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In this paper we are concerned with boundary value problems for general second order elliptic equations and systems in a
polyhedral domain. We consider solutions in weighted L,, Sobolev spaces. A special section is dedicated to weak solutions.
We prove solvability theorems and regularity assertions for the solutions.

1 Introduction

This paper is a continuation of [16], where we obtained point estimates for Green’s matrices of boundary value problems to
second order systems in a polyhedral cone. These estimates are used in the present paper for the proof of theorems on the
solvability in weighted L, Sobolev spaces and of regularity assertions for the solutions.

Elliptic boundary value problems in domains with edges have been studied in many works. For general elliptic problems we
refer here to the papers by Maz’ya and Plamenevskii [11,12], Maz’ya and Rossmann [15], the books of Dauge [3], Nazarov and
Plamenevskii [19], and for pseudodifferential boundary value problems to the papers by Schrohe and Schulze [22,23]. Moreover,
there are many publications on boundary value problems for special differential equations or systems. But most of them do
not include the Neumann problem. Concerning this problem we mention the papers of Zajaczkowski and Solonnikov [25]
(Neumann problem to the Laplace equation), Nazarov [17, 18], Rossmann [20] and the book of Nazarov and Plamenevskii [19]
(more general boundary value problems), where solvability theorems for the Neumann problem in weighted Lo Sobolev spaces
as well as regularity assertions for the solutions are given. Grisvard [6] considered solutions of the Neumann problems to
the Laplace equation and the Lamé system in Ly Sobolev spaces without weight. Dauge [2,4] proved the solvability of the
Neumann problem to the Laplace equation in L,, Sobolev spaces. In contrast to the present paper, the above mentioned works
do not make use of Green’s function. Estimates of Green’s function were first employed by Maz’ya and Plamenevskii [13] in
order to prove the solvability of elliptic boundary value problems in weighted Sobolev and Holder spaces for domains with
edges. The results in [13] are applicable, e.g., to the Dirichlet but not to the Neumann problem. Using estimates of Green’s
function, Solonnikov [24], Grachev and Maz’ya [5] proved the solvability of the Neumann problem to the Laplace equation in
weighted Sobolev and Holder spaces.

The present paper generalizes results of the preprints [5] and [24] to boundary value problems for general elliptic second
order systems. Moreover, we deal with weak solutions in weighted L,, Sobolev spaces. We describe here the main results of
the paper. Let

K={zreR®: w=ux/lz| € Q} (1.1)
be a polyhedral cone with faces I'; = {x : z/|z| € ;} and edges M;, j = 1,...,n. Here Q is a curvilinear polygon on

the unit sphere bounded by the arcs 1, . .., y,. Suppose that K coincides with a dihedral angle D; in a neighborhood of an
arbitrary edge point x € M. We consider the boundary value problem

3
L(0x)u=— Y Ai;0p0pu=fink, (1.2)
i,j=1
u = g; onI'; for j € Jy, (1.3)
3
B(0:)u = Z AijnjO0y,u=gy onlyfork e Ji, (1.4)
ij=1
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where A; ; are constant £ X ¢ matrices such that A; ; = A;fﬂ;, JoUJy =J={1,...,n}, JoNJ1 = 0,u, f, g are vector-valued
V.

functions, and (n1, n2, n3) denotes the exterior normal to I';,. We denote by H the closure of the set {u € C5°(K)" : u=0on
I'; for j € Jo} with respect to the norm

3 1/2
7 = (/ Zaxjupdx) .
Ko

(C§°(Q) is the set of all infinitely differentiable functions « such that supp v is compact and contained in G.) Throughout the
paper, it is assumed that the sesquilinear form

3
b (u, v) :/ Z A jOr,u - 0y ;0dx (1.5)
K

ij=1
is H-coercive, i.e.,
bic (u,u) > c|lul|3, for all u € H. (1.6)

In Sect. 2 we introduce weighted Sobolev spaces WZ%(IC; J ), where J is a subset of J , L is an integer, [ > 0, p and (3 are real

numbers, p > 1, and 5= (61,...,0,) € R™ For J = { (the case of the Neumann problem) this space is denoted by W;’%(IC)
and is equipped with the norm 7

n i pd; 1/p
b = ([ 35 b0 T (ZED) Jozuoae) . where ry (o) = dis(o, M)
8,5 K© 5
j=1

lal<t 2]

Sect. 3 contains some auxiliary results for the problem in a dihedron. We give here a regularity assertion for the solution
and study inhomogeneous boundary conditions. In Sect. 4 we prove the existence and uniqueness of solutions of problem
(1.2)—(1.4) in the space W;’gi(lC; J)t if the line Re A = 2 — 3 — 3/p is free of eigenvalues of an operator pencil 2(()\) and the

components ¢§; of 5 satisfy certain inequalities. Here 2(() is the operator of the parameter-dependent boundary value problem
LNu=f inQ, w=g; onyjforjeJy, BAu=gy onvyforke Ji,

with differential operators £(\) and B()\) defined by
LAu = p* L(3,) (0 u(w)), BNu=p'""*B(8,) (p u(w)), (1.7)

p = |z|, w = «/|z|. The bounds for §; depend on the eigenvalues of certain operator pencils A;(\) which are generated by
boundary value problems in a plane angle. For example, the Neumann problem for the Laplace equation is uniquely solvable

in W;g(lC) for arbitrary f € Wg’g.(lC), gk € W;}l/p’p(Fk) if the line Re A = 2 — 3 — 3/p is free of eigenvalues of the pencil
2A(\) and the components of 4 satisfy the inequality

maX(QfHE,O) <8j+2/p<2. (1.8)
i

Here 6; denotes the angle at the edge M, 7/6; is the smallest positive eigenvalue of the pencil A;(\). An analogous assertion

>

holds for the Neumann problem to the Lamé system. Here the conditions for the components of ¢ are

R
0;

2
max (2 - 2-,0) <&+ <2 iff; <m 2
J p

<§j+2<2 it; >, (1.9)
where £, () is the smallest positive solution of the equation ¢~ sin ¢ + 6! sin 6 = 0. Condition (1.8) means, in particular,
that 2 — 6; — 2/p is less than the smallest positive eigenvalue of the pencil A;()). A feature of the Neumann problem for the
Lamé system is that A = 1 is always an eigenvalue of this pencil A;(\). For 6; < r this is the smallest positive eigenvalue.
Condition (1.9) allows that the number 2 — §; — 2/p exceeds the eigenvalue A = 1if 6; < 7. However, then the boundary data
must satisfy a compatibility condition on the edge M (in the case p = 2, §; = 0 see also [6, Th. 4.4.1]).

Sect. 5 deals with weak solutions of problem (1.2)—(1.4). In particular, we prove that for an arbitrary linear and continuous
functional £ on Wig 75(IC)£ there exists a unique u € W;’?(IC)Z, p~t + ¢! =1, satisfying

b (u,v) = F(v) forallv € Wi; 75(IC)Z
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provided the line Re A = 1 — 3 — 3/p is free of eigenvalues of the pencil 2((\) and the components of 5 satisfy the inequalities
max(l — p;,0) < d; +2/p < 1forj=1,...,n, where yi; is the real part of the first eigenvalue of the pencil A;()) on the
right of the imaginary axis. Furthermore, we study the smoothness of weak solutions. For example, we obtain the following
result for the weak solution v € ‘H = W017’O~2(IC)3 of the Neumann problem to the Lamé system: If the functional F' € H* has

the representation
Fv) = / f-vdr forallv € C5°(K\{0})3,
K

where f € W;}Q’p (K)3, the strip —1/2 < Re A < [ — 3 — 3/p contains at most the eigenvalue A = 0 of the pencil 2((\), and

the components of 5 satisfy the inequalities

£+(9)) 2 .
+9jj <(5j+];<l 1f9j>’/T,

2
max(l—£,0><§j+§<l i£0;, <m -
J

then there exists a constant vector ¢ such thatu — c € Wé’%(IC)?’. In particular, we can conclude from this result that the second

derivatives of u are square summable in a neighborhood of an arbitrary edge point if f € Lo(K)? and the angle at this edge is
less than . The same is true in the case of inhomogeneous boundary conditions if the boundary data g; € W1/22(I';) satisfy
certain compatibility conditions on the edges of X. For the square summability of the second derivatives of the solution in a
neighborhood of the vertex of the cone it is necessary that additionally the strip 0 < Re A < 1/2 is free of eigenvalues of the
pencil 2(\). Note that, by a result of Dauge [4], the last condition is satisfied for the Neumann problem to the Laplace equation
if the cone is convex.

In the last section we consider the problem with variable coefficients in a bounded domain of polyhedral type. By means
of the results of Sect. 5, we prove a regularity assertion for weak solutions and show that the operator of the boundary value
problem is Fredholm.

2 Weighted Sobolev spaces
2.1 Weighted Sobolev spaces in a dihedron
Let D be the dihedron
D={x=(2,23): 2/ € K, 23 € R}, 2.1

where K is an infinite angle which has the form {2/ = (21,22) € R?: 0 <7 < 00, 0 < ¢ < 6} in polar coordinates 7, ¢.
The boundary of D consists of two half-planes I' "™ and I'~ and the edge M. We denote by V(;l’p (D) and Wé’p (D) the weighted
Sobolev spaces with the norms

1/p
||u||\/§’P(D) _ (/ Z ‘II|P(57H~‘O¢|) ’a;‘u|p dl‘) s ||UHW(:p(,D) = (/ Z |x/|p5 |8§u|pd$>

D lal<l D lal<l

1/p

Analogously, the spaces Vél’p (K) and Wé’p (K) are defined (here in the above norms D has to be replaced by K and dz by

dz'). By Hardy’s inequality, every function u € C§°(D) satisfies the inequality
/ rPOD|y2 de < ¢ / P2 |Vul? dx
D D

for § > 1 — 2/p with a constant ¢ depending only on p and §. Consequently, the space Wé’p (D) is continuously imbedded into
W IP(D)if 6 > 1—2/p. 1§ > | — 2/p, then WP (D) C V1P (D).
The following result will be used in Sect. 4.6.

Lemma 2.1. If9] u € VIP(D), 1 <p <2 forj=0,1,2 thenu € 1/(;0;%+2/p(1)).

Proof. LetD; = {(2/,23) € D: 277 < |a/| < 27771}, By the continuity of the imbedding W?2?(Dy) C La(Dy),
there is the estimate

2/p
/ |u(a:)|2dx§c( > / 185,8§3u(1;)’f’dm> :
Do Do

la|+k<2
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Multiplying this inequality by 2~27(9=2+2/P) and substituting 2’ = 273/, 23 = ys, we obtain

2/p
/ ly /|25 3+2/p) lu(y )|2dy<c< Z / 4 |p(6 2+|ef) ’aagk )fpdy> 7
D;

|| +k<2

where v(y) = u(27y’,y3). Here the constant c is independent of u and j. Summing up over all integer j, we arrive at the
inequality

2

||1]HV02 U”V?P D)
(

5—3+42/p

k=0
This proves the lemma. O
Corollary 2.1. If 0] u € W2P(D) for j = 0,1,2, where 1 < p < 2and § > 2 — 2/p, then u € W5 3+2/p(7)).
Proof. ByLemma 2.1, the inclusion 9, u € W;**(D) = V;**(D) for j < 2 implies u € V" 3+2/ (D). Furthermore,
by our assumptions, 97, Vu € V52’p (D)3 for j = 0, 1, 2 and, therefore, Vu € V:;O 23 2 /p(D)3. The result follows. O

Let V;'/PP(I'£) and W) ™'/PP(I'%) be the trace spaces corresponding to V?(D) and W5 (D), respectively. The trace
spaces for V' (K) and WP (K) on the sides 7% of K are denoted by V; /PP (y£) and W™ /PP (4£), respectively. From
the representation of the norm in V5 1/pp (I'*) given in [12] we obtain, in particular, the following result.

Lemma 2.2. The function g € W;fl/p’p(lﬂr) belongs to V(;lfl/p’p(F’L) if and only if
/ ppO=D+1 ‘g(r, .’Eg)‘p drdrs < co. (2.2)
T+

Note that, due to the continuity of the imbedding VV51 (D) C V;;l’p (D), condition (2.2) is satisfied for every g €

W;_l/p’p(I‘ﬂ if 6 > 1—2/p. Inthe case § < 1 — 2/p condition (2.2) is equivalent to g|ps = 0, where M is the edge
of D.

2.2 Weighted Sobolev spaces in a cone

Let K be the same cone (1.1) as in the introduction. We denote by S the set My U ... U M,, U {0} of all singular boundary
points. Furthermore, for an arbitrary point 2 € K we denote by p(z) = |z| the distance to the vertex of the cone, by r;(z) the
distance to the edge M, and by r(z) the regularized distance to S, i.e. an infinitely differentiable function in K which satisfies
crdist (z, M) < r(z) < cadist (z, M) and |097 ()| < cqdist (z, M) 1ol

Let .J be a subset of J = {1,2,...,n}, | a nonnegative integer, 1 < p < oo, 8 € R, §= (01,...,0n) € R™, 6; > —2/p
for j € J\J. Then Wg%(IC; J) is defined as the weighted Sobolev space with the norm

7 1/p
u p(B—1+|a o, |P p(5 l+|a|) T5 5].

K Jal<t jeng P

Furthermore, we define Vl’p(lC) = Wl’p (K; J) and Wl’p +(K) = Wl’p (K; 0).

Passing to spherical coordlnates p,w, one obtains the followmg equlvalent norm in W 55 (IC J ):

1/p
full = ([~ WZHpa (0 iy @9)

where the norm in Wg’p (Q; J) is given by

1/p
HUHW;‘I’(Q’j) = ( / Z ’8?U($)|p ;J(ﬁ —l+|al) H T;?(Sj dg;)
L \’CI ) | <t jej Py
<lz|<

(here the function v on €2 is extended by v(x) = v(x/|z]) to the cone K). Obviously,

VM(IC) c w“”(/c J)c W”’(;C).



