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Abstract. A representation of the sharp constant in a pointwise estimate of
the gradient of a harmonic function in a multidimensional half-space is obtained

under the assumption that function’s boundary values belong to Lp. This

representation is concretized for the cases p = 1, 2, and ∞.

1. Introduction. There is a series of sharp estimates for the first derivative of a
function f analytic in the upper half-plane C+ = {z ∈ C : =z > 0} with different
characteristics of the real part of f in the majorant part (see, e.g., [6]). We mention,
in particular, the Lindelöf inequality in the half-plane

|f ′(z)| ≤ 1
=z

sup
ζ∈C+

{<f(ζ)−<f(z)} (1.1)

and two equivalent inequalities

|f ′(z)| ≤ 2
π=z

sup
ζ∈C+

|<f(ζ)| (1.2)

and
|f ′(z)| ≤ 1

π=z
osc C+

(<f), (1.3)

where osc C+
(<f) is the oscillation of <f on C+, and z is an arbitrary point in C+.

Inequalities for analytic functions with certain characteristics of its real part as
majorants, are called real-part theorems in reference to the first assertion of such a
kind, the celebrated Hadamard real-part theorem

|f(z)| ≤ C|z|
1− |z|

max
|ζ|=1

<f(ζ).
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Here |z| < 1 and f is an analytic function on the closure D of the unit disk D = {z :
|z| < 1} vanishing at z = 0. This inequality was first obtained by Hadamard with
C = 4 in 1892 [4]. The following refinement of Hadamard real-part theorem due to
Borel [1, 2], Carathéodory [8, 9] and Lindelöf [10]

|f(z)− f(0)| ≤ 2|z|
1− |z|

sup
|ζ|<1

<{f(ζ)− f(0)} , (1.4)

and corollaries of the last sharp estimate are often called the Borel-Carathéodory
inequalities. Sometimes, (1.4) is called Hadamard-Borel-Carathéodory inequality
(see, e.g. Burckel [3]). The collection of real-part theorems and related assertions is
rather broad. It involves assertions of various form (see, e.g. [6] and the bibliography
collected there).

Obviously, the inequalities for the first derivative of an analytic function (1.1)-
(1.3) can be restated as estimates for the gradient of a harmonic function. For
example, inequality (1.2) can be written in the form

|∇u(z)| ≤ 2
πy

sup
ζ∈R2

+

|u(ζ)|, (1.5)

where u is a harmonic function in the half-plane R2
+ = {z = (x, y) ∈ R2 : y > 0}.

In the present work we find a representation for the sharp coefficient Cp(x) in the
inequality

|∇u(x)| ≤ Cp(x)
∣∣∣∣u∣∣∣∣

p
, (1.6)

where u is harmonic function in the half-space Rn
+ =

{
x = (x′, xn) : x′ ∈ Rn−1, xn >

0
}
, represented by the Poisson integral with boundary values in Lp(Rn−1), || · ||p is

the norm in Lp(Rn−1), 1 ≤ p ≤ ∞, x ∈ Rn
+. It is shown that

Cp(x) = Cp x(1−n−p)/p
n

and explicit formulas for Cp in (1.6) for p = 1, 2,∞ are given.
Note that a direct consequence of (1.6) is the following sharp limit relation for

the gradient of a harmonic function in the n-dimensional domain Ω with smooth
boundary:

lim
x→Ox

∣∣x−Ox

∣∣(n+p−1)/p sup
{
|∇u(x)| : ||u|∂Ω||p ≤ 1

}
= Cp,

where Ox is a point at ∂Ω nearest to x ∈ Ω (compare with Theorem 2 in [7], where
a relation of the same nature for the values of solutions to elliptic systems was
obtained).

