
On Solvability of Boundary Integral
Equations of Potential Theory for a
Multi-Dimensional Cusp Domain

V. G. Maz’ya, S. V. Poborchi

Abstract The Dirichet and the Neumann problems for Laplace’s equation on
a multi-dimensional cusp domain are considered. The unique solvability of the
boundary integral equation for the internal Dirichlet problem for harmonic
double layer potential is established. We also prove the unique solvabilty
of the boundary integral equation for the external Neumann problem for
harmonic single layer potential.

1 Introduction

Boundary integral equations generated by elliptic boundary value problems
have been intensively studied during more than a hundred years (for the
history, see [1], [5]). By now, a comprehensive classical layer potential the-
ory for domains with Lipschitz and piecewise smooth boundaries has been
developed.

Let Γ be the common boundary of internal (Ω+) and external (Ω−) do-
mains in Rn. If Γ is sufficiently smooth, then the Fredholm theory applies.
When Γ has singularities, this theory does not generally work, nevertheless,
it was shown for Γ ∈ C0,1 [2] – [6], that solutions to the Neumann and the
Dirichlet problems can be written as harmonic single layer or double layer
potentials with densities depending on boundary data.

University of Liverpool
Liverpool L69 7ZL, UK
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Solvability of integral equations of potential theory for a planar cusp do-
main was studied by Maz’ya and Soloviev [7] – [9].

In the authors work [11] a multi–dimensional cusp domain was considered
whose boundary Γ contains the vertex of the cusp O. It was shown under
the assumption Γ \ {O} ∈ C1,λ, λ ∈ (0, 1], that the operator V −1, inverse to
the single layer potential, is an isometric isomorphism of the space Tr(Γ ) of
the traces to Γ of the functions having the finite Dirichlet integral over Rn

to the dual space (Tr(Γ ))∗. One of the consequences of this result is that the
solution to a two-sided Dirichlet problem

∆u = 0 in Rn \ Γ, u|Γ = f

can be written as the single layer potential u = V % with density % ∈ Tr(Γ )∗.
Results of [11] were used in [12] where the solvability of boundary integral

equations for the Neumann problem was considered. For example, it turned
out [12] that for domains with inward cusps the solution to the Neumann
problem can be represented by the single layer potential with density in
(Tr(Γ ))∗. But this is generally not true for domains with outward cusps.

In the present paper we consider a bounded multi-dimensional domain with
outward cusp and study the solvability of boundary integral equations for the
Laplace operator. We show that these equations for the double layer potential
(in case of the internal Dirichlet problem with boundary data in Tr(Γ )) and
for the single layer potential (in case of the external Neumann problem with
boundary data in (Tr(Γ ))∗) are uniquely solvable. Incidentally we obtain
that the solution to the Dirichlet problem is represented by the double layer
potential and the solution to the Neumann problem is represented by the
single layer potential. The last fact concerning the Neumann problem was
established earlier in [12] by an alternative proof.

2 Domains and Function Spaces

We now describe a surface with cusp which we deal with in what follows. Let
Ω ⊂ Rn, n > 2, be a bounded simply connected domain whose boundary
contains the origin and some neighborhood U of the origin intersects Ω by
the set

U ∩Ω = {x = (x′, xn) ∈ Rn : xn ∈ (0, 1), x′/ϕ(xn) ∈ ω}, (1)

where ϕ ∈ C[0, 1] is an increasing function, ϕ(0) = 0, and ω is a bounded do-
main in Rn−1. Without trying to attain a full generality, we will assume that
∂ω ∈ C2, ϕ ∈ C2(0, 1]∩C1[0, 1] ∂Ω \ {O} ∈ C2 and ϕ′(0) = 0. Furthermore,
we say that O is the vertex of an outward cusp on the boundary of Ω.