ZAMM - Z. Angew. Math. Mech. 83, No. 7 (2003) 439

By Hardy’s inequality, the space Wé':_ll’%/(ﬁ; J) is continuously imbedded into WZB’%(Q; J)if & = (61,...,0,), & =

(61, ---,0y,) are such that 67 — ¢; < 1forj = 1,...,nand §; > —2/p, 05 > —2/p for j ¢ J. This implies that, un-
der the above assumptions on § and &, there is the imbedding

I+1,p LT Lp iy, 7
WL (IC: ) € WER(K ).

In particular, we have Vﬁl’g(lC) = Wlﬂ’%(lC; J)if6; >1—2/pforall j ¢ J.
Let ¢j, be smooth functions depending only on p = |z| such that

“+oo
supp G € (K71, 25T N Go=1, [(00,) CG(p)] < ¢ (2.3)

k=—o00

with constants c¢; independent of & and p. It can be easily shown (cf. [8, Le. 6.1.1]) that the norm in Wlﬁ’%(lC; J ) is equivalent
to ’

400 1/p
ol = (3 16alyns)) )

k=—oc0

l, 1, Lp (1. 7 1-1/p, 1-1/p,
We denote the trace spaces for Vﬁ’g(lC), WB%(IC) and WB%(IC, J), 1l > 1, onT; by Vﬁ’g /pp(Fj), Wﬁ’g /pp(Fj) and
W;_gl /P (Tj; J), respectively.

)

3 The boundary value problem in a dihedron

In this section we consider the boundary value problem
L@)u=f inD, d*u+(1—d*)B(0,)u=g" onT'*, (3.1)

where D = K x R is the dihedron (2.1), 't = 4+ x R are the sides of D, L and B are the same differential operators as in
(1.2), (1.4), and d* € {0, 1}.

3.1 Regularity assertions for solutions of the boundary value problem in a dihedron

Lemma 3.1. Let u be a solution of problem (3.1) such that 93w € L, (C) for every compact subset C C D\M and |a| < .
Furthermore, let ¢, 1 be infinitely differentiable functions with compact supports on D such that 1 = 1 in a neighborhood of

supp ¢.
D Ifpu € Vb (D), o f € Vi >P(D), and yg* € VISR (0 > 0,1 > 2, then du € V(D) and

6l ooy < ¢ (Il om + 107Dt 2000 + 108 g ) 32)

+
2) If hu € WEE (D), of € WL 2P(D), and g € Wit T VPP(OE) 1> k41> 2,6 > 11—k — 2/p, then
ou € Wé’p (D)* and an estimate analogous to (3.2) holds for the norm of du.

Proof. For the first part we refer to [12, Th. 10.2]. We prove the second part for | = k£ + 1. By [15, Le. 1.3] (for
integer § + 2/p see [21, Cor. 2, Rem. 2]), the vector function ¢u € Wéj’p (D)Z admits the representation ¢u = v + w,

where v, w have compact supports, v € Vi1 P(D), w € WP(D)!. Thus, Lv = ¢f + [L,plu — Lw € Wi >P(D)’ N
V;:f’ (D)t ¢ V;_Q‘p (D)* (here [L, ¢] = Lo — ¢ L denotes the commutator of L and ¢) and, analogously, d*v+(1—d*)Bv €
V;Mi*l*l/p’p(l“i)e. Consequently, by [12, Th. 4.1], we obtain v € V,"(D)" and, therefore, ¢u € Wy” (D). This proves the
lemma for! = k+1. Repeating this argument and using the imbeddings Wé_Q’p(D) C Wéj’p(D) C---C W(;"__lik_kl(l)) and

+ + +
Wit —Lmlee(pE) ¢ witd “E/PPpEy .. ijlik;ﬁ/p’p(lﬂi)z, we obtain the assertion forl = k+2,k+3,. . ..
O

Problem (3.1) is connected with the following operator pencil A(\). Let

2 2
L(02,0) == > A;j0n,0s,,  BX0w,0)= > A;;jnio,,.

i,5=1 i,j=1
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Here nf are the components of the exterior normal to T'*. We define the differential operators £(\) and B*(\) depending on

the complex parameter \ by
L) ulp) =12 L9, 0) (Mulp)), BTN ulp) = dulp) + (1 - d)r' = B¥(9,0) (ru(e)),

where again r, ¢ are the polar coordinates in the (x1, 23)-plane. Then A()) denotes the operator

W2(0,0) 5 u — (L()\)u, BTN u(p)|__ B~ (\) u(gp)’@:e) € La(0,0)" x Ct x C".

»=0"
Lemma 3.2. Let ¢, 1 be infinitely differentiable functions on D with compact supports, v» = 1 in a neighborhood of
supp ¢, and let u be a solution of problem (3.1) such that Yu € V;Z’(D)Z, YO u € V(;l’p(D)e, S V;;lfl’p(’D)e, Pyt €

+
VéHd 71/1)’1)(1&)5. If there are no eigenvalues of the pencil A(\) in the stripl — 6 —2/p < ReA <1+ 1—§ —2/p, then
pu € VéHl’p(D)l and

1
gully 1.0 (pye < <Z 1907 ullyo pye + 10F lyi-10(pye + Xij ||wgillvéz+diw,p(ri)l>-
7=0

Proof. Obviously,

L(0y,0) (¢u) = F < ¢f + ¢L105,u + [L(0y,0), 6] u,

where L, is a differential operator of first order and [L(9,/,0),$] = L(0y,0)¢ — ¢L(d,,0) denotes the commutator of
L(9,,0) and ¢. By our assumptions on v and f, the function F'(-, z3) belongs t(i V;_ LP(K)! for arbitrary fixed z3. Analogously,
we have dXu+(1—d*) B(0,/,0) (pu) = G*, where GE (-, z3)|,+ € V5l+d ~L/PP (£ for fixed 3. Consequently, by [14]
(in the case p = 2 see also [7] and [8, Th. 6.1.4]), we obtain (¢u)(-,x3) € V;H’p(K)Z and

p p + p
||(¢u)('7m3)|‘vél+l,p([()z <c <|F(5 x3)||V5171,p(K)z + zi: ||G ('7$3)|V;+dil/p,p(ri)g>

with a constant ¢ independent of x3. Integrating this inequality and using the assumption that O, u € V(Sl’p (D)*, we obtain
ue VTP (D)L O

We prove an analogous result for the Neumann problem and the class of the spaces Wé’p . For this end, we study first the
Neumann problem in the plane angle K.

Lemma 3.3. Let u € Wé’p(K)e be a solution of the problem
L(0y,0)u=f in K, B¥(0y,0)u=g" on~*,

where f € Wéil’p(K)l, gt € W;_l/p’p(’yi), 0 > =2/p. Ifthe stripl — 6 —2/p < ReX <1+ 1—0§—2/pis free of

eigenvalues of the pencil A(\), then u € Wé“’p(K).

Proof. If§ > 1—2/p,then W P(K)! C VIP(K), WP (K € VITVP () and WL Y/PP (y3)E c VT ee £y,
Therefore, it follows from [14] that u € Vi ™ P(K)E n WP (K) ¢ WithP(K)L.

We suppose that § < [ — 2/p. Then u has continuous derivatives up to order m = (I — 6 — 2/p) at = 0, where (s) is the
greatest integer less than s. Let first § + 2/p be not integer, and let ¢ be a smooth cut-off function on K equal to one near the
vertex x = 0. We denote by p,,(z’) the Taylor polynomial of degree m of v and set v = u — {p,,. By [10] (for p = 2 see
also [8, Th. 7.1.1]), we have v € V;’p(K)Z. Furthermore,

L(@y,0)0 = f = L@, 0) (Com) € W~ " (K)* 0 V2P (K)".
Analogously, B*(9,,0) v+ € W;_l/p’p ()N Vél_l_l/p’p(’yi)l. Consequently, there are the representations
L(@II,O)U = Cp;;%fl + F, Bi(am/,()) v = qu + Gia

where pS,_,, ¢ are homogeneous polynomials of degrees m — 1 and m, respectively, F' € Vtsl —Lp (K)*, and Gi‘,yi €

V;fl/p’p(vi)z. Since A = m + 1 is not an eigenvalue of the pencil A()\), there exists a homogeneous polynomial pj, , ; of
degree m + 1 such that

L(02,0) poyiq = Dop_y in K, BE(0p,0)p%,,1 = ¢ onry™t
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(see [16, Le. 2.4]). Hence,
o - o l-1/p,
L(D2,0) (v = CPfuyr) € Vs PP(K)Y, and B9y, 0) (v = (phyin) € Vy PP (45)"
Since v — (p;, 11 € V;’I’(K)e and the strip! — 6 —2/p <Re X <1+ 1 —§ — 2/pis free of eigenvalues of the pencil A(\),
we conclude that v — (pS, ., € V;THP(K)* and, therefore, u = v + (p,, € Wi (K)".
We consider the case when ¢ + 2/p is integer. Since (u € WéfE(K)E, L(0,/,0) (Cu) € Wéli’p(K)Z, and B(0,/,0) (Cu) €

Wé;i/ PP (4*#)¢ with arbitrary positive ¢, we obtain, by the first part of the proof, that Cu € W, 1*(K)’. Consequently, the

vector function v = ((u — py,), where m = — § — 2/p, belongs to V1 (K)". Furthermore, analogously to the first part of
the proof, we have

L(9,,0)v € Wi " P(K) N VETEP(K)Y, BE(80,0) 0], € Wi VPP (35 n Vi PP (K

Consequently, there are the representations

L(0y,0)v="> fij() a2} +F, B*(0w,0)v],x = gi(r)r™ + G*, (3.3)

i+j=m—1

where F € VITVP(K)E, G e WEYPP (42 f, 5 g are functions in W1/PP((0, 00)) with support in [0, 1) such that

1
/ P58 £ ()P dr < o || L(Bar, 0) U”Wéfl,p(K)Z; (3.4)
0

1
ps—119s *+ p + ,
| P < e B0 0) (35)

for s = 1,2,... (cf. [8, Th. 7.3.2]). Since A = m + 1 is not an eigenvalue of the pencil A(\), there exist homogeneous
matrix-valued polynomials p; ;, qi 41 of degree m + 1 such that

L(0y,0) pij = ai@) Iyin K, B¥(9y,0)pi; =0o0n~y*, i+j=m—1,
L(0y,0) ¢, =0in K, B*(9,,0)q5 ; =r" I ony*, B¥(0,/,0) ¢k, =0on~T,

where I, denotes the ¢ x ¢ identity matrix. We set
w= Y pig@) fii (1) + D a1 (@) g (7).
+

i+j=m—1

From (3.4), (3.5) it follows that w € Wé“’p(K)é N V:;ljrrel’p(K)@. Furthermore, according to (3.3)—(3.5), we have

L(02,0) (v —w) € V; P(K)', B(0ar,0) (v —w)| o € V; /PP (y5)"

By [14], this implies that v — w € I/;Hl’p (K)* and therefore, u € Wé“’p (K)*. The proof is complete. O
Now the following lemma can be proved analogously to Lemma 3.2 by means of Lemma 3.3.
Lemma 3.4. Let ¢, ¢ be as in Lemma 3.2, and let u be a solution of problem (3.1) with d™ = d~ = 0 such that
Yu € WyP(D)!, dp,u € WEP(D), o f € Wi "P(D)!, yg* € Wéil/p’p(lji)g. If there are no eigenvalues of the pencil
A(XN)inthe stripl — 6 —2/p <ReA <1+ 1—6—2/p, then pu € W§+1’p(D)Z and

1
||¢“HW;+LP(D)£ <c (Z ||¢8£3u||wg=1’(p)f + Hd’fHWé—LP(D)f + Z Q/Jg:t”Wél/pvP(F:t)e)'
Jj=0 +

3.2 Boundary conditions on the sides of a dihedron
For the following lemma we refer to [12, Le. 3.1].

+
Lemma 3.5. For arbitrary g* € V:;Hd 7171/p’p(1"i)é, I+ min(d*,d™) > 1, there exists a vector function u € V¥ (D)
such that d*u + (1 — d*) Bu = g* on T'F and

||U||V5l#’(p)é < CZ HQiHV;+di—1—1/p,p(Fi)e (3.6)
+

with ¢ independent of g, g ™.
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We need an analogous result for the Neumann problem in the class of the spaces Wé’p

Lemma3.6. Let d¥ = d~ = 0, g% ¢ W;_l/p’p(Fi)f, § > —2/p, g¥(x) = 0 for |2'| > 1. In the case —2/p <
§ < 1 — 2/p we suppose further that there is no non-zero linear vector function p(x') = c1 &1 + caxa, c1,cz € CY, such that
BE(0,r,0)p(x") = 0. Then there exists a vector function u € VV(?’p(D)(Z satisfying Bu = g* on T'* and an estimate analogous
to (3.6).

Proof. Ifd > 1—2/p,then W;_l/p’p(Fi) C ‘/(51_1/p’p(Fi) and the assertion follows from Lemma 3.5.

