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Abstract

An elementary proof of the Brezis and Mironescu theorem on the bound-
edness and continuity of the composition operator: W*?(R™) N WP(R") —
WeP(R™) is given. The proof includes the case p = 1.

1 Introduction

Let s be noninteger, 1 < s < oo, with [s] and {s} standing for the integer and
fractional parts of s. We introduce the function

Dpete) = ([ 19wt +0) = Vigu)P ) 1)

where p > 1 and V, is the collection of all partial derivatives 0%, |a| = k. The
fractional Sobolev space with the norm

|| Dp,sul| Loy + |[ul|Lr@ny

will be denoted by W*?(R").
In the present article we prove

Theorem. Let p > 1 and let s be noninteger, 1 < s < oo. For every complex-
valued function f defined on R and such that f(0) =0 and f',..., fEH) € L>(R)
there holds

[s]+1

1F @) lwonmny < € D Oz (lullwer@en) + 11V ullpme)). (2)
1=1

Here and elsewhere V = V1, and c is a constant independent of f and u.
If additionally, f1s41) € C(R) then the map

WP(R™) N WHP(R™) 3 u — f(u) € WH(R") (3)
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Inequality (2), with Bessel potential space H*P(R"), p € (1,00) and s > 0,
instead of W*#P(R"), was obtained by D.R.Adams and M.Frazier [AF].

For p > 1, a theorem on the boundedness and continuity of the operator (3) was
recently proved by H.Brezis and P.Mironescu [BM]. As they say, their proof is quite
involved being based on a ‘microscopic’ improvement of the Gagliardo-Nirenberg
inequality, in Triebel-Lizorkin scale, namely W*? N L*> C F/, for every v and on
an important estimate on products of functions in the Triebel-Lizorkin spaces, due
to T.Runst and W.Sickel [RS]. To this Brezis and Mironescu add: “It would be
interesting to find a more elementary argument which avoids this excursion into F
scale”.

In the present paper we give such an elementary argument which includes p = 1
and relies, in particular, upon the following pointwise interpolation inequality.

Lemma. Suppose a € (0,1), p > 1, and u € W,SP(R"™). Then for almost all
r e R"
(Dpatn)(w) < c((Mlu = ulw)]) () =P (M]Vul) ()7, (4)

where M is the Hardy-Littlewood maximal operator.
Proof. Let Bs(x) = {y € R": |y — 2| < ¢}. By Hardy’s inequality

uly) — u(@)|? / [Vu(y)[”
—————dy <c¢ dy. 5
S e T e ©

Arguing in the same way as Hedberg [H] we find
[Vu(y) /
e <e) (027 [Vu(y)["dy
/ )y = =] *p Y Z By @)\Byy k1 (2)

< " (M|Vul?) () (6)

and

luly) - - -— /
/Rn\Bg(m |y—1’|"+”“ kz . [uly) —u(z)Pdy

52k+1(x)\B52k' (z)
< b P (Mu = u(z)[") (). (7)
From (5)-(7) it follows that

(Dpsu)(x) < c( =N (M|Vul) (@) + 677 (Mlu = u(@) ) (2).

Minimizing the right-hand side over all 6 > 0 we complete the proof.

Another ingredient in the proof of Theorem is the Gagliardo-Nirenberg type in-
equality

@ |[Dp, (8)

IVl | st ey

where 1 < k < s, s is noninteger, and p > 1.
A short argument leading to (8) is by the pointwise inequality

Viu(@)] < e((M|Vul) (@)= (D gu) ()= (9)



In fact, one uses (9) to majorize the LP*/*-norm of |Vu| and applies Holder’s in-

equality with exponents

(s—1)k/(s—k) and (s—1)k/(k—1)s

together with the boundedness of M in LP*(R"™). Inequality (9) was derived in

[MSh]. For readers’ convenience, we reproduce its proof in Appendix.