In Section 2 we characterize Cp in terms of an extremal problem on the unit
hemisphere in Rn. In Section 3 we reduce this problem to that of finding of the
supremum of a certain double integral, depending on a scalar parameter and show
that

C1 =
2(n− 1)

ωn
=

(n− 1)Γ (n/2)
πn/2

, C2 =

√
n(n− 1)

2nωn
=

√
(n− 1)Γ

(
n+2

2

)
2nπn/2

,

where ωn is the area of the unit sphere in Rn.
In Section 5 we treat the more difficult case of p = ∞. We anticipate the proof of

the main result by deriving in Section 4 an algebraic inequality to be used for finding
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an explicit formula for C∞. Solving the variational problem stated in Section 3, we
find

C∞ =
4(n− 1)(n−1)/2 ωn−1

nn/2 ωn
=

4(n− 1)(n−1)/2Γ
(

n
2

)
√

πnn/2Γ
(

n−1
2

) .

In particular,

C∞ =
4

3
√

3
, C∞ =

3
√

3
2π

.

for n = 3 and n = 4, respectively.
As a trivial corollary of the inequality

|∇u(x)| ≤ 4(n− 1)(n−1)/2 ωn−1

nn/2 ωnxn
sup

y∈Rn
+

|u(y)| , (1.7)

which is equivalent to (1.6) with p = ∞, we find

|∇u(x)| ≤ 2(n− 1)(n−1)/2 ωn−1

nn/2 ωnxn
oscRn

+
(u), (1.8)

where oscRn
+
(u) is the oscillation of u on Rn

+. The sharp inequalities (1.7) and (1.8)
are multidimensional generalizations of analogues of the real-part theorems (1.2)
and (1.3), respectively.

The sharp constant in the inequality∣∣∣∣ ∂u

∂|x|

∣∣∣
x0

∣∣∣∣ ≤ K(x0) sup
|y|<1

|u(y)|,

where u is a harmonic function in the three-dimensional unit ball B and x0 ∈ B,
was found by Khavinson [5], who suggested, in a private conversation, that the same
constant K(x0) should appear in the stronger inequality

|∇u(x0)| ≤ K(x0) sup
|y|<1

|u(y)|.

When dealing in Section 4 with the analogue of Khavinson’s problem for the mul-
tidimensional half-space, we show that in fact, the sharp constants in pointwise
estimates for the absolute value of the normal derivative and of the modulus of the
gradient of a harmonic function coincide. We also show that similar assertions hold
for p = 1 and p = 2.

2. Auxilliary assertion. We introduce some notation used henceforth. Let Rn
+ ={

x = (x′, xn) : x′ = (x1, . . . , xn−1) ∈ Rn−1, xn > 0
}
, Sn−1 = {x ∈ Rn : |x| = 1},

Sn−1
+ = {x ∈ Rn : |x| = 1, xn > 0} and Sn−1

− = {x ∈ Rn : |x| = 1, xn < 0}. Let
eσ stand for the n-dimensional unit vector joining the origin to a point σ on the
sphere Sn−1.

By || · ||p we denote the norm in the space Lp(Rn−1), that is

||f ||p =
{∫

Rn−1
|f(x′)|p dx′

}1/p

,

if 1 ≤ p < ∞, and ||f ||∞ = ess sup{|f(x′)| : x′ ∈ Rn−1}.
Next, by hp(Rn

+) we denote the Hardy space of harmonic functions on Rn
+, which

can be represented as the Poisson integral

u(x) =
2

ωn

∫
Rn−1

xn

|y − x|n
u(y′)dy′ (2.1)
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with boundary values in Lp(Rn−1), 1 ≤ p ≤ ∞, where y = (y′, 0), y′ ∈ Rn−1.
Now, we find a representation for the best coefficient Cp(x; z) in the inequality for

the absolute value of derivative of u at x ∈ Rn
+ in the arbitrary direction z ∈ Sn−1

assuming that Lp(Rn−1). In particular, we obtain a formula for the constant in a
similar inequality for the modulus of the gradient.