Suppose that —2/p < § < 1 — 2/p. It is known that the trace of any function g% € Wél_l/p’p(l“i) on the edge M belongs
to the Sobolev-Slobodetskii space W1 ~°~2/P»(N). Conversely, any function ¢ € W'=~2/PP()) can be extended to a
function in W, ~/P7(I'%) by

(E¢)(r,x3) / d(x3 + tr) () dt, (3.7)

where x and 1) are infinitely differentiable functions with supports in [0, 1] and (—1, +1), respectively, x(r) = 1 for 0 <r <
1/2, [9(t)dt = 1. Note that in (3.7) the function E¢ can be also considered as a function on D depending only on r = |z/|
and x3. Then the operator E realizes a continuous mapping W' —0—2/P» (M) — W51 P (D). Furthermore,

/ POV EG| du < ¢ ||l sa/n(pyy Tora#0, (3.8)
D

LT B ) = o) o < ol s (39)
(see [15, Le. 1.2]). By [15, Le. 1.3], there is the representation

and G* € VPRI

= Egoi +G*, where g(}*L = gi’M

We denote by af the constant vectors B(0,/,0) z;, j = 1, 2. From the conditions of the lemma it follows that the system of
the linear equations

B:t(az/’ O) (U1.§C1 + ’Ugl‘g) = alim + @Qi'UQ = g()i(m?))

has a unique solution v1 = vy (23), v2 = va(x3), and the functions vy, v2 belong to W1_5_2/p’p(M)e. Wesetv = 1 Evy +
To Fvg. Then

BE(0,)v = B*(0,7,0) v + (A3 1nT + A3 205 ) Oxy0,
where 0,.,v = 110,, Ev1 + 120,, Evy € Vél’p(D)e and

2 2
Bi(ﬁml,o)vlri —gt = Zazj B*(8,,0) Evj|Fi + Zaj': E11j|Fi - Egf - G*.
j=1 j=1

From (3.8), (3.9) it follows that z; B*(8,/,0) Ev; € V;?(D)* and

2 2
Y af Bvj— Egy =Y ay (Bv; —v;) — (Egy — g5) € V3 7(D)".
- p

This implies B+ (9,,0)v| .. — gF € V;fl/p’p(l“i)e. Applying Lemma 3.5, we obtain the assertion of the lemma in the case
—2/p < § <1—2/p. Inthe case § = 1 — 2/p the lemma can be proved analogously using the relation between the spaces
VT VPerEy and W) TV/PP(TF) given in [21]. O

Remark 3.1. The condition of the non-existence of a non-zero linear vector function p(z’) = ¢y 21 + ca o with
B(0,/,0) p(z") = 0 in the last lemma means that A = 1 is not an eigenvalue of the pencil A(\) or A = 1 is an eigenvalue,
but the corresponding eigenfunctions are not restrictions of linear functions to the unit circle. Otherwise, for the existence of
a vector function u € Wg’p(D)Z, —2/p < 6 <1 —2/p, with Bu = g% on I'* it is necessary that g* and ¢~ satisfy certain
compatibility conditions on the edge M. For example, in the case of the Neumann problem to the Lamé system g™ and g~
have to satisfy the condition

+|M n+-g_‘M ifd <1-—2/p,

// H(r,ms) —nt g (r,x3)) dosdr < oo if6=1-2/p

(see [6, Ch.4], [16, §2.5], [21]).
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4 Solvability of the boundary value problem in a polyhedral cone

We consider problem (1.2)—(1.4) in the cone (1.1). In this and in the following section it is assumed that condition (1.6) is
satisfied for the sesquilinear form (1.5). We denote by J the set all 5 € J such that the Dirichlet condition in problem (1.2)—(1.4)
is given on at least one face I';, adjacent to the edge M;, i.e. M; C I', for at least one k£ € Jy. Furthermore, we set

djzlfOI'jng, deOfOI'jEJl.

The main results of this section are given in Sects. 4.5—4.7. In Sects. 4.5 and 4.6 we restrict ourselves to the Neumann problem,
ie, Jo=J=0. Solvability theorems and regularity assertions for the solutions to the Dirichlet and mixed problems can be
proved analogously. In the case of the Dirichlet problem or mixed problem with J = J the proofs are even easier, since then
we have to deal with solutions in the weighted Sobolev spaces Vé’?(IC)‘g with homogeneous norms.

4.1 Operator pencils generated by the boundary value problem

We introduce the following operator pencils 2 and A;.
l.Let Ho = {u € WH2(Q)*: u=0on~; forj € Jo} and

3
a(u,v; \) = Z A; j05,U - 3ijd:c,
ij=1
1<|z|<2

log 2

where U(z) = pMw), V(z) = p~ 1" 0(w), u,v € Hq, and A € C. Then the operator A(\) : Hq — HE, is defined by
u

(Ql()\) ,U)Q =a(u,v;A), u,v € Hq.

Here (-, -)o denotes the extension of the L scalar product to Hg, x Hgq.

2.LetI';, ,I';_ be the faces of K adjacent to the edge M ;. We introduce new Cartesian coordinates y = (y1,y2, y3) such that

M;; coincides with the positive y3-axisand I';, , T';_ are contained in the half-planes {y € R® : ¢ = 0}and{y € R?: ¢ = 6,},
respectively, where r, ¢ are the polar coordinates in the (y1, y2)-plane. Furthermore, we define the operators £;(\) and B, (\)

on the Sobolev space W22(0,6;)* by

_ if j+ € J
L.\ — 2 )\L A , B (\ — U(SO 1 j+ 0
s ulp) =" L(rtulp)),  Bju () ule) { A B(ru(p)) i e € Jh.
By A;(\) we denote the operator
W2(0,6;) 3 u — (£;(Nu, By, (N ul@) |,y B (N ul9) |, ) € L2(0,6;)" x T x C".

As is known, the spectra of the pencils 2 and A; consist of isolated points, the eigenvalues. We denote by )\:(Lj ) the eigenvalue

of the pencil A; with smallest positive real part and set ;1; = Re A(lj ),

4.2 Reduction to homogeneous boundary conditions
The proof of the following lemma is given in [16, Le. 4.2] for the case p = 2. The proof for p # 2 proceeds analogously.
Lemma4.1. Let g; € V;—gdj_l_l/p’p(Fj)zforj =1,...,n, wherel > 2if J| # 0 and | > 1 else. Then there exists a

vector function u € Vﬁl’g(lC)e such that uw = g; onI'; for j € Jo, Bu= g; onT'; for j € Jy, and

n
||U||v;:§(iqf <c J; ”gj”Vl;‘J}djilil/p’p(Fj)"‘ “.1)
with a constant c independent of gj, j = 1,...,n.

By means of Lemma 3.6, we can prove an analogous result in the space W;?(IC; J )E.

Lemma 4.2, Let g; € V;}l/p’p(Fj)Z forj e Jo, g; € W;_gl/p’p(Fj;j)z for j € Ji. For j € J\J we assume that
0; > —2/p and that X = 1 is not an eigenvalue of the pencil A;j(\) if §; < 1 — 2/p. Then there exists a vector function
u € W;:?(IC; J)* such thatuw = g; onTj for j € Jo, Bu= g; onT; for j € Jy, and

lullyy2r e, pye < C( E 951l 21700 + E Ngillypi-1/m 5 >
(K - (T5)* Jlwt=1/ep(p;.g)e
8,8 icTo 8,8 J jed 8,8 J
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Proof. Let( besmooth functionson K depending only on p = || and satisfying (2.3). We set hy, j (z) = (x(2F2) g; (2% )
for j € Jo and hy j(z) = 2% (x(2%z) g;(2%2) for j € J;. The support of hy, ; is contained in {z : 3 < |z| < 2}. Conse-
quently, by Lemmas 3.5 and 3.6, there exists a vector function wy, € W;:?(IC)Z such that wy (x) = 0 for |z| < 1/4 and |z| > 4,
wy, = hy,; on L' for j € Jo, Bwy, = hy j on L' for j € Jp,

||wk||W;i§(’C)é >~ (Z ||hijV2 1/p, P(l—‘ )e + Z ||hk-7||W1 1/p p(F J)£> (42)

j€Jdo jE€

where c is independent of k. From this we conclude that the function uy,(z) = wy,(27*x) satisfies uy, = (xg; on T for j € Jo,
Buy, = (ig; for j € J; and the estimate (4.2) with (g, instead of hy, ;. Thus, u = > uy, has the desired properties. O

4.3 Two regularity assertions

By means of Lemma 3.1, we can prove the following two lemmas. Here 1 denotes the tuple (1,1,...,1).
Lemma4.3. Let u € V;’pl 5 ll(IC)g be a solution of problem (1.2)—(1.4) with f € V;_;’p(lC)e and boundary data

;€ VHd 171/17’17(1“]4)5, 1>2 Thenu € V[j’g(lC)Z and

HUHV[;%](ICj)Z <c ||UHV0P P -(IC J)t + ||f||V] 21)(,@2 +z; Hg]H l+d —1-1/p, p(r e
J

Proof. Due to Lemma 4.1, we may assume, without loss of generality that g; = 0 for j = 1, ..., n. Let (; be smooth
functions on K depending only p = |z| and satisfying (2.3). We set N = Coe14+CetCrs1, Cr(@) = Ck (2 x) ik (z) = n(2F2),
and v(z) = u(2"z). The support of ¢y, is contained in {x : % 5 < |x| < 2}, and the derivatives d2(}, are bounded by constants
¢o independent of k. Consequently, by the first part of Lemma 3.1, Gpv € VA 6(IC) and

[ (P v v

B—1,6—1T

where cis independent of k. Multiplying this inequality by 2¥7(#=D+3% and substituting 2*2: = y, we obtain the same 1nequa11ty
with (, 1y, instead of C &, Nk for the vector function u. Now the lemma follows from the equivalence of the norm in W (IC J )

with the norm (2.4).

The proof of the following lemma proceeds analogously.

Lemma 4.4. Letu € W; pl+k F_(i— k)l(IC; J)!, wherel >k >0,1>2, and 6; > 1 —k—2/pforj & J. If w is a solution
of problem (1.2)-(1.4) with f € Wlﬁg’p(lC, N gj € W;?rlfl/p’p(l"j; J)., then u € Wg%(IC; )t and

Febwirocne < e | lulbwer oo+ Wb wmwjzlngjn g1 e
4.4 Estimates of Green’s matrix

Let « be a fixed real number such that the line Re A = —x — 1/2 is free of eigenvalues of the pencil 2(. Then, according to [16],
there exists a unique solution G(z, £) of the problem

L(0:)G(x,8) =6(x = &) Ly, z,§£ €K, (4.3)
G(z,6) =0, z€ely, £€K, jE Jy, 4.4)
B(0;)G(x,6) =0, xz€ly, €k, je 4.5)

(Ip denotes the ¢ x ¢ identity matrix) such that the function z — ¢ ( o 5‘ ) G(z, &) belongs to the space Wig (K)£*¢ for every

fixed ¢ € K and for every smooth function ¢ on (0, 00), {(t) = Ofort < 1,((t) = 1fort > 1. Wedenoteby A_ < Re A < A,
the widest strip in the complex plane which contains the line Re \ = —x — 1/2 and is free of eigenvalues of the pencil 2.
By [16], Green’s function G(z, £) satisfies the following estimates:
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0507 G(,€)| < clo— g1 =N (4.6)

it [€]/2 <] < 2[¢], & — & < min(r(z),7(£)),

o e T (@) N (€ )
0501 G (x,)] < el — g1 '”'jg('xj_g) ]1;[1<|~T]—€|> @.7)

it [€]/2 <] <2[¢], [ — & > min(r(z),7(£))

0207G(a,€)] < a1 g 71—l H (éj))é (éf’)é @8
L 4
it o] <[¢)/2
0209 G 2, )| < clafA-lal*e |§|—1—A-—'"—Ef[l (|ff>)5 (éf)f @9
L M
it 2] > 2.

Here 6, , = p1j — |a| — e for j € J and &, = min(0, u; — |a| — ) for j € J (¢ is an arbitrarily small positive number).
Remark 4.2. In some cases, when p; = 1, estimates (4.7)—(4.9) can be improved (see [16, Rem. 4.3]). Let the following
conditions be satisfied for a certain index j:

(i) The strip 0 < Re A < 1 does not contain eigenvalues of the pencil A;(\) and A = 1 is the only eigenvalue on the line
ReA = 1.
(ii) The eigenvectors of A;(\) corresponding to the eigenvalue A = 1 are restrictions of linear vector functions to the unit
circle, while generalized eigenvectors corresponding to this eigenvalue do not exist.
(iii) The ranks of the matrices A".A and ' AN, where

Al,l A2’1 AS,I " . N
A= Aro Azo Az and N = n17]4 nzlé n?llf
nily nyly ngly

A1z Asz Aszgs

(nt, n~ are the normal vectors to the faces I’ 4, and I';_ adjacent to the edge M, I, denotes the ¢ x (¢ identity matrix,
and AT denotes the transposed matrix of V), coincide.

(2)

Then the number p; = 1 can be replaced by the real part y;

Rel=1.