Let Γ = ∂Ω. For all x ∈ Γ \ {O} there exists a normal to Γ at x. In what
follows ν(x) designates a unit outward normal at x ∈ Γ \ {O}. We also put
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Ω+ = Ω, Ω− = Rn\Ω. The symbol Br(x) denotes an open ball in Rn of radius
r centered at x, Br = Br(0). Let G be a domain in Rn. By C∞0 (G) we mean
the set of smooth functions having compact support in G. In what follows
L1

2(G) is the space of functions in L2,loc(G) whose gradient is in L2(G). The
space L̊1

2(Rn) is the closure of C∞0 (Rn) with respect to the norm ‖∇u‖L2(Rn),
where ∇u is the gradient of u. The space L̊1

2(Ω
−) is defined as the closure

in the norm ‖∇(·)‖L2(Ω−) of the set of functions in C∞(Ω−) ∩ L1
2(Ω

−) with
bounded supports in Ω−. The space L1

2(Ω
+) is equipped with norm

‖u‖L1
2(Ω

+) =
(
‖u‖2L2(Γ\U) + ‖∇u‖2L2(Ω+)

)1/2

.

where U is the same as in (1).
Let Tr(Γ ) denote the space of the traces u|Γ of the functions u ∈ L̊1

2(Rn)
equipped with norm

‖f‖Tr(Γ ) = inf{‖∇u‖L2(Rn) : u ∈ L̊1
2(Rn), u|Γ = f}.

We also consider one-sided trace spaces Tr±(Γ ) for Γ . The space Tr+(Γ )
consists of the traces u|Γ of the elements u ∈ L1

2(Ω
+). This space is endowed

with norm

‖f‖Tr+(Γ ) = inf{‖u‖L1
2(Ω

+) : u ∈ L1
2(Ω

+), u|Γ = f}.

We define Tr−(Γ ) as the trace space {u|Γ : u ∈ L̊1
2(Ω

−)} with norm

‖f‖Tr−(Γ ) = inf{‖∇u‖L2(Ω−) : u ∈ L̊1
2(Ω

−), u|Γ = f}.

In what follows (Tr±(Γ ))∗ and (Tr(Γ ))∗ designate the dual spaces of the
corresponding trace spaces.

Let H(Ω±) be the space of harmonic functions on Ω± with finite Dirichlet
integral, and let H(Rn \ Γ ) denote the space of the finctions on Rn with
finite Dirichlet integral, which are harmonic on each of domains Ω+ and Ω−.
Clearly H(Ω+) ⊂ L1

2(Ω
+). According to [11], [12], H(Ω−) and H(Rn \ Γ )

are subspaces of L̊1
2(Ω

−) and L̊1
2(Rn), respectively, and the map u 7→ u|Γ is

an isometric isomorphism between the spaces H(Ω±), Tr±(Γ ) and between
the spaces H(Rn \ Γ ), Tr(Γ ).

3 Single and Double Layer Potentials

Let E(·, ·) be the fundamental solution of the Poisson equation:

E(x, y) = ((2− n)|Sn−1||x− y|n−2)−1, x, y ∈ Rn,
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where |Sn−1| is the area of the unit sphere in Rn. The single layer potential
for Γ with density % ∈ L2,loc(Γ \ {O}) is

(V %)(x) =
∫

Γ

%(y)E(x, y)dΓ (y), x ∈ Rn. (2)

The following assertion was established in [11].

Theorem 1. The map

L2(Γ ) 3 % 7→ V % ∈ H(Rn \ Γ )

is uniquely extended to an isometric isomorphism: (Tr(Γ ))∗ → H(Rn \ Γ ) if
% ∈ L2(Γ ) is identified with the functional 〈%, ·〉 ∈ (Tr(Γ ))∗ defined by

〈%, g〉 =
∫

Γ

%gdΓ, g ∈ Tr(Γ ).

Furthermore, the map (Tr(Γ ))∗ 3 % 7→ V %|Γ ∈ Tr(Γ ) is an isometric iso-
morphism.

In the following lemma we collect some known results on density of subsets
in function spaces introduced above [11], [12].

