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We obtain a representation for the sharp coefficient in an estimate of the modulus of
the nth derivative of an analytic function in the upper half-plane C,. It is assumed
that the boundary value of the real part of the function on 0Cy belongs to LP. This
representation is specified for p =1 and p = 2. For p = oo and for derivatives of odd
order, an explicit formula for the sharp coefficient is found. A limit relation for the
sharp coefficient in a pointwise estimate for the modulus of the n-th derivative of an
analytic function in a disk is found as the point approaches the boundary circle. It is
assumed that the boundary value of the real part of the function belongs to LP. The
relation in question contains the sharp constant from the estimate of the modulus of
the n-th derivative of an analytic function in C.. As a corollary, a limit relation for
the modulus of the n-th derivative of an analytic function with the bounded real part is
obtained in a domain with smooth boundary. Bibliography: 8 titles.

1 Introduction

In this paper, we deal substantially with a class of analytic functions in the half-plane C; =
{z € C:Imz > 0} represented by the Schwarz formula

1 [Ref(Q)

g) (—z
o0

f(z) =

dg (1.1)

and such that the boundary values on C . of the real part of f belong to LP(—00,00), 1 < p < 00.
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We consider the following inequality with sharp coefficient J7, ,(2; ):
| Re{e’ f™ (2)}] < Hnp(zi0)||Re flly , (1.2)

where z € C and ||- ||, stands for the norm in LP(—o0, 00). Hereinafter, we adopt the notation
|| Re fl|p for ||Re f|ac, ||, Note that the value K, (2;«) is obtained by passage to the limit
of Ky p(z; ) as p — co. We find a representation for .7, ,(z; ) and, as a consequence, for the
sharp coefficient J#;, ,(2) in the inequality

1F™ ()] < Hp()lIRe flp - (1.3)

In a number of cases described below, we obtain explicit formulas for the coefficient 7, ,,(2).

The concluding section of this paper concerns a limit relation for the sharp coefficient in the
estimate of the modulus of the nth order derivative of an analytic function in a disk as the point
approaches the boundary. It is assumed that the boundary value of the real part of the analytic
function belongs to LP. As a direct consequence, we obtain a limit relation for the modulus of
the nth derivative of an analytic function with the bounded real part in a domain with smooth
boundary.

Note that the inequalities (1.2) and (1.3) for analytic functions belong to the class of sharp
real-part theorems (cf. [1] and the references therein) which go back to Hadamard’s real-part
theorem [2].

The present article extends the topic of our paper [3], where we found explicit formulas for
o p(z) for p € [1,00) and for J# p(z) for p € [1,00]. Unlike [3], we consider now the case of an
arbitrary n > 1. However, explicit formulas for 7, ,(z) are derived only for particular values
of p.

Now, we describe the results of this paper in more detail. Section 2 concerns a representation
for the sharp coefficient %7, ,(2; o). We show that the sharp coefficient in (1.2) is given by

Ky
Hap(zia) = @)
(Im z)"*»
where
| w/2 1/q
n! nm\ 4
- . e (n+1)q—2
Ky (o) W{ / )cos (a (n+1)p+ 5 )‘ cos godcp}

—7/2

and 1/p+1/q = 1. As a consequence, we obtain a representation for the coefficient J#;, ,(2) in
(1.3); namely,

K,
Jnp(2) = nﬁi+1 ’
(Imz)""»
where
K, =max K, ,(a) . (1.4)
[0

In Section 3, we find the values of sharp constants K, ;1 and K, o:

n! (2n)!
Kn,l = ?7 Kn,2 = m .
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Note that the maximum over « in (1.4) with p = 1 and even n is attained at o = 0 and with
p=1and odd n at & = 7/2. The coefficient K, 2(c) is independent of c.

In Sections 4 and 5, we study the case p = oo in (1.3) separately for n = 2m + 1 and for
n = 2m.