Note that the rank of the matrix V' A determines the number of necessary compatibility conditions for the boundary data
gt and g~ on the faces I';, and I';_, respectively, if the solution is assumed to be smooth. Indeed, the boundary conditions on
these faces can be written in the form (nlil 7, nQiI ‘5 n?jfl 1) AVu = g*. Here Vu is considered as a column vector containing
the vectors 0, u, k = 1,2, 3. If u is sufficiently smooth, then the traces of Vu and gjE on M exist and we obtain the algebraic

system
gt
N.AVU|M7 = _ ’
’ g M;

for Vu|az,. Hence the vector (g7 (), g™ (x))” must belong to the range of N A for every x € M;. Furthermore, for the
existence of an eigenvector of the pencil A;(\) corresponding to A = 1 which is a restriction of a linear vector function to the
unit sphere it is necessary and sufficient that there exists a linear vector function

u=(nt-z)c+ (n -x)d, c¢,deC

of the first eigenvalue of the pencil A;(\) on the right of the line

(i.e., a linear vector function vanishing on M) satisfying the homogeneous boundary conditions B +u=0o0on I';_ . This means
that (¢, d) is a solution of the algebraic system

()= (2)

Therefore, under condition (ii), the number of eigenvectors corresponding to the eigenvalue A = 1 is 2¢ — r, where 7 is the
rank of the matrix A" AN

Let us mention that conditions (i)—(iii) are satisfied, e.g., for the Neumann problem to the Lamé system and in anisotropic
elasticity if the angle 6; at the edge M; is less than 7. Here the matrices A" A and V' AN have rank 5.
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4.5 Ecxistence of solutions to the Neumann problem
In this subsection we prove the existence of solutions to the Neumann problem in the space W;:g(IC)Z, where (3 is a real number
such that the line Re A = — 3 +2 — 3/p s free of eigenvalues of the pencil 2 and the components J; of § satisfy the inequalities
max(2 — pu;,0) <d0;+2/p<2, j=1,...,n. (4.10)

Lemmas 4.1 and 4.2 allow us to restrict ourselves to homogeneous boundary conditions.
We introduce the operator S which is defined on Wg’g(IC)Z by

(55)@) = [ Gla.&)- £,
K
where G(z, £) is the Green matrix introduced in the foregoing subsection with Kk = 3 + % - % We show that S continuously
maps the space WO p(IC)Z into W;?(IC)Z.

Lemma 4.5. Let Cr k = 0,%£1,..., be smooth functions on K depending only on p = |x| such that (2.3) is satisfied.
Suppose that the line Re A\ = —(3 + 2 — 3/p does not contain eigenvalues of the pencil 2| and that for the components of § the
inequalities (4.10) are valid. Then for arbitrary f € Wo’g(lC)e and |k — 1| > 3 we have

||CkSle||W2 p e <c2” k=t ||<lf||WO p(lC)e

with positive constants c and o independent of k, [, and f.
Proof. We have to show that

||(53Ck)5§5€lf||ww _ye S c27Ihle ||le||w0P(1C)@ .11

—2+|al+]v],8

for |a| + |y| < 2, |k — ] > 3. Since |97 (x| < 27F11, we get, by means of Holder’s inequality,
1@AESA s e

B—2+|al+|v].5

péj
<c / 221D T ( )

K
2k =1 |g| <2k +t

pé;
— a T;\T
< ellGf o geye / [afpB-2+aD T <;()>
o ||

K
2kl <|a| <2kt

(] T " oot

2[—1<|€|<2l+1

dzr

/aa (2,6) Q) 1(€)

where ¢ = p/(p — 1). Let k > | + 3. Then |{| < |x|/2 for 2 € supp (k. , & € supp ¢; and (4.9) implies
||<a;/Ck)8:S<lf||p 0.p _(K)*

/3 2+l +v],8

€ 0;+0;5,a
< cllGf Iy o.n o) / |[P(B-2+A- +) H( |x| p( ) i
8,0

K
2k =1 || <2k !

—qd; p/q
([ eI (BE) )

2l—1<‘€‘<2l+1

where §; o = min(0, pt; — || — €). Under our assumptions on &, we have p(0j + 0j.o) > —2for || < 2 and —gd; > —2.
Consequently,

IOFGIOSA o oy < 207D g

0,p VAl
B 2+ |al+|v],8 Wﬁ,g(’q

where 8 — 2+ 3/p+ A_ < 0. This proves the lemma for k > [ + 3. Analogously, it can be proved for k <[ — 3. O
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For the proof of an analogous result in the case |k — I| < 2, we need the following lemma.
Lemma 4.6. Let D be the dihedron (2.1), and let r(x) denote the distance of x to the edge. If « + 3 > 3 and < 2, then

/ € — 2 r() P de < cr(z)*—
\E—w\gr(w)/?)

with a constant c independent of x.

Proof. The substitution y = z/r(x), n = £/r(x) yields

/ €~ a7 r(e) P de = r(x)> / I — =2 r(m)~" d.
D D
[E—z|>r(x)/3 [n—y|>1/3

Since r(y) = 1, the integral on the right is majorized by a finite constant c. This proves the lemma. U

Corollary 4.1. Let cy, ca, o, 34,7, 0; be nonnegative real numbers, 3; +v; < 2and3—a—v;+90; <0forj=1,...,n
Furthermore, let K, = {€ € K : c1]z| < |€] < eo||, |€ — 2| > r(z)/3}. Then

S M) ) ()

n ) 3—a—;
<cloP o I <’"ﬂ(w)> (4.12)

A

with c independent of x.

Proof. The left-hand side of (4.12) is equal to

3 “/Iy n|~ 7 (|yl( 7>7|>_6j ﬁ H (|y nl) o 4.13)

Jj=1 Jj=1

where y = x/|x|, n = £/|x|. Without loss of generality, we may assume that M is the nearest edge to « and y. If 7 lies in a
neighborhood of another edge M}, then the integrand in (4.13) is majorized by ¢ 7; () =% =7 71 (y) =%, where —6; > 3—a—;.
If M is the nearest edge to 7, then an upper bound for the integrand is

cly — |7 E gy () TPy (y) 7O

Applying Lemma 4.6, we obtain (4.12). O
Lemma 4.7. Let (, (3, and b be as in Lemma 4.5. Then for arbitrary f € Wg’g(lC)e and |k — 1| < 2 we have

||CkSle||W2'E(1c)é <c ||le||W°'E(;c)é (4.14)
3,5 3,5

with a constant c independent of k, I, and f.

Proof. Let x be a smooth function on [0,00), x(t) = 1 for 0 < ¢ < 1/2, x(¢) = 0 for ¢ > 3/4. We set x " (z,&) =
Xz = €l/r(), x~(2,§) = 1 = x*(x,€), and

u(z) = / (@, €) G, €) GlE) F() de.
K

Then S¢ f = u;” + u; . Note that |09 x* (z, €)| < ¢ |z — &|~|*l with a constant ¢ independent of z and .
We show first that

||Ckur||vovp . L(K)¢ <c ||<lf||v°vf(1c)fv (4.15)
B—2,0—-2 8,8

where 2 = (2,...,2). From Holder’s inequality and (4.6) it follows that
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p<c/lclx—£|‘1|x+(w7€)Cz(€)f(€)\pd£( / |x—§|—1d§)p1

|z —¢|<r(z)

/K (. €) G.€) GE) £(6)

< er(z)2e) /’C & — €7 |y, €) ) £ de

for & € supp (g Since 27|z < €] < 2%x| and ¢1 rj(z) < 7;(€) < corj(z) for & € supp y, € € supp ¢ N supp x T (x, ),
the last inequality implies

”Ckul ||VU;D ()C)
B— 25 3

gc/ P52
; 11

j=1

p(8;—2)
<Tj(m ‘Ck |p 2(17 1)(/ |x_€| 1|X x é— Cl f(é—)’pdé-> dr

||

”éf )M N P‘”!Cz(ﬁ)f(ﬁ)!p( / x—ﬁ‘ldx>d5

|z —€[<3r(£)

< c/ |§|p(ﬁ—2)
; 11

j=1

L\ el

Here we used the inequality r(x) |z[ T, 7j(2/|z[). Analogously to (4.15), we can prove that

(B-1)41 n r(x p(6;—1)+1 L
[ e H(m) G0 di < €60 (4.16)
y L |

<.

no p(d; 2)
<c [ lep2 H( &) (O [6©) O < 16 0y
<ec

forv =1,...,n.Indeed, for —1 + 3/p < o < 2/p, = € supp (, we have

<( Ix—£|2|Cz(£)f(§)|d€)p

K
4|lxz—¢&|<3r(x)

p

| [ o @ Gl e (€ de

A GG |z§|q<2a>d§)“

K T— (
4|z—£|<3r(x) Ho—¢|<8r(=)

< er(a)p(te=3 / & — €77 G(e) £(6)] de
4|$-§\K<37’($)

where ¢ = p/(p — 1). Consequently,

p(d;—1)+1
/ ‘x|p(ﬁ 1)+1H( ] ) |C/cawiuﬂpda:

n

p(d;—1)+1
<o [lren IL(5F) et a@nar ([ e-arar) d

I
lz—&|<3r(&)

n p(0;—1)+1
<e [ lepe H( ) (GO SO < eI Wy

Next we show that

||Ckuz_||ngg(;c)e = C”leHW[‘;:gi(IC)‘f' “.17)

For this end, we consider the norm of (97 () 02w, in Wg p2+‘a|+w 6(IC)Z for |a| + |y| < 2. For |a| = 0 we have

(0160 ur | < cakoh ( /K o — & [y (6 G©) £(©) dg)
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<crml [ oo 1H< ﬂ))m aesora( [ e-er 1H( " )6 df)p_l-

K
2l-lo|g|<al+t

Substituting z/|x| = y, /|x| = 1, we obtain

V(G5 I A 1 (€

K 4 K
2l <gl<2 27 <<

) —qd;
> dn < c2%F

for x € supp (. Therefore,

||(8;’Ck) u;HWOP _(K)*

B=2+|v[.8

o [ ([ T onorae)e

K
2kl x| <2kt
pdj
”“")> dx) de

cors [l T (%) woser ([ e-enTT(%

K
2kl || <2k +t

<c Hle”WU p(’C

We consider (07(;)05u; for1 < |a| < 2. By our assumptions on 5, there exist real numbers s; and t; such that

2—|al —9;.q . ia 2
max(éj,M><Sj<m1n(5j+2—|a|+a|+%,,>,
q p q

6,
OSth2—|Oé| and Sj—éj—m<tj<8j—(5j,

where 0; o = min(0, u; — |a| —€), ¢ = p/(p — 1). Using (4.7), Holder’s inequality and (4.12), we obtain

|(3¥<k)3§Uz‘(x)|p§c2kM< / |z—£|1'“H<fj(_ﬁ>% |Cz(€)f(€){pd§>p

lz—=¢|>r(z)/2

<extonl |x—§|_1_|aH(|;j£x2|) T(5) ate e ae

K
lo—€|>r(x)/2

g ( [ g Il (;}f@)s Il (wé'&))qsf‘ d£>“

|x]/16< €] <16]|2|
lz—&|>r(x)/2

< c2 kphl < 2 |QH< |x)>2|aqu>p1
[ e ) woser

K
le—¢&|>r(x)/2

Consequently,



450 V.G. Maz’ya and J. RoBmann: Weighted L,, estimates

61'78]‘ +(p—1)(2— |«
A —— ka2 1 () P05 la)
x 6k ) Uy U WUVP ()C)zf ‘
K J

B—2+|al+|~],8 ||

2kl || <2kt

([ el <|;f(_x§|)6j'a 11 (éf)) a(€) S0 de ) o

K
le—¢[>r(x)/2

<C2k(|a_2)/,<|§|pﬁn(rj|é£)) ’ G©) )

p(0;—s;+t;)—2+|c] e ),
dx ) d
) 11 (pg) o)

p(8;+t;)
) GO SO e < el Ty

() el

2k =1 || <2k !
|[z—€&|>7(£)/3

< c/’CISIPB];[ (”ég)

This proves (4.17). Let np, = Cx—1 + Cx + Cra1. Since L(ulJr +u; ) = (;.f we have nk.LulJr =G f —mLu; € VﬂO”f(IC)e and

||771<:LU1+‘|V;§(;<)£ < C”le”vg;g’(lc)@‘ (4.18)
Furthermore, 7, Bu;” = —nBu; € Wg;l/p’p(l“j)z. This together with (4.16) yields 1, Bu,” € Vﬁljgl/p’p(Fj)f and

||77/<?Bul+”\/ﬁl,;l/zap(rj)z < cllGfllver iy (4.19)
(see Lemma 2.2). From (4.15), (4.18), (4.19), and Lemma 3.1 we obtain

||Ckufr||v;;§(zc>e < cllafllvorgye-

Here the constant c is independent of k (cf. proof of Lemma 4.3). The last inequality and (4.17) imply (4.14). 0
The following lemma is proved in [14].

Lemma 4.8. Let X, J be Banach spaces of functions on K in each of them the multiplication with a scalar function from
C§e(K\{0}) is defined. We suppose that the inequalities

+oo 1/p +oo p
||f||x261< 3 ||<kf||§) R T
k=—o0 k=—o0

are satisfied for all f € X, u € Y. Furthermore, let O be a linear operator from X into ) defined on functions with compact
support in K\{0} such that

GO Sflly < ez 27 =G fllx

with positive constants ¢, o independent of k, I, and f. Then

10Flly <cllflx

forall f € X with compact support in KK\{0}.

As a consequence of Lemmas 4.5-4.8, we get the following statement.

Theorem 4.1. Suppose that the line Re A = —f( + 2 — 3/p does not contain eigenvalues of the pencil 2 and that the
components 8; of 5 satisfy condition (4.10). Then for arbitrary f € W;:g(lC)f and g; € W;}l/ pp (I‘j)‘Z there exists a solution
u € W;l’g,(lC)z of problem (1.2), (1.4) satisfying the estimate

n
w2y < e (1 lwonge + g l85ll 120550,

with a constant c independent of f and g.
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Proof. From (4.10) it follows that 6; > 1 — 2/p or p; > 1. Hence, by Lemma 4.2, there exists a vector function
v E W;:g(l@g such that Bv = g; on I';. Thus, we may assume, without loss of generality, that g; = 0. Then u = Sf is

a solution of problem (1.2), (1.4). Since the assumptions on & and ) in Lemma 4.8 are satisfied for X = Wg’g(lC)f and

V= W;?(IC)E, it follows from Lemmas 4.5 and 4.7 that the operator S continuously maps VVE‘?(IC)Z into W;?(IC)Z. This
proves the theorem. ' ’ O

4.6 Uniqueness of the solution to the Neumann problem

In the case p < 2 we will prove the uniqueness of the solution in Theorem 4.1 by means of Corollary 2.1. For this end, we pass
to the coordinates ¢, w, where ¢t = log p = log|z| and w = z/|z|. We denote by Wé’p (R x Q) the weighted Sobolev space
with the norm

! , 1/p
— J p
sy = ( S5 10800 gy )

For an arbitrary function v € Wé’p (R x Q) we define by v. the mollification with respect to the variable ¢ of v, i.e.,

veltw) = [ vlrw) et = 7)dr,
R
where h.(t) = e~ 'h(t/e) and h is a smooth function with compact support, [ h(t)dt = 1. Since
0201 v (w, 1) = / (0208 v) (w,7) K9 (¢ — 7) do,
R

it follows that &/ v. € W;” (R x Q) forv € WE"(R x Q),e > 0,5 =0,1,....