Lemma 1. (i) The set C∞0 (Rn \{O}) is dense in each of the spaces L1
2(Ω

+),
L̊1

2(Ω
−), L̊1

2(Rn).

(ii) The set T̃ r(Γ ) of the traces to Γ of the functions in C∞0 (Rn \ {O}) is
dense in Tr±(Γ ) and Tr(Γ ).
(iii) Let S be a subset of L2(Γ ) which is dense in L2(Γ ). Then the set V S =
{V % : % ∈ S} is dense in H(Rn \ Γ ) and the set V S|Γ = {V %|Γ : % ∈ S} is
dense in Tr(Γ ).
(iv) Let S be the same as in (iii). Then the set of functionals 〈s, ·〉, s ∈ S,
defined by

〈s, g〉 =
∫

Γ

sgdΓ

is dense in (Tr(Γ ))∗.

It follows from the above assumptions on Γ that for x ∈ Γ \ {O} there is
a ball Bδ(x) such that

∣∣∣∣
∂E(ξ, η)

∂νξ

∣∣∣∣ 6 c(x, Γ )|ξ − η|2−n

for all ξ, η ∈ Bδ(x) ∩ Γ . Hence for % ∈ C(Γ ) the integral on the right of (3)

∂(V %)(x)
∂ν

=
∫

Γ

%(ξ)
∂E(x, ξ)

∂νx
dΓ (ξ), (3)
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is a continuous function of x ∈ Γ \ {O}.
Let u be a function defined on Rn \ Γ and let x ∈ Γ \ {O}. The values

u±(x) are defined as one-sided limits

u±(x) = lim
t→∓0

u(x + tν(x)).

It is well known that for % ∈ C(Γ ) normal derivatves of the single layer
potential have jumps on Γ given by

∂(V %)±

∂ν
(x) =

∂(V %)
∂ν

(x)∓ %(x)
2

, x ∈ Γ \ {O}. (4)

Because of continuity of the integral in (3), one obtains that for % ∈ C(Γ )
one-sided limit values ∂(V %)±/∂ν are continuous on Γ \ {O}. In particular,
(4) implies that

∂(V %)−

∂ν

∣∣∣∣
Γ

− ∂(V %)+

∂ν

∣∣∣∣
Γ

= %. (5)

The last formula remains true for % ∈ (Tr(Γ ))∗. In this case (5) should be
written in the form of the identity

∫

Rn

∇(V %)∇udx = −〈%, u〉,

which is valid for all u ∈ L̊1
2(Rn).

Let σ ∈ Tr(Γ ). The double layer potential for Γ with density σ is

(Wσ)(x) =
∫

Γ

σ(y)
∂E(x, y)

∂νy
dΓ (y), x ∈ Rn \ Γ. (6)

It is clear that Wσ is a harmonic function on each domain Ω+ and Ω−. The
assumptions on Γ , stated at the beginning of Sec. 2, along with inclusion
σ ∈ C(Γ ) provide the continuity

(Wσ)(x) =
∫

Γ

σ(y)
∂E(x, y)

∂νy
dΓ (y), (7)

of the integral on the right of (7) as a function of x ∈ Γ \ {O}. For the same
σ the following formulas for jumps of the double layer potential at Γ are well
known

(Wσ)±(x) = Wσ(x)± σ(x)/2, x ∈ Γ \ {O}. (8)

Clearly (8) implies that

(Wσ)+(x)− (Wσ)−(x) = σ(x), x ∈ Γ \ {O}. (9)

Lemma 2 stated below plays an important role in what follows.
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Lemma 2. The maps

Tr(Γ ) 3 σ 7→ (Wσ)±|Γ ∈ L2(Γ ), (10)

W± : Tr(Γ ) → H(Ω±) (11)

are linear continuous operators.