Section 4 is devoted to derivatives of odd order. We show that Ko;,11 00(c) is independent
of o and prove the following estimate with the sharp coefficient:

‘f(2m+1)(z)’ < 2 [(2m+ 1)”]2

S (2m 4 1)(Im z)2m+1 [IRe flloc -

The sharp pointwise estimate for the modulus of the derivative of odd order for a bounded
analytic function in a disk was established by Szész [4]. Sharp estimates for |f(™(z)| with the
LP(0D)-norm of | f| on the right-hand side for analytic functions in the unit disk D were obtained
by Makintyre and Rogosinski [5].

Section 5 concerns sharp estimates for the modulus of derivatives of even order with || Re f]|~
on the right-hand side. We rewrite the expression for the derivative in « of the integral appearing
in the formula for Ky, oo(a) and make its further analysis. In particular, we find the sharp
constants

K2,oo = KQ,OO(O) = %gv K47OO = K47OO(7T/2) = i(16 + 5\/5) :
s 4
Note that a sharp explicit estimate for the second order derivative of a bounded analytic function
in a disk was found by Szdsz [4].

In Section 6, we consider an example of K, ,(«) independent of a for p # 2 and p # oc.

Namely, we deal with the case n = 2,p = 4.

Section 7 is devoted to the limit relation

lim (R — )" 5 ) (2) = K (1.5)

r—R

where J7), ,(z) is the sharp coeflicient in the inequality

1f™(2)] < Hp(2)]| Re flopgllp -

Here, f is an analytic function in the disk Dr = {z : |z < R|} with the real part in the Hardy
space h?(Dg), 1 < p < oo, whose elements are harmonic functions in Dg represented by the
Poisson integral with density in LP(0Dg).
Note that the representation for .7, ,(z) is obtained in [1], where, in particular, explicit
formulas for .77, 1(2) and 7, 2(z) are found. A formula for 4 (%) is due to D. Khavinson [6].
As a consequence of (1.5), we deduce the limit relation for the modulus of the nth order
derivative of an analytic function f with ||Re f|sq|lc < 1 in a domain Q@ C C; with smooth

boundary:
lim 2] £ (2)] < Koo | (1.6)
d.—0

where d, = dist (z,09). We assume that each point of 9 can be touched by an interior circle
of sufficiently small radius. A particular case of (1.6) is the limit relation

2[(2m + 1)N)?

2mt1| p(2mt1) <
m &= (2)] m(2m + 1)

li
d,—0
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containing the sharp constant on the right-hand side which was found in Section 4.

2 Representations for Sharp Coefficients in Estimates for
Derivatives of Analytic Functions

In what follows, by h?(R2),1 < p < oo, we mean the Hardy space of harmonic functions
in the upper half-plane ]Ra_ which are represented by the Poisson integral with a density in
LP(—00,00). It is well known (cf., for example, [7], Sect. 19.3) that f belongs to the Hardy
space HP(C,.) of analytic functions in C; if Re f € h?(R%), 1 < p < oo. Moreover, any function
f € HP(Cy), 1 < p < oo, admits the representation (1.1) since Re f € hP(R?).

The following assertion contains representations for the sharp coefficients in (1.2) and (1.3)
forn > 1.

Proposition 2.1. Let Re f € hp(R%r), 1 < p < oo, and let z be an arbitrary point in C,.
The sharp coefficient J,(z; o) in the inequality

| Re{e’ f™ (2)}] < Hnp(z: )| Re f|, (2.1)
s given by
K
(25 ) = 7@(@)1 : (2.2)
(Im z)"*e
where
| w/2 1/q
! q
Kpp(a) = %{ / )cos (a —(n+ e+ %)‘ cos(" a2 god@} (2.3)
—7/2

and 1/p+1/q=1.
In particular, the best coefficient in the inequality

1F™(2)] < Hp()lIRe flI (2.4)
s given by -
%, = il ) 2.5
p(2) (Im z)"+5 (2.5)
where
Ky, = max Ky (o). (2.6)
Proof. By (1.1), we have
nl [ Ref(C)
12) E/(C_Z)nﬂ a, (2.7)
where z € C;.. We have
i p(n n! ! ei(a_%)
Re{e® M (2)} = — / Re {W} Re f(¢)dC . (2.8)
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Let z = x +iy. We write (2.8) as