2 Proof of Theorem

Inequality (2). Since f(0) = 0, we have

1F ()l oy < ALF Nl ooy Nl o ey
By the Leibniz rule,

[s]

1Dy f @)@y <> Y HDMS} Haaz

=1 logl+...+loy|=[s]
Joj|>1

LP(R")
We continue by putting
l
v=fDu) and w:HE)O"'u
i=1

in the obvious inequality
1Dy g5y (vw)l| oy < [[vDypgsywllLe@ny + |[wDp s3]l weny,

and arrive at

[s] !
=1 \a1|-*-‘<~~flf\><¥11|=[51 =1

l
—H ’f(l) ‘ |L°°(R) HDP’{S}(H aaiu) ‘ LP(R)n)) .
=1

We set

l
1 = H H 0%u - Dp7{s}f(l) (u)
=1

LP(R"™)

By Lemma with f®(u) in place of u,

Dy (s f O (u) () < el [FO] % (MIVFO () P) () 177

1 s s s
< el [ £ AN ) (MY () 7.

(10)

(11)

(12)

(13)

(14)



Hence, using Holder’s inequality with exponents s/{s}, s/|a;|, i =1,...,1, we find

M|Vl (15)

l
1-{s s o
T < el N gy TT 0Ol
=1

Since M is bounded in L*(R™), the last factor on the right is majorized by ¢||Vul| |{Li]; R
By (8) the product []._, in (15) does not exceed

s—| \%I 1 [ ] [5]*1

CHHVU Z ny 1Dy, ®") sy 1Dpstil] fogreny- (16)
Hence and by (15)
| 1={s} 1j pan) s} = =
L < el f N ey 1M 2 ||VU||Lps ") ||Dp (R (17)
Let l
= ||Pno ([T o0 18
Ji H P }(E v LP(R™) 18)
Clearly,
1 < || Dy sul|o@n)- (19)
Now let [ > 1. By (12),
I
Ji s HH&O‘ZU~DP7{S}8"‘1U LP(R") + Ha -+ Dp gs) (Zl_[(?‘“ )‘ Lr(R") (20)

Applying first Lemma and then Hoélder’s inequality with exponents
sflogl, 2<i <l sflon|(1—{s}), and s/(1+ |on|){s},

we find

l
H [[o%u- Dy u
=2

LP(R™)

l
< CH H 0%y - (M’aoqu|p)(1—{s})/P(M|Va|a1u‘p){s}/p

LP(R)

}

| M0 u Ip HMlvamu\pH v

L\a \(Rn ( Ll‘H 1|(R")

< CH | 0% u||

1=2

Hence, noting that s > 1+ |oy| and using the boundedness of M in L,(R") with
g > 1, we obtain that the first term in the right-hand side of (20) is dominated by

l
c[Tllo%u
=2

Haaluul i Hvaaluu{s}ps (21)
Llﬂ TR L THlaql (Rn)




By (8) this does not exceed

s(l 1)
Rn || Dp,su

s—1
. (22)

We estimate the second term in the right-hand side of (20). By Lemma,

Haalu . DMS}(ﬁ 8“%)‘
i=2

LP(R™)

!
p)(l—{s})/p (M|V<H aaiuﬂp){s}/p

=2

l
0" u (M| 0%
=2

Lr(R™)
which by Holder’s inequality with exponents
s/lonl, s/([s] = lon|)(1 —{s}), and s/(1+ [s] — |on|){s},

is majorized by

1-{s}H/p

Ial\

{s}/p

LTFEITaT] (Rn)

\Mwﬂam

cllo%ull e )H H'a v
Using the L,-boundedness of M with

q=s/([s] = laal) and q=s/(1+[s] = |aal)

|
‘Haaz ‘vHa%

By Holder’s inequality with exponents ([s] — |aq])/|as], 2 < i < [, the second norm
in the right-hand side of (23) does not exceed

we conclude that

7D, [T70)

1=2

Lr(R™)

1—{s}
ps

<cl|0™ull 2

(23)

LToT (R (R") LT (R

!
c[T o™ (24)
i=2
Again by Holder’s inequality, now with exponents
(L [s] = loal)/loyl, 2<i <1 j#4, and (1+[s] — |aa])/(1 + |ail),
the third norm in (23) is dominated by
[
> TTI0%ul, 5 ) 10"l g (25)
i



Combining (23)-(25) with (8) we find that the left-hand side of (23) does not exceed
(22). Thus, (22) is a majorant for the second term in (20). Hence and by (19),

s(l—=1)

Ji<c ||vu||LP9(R” 1Dy SU'HLP R") 1<1<[s. (26)