Lemma 1. Let u ∈ hp(Rn
+), and let x be an arbitrary point in Rn

+. The sharp
coefficient Cp(x;z) in the inequality

| (∇u(x),z) | ≤ Cp(x;z)
∣∣∣∣u∣∣∣∣

p

is given by
Cp(x;z) = Cp(z)x(1−n−p)/p

n , (2.2)

where

C1(z) =
2

ωn
sup

σ∈Sn−1
+

∣∣(en − n(eσ, en)eσ, z
)∣∣(eσ, en

)n
, (2.3)

Cp(z) =
2

ωn

{∫
Sn−1
+

∣∣(en−n(eσ, en)eσ,z
)∣∣p/(p−1)(

eσ, en

)n/(p−1)
dσ

}(p−1)/p

(2.4)

for 1 < p < ∞, and

C∞(z) =
2

ωn

∫
Sn−1
+

∣∣(en − n(eσ, en)eσ, z
)∣∣ dσ. (2.5)

In particular, the sharp coefficient Cp(x) in the inequality

|∇u(x)| ≤ Cp(x)
∣∣∣∣u∣∣∣∣

p

is given by
Cp(x) = Cp x(1−n−p)/p

n , (2.6)

where
Cp = sup

|z|=1

Cp(z). (2.7)

Proof. Let x = (x′, xn) be a fixed point in Rn
+. The representation (2.1) implies

∂u

∂xi
=

2
ωn

∫
Rn−1

[
δni

|y − x|n
+

nxn(yi − xi)
|y − x|n+2

]
u(y′)dy′,

that is

∇u(x) =
2

ωn

∫
Rn−1

[
en

|y − x|n
+

nxn(y − x)
|y − x|n+2

]
u(y′)dy′

=
2

ωn

∫
Rn−1

en − n(exy, en)exy

|y − x|n
u(y′)dy′,

where exy = (y − x)|y − x|−1. For any z ∈ Sn−1,

(∇u(x),z) =
2

ωn

∫
Rn−1

(en − n(exy, en)exy, z)
|y − x|n

u(y′)dy′. (2.8)

Hence,

C1(x;z) =
2

ωn
sup

y∈Rn−1

|(en − n(exy, en)exy, z)|
|y − x|n

, (2.9)
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and

Cp(x;z) =
2

ωn

{∫
Rn−1

∣∣(en − n(exy, en)exy,z
)∣∣q

|y − x|nq
dy′

}1/q

(2.10)

for 1 < p ≤ ∞, where p−1 + q−1 = 1.
Taking into account the equality

xn

|y − x|
= (exy,−en), (2.11)

by (2.9) we obtain

C1(x;z) =
2

ωn
sup

y∈Rn−1

|(en − n(exy, en)exy, z)|
xn

n

(
xn

|y − x|

)n

=
2

ωnxn
n

sup
σ∈Sn−1

−

∣∣(en − n(eσ, en)eσ, z
)∣∣(eσ,−en

)n
.

Replacing here eσ by −eσ, we arrive at (2.2) for p = 1 with the sharp constant
(2.3).

Let 1 < p ≤ ∞. Using (2.11) and the equality

1
|y − x|nq

=
1

xnq−n+1
n

(
xn

|y − x|

)n(q−1)
xn

|y − x|n
,

and replacing q by p/(p− 1) in (2.10), we conclude that (2.2) holds with the sharp
constant

Cp(z) =
2

ωn

{∫
Sn−1
−

∣∣(en − n(eσ, en)eσ, z
)∣∣p/(p−1)(

eσ,−en

)n/(p−1)
dσ

}(p−1)/p

,

where Sn−1
− = {σ ∈ Sn−1 : (eσ, en) < 0}. Replacing here eσ by −eσ, we arrive at

(2.4) for 1 < p < ∞ and at (2.5) for p = ∞.
By (2.8) we have∣∣∇u(x)

∣∣ =
2

ωn
sup
|z|=1

∫
Rn−1

(en − n(exy, en)exy, z)
|y − x|n

u(y′)dy′.