Lemma 4.9. Let 1 < p < 2, and let the conditions of Theorem 4.1 be satisfied. Then the homogeneous boundary value
problem (1.2), (1.4) has only the trivial solution u = 0 in W;?(IC)L].

Proof. Since W;g(IC) C W;%’, (K) if 6; < ¢} for j = 1,...,n, it suffices to prove the lemma for the case when
max(2 — p;,1) < §; +2/p < 2.

Let u € W;:g(lC)é be a solution of the homogeneous problem (1.2), (1.4). From Lemma 4.4 it follows that u €
W;fl’ngT(lC)Z. We set v = p?~2+3/Py_ Then, in the coordinates (t,w), where t = logp, p = |z|, w = x/|z|, we have
v E W;J’FPT(R x )¢ and, therefore, & v. € W;’J’rpf(R x Q)¢ for j = 0,1,2,....Furthermore, both v and v, are solutions of the
problem

L(w,0p,0: —+2-3/p)v=0, teR weq,
B(w,0,,0i —B8+2-3/p)v=0, teR wery;,j=1,...,n,

where £, B are defined by (1.7). Using Corollary 2.1, we get v, € W;/’Q(]R x )¢, where 6 = d0; —2+2/p <0,
ie., ve € Wal’z(]R x Q). Consequently, the function u. = p~?#+273/Py_ belongs to Wﬁl_1+3/p_3/276(lC)Z (in Cartesian
coordinates). Since u. is also a solution of the homogeneous problem (1.2), (1.4), we conclude from [16, Th. 4.3] that u, = 0
for all € > 0. This implies v = 0. O
Theorem 4.2. Suppose that the line Re \ = — 3+ 2 — 3 /p does not contain eigenvalues of the pencil 2, and the components
05 of 9 satisfy condition (4.10). Then problem (1.2), (1.4) is uniquely solvable in W;’?(K)efor arbitrary f € W/g’g(/C)[ and
1-1/p, ’ :
g5 € W FPP (D,
Proof. For1l < p < 2 the assertion follows immediately from Theorem 4.1 and Lemma 4.9. Let p > 2 and let
u € W;’g(lC)E be a solution of the homogeneous problem (1.2), (1.4). By ¢ we denote a smooth cut-off function on K equal

to one for |z| < 1 and to zero for |z| > 2. Furthermore, we set 3’ = 8 — 2 + % and 8% = 6; — 1+ % forj =1,...,n. Then,
by Holder’s inequality,
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2(8' +e—2 ry )20 2
[ I () e on e
K

\ P3; N\ —2+¢e 2/q
< </ pp(ﬁ—Q-HDLDH (m) |aa(¢u |p dl‘) ( p—3+qs (TJ) dm> ,
= . p p

K
lz|<2
where £ + 2 = 1. The second integral on the right is finite if ¢ > 0. Consequently, du & W;ie Fi 1(IC)Z. Analogously, we
2,2
obtain (1 — gi))u € Wg/,Ej,Ef(’C) . This implies
0,2 1/2,2
L(¢u) = ~L((1 = ¢)u) € W3? o L(K)' and B(gu)lr, € W)/*%, (L))"
From this and from [16, Th. 4.2] it follows that ¢u and, therefore, also u belong to W;ig LET(’C)Z . Hence, by Theorem [16,
Th. 4.1], u = 0. The proof of the theorem is complete. ’ O

The solution in Theorem 4.1 was constructed by means of the Green function introduced in Sect. 4.4 with kK = 5 + % - g

In fact, we can suppose that « is an arbitrary real number such that A_ < —x — 1/2 < A4, where A_ < Re A < A is the
widest strip in the complex plane which contains the line Re A = 2 — § — 3/p and is free of eigenvalues of the pencil 2A(\).
This implies the following regularity assertion for the solution .

Theorem 4.3. Suppose that there are no eigenvalues of the pencil 2 in the closed strip between the linesRe A = 2—[3—3/p
and ReX = 2 — ' — 3/p/, and that the components of 6, 0’ satisfy the inequalities max(2 — p1;,0) < §; +2/p < 2,
max(2 — p;,0) <87 +2/p" <2forj=1,...,n.If

FEWIRIK) AW (K)' and g; € W) P2y 0w, 27 (1)

forj =1,...,n, then the solution u € W;’p( ) of problem (1.2)—~(1.4) belongs to the space Wﬂ,’pé, (K)*.
Remark 4.3. If the assumptions (1)—(iii) of Remark 4.2 are satisfied for some j, then p; = 1, and in the conditions
max(2 — pu;,0) < 5 +2/p < 2, max(2 — p;,0) < & +2/p" < 2 of Theorems 4.2 and 4.3 the number j1; can be replaced

by the real part u 0f the first eigenvalue of the pencil A;(X\) on the right of the line Re \ = 1. However, then the boundary
data must satisfy a compatibility condition on the edge M; (see Sect. 4.4) if 6; +2/p < 1 and (5;- +2/p’ < 1, respectively.

4.7 Solvability of the Dirichlet and mixed problems
We consider now problem (1.2)—(1.4), where f € Wg’g(lC)Z, g; € W;—gdj_l/p’p(Fj; J)!forj=1,...,n. Here

dj =1 forje€Jy, dj=0forjeJ.

Due to Lemma 4.2, we can restrict ourselves to the case g; = 0. Then the solution of problem (1.2)—-(1.4) is given by

- / G, €) f(€)de,
K

where G(z, £) is Green ’s matrix introduced in Sect. 4.4 with k = 3 + 3 — % The following theorem can be proved in the
same way as for the Neumann problem by means of the estimates (4.6)—(4.9).

Theorem 4.4. Let f € Wg:g(/C)é, g; € W;:gdj_l/p’p(Fj; J) forj =1,...,n. Suppose that the lineRe A = 2 — 3 — 3/p
does not contain eigenvalues of the pencil A and that the components of § satisfy the inequalities
2—p;<d;+2/p<2forje J, max(2 — p;,0) < 6; +2/p <2 forje J\j (4.20)
Then problem (1.2)—(1.4) has a unique solution u € W;:?(IC; j)l.

Furthermore, a regularity assertion analogous to Theorem 4.3 holds.

S Weak solutions of the boundary value problem

5.1 Existence of weak solutions to the Neumann problem

Let Vﬁl’Q(IC) = Wé%(IC) be the closure of the set C5°(K\{0}) with respect to the norm

/2
||U||Vl2 x) = (/ Z p2([3 I+]al) ’aa ‘ dx)

|| <1
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and let VB_I’Q(IC) be the dual space of ng(IC) It can be shown (cf. [1, Th. 3.8]) that every functional F' € Vﬁ_1 %(K) has the
form

3
v)z/fovdx—FZ/fj@wjvdx (5.1
K P

forv € Vj; (K), where fy € Vﬂofl(lC) and f; € VBO’Q(IC) for j = 1,2,3. In [16, Th. 4.3] it was proved that the problem
bic(u,v) = F(v)  forallv € V23(K) (5.2)

has a unique solution u € Vﬁ1 2(K)* for arbitrary F € Vﬁ_m(IC)" if the line Re A = —f — 1/2 does not contain eigenvalues
of the pencil A(\).
Now we are interested in weak solutions of the Neumann problem in the weighted Sobolev space W (IC)E We denote

-0

which have the form (5.1) with f; € V;erl 6+1( )and f; € VIBO}:(IC) for j = 1,2,3. Note that Vj;}ig(lC) = Wig’ié(lC)

if the components 5, of & are less than 1 — 2/p. Hence Vﬁ_gl.’p (K) is also the dual space of Wi; _5(K)ifé6; <1—2/pfor
i=1. ’ |
Our goal is to prove that for arbitrary F' € V_1 P(K)* there exists a unique u € Vﬁl ’§ (K)* satisfying

by Vﬁ 3 P(K) the dual space of V1 S(’C) q = p/(p — 1), or, what is the same, the set of all functlonals on V1 -(K)

bi(u,v) = F(v)  forallv e V_lg_g(IC). (5.3)

To this end, we consider the vector function
3
- | 6.6 forde+ 3 [ 26,600.6) rice) e (5.4
j=1

where fo € V50+p1 PG ) f; € VBO’(?(IC)Z for j = 1,2,3, and G(x,&) is the Green matrix introduced in Sect. 4.4 with
k=f+ 5 — 5. Our goal is to show that the vector function (5.4) belongs to V; ’§ (KC)* if there are no eigenvalues of the pencil

2 on the line Re \ = —3 4+ 1 — 3/p and the components of 5 satisfy the inequalities
max(l —p;,0)<d;+2/p<l forj=1,...,n. (5.5)

Let the operator S, be defined on Vﬁo’é’ (K)¢ by

@:A&ﬁm@ﬂoa (5.6)

Lemma 5.1. Let (i, k = 0,%1,..., be smooth functions on K depending only on p = |x| such that (2.3) is satisfied.
Suppose that the line Re A\ = —(3 + 1 — 3/p does not contain eigenvalues of the pencil 2 and that for the components of § the
inequalities (5.5) are valid. Then for arbitrary f € V;?(IC)E, la| <1, and |l — k| > 3 we have

I6k02 S fllyor — geye < 27NN o e
p-1tlal,5 8.5
with positive constants ¢ and o independent of k, 1, and f.
Proof. By means of Holder’s inequality, we get

||€k6a5 leHpOp L(K)*

Volitials

p
(B=1+|al)
= [l THAP) i
j2
S el ) (=2

([ een

K
2l clg| <2ttt

/W%]xﬂg®ﬂ0%pm

—qd; p/q
) 020, G (z, €)|" dg) dz,
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where ¢ = p/(p — 1). Let k > | + 3. Then |{| < |x|/2 for 2 € supp (k. , & € supp ¢; and (4.9) implies

(03 £ 5+§70
160256 0s e < 16 oy / [P 1+A+>H(|x‘ )Pt gy

B—1+]|c|,§
K
2k =1 <|g| <2k H?

~a(prEA-to) m(ﬁ))q(%—m )p/q
(e () )

K
2l-lo|g|<2l+?

where 6; o = min(0, u; — |a| — €), 6;,1 = min(0, u; — 1 — ). Under our assumptions on 5, we have p(6; + d;.) > —2 for
la| < 1and ¢(d;1 — 6;) > —2. Consequently,

||Ck3§‘Sjle||Vop ey < 2kp(B=143/ptA_+e) olp(=f+1-3/p—A_—c) ¥l

0,p 2
B—1+|al,8 v ,E(K)

This proves the lemma for £ > [ + 3. Analogously, it can be proved for £ <[ — 3. O
Lemma 5.2. Let (i, (3, and & be as in Lemma 5.1. Then for arbitrary f € V;?(IC)E and |l — k| < 2 we have

Gk S5 llwrepeye < llGfllvor ey (5.7
8,6 8,8

with a constant c independent of k, , and f.
Proof. Let x* be the same functions as in the proof of Lemma 4.7, and let

ut(z) = / 3 (@,€) B, G, €) Q) F(€) de.
K

Then S;(; f = u;" + u; . We show first that
rye < cllGfllyorgeye- (5.8)
8,8

pg/K|x—§|—2\x+cl<e>f<«s>!’)ds( / x—£‘2d€>p

lz—¢|<r(z)

< er(zp! /’C & — €72 [x* (@, ©) G€) FO) de

Ik lyor
B—1,6—T

From Holder’s inequality and (4.6) it follows that

-1

] [ 30,6l a6 £

for x € supp (x. Since 274|z| < [¢] < 2*|z| and ¢; i (x) < 7;(€) < cori(x) for x € supp (i, £ € supp §; Nsupp x T (z, ), the
last inequality implies

||Ckul ”VOP = ()C)Z

/KW“)H(QT) e ([ - o e 9 6 o a )
c /,< |§|P<ﬁ1>f[< ) e r(er! !cl(f>f(5>|”( / |x€|2dx>d§
=t |z—€|<3r(€)

<f |§|WH O™ oo @) e = el
Ié“\ : = 6T gye-
Here we used the inequality r(z) < c|z|[[, r;(x/|z|). Next we show that

Skt Nlwregeye < cllCufllyor oye- (5.9)
8,8 8,0

By our assumptions on 5, there exist real numbers s; such that

max(’l,di ’1><si<m1n< + ’1,5i+ + ’1>,
q p q p
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where 6; 1 = min(0, p; — 1 —€), ¢ = p/(p — 1). Using (4.7), Holder’s inequality and (4.12), we obtain

G (20, 0 (2 )l’”sdck(x)”( / |x—£|—3H(J(_xg)émﬂ(é’fg)ﬂ)&i’l |<lf|”df)p
J l ;

lz—&|>r(z)/2

coaer [ - T2 () (A e

K
le—€|>r(x)/2

([ ) ) )

|2|/16<]€|<16]z]
|z—&[>r(x)/2

s clate 'pH( 2 H(a:(—xé)éH(u@a)éH(S)) el

K
|z —¢&|>r(x)/2

Consequently,

16k 0, uy I, OP(,C)L; < /|$|pﬂH< 2] )p(éi_Si)Ck(x”p
([ e (2) () () e sor ) a

K
le—&|>r(z)/2

<e [ |£I”5H( D e sl

( / |<k<x>|p|x—f|-31i1(f(x

K
le—€[>r(€)/3

Estimating the inner integral on the right by means of (4.12), we obtain

)T ) )

K3

||Ck8z,/uf‘|wov€(n)z < C||leHV°vE(;c)2~
8,5 5,8
Analogously, the inequalities
lluy 3zu<kHW0’e(;c)/z < C||leHv0’e(;c)é and ||Ceuy (|00 e S C||leHv0’e(;c)l
8,6 8,6 B—1,6 8,6
can be shown. This proves (5.9). By the definition of u;” and u; , we have
b;c(u?_ +u; v) = / af- &Cjﬁdx
K
for all v € C§°(K\S)* and, therefore,
bic(u,v) = F(v) forallv € C5°(K\S)*, where F(v / G f - 0n,vdx — bc(u; ,v).
Letny, = Cr—1 + Ck + Cot1. Then nu;” € Vo’p1 e 1(IC)Z and 0, F € Va_,(s’ (KC)* for | — k| < 2. Analogously to Lemma 4.3,
it can be proved that (yu;” € V1 p(IC) and
||Ckuz+||v1v£’(zc)é <c (”WU?_HVO:P et |77kF||vl’P(;c)l) :
8,6 B—1,6—1 8,8
Here the constant ¢ is independent of k. From this and from (5.8) and (5.9) we conclude that

1y . 2 S cliGfllver ey

The last inequality together with (5.9) implies (5.7). O
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Now we can prove the existence of weak solutions to the Neumann problem.
Theorem 5.1. Suppose that there are no eigenvalues of the pencil 2 on the line Re A = 1 — 8 — 3/p and the components

of & satisfy (5.5). Then problem (5.3) has a unique solution u € Wﬂl’gi(lC)efor arbitrary F € Vﬁ_g’p(lC)e.

