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Abstract. We prove new pointwise inequalities involving the gradient of a function u ∈ C1(Rn),
the modulus of continuity ω of the gradient ∇u, and a certain maximal function M �u and show
that these inequalities are sharp. A simple particular case corresponding to n = 1 and ω(r) = r is
the Landau type inequality

|u′(x)|2 � 8
3

M �u(x)M �u′′(x),

where the constant 8/3 is best possible and

M �u(x) = sup
r>0

1
2r

∣∣∣∣
∫ x+r

x−r

sign(y − x)u(y) dy
∣∣∣∣.

1. Introduction

Background. The idea of obtaining information about intermediate derivatives by using prop-
erties of a higher derivative and the function itself goes back to Hadamard [5], Kneser [10], and
Hardy and Littlewood [6]. It was developed in various directions by Kolmogorov [11], Szőkefalvi-
Nagy [22], Gagliardo [4], Nirenberg [20], et al. In the simplest form, this idea is expressed by the
Landau inequality [12]

|u′(x)|2 � 2 ‖u‖L∞‖u′′‖L∞ (1)
on the real line. Under the additional assumption that u � 0 on R, one can readily verify the
estimate

|u′(x)|2 � 2u(x)‖u′′‖L∞ , (2)
which has proved to be useful in various topics of the theory of differential and pseudodifferential
operators [8, 9, 13, 14, 21]. Some versions and extensions of (2) were treated in [15].

Clearly, (2) fails for some smooth function u. However, one can ask whether it is possible to
replace the L∞-norms in (1) by the values at x of certain operators acting on u. There are different
ways to give an affirmative answer to this question. In particular, in [16] we arrived at the pointwise
inequality

|u′(x)|α+1 � 2α+1

α+ 2

(
α+ 1
α

)α

(M �u(x))α sup
y∈R

|u′(y)− u′(x)|
|y − x|α , (3)

where α > 0 and M � is the maximal operator defined by

M �u(x) = sup
r>0

1
2r

∣∣∣∣
∫ x+r

x−r
sign(y − x)u(y) dy

∣∣∣∣. (4)

The constant in this inequality is best possible. For α = 1, this implies the sharp estimate

|u′(x)|2 � 8
3

M �u(x)‖u′′‖L∞ . (5)

Diverse pointwise interpolation inequalities for derivatives of integer or fractional order were
obtained in [1, 7, 15–19] without best constants. We note that the operator

(Tαu)(x) = sup
y∈Rn

|u(y)− u(x)|
|y − x|α ,
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which occurs in (3), has been extensively studied (e.g., see [2]). In the above-mentioned articles,
some applications of these inequalities were pointed out (e.g., the Gagliardo–Nirenberg estimates,
the composition operator in fractional Sobolev spaces, pointwise multipliers, etc.).

Notation. Let M � be the multi-dimensional generalization of (4) defined by

M �u(x) = sup
r>0

∣∣∣∣ −
∫

Br(x)

y − x

|y − x| u(y) dy
∣∣∣∣, (6)

where u is a locally integrable function on R
n , n � 1, Br(x) is the ball {y ∈ R

n : |x− y| < r}, and
the bar stands for the mean value of the integral. Clearly, M �u(x) does not exceed the Fefferman–
Stein sharp maximal function [3]

M 	u(x) = sup
r>0

−
∫

Br(x)

∣∣∣∣u(y)− −
∫

Br(x)
u(z) dz

∣∣∣∣dy.
We write Br instead of Br(0) and use the notation |B1| = mesn B1 and |Sn−1| = mesn−1 ∂B1 . We
introduce the mean values of a vector function v : R

n → R
n over the sphere ∂Br(x) and the ball

Br(x) as follows:

A(1)v(x; r) = −
∫

∂Br(x)
v(y) dsy, A(2)v(x; r) = −

∫
Br(x)

v(y) dy.

We also set

D(1)
ω (v;x) = sup

r>0

|v(x)−A(1)v(x; r)|
ω(r)

, (7)

D(2)
ω (v;x) = sup

r>0

|v(x)−A(2)v(x; r)|
ω(r)

. (8)

In particular, for a function v of one variable we have

D(1)
ω (v;x) = sup

r>0

|2v(x)− v(x+ r)− v(x− r)|
2ω(r)

, D(2)
ω (v;x) = sup

r>0

|v(x)− 1
2r

∫ x+r
x−r v(y) dy|

ω(r)
.

Throughout the paper, we assume that ω is a continuous nondecreasing function on [0,∞) such
that ω(0) = 0 and ω(∞) = ∞.

Description of results. In this paper, we obtain new pointwise inequalities involving the gra-
dient ∇u(x), the maximal function M �u(x), and one of the functions D(1)

ω (∇u;x) and D
(2)
ω (∇u;x).

For example, in Theorem 1 we prove that

|∇u(x)| � n(n+ 1)D(1)
ω (∇u;x)Φ

(
M �u(x)

nD
(1)
ω (∇u;x)

)
, (9)

where Φ is a certain strictly increasing function generated by the modulus of continuity ω. We also
show that inequality (9) and the similar inequality for D(2)

ω (∇u;x) in Theorem 2 are sharp. Namely,
we present functions for which these inequalities become equalities. These extremal functions,
whose form is rather complicated, were found by guess. There is no standard approach to such a
construction for the time being.

In particular, if ω(r) = rα , α > 0, then inequality (9) becomes

|∇u(x)| � C1(M �u(x))α/(α+1)

(
sup
r>0

|∇u(x)−A(1)∇u(x; r)|
rα

)1/(α+1)

(10)

with the best constant

C1 = (n+ 1)
α+ 1
α

(
αn

(n+ α)(n+ α+ 1)

)1/(α+1)

. (11)



32

Note that for n = 1 the last estimate acquires the form

|u′(x)| � C1(M �u(x))α/(α+1)

(
sup
r>0

|2u′(x)− u′(x+ r)− u′(x− r)|
rα

)1/(α+1)

, (12)

where the best value of C1 is given by

C1 =
(

2(α+ 1)
α(α+ 2)1/α

)α/(α+1)

. (13)

A similar corollary of Theorem 2 concerning D
(2)
ω (∇u;x) is the inequality

|u′(x)| � C2(M �u(x))α/(α+1)

(
sup
r>0

|u′(x)− u(x+r)+u(x−r)
2r |

rα

)1/(α+1)

(14)

with the best constant

C2 =
2(α+ 1)

α

(
α

α+ 2

)1/(α+1)

. (15)

An interesting particular case of (12), corresponding to α = 1, can be written as

|u′(x)| �
(
8
3

)1/2

(M �u(x))1/2(M �u′′(x))1/2, (16)

which is a purely pointwise improvement of (5). The constant (8/3)1/2 in (16) is sharp, since, as
was mentioned above, it is sharp in the rougher inequality (5).

