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Abstract

Let Ω be a smooth bounded domain in IRN , N ≥ 3. We show that Hardy’s inequality involving the distance to
the boundary, with best constant (1/4), may still be improved by adding a multiple of the critical Sobolev norm.

Résumé

Soit Ω un ouvert borné et regulier dans IRN , N ≥ 3. On montre que l’inegalité de Hardy, liée à la distance au
bord, avec meilleure constante (1/4), péut être améliorée en ajoutant un multiple de la norme de Sobolev critique.

1. Introduction and main results

If K = {x ∈ IRN | x1 = x2 = . . . = xk = 0}, 1 ≤ k ≤ N − 1, and d(x) = dist(x,K) the following
Hardy–Sobolev inequality with critical exponent has been established in [M, Corollary 3, p. 97]
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When k = N , then K = {0}, d(x) = |x| and (1) fails. To state the analogue inequality in this case, let
X(r) := (1 − ln r)−1, 0 < r ≤ 1. We also set D := supx∈Ω |x|. Then for any bounded domain Ω ⊂ IRN ,
N ≥ 3 there holds ([FT], Theorem A)
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Inequality (2) involves the critical exponent, but contrary to (1) it has a logarithmic correction. Moreover,
it is sharp in the sense that one cannot take a smaller power of the logarithmic correction X.

We next present recent results that extent (1) to more general domains Ω and distance functions. To
simplify the presentation from now on we consider only the case where K = ∂Ω, and therefore d(x) =
dist(x, ∂Ω), we emphasize however that all the results that follow have a counterpart in the case where
K is a smooth manifold of codimension k, with 1 ≤ k ≤ N − 1.

Let Ω ⊂ IRN , N ≥ 3, be a smooth and convex domain with D := supx∈Ω d(x) < ∞. Then the following
inequality is true ([BFT], Theorem 6.4)
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On the other hand if Ω is a bounded smooth domain (no convexity is required) the following inequality
has been proved by Dávila and Dupaigne ([DD], Thm 1)
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for λ and C positive constants depending on Ω, and 1 ≤ q < q1 := 2(N+1)
N−1 .

Inequality (3) requires convexity of Ω and misses the critical exponent by a logarithmic correction. On
the other hand no convexity is needed for (4) at the expense of adding an L2 norm in the left hand side
and staying below the exponent q1(< 2N

N−2 ) in the right hand side.
In this work we improve both (3) and (4) by obtaining the sharp analogue of (1). Ω is a smooth

bounded domain of IRN , N ≥ 3, d(x) = dist(x, ∂Ω) and let Ωδ := {x ∈ Ω : dist(x, ∂Ω) ≤ δ} be a tubular
neighborhood of ∂Ω. We then have
Theorem 1 There exists positive constants λ = λ(Ω) and C = C(Ω) depending on Ω such that
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No convexity of Ω is needed. We note that the first Hardy–type result that dismisses convexity at the
expense of adding a lower order term, is the following inequality due to Brezis and Marcus [BM, Theorem
I] ∫
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for a constant λ that depends on Ω. In case Ω is convex we have
Theorem 2 If Ω is convex, there exist a positive constant C = C(Ω) depending on Ω such that
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Inequality (7) is scale invariant and the constant C we have computed depends on Ω in a scale invariant
way. The following then is a natural question.
Open problem 1: Are the constants C of Theorems 1 and 2 independent of Ω?

The results that follow strongly suggest that C is independent of Ω.
Theorem 3 There exists a positive constant δ0 = δ0(Ω) depending on Ω and a positive constant C =
C(N) depending only on the dimension N , such that for all 0 < δ ≤ δ0
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Notice that Ω need not be convex for Theorem 3. To state our next result we introduce some notation.
We denote by Cφ or simply by C the circular cone with vertex at the origin and having axis of symmetry
the positive xN–axis. The angle φ ∈ (0, π

2 ) is the angle between any line on C passing through the origin
and the positive xN–axis. Let d(x) = dist(x, ∂C). We then have
Theorem 4 There exists a constant C = C(N) depending only on the dimension N such that
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We note in particular that the constant C in (9) is independent of the opening angle φ of the cone for
φ ∈ (0, π

