiple integrals in the calculus of variations and nonlinear elliptic sys-
tems”, Annals of Mathematical Studies, Princeton University Press, Princeton, NJ, 1983.

[Gr] P.Grisvard, “Elliptic problems in nonsmooth domains”, Pitman, Boston, MA, 1985.
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[Sch] J.Schauder, Sur les équations linéaires du type elliptique a coefficients continus C. R. Acad.
Sci. Paris 199 (1934), 1366–1368.
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