2. Pointwise Inequality in Terms of D(1)
ω (∇u; x)

The objective of this section is to obtain the following result.
Theorem 1. (i) Let the function

Ω1(t) :=
∫ 1

0
(1− n+ nσ)σn−1ω(σt) dσ (17)

be strictly increasing on [0,∞), and let Ω−1
1 be the inverse function of Ω1 . Further, let

Ψ1(t) =
∫ t

0
Ω−1

1 (τ) dτ.

Then

|∇u(x)| � n(n+ 1)D(1)
ω (∇u;x)Ψ−1

1

(
M �u(x)

nD
(1)
ω (∇u;x)

)
(18)

for any u ∈ C1(Rn),where Ψ−1
1 is the inverse function of Ψ1.

(ii) Let ω ∈ C1(0,∞). Suppose that the function tω′(t) is nondecreasing on (0,∞) and, for
n > 1, the function tΩ′

1(t) is nondecreasing on (0,∞). Let R be the unique root of the equation

n(n+ 1)Ω1(t) = 1. (19)

Inequality (18) becomes an equality for the function

u(x) =




xn

(
1− n

∫ 1

0
σn−1ω(σ|x|) dσ

)
for 0 � |x| � R,

nxn

|x| ((n+ 1)R− |x|)

×
∫ 1

0
((n+ 1)σ − n)σn−1ω

(
σ
(n+ 1)R− |x|

n

)
dσ for R < |x| < (n+ 1)R,

0 for |x| � (n+ 1)R.

(20)
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Proof. (i) It suffices to prove (18) for x = 0. We have∫
B1

(∇u(0)−∇u(y))(1− |y|) dy =
1

n(n+ 1)
∇u(0)|Sn−1| −

∫
B1

u(y)
y

|y| dy. (21)

Hence,

|B1|
n+ 1

∇u(0) =
∫

B1

u(y)
y

|y| dy + |Sn−1|
∫ 1

0
rn−1(1− r)(∇u(0)−A(1)∇u(0; r)) dr. (22)

After the scaling y → y/t, r → r/t, Eq. (22) becomes

|B1|
n+ 1

t∇u(0) =
1
tn

∫
Bt

u(y)
y

|y| dy + |Sn−1| 1
tn

∫ t

0
rn−1(t− r)(∇u(0)−A(1)u(0; r)) dr. (23)

This implies that

|∇u(0)| � n+ 1
t

M �u(0) +
n(n+ 1)
tn+1

D(1)
ω (∇u; 0)

∫ t

0
rn−1(t− r)ω(r) dr,

which can be rewritten as

0 � −t |∇u(0)|+ (n+ 1)M �u(0) + n(n+ 1)D(1)
ω (∇u; 0)

∫ t

0
Ω1(τ) dτ. (24)

Since Ω1 is strictly increasing, it follows that the right-hand side of (24) attains its minimum value
at

t∗ = Ω−1
1

( |∇u(0)|
n(n+ 1)D(1)

ω (∇u; 0)

)
. (25)

Thus, by (17) one has

0 � (n+ 1)M �u(0)− |∇u(0)|Ω−1
1

( |∇u(0)|
n(n+ 1)D(1)

ω (∇u; 0)

)

+ n(n+ 1)D(1)
ω (∇u; 0)

∫ Ω−1
1

( |∇u(0)|
n(n+1)D

(1)
ω (∇u;0)

)
0

Ω1(τ) dτ

= (n+ 1)M �u(0)− n(n+ 1)D(1)
ω (∇u; 0)

∫ Ω−1
1

( |∇u(0)|
n(n+1)D

(1)
ω (∇u;0)

)
0

x dΩ1(x).

Therefore,

M �u(0) � nD(1)
ω (∇u; 0)

∫ |∇u(0)|
n(n+1)D

(1)
ω (∇u;0)

0
Ω−1

1 (τ) dτ,

which is equivalent to (18).
(ii) First, let us prove that Eq. (19) has a unique root. Note that Ω1(0) = 0 by (17). Since

tΩ′
1(t) is nondecreasing, one has Ω1(∞) = ∞. It remains to show that Ω′

1(t) > 0 for t > 0. To this
end, we only need to check that tΩ′

1(t)|t=0 = 0. Since the function (17) can be written as

Ω1(t) =
n

tn+1

∫ t

0
τnω(τ) dτ − n− 1

tn

∫ t

0
τn−1ω(τ) dτ, (26)

we see that

n

∫ t

0
Ω1(τ) dτ − 1

tn

∫ t

0
τnω(τ) dτ =

n

tn−1

∫ t

0
τn−1ω(τ) dτ − n+ 1

tn

∫ t

0
τnω(τ) dτ. (27)

Hence,
1
tn

∫ t

0
τnω(τ) dτ − (n− 1)

∫ t

0
Ω1(τ) dτ = tΩ1(t), (28)

and thus

tΩ′
1(t) = ω(t)− n

tn+1

∫ t

0
τnω(τ) dτ − nΩ1(t). (29)
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The last relation, combined with ω(0) = Ω1(0) = 0, shows that tΩ′
1(t) vanishes at t = 0.

Now let us prove that u defined by (20) is in C1(Rn). We claim that u is continuous on the sphere
|x| = R together with its first partial derivatives. We use spherical coordinates to write xn = r cos θ.
Denote the function u(x)/ cos θ by u1(r) for 0 � |x| � R and by u2(r) for R < |x| < (n+1)R; i.e.,

u1(r) = r − n

rn−1

∫ r

0
tn−1ω(t) dt, (30)

u2(r) = n2

(
n+ 1
κn

r

∫ κr

0
tnω(t) dt− n

κn−1
r

∫ κr

0
tn−1ω(t) dt

)
, (31)

where
κr = n−1((n+ 1)R− r). (32)

Clearly,

u2(R) = n2

(
n+ 1
Rn

∫ R

0
tnω(t) dt− n

Rn−1

∫ R

0
tn−1ω(t) dt

)
. (33)

By (26), we can write

u2(R) = n

(
(n+ 1)RΩ1(R)− 1

Rn−1

∫ R

0
tn−1ω(t) dt

)
.