Proof. Let C0(Γ ) be the space of continuous functions on Γ vanishing in
the vicinity of the origin. Suppose that σ ∈ T̃ r(Γ ) and % ∈ C0(Γ ). It is well
known (and readily verified) that

∫

Γ

(Wσ)±%dΓ =
∫

Γ

σ · ∂(V %)∓

∂ν
dΓ. (12)

We note also that σ admits a unique extension u ∈ H(Rn \ Γ ). By Green’s
formula the right part of (12) is

∓
∫

Ω∓
∇(V %)∇udx,

and hence ∣∣∣∣
∫

Γ

(Wσ)±%dΓ

∣∣∣∣ 6 ‖∇u‖L2(Ω∓)‖∇(V %)‖L2(Ω∓).

Thus we have
∣∣∣∣
∫

Γ

(Wσ)±%dΓ

∣∣∣∣ 6 const · ‖σ‖Tr∓(Γ )‖%‖L2(Γ ).

Since C0(Γ ) is dense in L2(Γ ), it follows that

‖(Wσ)±‖L2(Γ ) 6 const · ‖σ‖Tr(Γ ).

Because of the density of T̃ r(Γ ) in Tr±(Γ ) and in Tr(Γ ) the map W± can
be uniquely extended to a linear continuous operator (10).

We now turn to (11). Let σ ∈ T̃ r(Γ ) and let u ∈ H(Rn \ Γ ), u|Γ = σ. We
use the following integral representation

u(x) = −
∫

Rn

∇u(ξ)(∇ξE)(x, ξ)dξ, (13)

which is valid for u ∈ L̊1
2(Rn) and almost all x ∈ Rn. If x ∈ Ω+, then Green’s

formula gives
∫

Ω−
∇u(ξ)(∇ξE)(x, ξ)dξ = −

∫

Γ

u(ξ)
∂E(x, ξ)

∂νξ
dΓ (ξ). (14)

Integrating by parts yields
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∫

Ω+
∇u(ξ)(∇ξE)(x, ξ)dξ =

∫

Γ

E(x, ξ)∂u/∂νξdΓ (ξ).

By unifying the last with (13), (14), one obtains for x ∈ Ω+

Wσ(x) = u(x) + V %+(x), (15)

where V %+ is the single layer potential with density %+ = ∂u+/∂ν. It follows
from (15) that

‖∇Wσ‖L2(Ω+) 6 ‖∇u‖L2(Ω+) + ‖∇(V %+)‖L2(Rn).

As it was shown in [11], the last term equals ‖%+‖(Tr(Γ ))∗ , therefore

‖∇(V %+)‖L2(Rn) = sup
v
|〈%+, v〉|/‖v‖Tr(Γ ) 6

6 sup
∣∣∣∣
∫

Ω+
∇u∇vdx

∣∣∣∣ ‖∇v‖−1
L2(Rn) 6 ‖∇u‖L2(Rn) = ‖σ‖Tr(Γ ).

Thus (15) implies that

‖∇Wσ‖L2(Ω+) 6 2 ‖σ‖Tr(Γ ). (16)

Since T̃ r(Γ ) is dense in Tr(Γ ), (16) holds true for σ ∈ Tr(Γ ). By unifying
(16) and (10), we establish he continuity of the operator

W+ : Tr(Γ ) → H(Ω+). (17)

Let x ∈ Ω−. Equality

Wσ(x) = −u(x) + V %−(x)

with %− = ∂u−/∂ν can be deduced from (13) in the same way as (15) has
been deduced above. Hence

‖∇Wσ‖L2(Ω−) 6 2 ‖σ‖Tr(Γ ),

which along with continuity of operator (17) gives the continuity of operator
(11). This concludes the proof.

Two assertions below follow from Lemma 2.

Corollary 1. Formula (9) holds true for σ ∈ Tr(Γ ) and almost all x ∈ Γ .

Corollary 2. Formula (12) is extended to the case σ ∈ Tr(Γ ) and %, ∂(V %)±/∂ν ∈
(Tr(Γ )∗. For these parameters (12) should be written in the form

〈%, (Wσ)±〉 = 〈∂(V %)∓/∂ν, σ〉.
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4 Boundary value problems

We state the Dirichlet problem, the Neumann problem and the transmission
problem.