Proof. Let F be a functional of the form (5.1), where fy € Vﬁofl 5+T(IC)€ and f; € VBO’(?(IC)Z for j = 1,2,3. By

Lemmas 4.5-4.8, the mapping

VoK) 3 o= ) = [ G0 f(e) d € WEKY

B+1,641

is continuous. Furthermore, it follows from Lemmas 4.8, 5.1, and 5.2 that the mappings

Vor(K)' s £ —u() = /’C 0¢,G(-,€) f;(6) ds e WR(K), j=1,2,3,

are continuous. Hence, the vector-function (5.4) is a solution of problem (5.3) in the space V;?(IC)‘Z . The uniqueness of the
solution follows from Lemma 4.4 and Theorem 4.2. 7 O
Remark 5.1. It can be proved analogously to Theorem 4.1 that (5.4) defines also a continuous mapping

(for f1s fas £3) 3 Ve (K)F x VE2(K)* = uw e Vy*(K)*

if the line Re A = — 3 — 1/2 is free of eigenvalues of the pencil 2((\) and G(z, ) is the Green matrix introduced in Sect. 4.4
with x = /3. Hence the unique solution u € Vﬁl -2 (IC)Z of problem (5.2) (see [16, Th. 4.3]) has the representation (5.4) if the

functional F' € V[)Tl’Q(IC)Z is given by (5.1) with f; € ngl (K)and f; € VBO’2(IC),j =1,2,3.

5.2 Regularity results for weak solutions to the Neumann problem

Theorem 5.2. Suppose that there are no eigenvalues of the pencil A in the closed strip berween the linesRe A\ = 1—3—3/p
and Re X = 1 — ' — 3/p’ and that the components of 6 and &' satisfy the inequalities max(1 — p;,0) < §; +2/p < 1,
max(l — p;,0) < 6 +2/p' <1, j=1,...,n.Ifu € W;’g(K)Z is a solution of problem (5.3), where F' € Vﬂ_gl’p(lC)Z N

—1,p" (\e Lp' ¢ 7 7
Vﬁ/ﬁ’ (K)*, then u € Wﬁ,j/ (K)~.

Proof. By Theorem 5.1, problem (5.3) is solvable in W;?(IC)Z and Wﬁl;p(;, (KC)*. Both solutions coincide, since they are
: 0,p ¢ 0,p’ ¢4 0.0 (1 A 1O (K| : :
given by (5.4), where f € VB+1,5+T(’C) N Vﬂ/+1,5/ff(lc) € Vg,s(’C) N Vﬁ/ﬁ' (K)* and G(z, &) is the Green function
introduced in Sect. 4.4 with arbitrary s between (5 + % - % and 3’ + % — % O
Analogously, the following statement holds (cf. Remark 5.1).

Lemma 5.3. Let u € Vﬁl’2 (K0)¢ be a solution of problem (5.2), where F € V5_1’2(IC)€ N Vﬁ_ltsip(lC)e. If the closed strip

between the linesRe A\ = —3 —1/2andRe A\ = 1 — 3/ — 3/p is free of eigenvalues of the pencil A(\) and the components of
0 satisfy (5.5), then u € Wﬁl’g(lC)e.

In the following lemma we consider the case when the strip between the linesRe A =1——3/pandRe A =1—-3"—3/p’
contains eigenvalues of the pencil 2(()).

Lemma 5.4. Letu € Wﬁl’g(lC)é be a solution of problem (5.3), where F' € Vﬁ_(;’p(lC)e N Vﬁ_/lg’lpl (K)t. Suppose that the
linesReA\=1—(3—3/pandRe A\ =1 — (' — 3/p’ do not contain eigenvalues of the pencil 2 and that the components ofg
and &' satisfy the inequalities max (1 — y15,0) < 6; +2/p < 1, max(1 — p;,0) <87 +2/p" <1, j=1,...,n. Then u admits
the decomposition

N Ky j_l s
- , 1 o, (v,js—0o
u = E E Cojis P g o (log p)? u*7=) (w) + w, (5.10)
v=1j=1 s=0 o=0

wherew € Wﬂljpé, (K0)¥, \, are the eigenvalues of the pencil A(\) between the linesRe A\ = 1—(3—3/pandRe A = 1—3'—3/p/,

and u""7*) are the eigenvectors (s = 0) and generalized eigenvectors of the pencil A(N) corresponding to the eigenvalue \,,.
Proof. Let {F,} c C°(K\{0}) be a sequence converging to F in V27 (K)¢ N V%7 (K)*. Then, by [16, Th. 4.3]

p.6 B,
. . 1,2 1, 1,2 1,p’
and Lemma 5.3, there exist solutions uy, € V, (K)tn Wﬁg(lC)g and vy € Vi 7y 0000 (K)tn Wﬁl%, (K)¢ of the

B—3/2+3/p
problem

b (1, v) = / T - vda forall v € C3(R\{0}).
K
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By Theorem 5.1, the sequence {uy } converges to u in W (IC)Z, while {v } converges to the unique solution v € Wﬁll’p 6; (K)*
of problem (5.3). Let X be the linear span of the functlons ’

)‘ Z (log p)° (”’j’sf")(w).

According to [16, Cor. 4.3], we have uy — v € X for all k£ and, consequently, v — v € X. This proves the lemma. O
Furthermore, using Theorems 4.2 and 5.1, we obtain the following result.

Lemma 5.5. Let the functional F € Vﬁ_’; P(KC)¢ have the representation
:/ f-vderZ/ g;-vdx forallv € C°(K\{0})", (5.11)
K — Jr,
Jg=1""3

where f € ng’py (K)E, g; € W;, ;//p 4 (T;)*. Suppose that the closed strip between the lines Re\ = 1 — 3 — 3/p and

Re A =2 — (3 — 3/p’ does not contain eigenvalues of the pencil 2 and the components of 5, o satisfy the inequalities
max(1 — p;,0) < d; +2/p < 1, max(2 — u;,0) < &; +2/p" < 2.

Then the solution u € W;’p( )¢ of problem (5.3) belongs to Wﬂ,’p& (K)~.

Proof. According to Theorems 4.2 and 5.1, there exist a unique solution u € VV;’&]B(IC)Z of problem (5.3) and a unique

solution u € W;;pé; (K)* of problem (1.2), (1.4). Both solutions coincide, since they are represented by the same Green matrix
G(a,). ’ O

Next we will show that the solution in the last lemma belongs to Wg/ 5/( Veif f € W;, ?;p (K)t, g5 € Wé, (15/ e (T;)*

and 3, 5 satisfy analogous conditions to (5.5). For this end, we prove the following lemma.
Lemma 5.6. Let u € Wl’p (IC) be a solution of the Neumann problem (1.2), (1.4) such that pO,u € Wl’p( e If

fe W;+11’§(IC) € W;+11/§ P(T;)%, and the strip | — § —2/p < Re A < [+ 1 —§ — 2/p s free of eigenvalues of the pencil

Aj(N), j=1,...,n, thenu € Wé‘:_lvf;(/c)e and

||u||wl+1 (k)" <Z 1(p0, jU”Wl (k)" + ||fHWl L LK) + Z HQJ”WI 1/p (r, )z)

j=0 j=1

Proof. First note that, according to Lemma 4.4, we have u € W;fl ’(;H (KC)*. We denote by (., 1, the same functions

as in the proof of Lemma 4.3. Furthermore, we set C, () = (i, (2%2), e (2) = n(2F2) and v(z) = w(2¥z). Since supp ¢ C

{2 1/2 < |z| < 2}, we conclude from Lemma 3.4 and from the assumptions on , f and g; that (yu € Wéﬂl ’;(IC)Z and

G0 e < © (Znnk R S S+ Bl A )Z)

B+1,8 j=1 [H—l

where ¢ is independent of k. Multiplying the last inequality by 2¥7(?=0+3k and substituting 2% = y, we obtain the same
inequality with (;, 0 instead of (i, 7 for the vector function u. Now the lemma follows from the equivalence of the norm in
Wé’%(IC ; J) with the norm (2.4) and from the analogous result for the trace spaces. O

Theorem 5.3. Let the functional in F' € Vﬁ_);’p(lC) have the representation (5.11) with f € W;, ;;p (K)t, g5 €

W;T;fl/pl’p/ (T';)%. Suppose that the closed strip between the lines ReA = 1 — 3 — 3/p and Re A = | — 3' — 3/p’ does

not contain eigenvalues of the pencil 2 and the components of 5, & satisfy the inequalities
max(1l — p;,0) <d; +2/p <1, max(l — p;,0) < 05 +2/p" <.

Then the solution u € Wg’p( )¢ of problem (5.3) belongs to W >’

ﬁ/ 5/ (IC)Z
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s / . 0,p’ ¢ 1-1/p".p’ RY
Proof. DIfl—d5—2/p' <2forj=1,...,n,then f € Wﬂ’—l+2,5’—(l—2)f(lc) , 95 € Wﬁ'—l+2,5'—(l—2)f(rj) , and
ol 2,p’ ¢ : : Ly ¢
Lemma 5.5 implies v € Wﬁuuz,gu(lfzﬁ(lc) . Applying Lemma 4.4, we obtain u € Wﬁ,’g,(lC) .

2) Suppose that | — &; — 2/p" € [k — 1,k) for j = 1,...,n, where k is an integer, 3 < k < [. This is only possible

if n; > k — 1. We prove by induction in & that u € Wé’lp(}, (K)*. Let first k = 3,ie.,l -3 < (5;- +2/p <1-2.

1,p ¢ 0,p’ 0 1-1/p".p’ RY .
Then f € Wﬁul+3,5u(lf3)f(lc) C Wﬁ'71+2,5/7(173+5)f(lc) .9 € Wﬁ'71+2,5/7(173+5)i(rj) , where ¢ > 0 is such that

_ r_ ! < 1—92.Si ’_ _ ! imoli 2.0’ ¢
1-3<d—e+2/p' <1—2.Since 0 < §; —1+3—e+2/p' <2,Lemma5.5implies u € Wﬁ,_l+27g,_(l_3+€ﬁ(lC) . From

; 3,0’ ¢ 2,p’ ¢
this and from Lemma 4.4 we conclude that u € Wﬁ’—l+3,5’—(l—4+a)f(lc) and, therefore, pd,u € Wﬁ,_l+2)5,_(l_4+E)T(IC) .
Furthermore,

_ 0,p’ ’ _ ) ) 1-1/p".p Ry
Lpapu - papf + 2f € Wﬂ/_l+27g/_(l_3)f(lc) ? Bpapu‘r‘j - papg] +g7 € Wﬂ'—l+275/—(l—3)f(rj) )

where 0 < 0% — 1+ 3+ 2/p’ < 1forj = 1,...,n. Consequently, by Theorem 4.3, we have pd,u € VV;/”LJr2 g,_(l_g)T(IC)é.

Since u belongs to the same space, we obtain from Lemma 5.6 that u € W;;’jHS 5’—(173)f(’c)£' Using again Lemma 4.4, we

getu € W;’,”’(;/(IC)[. Thus, the theorem is proved for [ — &% — 2/p’ € [2,3).

Suppose that I — &% —2/p’ € [k —1,k), k > 4, and that the theorem is proved for | — &, —2/p" € [k — 2,k —1). Since f €
Wéfé}p (K)f Wél__?’lp :?,(IC)K, the induction hypothesis implies u € Wél__llp :?,(IC)K and, consequently, pd,u € Wél_f; (;, (K)*.
On the other hand,

_ / 1—2— /7 ’
Lpdyu = pdyf +2f € WP (K)', Bpdyuly, = pdyg; +9; € W2 PP (1))

Hence, by the induction hypothesis, we have pd,u € Wity (K)*. From this and from Lemma 5.6 we conclude that

B'—1,8"
ue Wépé (K)*.