. n! 7 ei(afg) —x 7 ntl
Re{emf(”)(z)}:?' / Re{ [(C _[(5)2+;;3ﬁ]1 }Re f(©)de¢ . (2.9)

—0oQ
Hence the sharp coefficient ., ,(z; @) in (2.1) is given by

i et(e-%) [(¢ —z) +iy] i
el = ?{ / Re{ (s }

q 1/q
dg} . (2.10)

We introduce the new integration variable ¢ € (—7/2,7/2) by the equalities

(—x Y

sing = ) Cos p = ) (2.11)
(C—2)2+y? (€ =)+
Then
(o = arctan ; (2.12)
and therefore,
Y
o= Ty 1)
Since
. n+1
ei(ag){ (é:?);‘iyyg } — ¢i(e—3) (sing +icos <,0)nJr1
— ¢i(o—%) {cos (E — <P> + isin (z - @)]nﬂ
2 2
_ pila—(n+1)e+ 1]
and

1 1 y (n+1)g—2 y
[(C — )2 + 2] 0092~y ( (C—z)2+ y2) C—2)2+y*’

from (2.11)—(2.13) it follows that (2.10) can be written in the form (2.2) with the constant (2.3).
Formulas (2.5) and (2.6) follow from (2.2) and (2.1). O

3 Casesp=1and p=2

In this section, we find the values of the sharp constant in (2.4) for p = 1 and p = 2. We
start with p = 1.

Corollary 3.1. Let Re f € hl(Ri), and let z be an arbitrary point in C,. The sharp
constant K, 1 in the inequality

Kn,l
(Im Z)n—‘rl

1F™(2)] < [ Re fll, (3.1)
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s given by

)

n!

Besides,
Kom1 = Kom,1(0), Koms11 = Komy1,1(m/2) . (3.3)

Proof. The estimate (3.1) follows from Proposition 2.1 with
K1 =max K, () (3.4)
6

and
|
Kpi(a) = ™ max ‘cos [a —(n+ 1)+ %} ‘ cos" (3.5)
T ¢

Interchanging the order of maxima, we obtain

| |
K1 = ™ rhax max ‘cos [oz —(n+ e+ T;—W} ‘ cos" 1 p = v , (3.6)
T ¢ o« T

which proves (3.2).

If n is even, the maximum in (3.6) is attained at & = (n+ 1)y and ¢ = 0, i.e., the maximum
over « in (3.4) is attained at @ = 0. If n is odd, the maximum in (3.6) is attained at o =
(n+1)p+ (7/2) and ¢ = 0, i.e., the maximum over « in (3.4) is attained at o = 7/2. Thus,
(3.3) follows. O

The next assertion concerns the case p = 2.

Corollary 3.2. Let Re f € h*(R%), and let z be an arbitrary point in C. The sharp
constant K, 2 in the inequality

Kn,2

FW(2)] < —22— || Re f|l2 3.7
() (T 2)™* | Re f]] (3.7)
s given by
(2n)!
Kno = il (3.8)

The coefficient K, p(a) in (2.2) is independent of a for p = 2.

Proof. The inequality (3.7) with

K2 =max K, 2(a), (3.9)
where
/2 1/2
| 2
Ky o(a) = v / ‘cos (a —(n+ e+ n77r) ’ cos®™ pdyp , (3.10)
T
—7/2

follows from (2.4)—(2.6) and (2.3). Consider the function

/2
F.(a) = / cos? (a —(n+ e+ %) cos?™ pdyp | (3.11)
—7/2
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which appears in (3.10). Since

w/2 w/2
1 1
F,(a)= 3 / cos®™ pdp + 3 / coS (2a —2(n+ e+ TL?T) cos?™ pdyp
—7/2 —7/2
w/2 w/2
= / cos®™ pdip + (—1)" cos 2a / cos 2(n + 1) cos® pdyp
0

0

and
w/2

/ cos’ 2z cosvr dr =0
0

(cf., for example, [8, 3.631(19)]), we find

/2 —
_ o o VAD(FF)  w(2n)!
F,(a) = /cos pdp = o] =
0

By (3.10) and (3.11),

Kn 2(0() = %' Fn(a) s

)

which, together with (3.12), gives

(2n)!