The internal (external) Dirichlet problem reads as follows. Given f+ ∈
Tr+(Γ ) (f− ∈ Tr−(Γ )), find u+ ∈ L1

2(Ω
+) (u− ∈ L̊1

2(Ω
−)), such that

u+|Γ = f+ (u−|Γ = f−) and the identity
∫

Ω±
∇u±∇vdx = 0

holds for all v ∈ C∞0 (Ω±). It is well known that the problem is uniquely
solvable and its solution u± is in fact in H(Ω±). Furthermore, the equalities

‖u+‖L1
2(Ω

+) = ‖f+‖Tr+(Γ ), ‖∇u−‖L2(Ω−) = ‖f−‖Tr−(Γ )

are valid.
We now state the external Neumann problem

∆u = 0 Ω−, ∂u/∂ν|Γ = ψ−, (18)

where ψ− ∈ (Tr−(Γ ))∗. Its solution is that function u ∈ L̊1
2(Ω

−), which
satisfies ∫

Ω−
∇u∇wdx = −〈ψ−, w〉

for all w ∈ L̊1
2(Ω

−). It is well known that problem (18) is uniquely solvable
for all ψ− ∈ Tr−(Γ )∗. Moreover, u ∈ H(Ω−), and the estimate

‖∇u‖L2(Ω−) 6 const ‖ψ−‖(Tr−(Γ ))∗

holds true.

A solution of the internal Neumann problem

∆u = 0 in Ω+, ∂u/∂ν|Γ = ψ+, ψ+ ∈ (Tr+(Γ ))∗, (19)

is that function u ∈ L1
2(Ω

+), for which
∫

Ω+
∇u∇wdx = 〈ψ+, w〉

with an arbitrary w ∈ L1
2(Ω

+). Let (Tr+(Γ ))∗ª1 denote the subspace of the
functionals in (Tr+(Γ ))∗, orthogonal to 1 in L2(Γ ). It is known that for any
ψ+ ∈ (Tr+(Γ ))∗ª 1 problem (19) has a solution, uniquely determined up to
a constant summand, and the solution is in fact in H(Ω+). Furthermore, the
following estimate holds
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‖∇u‖L2(Ω+) 6 const ‖ψ+‖(Tr+(Γ ))∗ .

Let (f, %) ∈ Tr(Γ ) × (Tr(Γ ))∗ be given. The transmission problem is to
find a pair of functions (w+, w−) ∈ H(Ω+)×H(Ω−) such that

w+|Γ − w−|Γ = f, (20)

∂w−

∂ν

∣∣∣∣
Γ

− ∂w+

∂ν

∣∣∣∣
Γ

= %. (21)

Lemma 3. For arbitrary (f, %) ∈ Tr(Γ )×(Tr(Γ ))∗ the transmission problem
with boundary conditions (20), (21) has a unique solution (w+, w−), that can
be written explicitly in the form

w+ = (Wf)+ + (V %)+, w− = (Wf)− + (V %)−,

where V and W are the single and the double layer potentials defined by (2)
and (6). The following estimate holds

‖∇w+‖L2(Ω+) + ‖∇w−‖L2(Ω−) 6 const(‖f‖Tr(Γ ) + ‖%‖(Tr(Γ ))∗). (22)

Proof. Uniqueness. One should check that for f = % = 0 the corresponding
transmission problem has only one solution w+ = 0, w− = 0.

Let (w+, w−) be a solution of the homogeneous transmission problem.
Define w|Ω+ = w+ and w|Ω− = w−. Because of the homogeneity of condition
(20) we have w ∈ H(Rn \ Γ ). Hence w = V δ for some δ ∈ (Tr(Γ ))∗ by
Theorem 1. An application of (5) gives

δ =
∂w−

∂ν

∣∣∣∣
Γ

− ∂w+

∂ν

∣∣∣∣
Γ

,

so that δ = 0 because of the homogeneity of condition (21). Thus w = V δ = 0
and w+ = w− = 0.