It follows from (19) and (30) that the right-hand side is equal to u1(R). Let us show that

u′2(R) = u′1(R). (34)

From (30) we obtain

u′1(r) = 1 +
n(n− 1)

rn

∫ r

0
tn−1ω(t) dt− nω(r). (35)

By (31),

u′2(r) = n2

(
n+ 1
κn+1

r

∫ κr

0
tnω(t) dt− n− 1

κn
r

∫ κr

0
tn−1ω(t) dt− ω(κr)

n

)
. (36)

Therefore,

u′2(R) = n2

(
n+ 1
Rn+1

∫ R

0
tnω(t) dt− n− 1

Rn

∫ R

0
tn−1ω(t) dt− ω(R)

n

)
,

which by (26) can be rewritten as

u′2(R) = n(n+ 1)Ω1(R) +
n(n− 1)

Rn

∫ R

0
tn−1ω(t) dt− nω(R).

Using (19) and (35), we arrive at (34). It remains to note that

u2((n+ 1)R) = 0, u′2((n+ 1)R) = 0

by (31) and (36). Hence, u ∈ C1(Rn).
Our next goal is to show that

M �u(0) =
R

n+ 1
− n

∫ R

0
Ω1(t) dt. (37)

Let us find the maxima of the function

r → Mru :=
1

|Br|
∣∣∣∣
∫

Br

y

|y| u(y) dy
∣∣∣∣ (38)

on [0, R] and [R, (n+1)R] separately. Recall that for 0 � |x| � R the function u can be represented
as cos θ u1(r), where u1 is defined by (30). It is clear that the function (38) is equal to

2|Sn−2|
|B1|rn

( ∫ r

0
ρndρ

∫ π/2

0
(cos θ)2(sin θ)n−2dθ − n

∫ r

0

∫ ρ

0
tn−1ω(t) dt dρ

∫ π/2

0
(cos θ)2(sin θ)n−2dθ

)
.
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Since

2 |Sn−2|
∫ π/2

0
(cos θ)2(sin θ)n−2dθ = n−1|Sn−1|, (39)

it follows that

Mru =
r

n+ 1
− n

rn

∫ r

0

∫ ρ

0
tn−1ω(t) dt dρ =

r

n+ 1
− n

(
1

rn−1

∫ r

0
τn−1ω(τ) dτ − 1

rn

∫ r

0
τnω(τ) dτ

)
,

and by (28) we arrive at

Mru =
r

n+ 1
− n

∫ r

0
Ω1(t) dt. (40)

As was proved above, Ω′
1(t) > 0 for t > 0. Therefore,

max
0�r�R

Mru = MRu. (41)

Now let us prove that
max

R�r�(n+1)R
Mru = MRu. (42)

By (38), one has

Mru =
1

|B1|rn

(
|B1|Rn

(
R

n+ 1
− n

∫ R

0
Ω1(t) dt

)

+ 2|Sn−2|
∫ π/2

0
(cos θ)2(sin θ)n−2 dθ

∫ r

R
u2(ρ)ρn−1 dρ

)
.

In view of (39), we obtain

Mru = r−n

(
Rn

(
R

n+ 1
− n

∫ R

0
Ω1(t) dt

)
+

∫ r

R
u2(ρ)ρn−1 dρ

)
.

Combining this with (40), we see that to prove (42) we need to show that the function

A(r) := (rn −Rn)
(

R

n+ 1
− n

∫ R

0
Ω1(t) dt

)
−

∫ r

R
u2(ρ)ρn−1 dρ (43)

is nonnegative on the interval [R, (n+ 1)R]. Clearly,

A′(r) = nrn−1

(
R

n+ 1
− n

∫ R

0
Ω1(t) dt− 1

n
u2(r)

)
.

Note that by (31) and (26)

− 1
n
u2(r) = n

( ∫ κr

0
Ω1(t) dt− κrΩ1(κr)

)
= −n

∫ κr

0
tΩ′

1(t) dt. (44)

Integrating by parts and using (19), we find that

A′(r) = nrn−1

(
n

∫ R

0
tΩ′

1(t) dt− n

∫ κr

0
tΩ′

1(t) dt
)

� 0.

Since A(R) = 0, it follows from the last inequality that A(r) � 0 for R � r � (n+1)R. Thus, (37)
holds.

Let us now justify the relation

sup
r>0

|∇u(0)−A(1)∇u(0; r)|
ω(r)

= 1. (45)

Let 0 � r � R. It follows from (20) that

∂u

∂xn
= 1− n

rn

∫ r

0
tn−1ω(t) dt− (cos θ)2

(
nω(r)− n2

rn

∫ r

0
tn−1ω(t) dt

)
, (46)
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which, together with (39), implies that

A(1) ∂u

∂xn
(0; r) = 1− ω(r).

Hence,
∂u

∂xn
(0)−A(1) ∂u

∂xn
(0; r) = ω(r).