Kn,g(a) = m .

Thus, K, 2(c) is independent of . Formula (3.8) follows from (3.9) and (3.13).

4 Casep=oo,n=2m+1

In this section, we prove the following assertion.

Corollary 4.1. Let Ref € h®(R2), and let z be an arbitrary point in Cy.
constant Kom41,00 in the inequality

K
(2m+1) 2m+1,00
£ ()] < I Re Sl
s given by
2 [(2m + D!J?
a1

K2m+1,oo = om + 1

The coefficient K, p(a) in (2.2) with n =2m + 1 and p = oo is independent of a.

(3.12)

(3.13)

The sharp

(4.1)

(4.2)
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Proof. The inequality (4.1) follows from (2.4) and (2.5). By (2.3), we have

w/2
2m + 1)! . m
Komi1.00(0t) = % / | sin [a — 2(m + 1)¢]| cos®™ p dp . (4.3)
—7/2
Setting
/2
Gm(a) = / | sin [a — 2(m + 1)¢]| cos®™ ¢ dyp (4.4)
—7/2

and making the change of variable ¥ = o — 2(m + 1)¢, we obtain

a+(m+1)r ’
1 -«
Gm(a) = —— i M i) .
@)= 3m+1) ( /H) e 2m+1)
Since the integrand is 2(m + 1)m-periodic, it follows that
(m+1)m y
1 : 2m -«
Gm(Oé) = m / ‘ Sln?l)} COS m d?/)
—(m+1)w
(k+1)m
= Z ‘sm¢|cosm7dzp
2(m +1) S m+ 1)
The change of variable ¥ — km = 9 implies
1 9+ kw —
Gn(a) = 9 a0 . 4.5
() T D) ZmH /‘sm | cos®™ 1) (4.5)
We introduce the notation
= 0+ km
gm(0) = cos?™ (4.6)
k:—%q;-u) 2(m +1)

Since

m—1
) 2m
cos?™ 22m{ _02<,)cos2 —])x—i-(m)},

J

we can write (4.6) in the form

20m+1) [2m 1 iom “ 0+ km)(m—j
onl® =St () e D7) X e T
k

Jj=0 =—(m+1)
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Weset s=m —j (s=1,2,...,m). Consider the interior sum. We have

Cosﬂ:Re{emﬂ—l em+1k}
m+1
k=—(m+1) k=—(m+1)

2m+1 2ism
. [7] isT . 7] 1 —
= Re {ez(m+l_ﬂ—)s Z 6m+lg} = Re {el(m+l_7r)s—e

1 —em+1

=0

Therefore, the second term in (4.7) vanishes and hence

m+1 (2m m—+ 1)(2m)!
o= s () = Gt

Combining this with (4.6), we write (4.5) as

s

Gon(a) = — (m+1)(2m)!/smﬁdﬁ: (2m)!

2(m + 1) 22m=1(m!)2 22m=1(ml)2
0
Now, by (4.3) and (4.4), we find
(2m + 1)! (2m +1)! (2m)! 2 [(2m + 1))
K m-+1,00 = —— Um - : =
2m+1,00() T G (@) ™ 22m=1(mhH2 1 2m+1
which proves the independence of Koy, 11,00(c0) of a. This, together with (2.6), leads to (4.2). O

5 Casesp=oo,n=2and n=4

By (2.3), we have

/2
2m)!
Kom oola) = % / ‘ cos [a - (2m+ 1)@] ’ cog?m1 pdp .
—m/2
Lemma 5.1. The equality
w/2

K 0 2m))!
= m(2m +( 1)2)22(m—1) /(\ cos(a — )| — | cos(a + ¢)|) Am () dep
0

holds with - . (20-1)p
Ano) =312t =) (0 ) L
=1 2(2m+1)
Proof. Setting
/2
o= | ol g
—7/2

(5.4)
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we write (5.1) as

Komoo(a) = (2m)!