Inserting (17) and (26) into (13) we arrive at

[s]+1

Do f (W) lzr @y < €Y LD ooy (| Dpstel| oy + 1V 2500 (e )-

Hence and by (10) the proof of (2) is complete.
Continuity of the map (3). Let u, — u in W*?(R") N W(R™). Since

179 () = FO@) oy < el F |l — ull o

for 1 =0,...,[s], we have

FOw) = fO) i PR, (27)
We shall prove that

[1Dp,s(f (u) = f ()| @) — 0. (28)
Let a be a multiindex of order |a| = [s]. By the Leibniz rule,

[s] l !
aa(f<u) - f(uu)) = Z Z C(l, ar, ... :al> (f(l)(u) H 0%y — fm(uu) H 8aiuu>

i=1 i=1

where the second sum is taken over all [-tuples of multi-indices {a,..., o} such
that a1 + ...+ a; = @ and |a;| > 1. We rewrite the difference

l !
Du) [[ o u— fOu,) [] 0w (29)
=1 =1

using the identity

l l l
Hai—H = Z bk 1 k—bk)akﬂ...al, (30)
i=0 i

where the products of either b; or a; are missing if £ = 0 or k = [, respectively.
Setting

ao = fO(u), a; =0%u, by =fO(w,), bi=0%u, 1<i<l

n (30), we find that (29) is equal to

I k-1
(fO(u) = fO(w,) Haalu-l-fl) ZH@QZU O (u — uy) H 0%,
k=1 i=1 i=k+1



Consequently,

| D51 (V15 (f () = Fun) )| Loy

> (|21 ((£O (@) = £O ) Haaz

I=1 laq |+ oyl =[] Lr@®e)
lag[>1
l
+ 3 [ Do r? H@O"u 0 (u — ) H o) Rn)). (31)
k=1 i=k+1

By (26), (27) and the boundedness of derivatives of f we can apply the Lebesgue
dominated convergence theorem to conclude that

|0 = 19 w)) Dy o ([T 07w)

=1

0. 32
e (32)

Using Lemma with u replaced by f®(u)— f®(u,) and employing Hélder’s inequality
with exponents s/|a;|, 1 <i <, and s/{s}, we obtain

LP(R")

l
[ TL07 0 D7) — £ )

{s}

S MIVFO )~ 1O ))

chl_i[aam.<M|f<”(u)— 7O () P)

LP(R)

{s}

1 S Q; P
< el FOUE, H [GE A (33)

HMIV( H(u) = fO(w,))”

The boundedness of M in L*(R") implies that the left-hand side of (33) is dominated
by

IOl H||aa7u|| L IVEOW = @)y (39

\a
By (8), the product Hi:l has the majorant (16). Obviously,
IV (£ () = fO )| zoe @y < e[V o)1V (1 = )| 2o (e

HIF (@) = D () Val | me).

Hence and by Lebesgue’s dominated convergence theorem

— 0.
LP(R™)

l
[ TLo% - Do (7O) — £

This together with (32) implies that the first term in brackets in the right-hand side
of (31) tends to zero.



We now show that

Hf(l)(uu)Dp,{s} (ﬁ 0%u, - 0 (u, —u) - ﬁ 8“ju>
i=1

j=k+1

0 35
=0 ()

for any k£ =1,...[. Here the products Hf;ll 0%u, and Hé:k 41 0% u are missing for
k =1 and k = [ respectively. Clearly, (35) holds for [ = 1. Let [ > 1. By (12), the
left-hand side in (35) is majorized by

17O ey (HHa R | T )

j=k+1
. 36
+’ LP(R™) ) ( )

0 (uy — u) - Dy g} Ha Uy, - H 0% u)
Applying Lemma we find that the first term in brackets in (36) does not exceed

LP(R")

Jj=k+1

(MO, —u) ) T - (37)

LP(Rn)