Combining this fact with the formulas
∂u

∂xk
(0) = 0, A(1) ∂u

∂xk
(0; r) = 0, k = 1, . . . , n− 1,

we obtain
|∇u(0)−A(1)∇u(0; r)|

ω(r)
= 1 for 0 � r � R. (47)

We now claim that

ω(κr) � ∂u

∂xn
(0)−A(1) ∂u

∂xn
(0; r) � ω(r) for R � r � (n+ 1)R. (48)

Note that
∂u

∂xn
=

1
r
u2(r)− (cos θ)2

(
u2(r)
r

− u′2(r)
)
,

where u2 is given by (31). In view of (39), one has

A(1) ∂u

∂xn
(0; r) =

n− 1
n

u2(r)
r

+
1
n
u′2(r). (49)

By (31) and (36),

A(1) ∂u

∂xn
(0; r) =

n(n− 1)
r

(
n+ 1
κn

r

∫ κr

0
tnω(t) dt− n

κn−1
r

∫ κr

0
tn−1ω(t) dt

)

+ n

(
n+ 1
κn+1

r

∫ κr

0
tnω(t) dt− n− 1

κn
r

∫ κr

0
tn−1ω(t) dt

)
− ω(κr). (50)

Next, observe that

n+ 1
κn

r

∫ κr

0
tnω(t) dt− n

κn−1
r

∫ κr

0
tn−1ω(t) dt =

∫ κr

0

(
1− t

κr

)(
t

κr

)n−1

tω′(t) dt � 0,

since ω is nondecreasing. This, together with (50) and the inequality r � κr , yields

A(1) ∂u

∂xn
(0; r) � n(n+ 1)

(
n

κn+1
r

∫ κr

0
tnω(t) dt− n− 1

κn
r

∫ κr

0
tn−1ω(t) dt

)
− ω(κr).

By (26), this inequality can be rewritten as

A(1) ∂u

∂xn
(0; r) � n(n+ 1)Ω1(κr)− ω(κr). (51)

Since Ω1 is strictly increasing and κr < R, it follows that

A(1) ∂u

∂xn
(0; r) � n(n+ 1)Ω1(R)− ω(κr).

We now use the identity

n(n+ 1)Ω1(R) = 1 =
∂u

∂xn
(0)

to obtain

A(1) ∂u

∂xn
(0; r) � ∂u

∂xn
(0)− ω(κr),

which implies the left inequality in (48).
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To prove the right inequality in (48), we note that relation (50) can be rewritten as

A(1) ∂u

∂xn
(0; r) =

n(n− 1)
r

(
1
κn

r

∫ κr

0
tnω(t) dt− n

∫ κr

0
Ω1(t) dt

)

+
n

κn+1
r

∫ κr

0
tnω(t) dt+ nΩ1(κr)− ω(κr) (52)

in view of (27).
Let

B(r) := rω(r)− r + rA(1) ∂u

∂xn
(0; r). (53)

The right inequality in (48) is equivalent to the inequality B(r) � 0, r ∈ [R, (n + 1)R]. By (52),
we have

B(r) := rω(r)− r + n(n− 1)
(

1
κn

r

∫ κr

0
tnω(t) dt− n

∫ κr

0
Ω1(t) dt

)

+ r

(
n

κn+1
r

∫ κr

0
tnω(t) dt+ nΩ1(κr)− ω(κr)

)
. (54)

Using the relations κR = R and n(n+ 1)Ω1(R) = 1, we obtain

B(R) =
n2

Rn

∫ R

0
tnω(t) dt− n2(n− 1)

∫ R

0
Ω1(t) dt− n

n+ 1
R. (55)

We note that relation (55), together with (28) for t = R, gives B(R) = 0.
The next step is to show that B′(r) � 0 for r ∈ [R, (n + 1)R]. Combining (49) with (44), we

see that

A(1) ∂u

∂xn
(0; r) =

n(n− 1)
r

∫ κr

0
tΩ′

1(t) dt− κrΩ′
1(κr)

which, together with (53), gives

B(r) = rω(r)− r + n(n− 1)
∫ κr

0
tΩ′

1(t) dt− rκrΩ′
1(κr).

Clearly,
B′(r) = (rω(r))′ − 1− nκrΩ′

1(κr) +
r

n
(tΩ′

1(t))
′|t=κr . (56)

For n = 1, by (29) and (26), one has

tΩ′
1(t) = ω(t)− 2

t2

∫ t

0
τω(τ) dτ =

1
t2

∫ t

0
τ2ω′(τ) dτ.

Since tω′(t) is nondecreasing, it follows that(
t−2

∫ t

0
τ2ω′(τ) dτ

)′
� 0.

Thus, tΩ′
1(t) is also nondecreasing for n = 1. Hence, it follows from the assumption of the theorem

that both functions tΩ′
1(t) and tω′(t) are nondecreasing for n � 1. Therefore, the last term on the

right-hand side in (56) is nonnegative, and κrΩ′
1(κr) � RΩ′

1(R) for r � R. Thus,

B′(r) � ω(R) +Rω′(R)− 1− nRΩ′
1(R) (57)

for r ∈ [R, (n+ 1)R]. Owing to relation (29) for t = R, the last inequality can be rewritten as

B′(r) � Rω′(R)− (n− 1)ω(R) +
n2

Rn+1

∫ R

0
tnω(t) dt− 1

n+ 1
. (58)

By (26) for t = R, relation (58) gives

B′(r) � Rω′(R)− (n− 1)ω(R) +
n(n− 1)

Rn

∫ R

0
tn−1ω(t) dt.
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Integrating by parts on the right-hand side, we obtain

B′(r) � Rω′(R)− n− 1
Rn

∫ R

0
tnω′(t) dt � 1

Rn

∫ R

0
tn(tω′(t))′ dt.

Since the function tω′(t) is nondecreasing, it follows that the right-hand side is nonnegative. This
implies the right inequality in (48) and, together with (47), leads to (45).

Finally, we must show that inequality (18) becomes an equality for u given by (24). It follows
from (19) and (37) that

n

∫ 1/(n(n+1))

0
Ω−1

1 (τ) dτ = n

∫ R

0
t dΩ1(t) = n

(
RΩ1(R)−

∫ R

0
Ω1(t) dt

)

=
R

n+ 1
− n

∫ R

0
Ω1(t) dt = M �u(0).

By (45), the right-hand side of (18) is equal to n(n + 1)Ψ−1
1 (Ψ1(1/(n(n + 1)))) = 1. The proof is

complete.
Remark 1. In general, for n > 1 the assumption that tω′(t) is nondecreasing does not imply

that tΩ′
1(t) is nondecreasing. Let us prove this. Note that

(tΩ′
1(t))

′ = ω′(t) +
n(n+ 1)
tn+2

∫ t

0
τnω(τ) dτ − n

t
ω(t)− nΩ′

1(t)

= ω′(t) +
n(n+ 1)2

tn+2

∫ t

0
τnω(τ) dτ − n2(n− 1)

tn+1

∫ t

0
τn−1ω(τ) dτ − 2n

t
ω(t)

by (29) and (26). Integrating by parts, we obtain

(tΩ′
1(t))

′ = ω′(t)− n

t

(
n+ 1
tn+1

∫ t

0
τn+1ω′(τ) dτ − n− 1

tn

∫ t

0
τnω′(τ) dτ

)
,

and therefore,

(tΩ′
1(t))

′ = −n

t

(
n− 1
ntn

∫ t

0
τn(τω′(τ))′ dτ − 1

tn+1

∫ t

0
τn+1(τω′(τ))′ dτ

)
. (59)

We set

ω(t) =

{
t/ε for 0 < t < ε,

log(te/ε) for t � ε.