Sm(a) (5-5)
T
Making the change of variable 1) = a — (2m + 1)y in (5.4), we obtain
a+(2m+1)3
1 om-1 X~ Y
S () o 1 / ‘COS@Z)}COS md¢.
a—(2m+1)%
Hence
a+(2m+1)3
dSm 2m —1 om—1) =Y . a—1
= m dy .
da ~ (2m11)? / | cos ] cos om 1 o1
a—(2m+1)%

Returning to the variable ¢ = (o — ¢)/(2m + 1) and then writing the resulting integral as the
sum over (—7/2,0) and (0,7/2), we find

w/2
ds, 2m —1
7 == 2m 1 / ‘cos[a —(2m + 1)(,0H cos? ™1 wsin o dop
« m
0
2 1 ’
- QZ—T— . / ‘ coslav — (2m + l)go]‘ cos?™ 1 wsing dp .
—7/2

Setting ¢ = —¥ in the second integral, we obtain

/2
dSy,  2m—1

da 2m—+1

cosla+(2m + 1)p|| — | cosja—(2m + 1) COS2(m71)<pSin(pdg0,
0

which after the change of variable §# = (2m + 1)y becomes

(2m+1)T
(22m+_ 11)2 / P(a, ) cos?mD gy
m

0

0 .
omt+1 omy1 @ (5.6)

dSm
do

where

P(a,0) = | cos(a+ 0)| — | cos(a — 0)]
Now, (5.6) can be written as

dSm  2m—1 2§1 7 P(a, 0) cos2mD 4 0 ”
da  (2m+ 1)?2 % 7 608 om+ 1 2m+ 1
m(j—1)
2
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We split the last sum into two for even and odd j:

dSm _ 2m—1 < (e 6 . 0
0) cos?m1) do
da 2m+12Z / (o, 0) cos om+ 1o om 1
7r(23 1)
m(2s—1)
m+1 2

2m — 1

0 0

- - 2(m—1)

+(2m—|—122 / Pfa, 6) cos o1 o1 -
r(s—1)

In the first sum, we set § — sm = —p under the integral sign and in the second sum we set
0 — (s — 1) = . This leads to the equality

w/2
dSm 2m —1 om—1) ST =@ . ST—¢
= d
do 2m+ 2231/ cos 2m+1$1r12m+1
0
m+1 /2
2m — 1 Z / COS2(m_1) (S — 1)7T + (%2 sin (8 — 1)7T + %) ng ,
(2m +1 2 2m +1 2m +1
which can be written as
w/2
ds, 2m —1
doln — am 1) / (‘ cos(a — go)‘ — |cos(a + cp)‘)fbm(w)dw , (5.8)
0
where
- m—1) kT — ¢ kTr —p
— ) i . 5.9
k;mcos 2m+ 1 2m+ 1 (5:9)

Next, we write (5.9) in the form

2m 4+ 1dQm,
d = _— 5.10
nlp) = gt (5.10)
where
" km—
gp) = Z COS27n_1 m . (511)
k=—m
Since
m—1 9 —
cos®™ 1 g ( ) cos(2m —2j — 1)z
j:O

(5.11) becomes

1 O f9m -1 kr— o) (2m —2j — 1
Qm(‘P): Z ( . )cos( 90;571+1 J )
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Setting £ = m —j (¢ = 1,2,...,m) in the interior sum and changing the order of summation,

we obtain
— (km—p)(20 -1
Qm(®) = 55y § (2m 1) E cos Qmil )| (5.12)