3) Finally, we assume that | — 6, —2/p’ € [k; — 1,k;) for j = 1,...,n with different k; € {1,...,1}. Thenlet 1, ..., v,
be smooth functions on € such that v; > 0,; = 1 near M; N S2, and ¥; = 1. We extend 1; to K by the equality
Yj(z) = ¥j(x/|z]). Then 9¢1b;(x) < c|z|~1el. Using the first and second parts of the proof, we can show, by induction in /
that ¥u € Wé’fj [;,(IC)é for j = 1,...,n. This completes the proof. O

Remark 5.2. Suppose that the conditions (i)—(iii) of Remark 4.2 are satisfied for some j. Then the result of Theorem 5.3

remains true if (5;- satisfies the inequalities max (! — ,u(Q) (2)

5 750) <65 +2/p" <1, where ;" is the first eigenvalue of the pencil
A; () on the right of the line Re A = 1.

5.3 Weak solutions of the Dirichlet and mixed problems

Let F' € V[;S}’p(IC) and g; € V;}l/p’p(Fj)g, j € Jo, be given. By a weak solution of the boundary value problem (1.2)—(1.4)
we mean a vector function u € W;’g.(IC; J)! satisfying
bic(u,v) = F(v) forallv e ng_g(/c)f, v=0onT, forje Jy, (5.12)
u = g; onI'; for j € Jy, (5.13)

where ¢ = p/(p—1). According to Lemma 4.1, we can restrict ourselves to the case of homogeneous Dirichlet condition (5.13).
Then the vector function (5.4) is a solution of problem (5.12), (5.13), where F'is given by (5.1). Analogously to Theorem 5.1,
the following statement holds.

Theorem 5.4. Suppose that there are no eigenvalues of the pencil 2 on the line Re A = 1 — 8 — 3/p and the components
of 6 satisfy the inequalities

1—pj<d;+2/p<lforjed,  max(l—p;,0)<d+2/p<1 forjeJ\J. (5.14)

Then problem (5.12), (5.13) has a unique solution u € W;’g(IC; D) for arbitrary F € Vg;’p(lC)E, g; € V;}l/p’p(F]—)g,
j € Jo. | ’ ’

Furthermore, the following regularity assertion holds analogously to Theorem 5.2.
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Theorem 5.5. Let the functional F' € Vﬂf(;l P(K)¢ have the representation

Fv) = /f vdr + Z / g; -vdx forallv € C3°(K)\{0})"

j=€J1

with f € Wlﬁ/ (25111 (K;J), g5 € Wl, 2, g (T';; ), j € Jv. Suppose further that g;j € Vé, ;/p > (T;)¢ for j € Jo, that the
closed strip between the llnes Re /\ =1—08-3/pandRe A =1— 3’ —3/p’ does not contain eigenvalues of the pencil 2, that

the components of 5 satisfy (5.14) and the components of 0’ satisfy the inequalities

l—uj<5;+2/p’<lforj€j, max(l—uj,O)<(5§+2/p’<lf0rj€J\j.

Then the solution u € W;’gi(lC; J)¢ of problem (5.12), (5.13) belongs to Wﬁ’/pé, (K;J)"
6 Examples
6.1 The Neumann problem for the Laplace equation
We consider the problem
0
“Au=fink, (‘TZ —g; onT;. 6.1)

As is known (see, e.g. [9, Ch.2]), the eigenvalues of the operator pencils A;(\) are k7/6;, where 6; is the angle at the edge
M; and k is an arbitrary integer. Thus, we have p1; = 7/60; for j = 1,...,n. The eigenvalues of the pencil 2(\) are real.
Consequently, the following results are valid (see Theorems 4.2, 5.3):

1) Problem (6.1) is uniquely solvable in W;}%(IC) for arbitrary | € W;_;’p(IC) and g; € Wé}lfl/p’p(f‘j), 1 >2if

1 — 8 — 3/pis not an eigenvalue of the pencil () and the components of 5 satisfy the inequalities

max(l —

T 2
—,0)<§;+-<1 (6.2)

forj=1,....n

2)If 1 — B —3/pis not an eigenvalue of the pencil A(\) and the components ofgsatisfy the inequalities max (1 —m/6;,0) <
05 + 1% < 1, then for every F' € Vﬁ_él’p (K) there exists a unique weak solution of the Neumann problem, i.e. a unique function

u € Wﬁl’g(lC) satisfying

/Vu Vodr = ()forallvevlq s(K)a=p/(p—1). (6.3)

This solution belongs to Wé, 5 (K )¢ if F has the form (5.11) with f € Wé,;’p (K), g; € W;, ;, g (KC), there are no

eigenvalues of the pencil A(\) in the closed interval between 1 — 3 — 3/p and 1 — 3’ — 3/p’ and the components of 5 satisfy
the inequalities max(l — w/0;,0) < 8% +2/p" <.

Let us consider e.g. the solution u € H = V;**(K) of the problem

/Vu Vidz = F(v) forallv € H,
K

where F' € H* has the representation (5.11) with f € Wé_;’p(lC), gj € Wl —1/p, P(Ty). 1f—=1/2 <1—3—3/p < 0 and the
components of 4 satisfy the inequalities (6.2), then u € Wé’%(IC). Ifl— 3 / p > 0, the interval [0, — 3 — 3/p] contains only

the eigenvalue A = 0 of the pencil 2(()\) and the components of § satisfy (6.2), then u admits the representation © = ¢ + w,
where c is a constant and w € Wé’%(lC). In particular, there is the representation u = ¢ 4+ w with w € V22 (K) if f € Ly(K),

g; € Vol/ 2 (T';) and the cone K is convex. The last assertion follows from the estimate A; > (v/5 — 1)/2 for the first positive
eigenvalue of the pencil 2(\) obtained by Dauge [4].
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6.2 The Neumann problem for the Lamé system

We consider the problem

Au +

1_2VVV~u:finIC, o(u)n=g; onT;, (6.4)

where o(u) = {0; ;(u)} is the stress tensor connected with the strain tensor

{aw(u)} = {% (O, ui + 3:#;‘)}

by the Hooke law

oij(u) =2u (

=2 (61,1 + 22+ 5373) 51'73‘ + 5i,j>

(u is the shear modulus, v is the Poisson ratio, v < 1/2, and d;,; denotes the Kronecker symbol).
If the angle ¢; at the edge M; is greater than 7, then the eigenvalue of the pencil A;(\) with smallest positive real part is

A(lj ) = £4+(05)/6;, where £ (9) is the smallest positive solution of the equation
sin  sinf
= 6.5
e g 70 (6.5)
(see, e.g., [9, Sect. 4.2]). Note that £, (;) < 7 and, therefore, )\gj) < 1for0; > w. If 0; < m, then the eigenvalues with
smallest positive real parts are )\EJ ) =1and )\éj e /6;.

For the existence of a vector function u € Wé’fg(lC)Z satisfying the boundary conditions o(u)n =g;onl,,j=1,...,n,
it is necessary that the boundary data g; belong to W;a_él_l/ PP j)z and satisfy certain compatibility conditions on the edge

M;if6; +2/p <1—1.LetT;, andT';_ be the faces of K adjacent to the edge M; and let n’+, n/- be the exterior normals
toI';, and I';_, respectively. Then one has to suppose that

o peEp . .
/ / prOTEIRR I g; (rj, p) =0t g (rg,p) |7 drjdp < 00 i 6y +2/p=1-1, ©D
0 0

where ¢ is a sufficiently small positive number (cf. Remark 3.1). If 6; +2/p > { —1forj = 1,...,n, then Wé}lfl/p’p(l"j) =
Vé;sl_l/ PP(T';) and, according to Lemma 4.1, for arbitrary g; € Wé}l_l/ PP(T;)* there exists a vector function u €
Vﬂlzg’(lC)e C I/Vé’f;(IC)Z satisfying o(u)n =g;onl;,j =1,...,n.

Using Theorem 4.2, 5.3 and Remark 5.2, we obtain the following results.

1) Let f € W;_;’p(ICP and g; € Wéfglfl/p’p(f‘j)?’, 1 > 2, where (3 and & are such that the line Re A = | — 3 — 3/p is free
of eigenvalues of the pencil A(\) and

| £00)
0

2 2
<(5j+§<llf0j>7ra max(l_§»0)<5j+];<lif9j<ﬂ—’ (6.8)
; )

J
Furthermore, we assume that the boundary data g; satisfy the compatibility conditions (6.6), (6.7). Then problem (6.4) is
uniquely solvable in Wé’%(ICP.

2) If there are no eigenvalues of the pencil 2A(\) on the line Re A = 1 — 8 — 3/p and the components ofgsatisfy the
inequalities

0, 2 2
154_9(‘j)<5j+p<11f9j>7r’ 0<5j+;<1l‘f9j<ﬂ', (6.9)
J

then for every F' € Vﬁ_gl’p (K) there exists a unique weak solution of the Neumann problem, i.e. a unique function u € W;’?(/C)S

satisfying

3
b (u, v) < /’C > oij(w)ei (0)de = F(v) forallo € VI (K)’, q=p/(p 1), (6.10)

4,j=1
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This solution belongs to Wé’lp(;, (K) if F has the form (5.11) with f € Wé ;’p (K), g; € Wé/ ;/ sl (K), I > 2, there are

no eigenvalues of the pencil A(\) in the closed interval between 1 — 3 — 3/p and | — 3’ — 3/p’, and the components of 5
satisfy the inequalities | — &, (0;)/0; < 05 +2/p" < lfor0; > =, max(l —m/0;,0) < &% +2/p" <lfort; <m.

We consider the solution u € H = V;,"*(K)? of the problem
bic(u,v) = F(v) forallv € H,

where I € H* has the representation (5.11) with f € Wl 2’p(IC) g;j € Wl - 1/pp(F )3, By [9, Th. 4.3.1]), the strip
—1/2 < Re A < 0 contains only the eigenvalue A = 0 if the cone K is L1psch1tz The eigenvectors to this elgenvalue are
constant vectors, while generalized eigenvectors corresponding to A = 0 do not exist. Consequently, we obtain u € wh p g(lC)S

if —1/2 <1——3/p < 0, the components of 5 satisfy the inequalities (6.8), and the boundary data satisfy the compatibility
conditions (6.6), (6.7). If | — 3 — 3/p > 0, the strip 0 < Re A < | — 8 — 3/p contains only the eigenvalue A = 0 of the

pencil 2()\), the components of 5 satisfy (6.8) and the boundary data g; satisfy (6.6), (6.7), then u admits the representation
u = ¢ + w, where c is a constant vector and w € Wé’%(IC)?’. In particular, we have u = ¢ + w, where ¢ € C3, w € V5’2(IC)3

if f e VﬁO’Q(IC)B, g; € Vﬁl/Q’z(Fj)?’, the strip —1/2 < Re A < —(3 4 1/2 contains at most the eigenvalue A = 0, and condition
(6.7) is satisfied.

7 The problem in a bounded domain

7.1 Formulation of the problem

Let G be a bounded domain of polyhedral type in R3. This means that

(i) the boundary 0G consists of smooth (of class C'*°) open two-dimensional manifolds I'; (the faces of G), j = 1,...,n,
smooth curves My, (the edges), k = 1,...,m, and corners PSR CON
(ii) for every { € M), there exist a neighborhood U, and a diffeomorphism (a C'° mapping) x¢ which maps G N U onto
D¢ N By, where Dy is a dihedron of the form (2.1) and B is the unit ball,
(iii) for every corner z:() there exist a neighborhood U, and a diffeomorphism #; mapping G N; onto K; N By, where K;
is a cone with vertex at the origin.

Let S denote the set of all edge points and corners. We consider the problem
Lu=finG, wu=g; onl';forjeJy, Bu=g; onl';forjeJ, (7.1)
where
3
Z Ou, (Ai j(2)0p,u) + ZAl(x) Or,u+ Ao(x)u, Bu= Z A; j(x)n; O, u,
i,j=1 i=1
JoUJr ={1,2,...,n}, JoNJy = 0. The corresponding sesquilinear form is
b(u,v) = /(ZAJ@ u- 89@1}—}—2/18 T+ Agu - v)da?
g i,j=1

LetH = {u e WH2(G)* : u=0onT} for j € Jo}, where W12(G) denotes the Sobolev space of all functions quadratically
summable on G together with their derivatives of first order. As in the previous sections, we assume that A; ; = A}, for
1,7 = 1,2, 3. Furthermore, we suppose that

|b(u, u)| > 1 ||u||€V1,2(g),g ) Hu||%2(g)[ forallu € H (7.2)

with certain positive constants ¢; and c,.

7.2 Model problems and corresponding operator pencils

We introduce the operator pencils generated by problem (7.1) for the points of S.
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1) Let & be an edge point, and let I'; ,I';_ be the faces of G adjacent to &. Then by D¢ we denote the dihedron which is
bounded by the half-planes I';, tangential to I';, at £ and consider the model problem

Lo(§,0:)u=f inDg, u=g;, onlj forji €Jo, B(0:)u=g;. onl7, forjy € Jy,

where

3

3
Lo(€,00) = — Y Aij(€)0,0n, , B(£,02) = > Aij(§)n;0n,
i,j=1

1,j=1

are the principal parts of L and B with coefficients frozen at . The operator pencil corresponding to this model problem (see
Sect. 4.1) is denoted by A¢(\). Furthermore, we denote by A (&) the eigenvalue with smallest positive real part of A¢(\) and
set

1 —Elnf Re M (§) forj=1,...,m
e

2) Let (%) be a corner of G and let J(*) be the set of all indices j such that z(¥) fj. By our assumptions, there exist a
neighborhood ¢/ of z(*) and a diffeomorphism x mapping G N onto K N B; and I'ynUontoI'; N By forj € J (%) where
K is a polyhedral cone with vertex 0 and I'; are the faces of this cone. Without loss of generality, we may assume that the

Jacobian matrix «/(z) is equal to the identity matrix I at the point (*). We consider the model problem
Lo(z™® 0 )u=f inK, u= g; onT7j forj € Jék), B(z™ 0,)u= g; onT7j forj € Jl(k)7

where Jé = JonJ®), Ji (k) = =J; (k) The operator pencil generated by this model problem (see Sect. 4.1) is denoted by
25 (). Note that (due to the condition ' (z(*)) = TI)

Lo(z™,0,) = Ly(0,8,) and B(z™,8,) = B(0,0,),
where L, B are given by L(y,d,) = L(z,d,) and B(y, d,) = B(z,d,) withy = (z).