Then

tω′(t) =

{
t/ε for 0 < t < ε,

1 for t � ε.

By (59), one has

(tΩ′
1(t))

′∣∣
t=1

= −n

(
n− 1
n

∫ ε

0

τn

ε
dτ −

∫ ε

0

τn+1

ε
dτ

)
= εn

(
n

n+ 2
ε− n− 1

n+ 1

)
,

which is negative if ε < (n− 1)(n+ 2)/(n(n+ 1)) and n > 1. Hence, tΩ′
1(t) is not nondecreasing,

while tω′(t) is.

3. Pointwise Inequality in Terms of D(2)
ω (∇u; x)

In this section, we prove the following analog of Theorem 1.
Theorem 2. (i) Let the function

Ω2(t) := ω(t)− n

∫ 1

0
σnω(σt) dσ (60)
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be strictly increasing on [0,∞), and let Ω−1
2 be the inverse function of Ω2 . Further, let

Ψ2(t) =
∫ t

0
Ω−1

2 (τ) dτ.

Then

|∇u(x)| � (n+ 1)D(2)
ω (∇u;x)Ψ−1

2

(
M �u(x)

D
(2)
ω (∇u;x)

)
, (61)

for any u ∈ C1(Rn), where Ψ−1
2 is the inverse function of Ψ2 and D

(2)
ω is defined by (8).

(ii) Let ω ∈ C1(0,∞). Suppose that the function xΩ′
2(x) is nondecreasing on (0,∞). Let R be

the unique root of the equation
(n+ 1)Ω2(x) = 1. (62)

Inequality (61) becomes an equality for the function

u(x) =




xn(1− ω(|x|)) for 0 � |x| � R,
xn

|x|
(
((n+ 1)R − |x|)ω(n−1((n+ 1)R − |x|))

− (n+ 1)nn+1

((n+ 1)R − |x|)n
∫ (n+1)R−|x|

n

0
tnω(t) dt

)
for R < |x| < (n+ 1)R,

0 for |x| � (n+ 1)R.

(63)

Proof. (i) It suffices to prove inequality (61) for x = 0. One clearly has∫
B1

(∇u(0)−A(2)∇u(0; |y|))|y| dy =
|Sn−1|
|B1|

∫ 1

0

∫ t

0

∫
Sn−1

(∇u(0)−∇u(θρ)) dθ ρn−1 dρ dt

= n|Sn−1|
∫ 1

0

∫ t

0
(∇u(0)−A(1)∇u(0; ρ))ρn−1 dρ dt.

Changing the order of integration in the last two integrals and using (22), we see that∫
B1

(∇u(0)−A(2)∇u(0; |y|))|y| dy = n|Sn−1|
∫ 1

0
(∇u(0)−A(1)∇u(0; t))(1− t)tn−1dt

=
n|B1|
n+ 1

∇u(0)− n

∫
B1

u(y)
y

|y| dy.

After rescaling y → y/t, r → r/t, we obtain

1
tn

∫
Bt

(∇u(0)−A(2)∇u(0; |y|)) dy =
n|B1|
n+ 1

t∇u(0)− n

tn

∫
Bt

u(y)
y

|y| dy.

This implies that

|∇u(0)| � n+ 1
t

M �u(0) +
n+ 1
tn+1

D(2)
ω (∇u; 0)

∫ t

0
ρnω(ρ) dρ,

which can be rewritten as

0 � −t|∇u(0)|+ (n+ 1)M �u(0) + (n+ 1)D(2)
ω (∇u; 0)

∫ t

0
Ω2(τ) dτ. (64)

Since Ω2 is strictly inreasing, it follows that the right-hand side attains its minimum value at

t∗ = Ω−1
2

( |∇u(0)|
(n+ 1)D(2)

ω (∇u; 0)

)
. (65)
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Thus,

0 � (n+ 1)M �u(0)− |∇u(0)|Ω−1
2

( |∇u(0)|
(n+ 1)D(2)

ω (∇u; 0)

)

+ (n+ 1)D(2)
ω (∇u; 0)

∫ Ω−1
2

( |∇u(0)|
(n+1)D

(2)
ω (∇u;0)

)
0

Ω2(τ) dτ

= (n+ 1)M �u(0)− (n+ 1)D(2)
ω (∇u; 0)

∫ Ω−1
2

( |∇u(0)|
(n+1)D

(2)
ω (∇u;0)

)
0

x dΩ2(x)

= (n+ 1)M �u(0)− (n+ 1)D(2)
ω (∇u; 0)

∫ |∇u(0)|
(n+1)D

(2)
ω (∇u;0)

0
Ω−1

2 (τ) dτ

by (64). Therefore,

M �u(0) � D(2)
ω (∇u; 0)

∫ |∇u(0)|
(n+1)D

(2)
ω (∇u;0)

0
Ω−1

2 (τ) dτ,

which is equivalent to (61).
(ii) We have

Ω′
2(t) = ω′(t)− n

t

∫ 1

0
σnω′(σt)σt dσ, (66)

which implies that

ω′(t) > Ω′
2(t) >

ω′(t)
n+ 1

. (67)

Since ω′ � 0, it follows that the function Ω2 is strictly increasing, and therefore Eq. (62) has a
unique root.