We evaluate the interior sum in (5.12). Using the equalities

(km—)(20—1) ;km—p)(20-1) _; =D jmh(2e=1)

k=—m k=—m k=—m
and
2m .
Z i Z ¢t
k=—m =0
1 — im(26-1) jmm(20-1) 2¢” Zmrzlr(fill)
= PEICTSY e il = TR
1 — e 2m—+1 1 — e 2m+1
we find
(km = p)(20 — 1) R 41 €05 Gt
Zc —9Re{ S Ly 2mil
2m +1 jm(20=1) . (20—
k=-m 1 —e 2+l S 2 @m+1)
Substituting the last sum into (5.12), we obtain
(20—1)p
_ 2m —1 e+1 ©08 oyt
Qm(p) = ng( ) (=1) @—1x
SIN 5571y
which, together with (5.10), implies
. (20-1)p
1 " om—1 ¢ sin 57
B(p) = i 2 () ) o S
_ (m—1) iy . (2=Dr
(2m —1)2 =\ sin 5513
Using this in (5.8) and taking into account (5.5), we arrive at (5.2) and (5.3). O

Before passing to applications of Lemma 5.1 we make two remarks.

The first one concerns the range of « in the evaluation of the maximum

K2m,oo = mO?XKQm,oo(a)- (5.13)

It follows from (5.1) that Kap, oo(e) is a m-periodic function. Hence we may assume that a €
[—7/2,7/2]. Moreover, we can restrict our consideration to the interval [0, /2] since Kop, oo (cv)
is even, which is easy to check.

The second remark relates the sign of | cos(¢ — a)|—| cos(¢ + «)|. We show that

|cos(p — a)| = | cos(p + )] (5.14)
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for a, o € [0, 7/2]. In fact, since

cos(p — o) —cos(p + a for €10, —qaf,
cos( = a)l—eos(ip + o) ={ NPT meslere) for o e (D F ol
cos(p — a)+cos(p + @) for pe (5 —a,3],
it follows that
2sin ¢ sin « for p€|0,5 —qaf,
| cos(p — a)[ = cos(p + a)|= [W ’ W]
2 cos ¢ cos for e (a—a, 5} )

and hence (5.14) holds for «, 9 € [0,7/2]. Moreover, the equality sign in (5.14) holds only for
a =0 or for o = 7/2 provided that ¢ € (0,7/2).

Corollary 5.1. Let Re f € hoo(Ri), and let z be an arbitrary point in C.. The sharp

constant Ks o in the inequality

KQ,OO
1" (2)] < (Im2)? | Re f]loo (5.15)
s given by
3v3
Koo = K250(0) = 5 (5.16)
Proof. By Lemma 5.1,
/2
dKsoo 4 L
—2 = 97r/ (| cos(ex — )| — | cos(a + )|) sin 3 dp .
0
Combined with (5.14), this implies
ESE
da
for a € (0,7/2). Taking into account (5.1) and (5.13), we obtain
w/2
2
Koo = K200(0) = — / | cos 3| cos ¢ dip
T
—7/2
/6 w/2
4
:—{/Cos?)cpcosgodgo—/congpcosgpdgp}:%_ ]
s 27
0 /6

Corollary 5.2. Let Ref € hoo(Ra_), and let z be an arbitrary point in C,. The sharp

constant K4 o in the inequality

Ky
" < ,O0 0o 1
£ < sy R (517)
is given by
3
Kioo = Ky oo(m/2) = 5(16 +5V5) . (5.18)
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Proof. By Lemma 5.1,

w/2
dK4,oo_ 24
do _100w/(’cos(a @)l = |cos(a+ @)[) Aa(e) dep , (5.19)
0
where
.30 N
sin =2 sin £
M) =3 | = — == | - (5.20)
sml—g sml”—o