Solvability. Let w+ = (Wf)+ + (V %)+, w− = (Wf)− + (V %)−. It follows
from Theorem 1 and Lemma 2 that (w+, w−) ∈ H(Ω+) ×H(Ω−). We now
check (20), (21). Since (V %)+|Γ = (V %)−|Γ , we have

w+|Γ − w−|Γ = (Wf)+|Γ − (Wf)−|Γ = f.

Next, with the aid of (5), we obtain that

∂w−

∂ν

∣∣∣∣
Γ

− ∂w+

∂ν

∣∣∣∣
Γ

=
∂(Wf)+

∂ν

∣∣∣∣
Γ

− ∂(Wf)−

∂ν

∣∣∣∣
Γ

+ %.

It remains to verify the equality

∂(Wf)+/∂ν = ∂(Wf)−/∂ν, f ∈ Tr(Γ ). (23)
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If the derivatives of the double layer potential are continuous, the required
equality is a statement of the Liapunov theorem [13], ch. XV, § 5. In the
general case (23) is equivalent to the identity

∫

Ω+
∇(Wf)+∇vdx +

∫

Ω−
∇(Wf)−∇vdx = 0, (24)

which is valid for all v ∈ L̊1
2(Rn).

First we establish (24) for v = V %, % ∈ C0(Γ ) and f ∈ T̃ r(Γ ). By Green’s
formula the left part of (24) is

∫

Γ

(
(Wf)+∂(V %)+/∂ν − (Wf)−∂(V %)−/∂ν

)
dΓ.

The last integral equals zero because of (12) (see also Corollary 2). So (24)
holds with v replaced by V %. By using Lemma 1 (iii), we obtain (24) for all
v ∈ L̊1

2(Rn).
Estimate (22) follows from Theorem 1 and Lemma 2. This completes the

proof.

5 Solvability of Boundary Integral Equations

Here we establish the following assertion.

Theorem 2. (i) Let W be given by (7). The operator

W +
1
2

I : Tr(Γ ) → Tr(Γ ), (25)

is continuous and has a bounded inverse.
(ii) The operator

∂V

∂ν
+

1
2
I : (Tr(Γ ))∗ → (Tr(Γ ))∗, (26)

where ∂V /∂ν is given by (3), is continuous and has a bounded inverse.

Proof. Continuity of operator (25) follows from Lemma 2. We shall check
that the operator is surjective and one to one. The desired result then follows
from the Banach theorem.

Suppose that Wσ + σ/2 = 0 for some σ ∈ Tr(Γ ). There is a unique
extension of σ to a function in H(Rn \Γ ) (we relabel this extension again as
σ). Let % ∈ C0(Γ ). By (12) and Green’s formula, we have

0 =
∫

Γ

(Wσ)+%dΓ =
∫

Γ

σ
∂(V %)−

∂ν
dΓ = −

∫

Ω−
∇σ∇(V %)dx.
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By Lemma 1 (iii) σ can be aproximated by the elements V % in H(Rn \ Γ ),
hence σ|Ω− = const. Since σ(x) → 0 for |x| → ∞, it follows that σ = 0
almost everywhere in Ω− and thus σ = 0 in Rn because σ ∈ H(Rn \ Γ ). So
operator (25) is one to one.

We now turn to the solvability of equation

Wσ + σ/2 = f+ (27)

in the space Tr(Γ ). As it was mentioned above, the internal Dirichlet problem
has a unique solution u+ for any boundary data f+ ∈ Tr(Γ ). Along with
this problem we state the external Neumann problem: to find u− ∈ H(Ω−)
such that

∂u−

∂ν

∣∣∣∣
Γ

=
∂u+

∂ν

∣∣∣∣
Γ

.