H H 0w, [ 0%u- (MO (u, —u)[P)

j= k+1

Holder’s inequality with exponents

S S S S
Zo1<i<k-1, — k+1<j<I, ,
|l o lag[(L = {s})" (1+ |aw[){s}

as well as the boundedness of M in LY(R"™) with ¢ = s/|ay| and ¢ = s/(1 + |ak])
yield that (37) is dominated by

k—1
31 . H Joroul
=1

] k+1

R™)

xf0 (= )|V (= )] e (38)
f (R LT (R
By (8) applied to each factor we see that (38) and therefore the first term in brackets
n (36) tend to zero.
Making use of Lemma once more we obtain that the second term in brackets in
(36) is majorized by

k—1 l 1—-{s}
aak(uy—u)(wﬂaaiuy. 11 80‘ju|p) v
i=1 j=k+1
{s}
(M|V H(?alu,, H 0%ulP > - (39)

Jj=k+1
Applying Holder’s inequality with exponents

S S

o™ ([s] = a1 = {s})" (1 +[s] —[on|){s}




and using the L-boundedness of M for ¢ = s/([s] — |ax|) and g = s/(1 + [s] — |ak])
we find that (39) does not exceed

(s} AT o () :
eNIEINE 190 (u, u)HL‘ng(Rny (40)
where k—1 !
M= H 11(9 o l;[“a Ju‘ LT o] (Rr)

= J=

and k—1 !
N = HV(Ha %.j:l;[ﬂa || et
By (8)7
0% = W)l ey ) =0
Llexl (Rn)

It remains to show the boundedness of Ny and N,. Using Hélder’s inequality with
exponents ([s] — |ag|)/|au], 1 <i < k—1, and ([s] — |a|) /||, k+1 < j <[ we find

k—1 l
M<e[[I0%ul e [ lo%ull =
P C L1l ()

which is bounded owing to (8). Again by Hoélder’s inequality, now with exponents

L+ [s] — |ag| 1<i<hk-1itr 1+ [s] — |ax|
[ A B
and
14 [s] — |ou] . . 1+ [s] — fou|
, k+1<j<I j#r, ;
|| L+ o
we find that
k—1 k—1 !
N, < C(ZHHaa,uVHng;(Rn)||vaaruy\|Llﬁﬁm(Rn) 11 10 all e
r=1 =t j=k+1

l

k—1 !
+ > [0 wll g 11 19 ]u”ngjl(Rn)Hva Tu”LlfiT(R"))'

r=k+1 i=1 j=k+1
J#r

By (8) every norm on the right is bounded. The proof is complete.

3 Appendix. Proof of inequality (9)

Clearly, it is enough to prove the inequality

Vi (0)] < e (Mu)(0)' ™" (Dpau)(0))", (41)



where A is noninteger and 0 < I < A. Let n be a function in the ball B;(0) with
uniformly Lipschitz derivatives up to order [A] —2 which vanishes on 9Bj(0) together
with all these derivatives. Also let

!/ n(y)dy = 1.
B1(0)

Let [ < [A]. We use Sobolev’s integral representation

= > i [ S

1BI<N—1 B5(0)

+ 1 A\]— l / _8a / n pi pn—ldp_
= ) 2 Bs( lul/ <|m> ly["

lal=[Al-

(see [MP], Sect. 1.5.1). By setting here v = 97u with an arbitrary multi-index v of
order [ and integrating by parts in the first integral, we arrive at the identity

)= (Vo [ ) 3o o (o)

|ﬁ\< A1
+ [/\] l _ l)/ Yy aoa-l—vu(y)/ n pi pn—ldp_ (42)
a?; Bs(0) O 1ul/8 <!M> ly|™
Hence, for [ < [A]

_ _ Vinu(y) — Viyu(0)]
[Viu(0)] < (07 Mu(0) + 6|V ipyu(0)]| + / o). (3)
By Holder’s inequality,
[Vinu(y) — Vipu(0)] Al
/B o [P dy < ¢ 0" D, u(0). (44)
)

Let v be an arbitrary multi-index of order [A]. The identity

ou(0) = 67 / n(5)oruty)dy + 67" / 1(%) (@ u(0) - 9 uly))dy
B;(0) B;(0)
implies
v <5”M/‘ ) (Vi) (£)d
Voyu(0) ‘36 ) ()

HO ([ )l E+ay) D, au0), (15)
B;(0)
where 1/p +1/q = 1. Combining (43)-(45) we arrive at
(Viu(0)] < ¢ (07" Mu(0) + 8 'D, u(0)), for <[

Minimizing the right-hand side in § we complete the proof.
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