Using the identity sin 3z = 3sinz — 4sin® z in (5.20), we find

L
5 (Sin2 T sin2 f) 7
10 )

ie., Aa(p) > 0 for ¢ € (0,7/2).
Now, by (5.19) and (5.14), we conclude that

dKy

0
da>

for a € (0,7/2). Thus, by (5.1) and (5.13),

w/2
24
Kioe = Kiooln/2) =2 [ |sinsp|cos’ d
T
—7/2
/5 27 /5 /2
48 . 3 . 3 : 3
= — sin 5y cos” ¢ dp — sin 5 cos” ¢ dp + sin 5y cos® @ dp ».
0
0 /5 2m/5
Evaluating the integrals on the right-hand side of the last equality, we arrive at (5.18). O

6 Casep=4and n=2

In the previous sections, it was shown that K, ,(«) is independent of a for p = 2, as well as
for p = 0o, n = 2m + 1. Here, we prove that those are not all values of n and p when K, ,(«a)
does not depend on a. We set

w/2

T p(er) = / ‘cos (a —(n+ e+ %) ‘q cosI=2 o | (6.1)
—7/2

where 1/p+1/q = 1. Then, by (2.3) and (6.1),

n!

K p(a) = —{Top(@)}'/?.
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Using the same argument as in the proof of (5.8) in Lemma 5.1, we can show that for any n > 1
and p € (1, o0]

dKn,p n! [(n B 1)p + 2] -1/ dTn,p
do  7wp(n+1)2 {Tapla)} " da (6.2)
where
w/2
dlnp nmy |4 nmy |4
T /{ ‘cos (a —p+ 7)‘ —‘cos <a + o+ 7)’ }\I/mp(cp)d(p . (6.3)
0
Here,
[(n+1)/2] mitgs kT = kT =
_ n+1)g—3 :
U, (p) = Z cos w1 ST (6.4)
k=[—(n—1)/2]
and | ] stands for the integer part of a number.

Putting n =2 and p =4 (i.e., ¢ =4/3) in (6.4), we obtain

km—¢ . km—
Uy 4(p) = Z cos — ? sin 3 L4 =0,

which, together with (6.2) and (6.3), implies

dKs 4

=0.
da

Thus, K 4(c) is independent of o and hence, by Proposition 2.1, the sharp constant in

Ko 4
" < ,
can be represented, for example, as
/2 3/4
2
K4 = K24(0) = — / | cos 3|3 cos® ¢ de
T
—7/2

7 Sharp Limit Relation for Derivatives
of Analytic Functions in a Disk

In what follows, by h?(Dg), 1 < p < 0o, we mean the Hardy space of harmonic functions in
Dgr = {z: |z| < R} which are represented by the Poisson integral with a density in LP(0Dpg).

We need the following assertion proved in Section 5.2 of the monograph [1].

Proposition 7.1. Let f be analytic on Dp with Re f € hy(Dg),1 < p < co. Further, let

n > 1, and let 2, be a polynomial of degree m < n—1. Then for any fized point z, |z| = r < R,
the inequality

£ ()] < A ReAf = PraHomally (7.1)
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holds with the sharp factor

1 T
Hoa2) = iy oo (5) (7.2)
where
n! gela q 1/q
Hyply) = &
»(7) p mOE}X{ / ’Re{(c_ )n—i—l} dd} (7.3)
I¢l=1
and 1/p+1/q = 1. In particular,
™) ()| < S, inf Re{f — 2}, , 7.4
|f7(2)] »(2) L@e%}%n_l}ﬂ elf = 2} (7.4)

where {Pn, } is the set of all polynomials of degree at most m.

The next assertion concerns a relation between ., ,,(z) and K, , which was defined by (2.6)
and (2.3).

Theorem 7.1. The following limit relation holds:

lim (R — )" p o p(2) = K. (7.5)

r—R
Proof. By (7.2), we have

n+l n4+1
Ry oyt = C g (5) = (1 1) o (7).
Hence

r—R

lim (R — r)"* 5 2,,(2) = lim (1 - ) Hyp(7) - (7.6)
Y—

It follows from (7.3) that

1 ! /
(1 =)™ Hop() = T max {(1 =) By )} (77)
where 4 ‘
Bnglia) = [ Re{(gfew} dc] (7.8)
I¢l=1