Since the space (Tr+(Γ ))∗ is continuously imbedded in (Tr−(Γ ))∗, [10], ch.
7, the Neumann problem is stated correctly and has a unique solution. Let
f− = u−|Γ . Then f− ∈ Tr(Γ ) since Tr−(Γ ) = Tr(Γ ) [12]. Thus the pair
(u+, u−) is a solution of the transmission problem with boundary conditions

u+|Γ − u−|Γ = f+ − f− ∈ Tr(Γ ),

∂u−

∂ν

∣∣∣∣
Γ

− ∂u+

∂ν

∣∣∣∣
Γ

= 0.

Now Lemma 3 implies that u+ = (Wσ)+ for σ = f+ − f−. For the same
density σ (27) holds.

(ii) Let σ ∈ T̃ r(Γ ) and % ∈ C0(Γ ). Let σ be extended to a function in
H(Rn \ Γ ). Green’s formula gives

〈∂V %/∂ν + %/2, σ〉 = 〈∂(V %)−/∂ν, σ〉 = −
∫

Ω−
∇(V %)∇σdx,

whence
|〈∂(V %)−/∂ν, σ〉| 6 ‖∇(V %)‖L2(Rn)‖∇σ‖L2(Rn)

= ‖%‖(Tr(Γ ))∗‖σ‖Tr(Γ ).

Here we have used that ‖∇(V %)‖L2(Rn) = ‖%‖(Tr(Γ ))∗ (see[11]). So, by density
of T̃ r(Γ ) in Tr(Γ ), we arrive at the estimate

‖∂(V %)−/∂ν‖(Tr(Γ ))∗ 6 ‖%‖(Tr(Γ ))∗ .

By Lemma 1 (iv) this estimate is valid for all % ∈ (Tr(Γ ))∗ and thus (26) is
a continuous operator.

Suppose that ∂(V %)−/∂ν = 0 for some % ∈ (Tr(Γ ))∗. By using (12) (see
also Corollary 2), we obtain
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∫

Γ

% · (Wσ)+dΓ = 0

for all σ ∈ Tr(Γ ). Since equation (27) is solvable for all f+ ∈ Tr(Γ ), it follws
that {(Wσ)+ : σ ∈ Tr(Γ )} = Tr(Γ ), hence % = 0 and operator (26) is one
to one.

It remains to check the solvability of the equation

∂V %/∂ν + %/2 = ψ− (28)

for all ψ− ∈ (Tr−(Γ ))∗. It will suffice to verify that solution of the Neumann
problem

u− ∈ H(Ω−), ∂u−/∂ν|Γ = ψ−

(which is uniquely solvable as it has been mentioned above) can be repre-
sented in the form of the single layer potential with density in (Tr(Γ ))∗. To
this end we consider the internal Dirichlet problem: to find u+ ∈ H(Ω+)
such that u+|Γ = u−|Γ . This Dirichlet problem is again uniquely solvable.
Let ψ+ = ∂u+/∂ν. Clearly ψ+ ∈ (Tr+(Γ ))∗ and because of the imbed-
ding Tr(Γ ) ⊂ Tr+Γ ) one has ψ+ ∈ (Tr(Γ ))∗. We observe that the pair
(u+, u−) ∈ H(Ω+)×H(Ω−) is a solution of the transmission problem

u+|Γ − u−|Γ = 0,
∂u−

∂ν

∣∣∣∣
Γ

− ∂u+

∂ν

∣∣∣∣
Γ

= ψ− − ψ+ ∈ (Tr(Γ ))∗.

According to Lemma 3, u− = (V %)− with % = ψ− − ψ+ thus concluding the
proof of the theorem.

Incidentally, we have proved the following assertion.

Corollary 3. The solution to the internal Dirichlet problem with boundary
data in Tr(Γ ) is the double layer potential with uniquely determined density
in Tr(Γ ), and the solution to the external Neumann problem with boundary
data in (Tr(Γ ))∗ is the single layer potential with uniquely determined density
in (Tr(Γ ))∗.1
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