Let us verify that the function (63) belongs to C1(Rn). We denote the ratio u(x)/ cos θ by u1(r)
for 0 � |x| � R and by u2(r) for R < |x| < (n+ 1)R, where u is defined by (63). One has

u1(r) = r − rω(r), (68)

u2(r) = n

(
κrω(κr)− n+ 1

κn
r

∫ κr

0
tnω(t) dt

)
, (69)

where
κr = n−1((n+ 1)R − r). (70)

Obviously,

u2(R) = n

(
Rω(R)− n+ 1

Rn

∫ R

0
tnω(t) dt

)
,

which by (60) can be rewritten as

u2(R) = nR

(
n+ 1
n

Ω2(R)− ω(R)
n

)
. (71)

Using (62), we see that u2(R) = u1(R).
Let us now show that

u′2(R) = u′1(R). (72)
By (69), one has

u′2(r) = nω(κr)− κrω
′(κr)− n(n+ 1)

κn+1
r

∫ κr

0
tnω(t) dt. (73)

Therefore, it follows from (60) that

u′2(R) = nω(R)− Rω′(R)− n(n+ 1)
Rn+1

∫ R

0
tnω(t) dt = (n+ 1)Ω2(R)− Rω′(R)− ω(R),
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which, together with (62), implies (72). It remains to note that formulas (69) and (73) and the
relation κ(n+1)R = 0 imply that

u2((n+ 1)R) = 0, u′2((n+ 1)R) = 0.

Our next objective is to show that the function u defined by (63) satisfies

M �u(0) =
R

n+ 1
−

∫ R

0
Ω2(t) dt. (74)

For 0 � |x| � R, the function u is equal to cos θu1(ρ), where u1 is given by (68). Clearly, Mr ,
which is defined by (38), can be rewritten as

2n|Sn−2|
|Sn−1|rn

∫ r

0
ρn(1− ω(ρ)) dρ

∫ π/2

0
(cos θ)2(sin θ)n−2 dθ;

by (39) and the definition of Ω2 , this can be represented as

r

n+ 1
− 1

rn

∫ r

0
ρnω(ρ) dρ =

r

n+ 1
−

∫ r

0
Ω2(t) dt.

It follows from (67) that Ω′
2(t) > 0 for t > 0. Therefore,

max
0�r�R

Mru = MRu =
R

n+ 1
−

∫ R

0
Ω2(t) dt. (75)

We now claim that
max

R�r�(n+1)R
Mru = MRu. (76)

By (69),

Mru =
n

|Sn−1|rn

(
n|Sn−1|Rn

(
R

n+ 1
−

∫ R

0
Ω2(t) dt

)

+ 2n|Sn−2|
∫ π/2

0
(cos θ)2(sin θ)n−2 dθ

∫ r

R

u2(ρ)ρn−1 dρ

)
.

Applying (39), we obtain

Mru = r−n

(
Rn

(
R

n+ 1
−

∫ R

0
Ω2(t) dt

)
+

∫ r

R

u2(ρ)ρn−1 dρ

)
.

To justify (76), we must show that the function

A(r) := (rn − Rn)
(

R

n+ 1
−

∫ R

0
Ω2(t) dt

)
−

∫ r

R

u2(ρ)ρn−1 dρ (77)

is nonnegative on the interval [R, (n+ 1)R ]. Obviously, A(R) = 0 and

A ′(r) = nrn−1

(
R

n+ 1
−

∫ R

0
Ω2(t) dt− 1

n
u2(r)

)
.

Observing that

− 1
n
u2(r) =

∫ κr

0
Ω2(t) dt− κrΩ2(κr)

by (69) and (60) and integrating by parts, we conclude that

A ′(r) = nrn−1

( ∫ R

0
tΩ′

2(t) dt−
∫ κr

0
tΩ′

2(t) dt
)
.

It follows from the inequality tΩ′
2(t) > 0 that A ′(r) > 0. This proves (76) and, together with (75),

implies relation (74).
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Let us now prove that

sup
r>0

|∇u(0)−A(2)∇u(0; r)|
ω(r)

= 1. (78)

We first assume that 0 � r � R. By (68),

∂u

∂xn
= 1− ω(r)− x2

n

r
ω′(r). (79)

Therefore,

A(2) ∂u

∂xn
(0; r) =

n

rn

∫ r

0
(1− ω(ρ))ρn−1 dρ− 2n|Sn−2|

|Sn−1|rn

∫ r

0
ω′(ρ)ρn dρ

∫ π/2

0
(cos θ)2(sin θ)n−2 dθ.

By (39), this can be rewritten as

A(2) ∂u

∂xn
(0; r) =

n

rn

(
rn

n
−

∫ r

0
ρn−1ω(ρ) dρ

)
− 1

rn

∫ r

0
ω′(ρ)ρn dρ = 1− ω(r). (80)

Let us show that the function rω′(r) is strictly increasing. In fact, by (60),

Ω2(t) =
d

dt

(
t−n

∫ t

0
τnω(τ) dτ

)
and hence

tnω(t) =
d

dt

(
tn

∫ t

0
Ω2(τ) dτ

)
.

Therefore,

tω(t) = n

∫ t

0
Ω2(τ) dτ + tΩ2(t). (81)

This implies the relation

tω′(t) = tΩ′
2(t) +

n

t

∫ t

0
τΩ′

2(τ) dτ.

The derivative of the second term on the right-hand side is equal to

n

t2

(
t2Ω′

2(t)−
∫ t

0
τΩ′

2(τ) dτ
)

(82)

and is positive, since tΩ′
2(t) is nondecreasing. Combining this with (82), we see that tω′(t) is a

strictly increasing function. Since ω(0) = 0, it follows that rω′(r) → 0 as r → 0. In conjunction
with (79) and (80), this implies that

∂u

∂xn
(0)−A(2) ∂u

∂xn
(0; r) = ω(r).

Combining this with the relations
∂u

∂xk
(0) = 0, A(2) ∂u

∂xk
(0; r) = 0, k = 1, . . . , n− 1,

we find that
|∇u(0)−A(2)∇u(0; r)|

ω(r)
= 1 for 0 � r � R.

Let us now show that

0 � ∂u

∂xn
(0)−A(2) ∂u

∂xn
(0; r) � ω(r) for R � r � (n+ 1)R. (83)

Applying Green’s formula, we obtain

A(2) ∂u

∂xn
(0; r) =

1
|B1|rn

∫
∂Br

u cos θ ds = u2(r)
2|Sn−2|
|B1|r

∫ π/2

0
(cos θ)2(sin θ)n−2 dθ.
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This, together with (39), gives

A(2) ∂u

∂xn
(0; r) =

u2(r)
r

. (84)

Since (∂u/∂xn)(0) = 1, we see that the left inequality in (83) can be rewritten as u2(r) � r. The
last inequality is valid since

u2(r) = nκr

(
n+ 1
n

Ω2(κr)− ω(κr)
n

)
� κrΩ2(κr)(n+ 1) � R � r.