The last equality can be written as

Eng(vi0) = /

—T

q

R elile+a) p
€ (6% — )t ©

which after the change of variable ¢ = 2¢ becomes

ei(2w+a)
Re (eZi¥ — )nt1

/2

Eng(y;a) =2 /

—7/2

q

dip .
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Therefore,

E , /2 n ei2¥+a) (g=2iY _ 4 ntl e i
n,q(f}/a Oé) - / € (1 — 2’)/ CcoSs 21/1 + 72)n+1 w .
—7/2

Introduce the new variable ¢ by
1 = arctan k(vy)t ,

with

11—~
K0 =1
Then k()
v
dy = dt .
v 1+ k2(y)

Further, we find

(L= +12)
1+ k()2 7

1 —k(y)t? — 2t

1 —2ycos2h+~2 =

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

(7.16)

=20 _ 1+~
L+ k22 7
Q2 1 — k2(y)t2 + 2ik(y)t
14 k2(v)t?
Substituting (7.12)—(7.15) into (7.9) and making the change of limits according to (7.10), we
obtain .
2 - q dt
E, y &)= N, )
J](’Y a) (1 +’7)(1 _,Y)(n+1)q—1 /‘Re {6 77(t)}‘ 1 —i—kQ('y)tQ

where +1

(1= K222 + 2ik(y)t) (1= k()22 — EL)

Wy () =

(1 +t2)n+1(1 + k‘2(’}/)t2)
It follows from (7.7) and (7.16) that

n+l n! /4 7 ; d /e
(1—=7) +”Hn7p(’7):? <%> moz}x{/|Re {em‘yn,w(t)HqW} )

— 00

Passing here to the limit as v — 1 and using (7.11) and (7.17), we get

) 41 Zt)n+1
’lyl_%(l_ﬂ)/)n rH 717( ——max{/’ { —i—t2 n+1

We introduce a new variable ¥ € (—7/2,7/2) by the formula

1/q
dt} |

9 ! in t
CosU = s Sy = — .
1+ t2 V1+t2

(7.17)

(7.18)
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By the equality t = — tan ¢/, we have

1 o n+1
Jpe{isy
1—|—t2 n+1

w/2
dt = / } Re {em(cosﬁ + 7sin 19)”+1}’q cos™ D29 g9
/2

w/2
= / | cos (a+ (n+1)9)|? cosMHI=2 9 gy . (7.19)

—7/2
Replacing the integral in (7.18) by (7.19) and taking into account (7.6), (2.3), and (2.6), we
arrive at (7.5). O]

Combining Theorem 7.1 with Propositions 2.1 and 7.1 with p = oo, as well as with Corollary
4.1 and the maximum principle for harmonic functions, we obtain the following assertion.

Corollary 7.1. Let Q be a subdomain of C, for which each point of the boundary can be
touched by an interior circle of sufficiently small radius. Let f be a holomorphic function in €
with a bounded real part and let || Re floql||lco < 1. The limit relation

Jim d2[ £ (2)] < Koo

holds with d, = dist (z,09) and

/2
|
Ky oo = % max / ‘ cos (a+ (n+1)p) | cos" L dp . (7.20)
—7/2

In particular,
2[(2m + 1)N)?

m(2m + 1) (7.21)

lim a2 Y (2)] <
d,—0

Remark 7.1. The pointwise estimate

m 2
‘f(?m—i—l)(z)‘ < M (m) ]z|2k (7.22)
k=0

(1 — |2[2)2m+1 k

for an analytic function f in the unit disk with |f| < 1 was derived by Szész in [4]. Using a
dilation in (7.22), together with the identity

zm: m 2 ~ (2m

k) \m)’

k=0

and the maximum modulus principle for analytic functions, we arrive at the limit inequality (cf.
(7.21))
‘ . [(2m + 1)!1)?

S o2(2m 4+ 1)
for functions f with |f(z)| < 1 in a domain 2 C C; with a boundary satisfying the condition of
tangency by a circle.

lim dzm+1 ’f(2m+1)
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