7.3 Sobolev spaces in G

We denote by r; () the distance of z to the edge M, by py(z) the distance to the corner =(*) and by p(z) the distance to the
set X = {z(, ... z(D} Furthermore, let J be an arbitrary subset of {1,..., m}. Then W (g J) is defined as the weighted
Sobolev space with the norm

1/p
Il 0,5y = ( / S gl Hp”wk e H A 1 (O de> ,

|a\<l ]Qj
Here 1 < p < o0, 3 = (B, - - ,ﬂd) ERL S = (01,...,0mm) € R™, and lis a nonnegatlve integer. For J = {1,...,m} and
J = () we will use the notation W (s {1,...,m}) = sti( ) and Wfi(g 0) = ﬁ,;;(g)
-1 -
The trace spaces on I'; for V@g(g), g’g(g), and W ( J) are denoted by V /P, P(Ty), Wé’%(l“j), and W;J%(F]—; J),

respectively.

7.4 Regularity results for weak solutions

In the sequel, let J denote the set of all Jj=1,...,msuchthat M; C T'), for at least one k € Jj (i.e., the Dirichlet condition is
given on at least one face I';;, adjacent to the the edge M;). Note that H is continuously imbedded into Wé §(g J ) and that on
# the norms in W12(G), W3 (G), and W, 3 (G; J) are equivalent. Furthermore, we have Wl Up P(Ty,J) = Vé%l/p’p(Fj)
for j € Jo. ’

We consider the solution u € Wé,’g (G; J)* of the problem

b(u,v) = F(v) forallv € H, wu=g; onT; forj € Jp, (7.3)

where I is a given linear and continuous functional on H and g; € Wl/ > 2(1"j; J)e.
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Let/ be aneighborhood of the corner x(¥), and let  be a diffeomorphism mapping GNIA onto ICN B; such that &/ (x(k)) =1
Here K is a cone with vertex 0 and B; denotes the unit ball. For functions with support in C N By we introduce the sesquilinear
form

@‘I

3 3
/ < Z x) O, - Oz, 0 + Z/i 'U+A0(a:)u~v) dx
which is defined by
b(u,v) = b(t,0), where @(x) = u(k(z)), 0(z) =v(k(z)) forz € GNU.
Furthermore, we set

(u,v) / Z A 0) Oy, - Oy, vd.

1,j=1

Note that A; ;(0) = A; ;(2®) since &' (z*)) = I.
We denote by H the closure of the set {u € C§°(K)*: u = 0on T2 for j € Jék)} with respect to the norm

3 1/2
7, = </ Z|@wju2da:) .
St

Here we used the same notation as in the preceding subsections.

Lemma 7.1. Suppose that inequality (7.2) is satisfied for all u € H. Then there exists a positive constant c such that
|bo (u, w)| > ¢ ull3, forallue H,.

Proof. Letue C§° (E)Z, u = 0on F;’ for j € Jék), and suppu C B., where B, is the ball with radius ¢ and center 0,
and ¢ is sufficiently small. Using the inequality (7.2) for the function @(z) = u(x(z)), we obtain

|b(u, u)| > cf ullfrz oy = €4 el 22

with certain positive constants cf, ¢;. By Hardy’s inequality, we have

el e < 62/ 0 |uf? da < ce? / V| dz.
K K
Furthermore,
|E(U7U) — bo(u, U)| <ce ||VU||2L2()C)£ + clull 2k (||U||L2(ic)f + ||VU||L2(/C)K) <de ||VU||2L2()C)2
Thus, for small ¢, we have
|bo(u, )| > F Va2 e

Applying the similarity mapping = y/N, we obtain this estimate (with the same constant ¢{,/2) for the function v(z) =
u(z/N). Consequently, the assertions holds for all u € C§°(K)* satisfying u = 0 on I forj € Jé ). This proves the lemma.
O

Let J;, = {je J: M; > x(®)}. We define the operator

Wé)’g(lC; jk)‘z S5 u— Agu = (F, {gj}je]ék)) € H x H ‘/01’(/)2,2(1—\;)4

jegi®

F(v) = l;o(u, v) forallv e Hy, g;=u ro forje Jék)-

From Lemmas 4.1 and 7.1 it follows that Ay is an isomorphism. Furthermore, let ’Hlﬁ’p g(IC) be the space of all F' € H{ having
the representation 7

/f vdx—kZ/gj vdz

cJ®
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for all v € C5°(K\{0})*, v = 0 on I} for j € I, where f € Wé_;’p(lC; Ju) gi € W;}lfl/p’p(ljj; Ji.)¢. The norm in

Lp ..
Hﬁyg(lC) is given by

”FHH;‘%(IC) ”F”HO + ”f”w’ 2P(}c Je)t + Z ngHWl 1- 1/PP(F0 o)t
’ ]EJ(k)

By Lemma 5.3, Theorem 5.3, and the analogous results for the Dirichlet and mixed problems, the operator Ay realizes also an
isomorphism

Woia (K i) MWK Ji)* = () < ] ] (vol{)“ )N vﬁljgl/f’vp(r;)f) (7.4)
jest®

if there are no eigenvalues of the pencil 2 () in the strip —1/2 < Re A <[ — 8 — 3/p and the components of § satisfy the
inequalities

I —pj <8;+2/p<lforjeJ, max(l—p;0)<d;+2/p<lforjd.l. (7.5)

Theorem 7.1. Letu € ngg(g; j)" be a solution of problem (7.3). Suppose that F' € H* has the form

/f de—i—Z/ g; -vdx

Jje€J1

forallv € C&(G\X)", v = 0on T for j € Jo, where f € Wl QP(Q;JY, g; € W%_g_l/p’p(Fj;j)e, and that g; €
VO{éQ’Q( HEN Vi_}/p’p( L) for j € Jo. If the strip —1/2 < Re A < l — B — 3/p is free of eigenvalues of the pencil i (),
k=1,...,d, and the components 0f(5 satisfy (7.5), then u € W (g J)

Proof. Suppose first that the support of u is contained in a neighborhood of the vertex z(*). We denote by y a smooth
function on [0, c0) such x = 1in [0,1], x = 0 in [2, 00). Furthermore, let x.(z) = x(|z|/¢). We introduce the sesquilinear
form

3
l~)€ /<ZA(E)GU8 T+ Z E)auv—I—A >d:v,
i,j=1 i=1
where
A'S,Ej) (-’I;) = XEA’L‘,]‘ (LU) + (1 - XE) AZ,J(O) for 27] = 17 23 37 AEE) (.’L’) = Xe Al(x) fori = O’ 17 2’ 3.
Obviously, b. (u, v) = b(u, v) if u(z) = 0 for || > ¢. The form b. generates a linear and continuous operator
Woio (K J)" 3w = Acu = (F. {g;}; ) € Hy x [T Vo™ (@) (7.6)

jeas®

by

F(v) = b-(u,v) forallve My, g;=u

.k
re for j € J ),

The restriction of A to W (/C Ji k) N Wl P (IC Jk) represents a continuous mapping (7.4). Since the norm of the operator
A. — Ay is small for small €, we conclude that the operator (7.6) and its restriction to Wo S )t N Wl P (IC, Ji)! are

isomorphisms if ¢ is sufficiently small. Hence, under the conditions of the theorem, we obtain u € W (g J ) Analogously,

this results holds if the support of w is contained in a sufficiently small nelghborhood of an edge pomt Using a partition of
unity on G, we obtain the assertion of the theorem for arbitrary u € W' 3 g(g, J)L. O
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7.5 Solvability of the boundary value problem

We denote the operator
W&p*(g J) Su —)(Lu {U|F }jEJUa{Bu|F }]EJl)

Wﬁ %P(g I I Vi }/W’ 11 Wl e ) (7.7)
jeJo jeJ1

of the boundary value problem (7.1) by .A. Our goal is to prove that this operator is Fredholm if the line Re A =1 — 8 — 3/p
is free eigenvalues of the pencil 25 () for k =1, ..., d and the components of § satisfy (7.5). To this end, we construct a left
and right regularizer for A.

Lemma 7.2. Let U be a sufficiently small subset of G and let ¢ be a smooth function with support in U. Suppose that there

are no eigenvalues of the pencil Ay () on the lineRe A =1 — B, — 3/pfork =1,...,d and that the components of § satisfy
(7.5). Then there exists an operator R continuously mapping the space

{((fr9) e Wi 27(G: D) > TT v mm @ s TT wiz =770y )"« supp (f.9) C U}

j€Jo jeJ1

into Wg%(g; J) such that pAR(f,q) = ¢(f, g) for all (f,g) with support in U and §RAu = ¢u for all u € W (Q J),
suppu C U.
Proof. Inorder to simplify the notation, we restrict ourselves here to the Neumann problem. The proof for the Dirichlet

and mixed problems proceeds analogously. There exists a diffeomorphism x mapping I/ onto a subset V of a cone K. The
coordinate transformation y = x(z) applied to problem (7.1) yields the equations

Li=finV, Ba=g onVNTy,
where i =uor™!. B
Suppose first that Z/ contains the corner (1) and V contains the vertex #(z(!)) = 0 of K. Then we denote by Lo and By

the principal parts of L and B, respectively, with coefficients frozen at 2z = 0. Due to the assumptions on ﬂ and &, the operator
Ao = (Lo, By) realizes an isomophism

l,p Vi l72,p 1—1— 1/pp
WEPS() = W2 HWBh (T;)". (7.8)

We introduce the differential operators L. = y.L + (1- XE)Z/O and B, = x.B + (1- Xs)Bo, where . is the same cut-off
function as in the proof of Theorem 7.1. Since the difference of the operators Ay = (io, BO) and A, = (I~/€, B. ) in the operator
norm (7.8) is small for small ¢, the operator A, realizes also an isomorphism (7.8) if ¢ is sufficiently small. We assume that V
is contained in the ball |y| < . Then the coefficients of Le, B. coincide with that of L and B, respectively, on the support of

(f,9)- Let
u(x) = a(k(z)) forz €U, wherei = A1 (f,q). (7.9)

Outside U let u be continuously extended to a vector function from Wl’p (Q)Z. The so defined mapping (f, g) — u is denoted
by R. It can be easily verified that R has the desired properties.

Suppose now that U contains an edge point § € M; but no points of other edges and no corners of G. Then we denote
by Lo, By the principal parts of L and B, respectively, with coefficients frozen at 1 = k(€). The operators L. and B. are
defined as above, where x.(y) = x(Jy — n|/¢€) and x is a smooth function on [0, c0), x = 1in [0,1], x = 0in [2, 00). There
exist a number (3 and a tuple 5, §1 = &1, such that the operator Ao = (LO, BO) and for sufficiently small € also the operator
A. = (L., B.) realize isomorphisms

l,p l 2p -1 1/p,p
Wﬁoﬁ'(’c) HWﬁo,& HWﬁo,af J) :

Hence, if V is contained in the ball |y — 7| < &, the conditions of the lemma are satisfied for the operator (f, g) — w defined
by (7.9). Analogously, the lemma can be proved for the case U/ NS = (). O

Theorem 7.2. Suppose that the line Re A = | — (i, — 3/p does not contain eigenvalues of the pencil Uy (X) fork =1,....,d
and that the components of 0 satisfy (1.5). Then the operator (7.7) is Fredholm.
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Proof. Let{U,} be a sufficiently fine open covering of G and let ¢,,, ¢, be infinitely differentiable functions such that
supp ¢, C suppth, C Uy, ¢pptb, = ¢y, and Y ¢, = 1. For every v there exists an operator R, having the properties of the
operator R in Lemma 7.2 for U = U,, N G. We prove that the operator R defined by

= Z¢vau(f7 g)'

is a left and right regularizer for the operator (7.7). We show first that R.4 — I is a compact operator on W (g J ) Here I
denotes the identity operator. Obviously,

R.Au—quu (Avpyu — [A, 9, ]u —u—Z@ v[A 9 ]u

where [A, 1,] = A, —1, A is the commutator of A and ¢,,. Here the mapping v — [A, 1, |u is continuous from W (Q J)t
into

L@ D x T vt < TT wh imr s ) (7.10)
j€Jo JjE€J1

where the components of 5’, 5 satisfy the inequalities B < 3, < fBx + 1fork = 1,...,d and J; < 0} < &; + 1 for
j=1,...,m. We can choose 3’ and ¢’ such that the strip ! — B, — 3/p < Re A <141 — 3 — 3/pis free of eigenvalues of
the pencil 2y, (A) fork =1,...,d, 1 +1—p; <87 +2/p <l+1forj € J,and max(l +1 —p;,0) < &; +2/p <1+ 1for
j=1,...,m,j & J. Then, by Theorem 7.1, the operator R,, maps the space (7.10) into WlH’p (G; J )£, Since the last space

is compactly imbedded into W (Q J )¢, it follows that the operator RA — I is compact. Analogously the compactness of
AR — I can be proved. This means that R is a left and right regularizer. Consequently, the operator .4 is Fredholm. U
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