Let us prove the right inequality in (83), which is equivalent to the inequality

ω(r) +
u2(r)
r

− 1 � 0, r ∈ [R, (n+ 1)R ]. (85)

The function g(r) := rω(r) + u2(r) − r vanishes for r = R, since u2(R) = u1(R) and (68) holds.
Further, (73) yields

g′(r) = (rω(r))′ −
(
κrω

′(κr) +
n(n+ 1)
κn+1

r

∫ κr

0
tnω(t) dt− nω(κr)

)
− 1

= (rω(r))′ − κrω
′(κr) +

n

κn+1
r

∫ κr

0
tn+1ω′(t) dt− 1.

Using (66), we obtain
g′(r) = (rω(r))′ − κrΩ′

2(κr)− 1. (86)
Since (tω(t))′ is strictly increasing, Eq. (86) implies that

g′(r) > (Rω(R))′ − RΩ′
2(R)− 1, r ∈ (R, (n+ 1)R ].

In view of (66), the right-hand side is equal to

ω(R) +
n

Rn+1

∫ R

0
τn+1ω′(τ) dτ − 1 = ω(R) + (n+ 1)Ω2(R)− ω(R)− 1 = 0.

Hence, g increases on [R, (n+ 1)R ].
It remains to prove that inequality (61) becomes an equality at x = 0 for the function u given

by (63). By (62), one has∫ 1/(n+1)

0
Ω−1

2 (τ) dτ =
∫ R

0
t dΩ2(t) = RΩ2(R)−

∫ R

0
Ω2(t) dt =

R

n+ 1
−

∫ R

0
Ω2(t) dt.

This, together with relations (74) and (78), shows that the right-hand side of (61) is equal to
(n+ 1)Ψ−1

2 (Ψ2(1/(n+ 1))) = 1. This completes the proof.
Remark 2. In the proof of Theorem 2, we showed the assumption that tΩ′

2(t) is nondecreasing
to imply that tω′(t) is strictly increasing. Let us prove that the converse is not true, that is, the
function tΩ′

2(t) need not be monotone if tω′(t) increases. For any small t > 0, we set

ω(t) =
∫ t

0

∫ τ

0
ξ(sin ξ−1)2dξ

dτ

τ
.

The function tω′(t) increases, because

(tω′(t))′ = t(sin t−1)2.

Hence, it follows from (66) that the derivative

(tΩ′
2(t))

′ = (tω′(t))′ − n

tn+2

∫ t

0
τn+1(τω′(τ))′ dτ (87)

is negative for tk = (πk)−1 , k = 1, 2, . . . . Now by (87) one has

(tΩ′
2(t))

′ = t(sin t−1)2 − n

2(n+ 3)
t(1 +O(t)).



44

Here the right-hand side is positive for tk = (π(k + 1/2))−1 if k is sufficiently large. Hence, tΩ′
2(t)

is not monotone.

4. The Special Case ω(r) = rα, α > 0

Setting ω(r) = rα with α > 0 in Theorem 1 and using the notation

D(1)
α (∇u;x) = sup

r>0

|∇u(x)−A(1)∇u(x; r)|
rα

,

we obtain the following corollary to Theorem 1.
Corollary 1. Let u ∈ C1(Rn), and let α > 0. Then inequality (10) holds with the best con-

stant (11).
Inequality (10) becomes an equality for the function

u(x) =




xn

(
1− n

n+ α
|x|α

)
for 0 � |x| � R,

αn1−α((n+ 1)R− |x|)α+1

(n+ α)(n+ α+ 1)
xn

|x| for R < |x| < (n+ 1)R,

0 for |x| � (n+ 1)R,

where

R =
(
(n+ α)(n+ α+ 1)
(α+ 1)n(n+ 1)

)1/α

.

Corollary 2 (a local version of Corollary 1). Let M �
1 denote the modified maximal operator

given by

M �
1 u(x) = sup

0<r<1

∣∣∣∣ −
∫

Br(x)

y − x

|y − x| u(y) dy
∣∣∣∣,

and let

D
(1)
1,α(∇u;x) = sup

0<r<1

|∇u(x)−A(1)∇u(x; r)|
rα

.

Then for any α > 0 the inequality

|∇u(x)| �
(
C1(D

(1)
1,α(∇u;x))1/(α+1) + C2(M �

1 u(x))
1/(α+1)

)
(M �

1 u(x))
α/(α+1) (88)

holds with the best constants C1 defined by (11) and C2 = n+ 1.
Proof. It suffices to set x = 0. It follows from (23) that

|∇u(0)| � (n+ 1)
(

M �
1 u(0)t

−1 +
n

(n+ α)(n+ α+ 1)
D

(1)
1,α(∇u; 0)tα

)
.

The right-hand side attains its minimum value either at

t =
(
(n+ α)(n+ α+ 1)

αn

M �
1 u(0)

D
(1)
1,α(∇u; 0)

)1/(α+1)

< 1

or at t = 1. Thus we arrive at the following alternatives: either

M �
1 u(0) � αn

(n+ α)(n+ α+ 1)
D

(1)
1,α(∇u; 0)

and
|∇u(0)| � C1(M �

1 u(0))
α/(α+1)(D(1)

1,α(∇u; 0))1/(α+1) (89)

with C1 defined by (11), or

M �
1 u(0) � αn

(n+ α)(n+ α+ 1)
D

(1)
1,α(∇u; 0)
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and

|∇u(0)| �
(

C1

α+ 1
(D(1)

1,α(∇u; 0))1/(α+1) + C2(M �
1 u(0))

1/(α+1)

)
(M �

1 u(0))
α/(α+1). (90)

Inequalities (89) and (90) imply (88).
To show that the constant C1 is sharp, we make the dilation x → δx, 0 < δ < 1, in (88). Then

|∇u(x)| � (C1(D(1)
α (∇u;x))1/(α+1) + C2δ(M �u(x))1/(α+1))(M �u(x))α/(α+1).