2 ). The last Theorem also raises the question of what are the minimal assumptions on Ω –besides
convexity– under which (7) remains valid.
It will be interesting to compute the best constant C at least for special geometries.
Open problem 2: What is the best constant C for the unit ball or for half space? How does it relate to
the best Sobolev constant?
Remark Theorems 1–3 have a counterpart in the case where K is a smooth manifold of codimension k
with 1 < k ≤ N − 1 and d(x) = dist(x, K). In all these cases the critical Sobolev norm appears in the
right hand side. We also note that most of the results extend to the Lp setting for 2 ≤ p < N .

2. Sketch of proofs

We first present the key ingredients in the proof of Theorems 2 and 3. By the change of variables
u(x) = d

1
2 (x)v(x) (cf [BFT]) inequality (7) is equivalent to
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valid for v ∈ C∞0 (Ω). To prove (10) we will derive suitable inequalities near the boundary as well as away
from the boundary and then we will combine them. To this end let φδ be a smooth cutoff such that φδ = 1
in Ωδ and φδ = 0 in ΩC

2δ and set v = φδv + (1− φδ)v =: v1 + v2. Near the boundary, that is, for δ small
enough, and for smooth domains, d(x) is a smooth function and ∆d approaches the mean curvature of
the boundary. As a consequence, the middle integral in (10) is treated as a lower order term. The desired
estimate then for v1 follows by the Gagliardo–Nirenberg inequality and elementary estimates. This proves
Theorem 3, and no convexity is needed.
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To prove Theorem 2, we need in addition to work with v2. We note that away from the boundary,
δ ≤ d(x) ≤ D = supx∈Ω d(x), and therefore (10) is easily seen to be true for v2, even if the term
containing −∆d is absent. Convexity is now needed to guarantee that −∆d ≥ 0. We finally note that the
dependence of C on Ω enters through the ratio δ

D – a scale invariant quantity.
Proof of Theorem 1: Let φδ be a smooth cutoff such that φδ = 1 in Ωδ and φδ = 0 in ΩC

2δ. We write
u = φδu + (1 − φδ)u =: u1 + u2. We then follow closely the argument of [VZ, Thm 2.2, case 3], or [DD,
Thm 1]. That is, by a straightforward calculation we have that∫
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for a suitable remainder term R. The term R is easily estimated from below by −λ
∫
Ω

u2dx. The first
two terms of the right hand side are estimated by Theorem 1, whereas for the gradient term we use the
standard Sobolev imbedding and the result follows.

Proof of Theorem 4: We will use the self similarity of the cone C. We denote by C(1,2) the intersection
of C with the strip IRN−1 × (1 < xN < 2) and we notice that C = ∪∞n=−∞2nC(1,2). It is enough to prove
inequality (9) for C(1,2) when distance is taken only from the lateral surface of C(1,2). By scale invariance
then, the inequality is true for all pieces 2nC(1,2), n = ±1,±2, . . ., with the same constant, and we can
patch them together to get (9).

By practically the same argument as in the proof of Theorem 2, we can obtain inequality (7) for the
unit cylinder H = BN−1

1 ×(0, 1), when distance is taken only from the lateral surface L = ∂BN−1
1 ×(0, 1).

It is easy then to map H onto C(1,2) in a one–to–one way by an elementary transformation which is
bi–Lipschitz. This will give the inequality for C(1,2) with a constant C that has a positive limit as φ tends
to zero, but unfortunately we loose control of the constant C as φ tends to π

2 . This is in a sense expected
since we “perturbed” the cylinder to get the cone and when φ = π

2 we are in the case of half space.
For the half space however the inequality is true (see (1) with k = 1). We then use a similar argument,

that is, we map the half space with a bi–Lipschitz elementary transformation onto the cone for, say,
φ ∈ (π

4 , π
2 ), and this eventually shows that the constant C stays away from zero or infinity even in the

case where φ tends to π
2 . The result then follows easily.

Remark Detailed proofs as well as various extensions of the results we presented here, will be given in
a forthcoming publication (cf. [FMT]).
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