Passing to the limit as δ → 0, we arrive at (88) with the best constant C1 .
To prove that the constant C2 is sharp, we set u(x) = xn . Then (88) becomes

|∇u(x)| � (n+ 1)M �
1 u(x). (91)

Clearly,

M �
1 u(0) = sup

0<r<1

∣∣∣∣ −
∫

Br

x

|x| xn dx

∣∣∣∣ = sup
0<r<1

−
∫

Br

x2
n

|x| dx

= sup
0<r<1

2n|Sn−2|
|Sn−1|rn

∫ π/2

0
(cos θ)2(sin θ)n−2 dθ

∫ r

0
ρn dρ,

which, together with (39), implies
M �

1 u(0) = (n+ 1)−1.

Thus, inequality (91) becomes an equality. This completes the proof of the corollary.
Setting ω(r) = rα , α > 0, and using the notation

D(2)
α (∇u;x) = sup

r>0

|∇u(x)−A(2)∇u(x; r)|
rα

,

we obtain the following corollary to Theorem 2.
Corollary 3. Let u ∈ C1(Rn), and let α > 0. Then the inequality

|∇u(x)| � C2(M �u(x))α/(α+1)(D(2)
α (∇u;x))1/(α+1) (92)

holds with the best constant

C2 = (n+ 1)
α+ 1
α

(
α

n+ α+ 1

)1/(α+1)

. (93)

Inequality (92) becomes an equality for the odd function given for x � 0 by the formula

u(x) =



xn(1− |x|α) for 0 � |x| � R,
αn−α

n+ α+ 1
((n+ 1)R − |x|)α+1 xn

|x| for R < |x| < (n+ 1)R,

0 for |x| � (n+ 1)R,

where

R =
(

n+ α+ 1
(α+ 1)(n+ 1)

)1/α

.

5. The One-Dimensional Case

For n = 1,

D(1)
ω (u′;x) = sup

r>0

|2u′(x)− u′(x+ r)− u′(x− r)|
2ω(r)

, D(2)
ω (u′;x) = sup

r>0

|u′(x)− u(x+r)+u(x−r)
2r |

ω(r)
,

and M � is defined by (4).
The next two corollaries readily follow from Theorems 1 and 2.
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Corollary 4. Let u ∈ C1(R). Then the inequality

|u′(x)| � 2D(1)
ω (u′;x)Ψ−1

1

(
M �u

D
(1)
ω (u′;x)

)
(94)

holds, where Ψ−1
1 is the inverse function of

Ψ1(t) =
∫ t

0
Ω−1(τ) dτ

with Ω−1 being the inverse function of

Ω(t) =
∫ 1

0
σω(σt) dσ.

Suppose that tω′(t) is nondecreasing on (0,∞). Then inequality (94) becomes an equality for
the odd function u given on the half-line x � 0 by the formula

u(x) =



x

(
1−

∫ 1

0
ω(σx) dσ

)
for 0 � x � R,

(2R− x)
∫ 1

0
(2σ − 1)ω(σ(2R− x)) dσ for R < x < 2R,

0 for x � 2R,

where R is the unique root of the equation 2Ω1(t) = 1.
Corollary 5. Let u ∈ C1(R). Then the inequality

|u′(x)| � 2D(2)
ω (u′;x)Ψ−1

2

(
M �u

D
(2)
ω (u′;x)

)
(95)

holds, where Ψ−1
2 is the inverse function of

Ψ2(t) =
∫ t

0
(ω − Ω)−1(τ) dτ

with (ω − Ω)−1 being the inverse function of ω − Ω.
Suppose that the function t(ω(t) − Ω(t))′ is nondecreasing on (0,∞). Then inequality (95)

becomes an equality for the odd function u given on the half-line x � 0 by

u(x) =



x(1− ω(x)) for 0 � x � R,

(2R − x)ω(2R − x)− 2
2R − x

∫ 2R−x

0
tω(t) dt for R < x < 2R.

0 for x � 2R,

where R is the unique root of the equation 2Ω2(t) = 1.
Set

Dω(u′;x) = sup
y∈R

|u′(x)− u′(y)|
ω(|x− y|)

and note that D(1)
ω (u′;x) � Dω(u′;x). Moreover, if u is odd, then D

(1)
ω (u′; 0) = Dω(u′; 0). Therefore,

Corollary 4 implies the following assertion.
Corollary 6. Let u ∈ C1(R). Then

|u′(x)| � 2Dω(u′;x)Ψ−1
1

(
M �u

Dω(u′;x)

)
. (96)

Inequality (96) becomes an equality for the same function as in Corollary 4. As in Corollary 4,
here we assume that rω′(r) is nondecreasing on (0,∞).

In the special case ω(t) = tα , α > 0, Corollaries 4 and 6 can be stated as follows.
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Corollary 7. Let u ∈ C1(R), and let α > 0. Inequality (12) holds with the best constant (13).
The rougher inequality (3) follows from (12). Inequality (12) (and even (3)) becomes an equality
for the odd function u whose values for x � 0 are given by

u(x) =




(α+ 1)x− xα+1 for 0 � x �
(
α+ 2
2

)1/α

,

α

α+ 2

(
2
(
α+ 2
2

)1/α

− x

)α+1

for
(
α+ 2
2

)1/α

< x < 2
(
α+ 2
2

)1/α

,

0 for x � 2
(
α+ 2
2

)1/α

.

(97)

Note that (3) is a special case of (96) for ω(t) = tα .
In conclusion, we present an assertion that readily follows from Corollary 5 for ω(t) = tα , α > 0.
Corollary 8. Let u ∈ C1(R), and let α > 0. Inequality (14) holds with the best constant (15).

Inequality (14) becomes an equality for the odd function u whose values on the half-line x � 0 are
given by

u(x) =




x− xα+1 for 0 � x �
(

α+ 2
2(α+ 1)

)1/α

,

α

α+ 2

(
2
(
α+ 2
2

)1/α

− x

)α+1

for
(

α+ 2
2(α+ 1)

)1/α

< x < 2
(

α+ 2
2(α+ 1)

)1/α

,

0 for x � 2
(

α+ 2
2(α+ 1)

)1/α

.
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