Hence, by the permutation of suprema, (2.10), (2.9) and (2.2),

Cp(x) =
2

ωn
sup
|z|=1

{∫
Rn−1

∣∣(en − n(exy, en)exy,z
)∣∣q

|y − x|nq
dy′

}1/q

= sup
|z|=1

Cp(x;z) = sup
|z|=1

Cp(z)x(1−n−p)/p
n (2.12)

for 1 < p ≤ ∞, and

C1(x) =
2

ωn
sup
|z|=1

sup
y∈Rn−1

|(en − n(exy, en)exy, z)|
|y − x|n

= sup
|z|=1

C1(x;z) = sup
|z|=1

C1(z)x−n
n . (2.13)

Using the notation (2.7) in (2.12) and (2.13), we arrive at (2.6).
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Remark 1. Formula (2.4) for the coefficient Cp(z), 1 < p < ∞, can be written
with the integral over the whole sphere Sn−1 in Rn,

Cp(z)=
21/p

ωn

{∫
Sn−1

∣∣(en−n(eσ, en)eσ, z
)∣∣p/(p−1)∣∣(eσ, en

)∣∣n/(p−1)
dσ

}(p−1)/p

.

A similar remark relates (2.5) as well as formula (2.3):

C1(z) =
2

ωn
sup

σ∈Sn−1

∣∣(en − n(eσ, en)eσ, z
)(

eσ, en

)n∣∣ .

3. The case 1 ≤ p < ∞. The next assertion is based on the representation for Cp,
obtained in Lemma 1.

Proposition 1. Let u ∈ hp(Rn
+), and let x be an arbitrary point in Rn

+. The sharp
coefficient Cp(x) in the inequality

|∇u(x)| ≤ Cp(x)
∣∣∣∣u∣∣∣∣

p
(3.1)

is given by
Cp(x) = Cpx

(1−n−p)/p
n , (3.2)

where

C1 =
2(n− 1)

ωn
, (3.3)

and

Cp =
2(ωn−2)(p−1)/p

ωn
sup
γ≥0

1√
1 + γ2

{∫ π

0

dϕ

∫ π/2

0

Fn,p(ϕ, ϑ; γ) dϑ

}(p−1)/p

, (3.4)

if 1 < p < ∞. Here

Fn,p(ϕ, ϑ; γ) =
∣∣Gn(ϕ, ϑ; γ)

∣∣p/(p−1) cosn/(p−1) ϑ sinn−2 ϑ sinn−3 ϕ (3.5)

with
Gn(ϕ, ϑ; γ) = (n cos2 ϑ− 1) + nγ cos ϑ sinϑ cos ϕ . (3.6)

In particular,

C2 =

√
n(n− 1)

2nωn
. (3.7)

For p = 1 and p = 2 the coefficient Cp(x) is optimal also in the weaker inequality
obtained from (3.1) by replacing ∇u by ∂u/∂xn.

Proof. The equality (3.2) was proved in Lemma 1.
(i) Let p = 1. Using (2.3), (2.7) and the permutability of two suprema, we find

C1 =
2

ωn
sup
|z|=1

sup
σ∈Sn−1

+

∣∣(en − n(eσ, en)eσ, z
)∣∣(eσ, en

)n

=
2

ωn
sup

σ∈Sn−1
+

∣∣en − n(eσ, en)eσ

∣∣(eσ, en

)n
. (3.8)

Taking into account the equality

|en − n(eσ, en)eσ| =
(
en − n(eσ, en)eσ, en − n(eσ, en)eσ

)1/2

=
(
1 + (n2 − 2n)(eσ, en)2

)1/2

,
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and using (3.8), we arrive at the sharp constant (3.3).
Furthermore, by (2.3),

C1(en) =
2

ωn
sup

σ∈Sn−1
+

∣∣1− n(eσ, en)2|
(
eσ, en

)n ≥ 2(n− 1)
ωn

.

Hence, by C1 ≥ C1(en) and by (3.3) we obtain C1 = C1(en), which completes the
proof in the case p = 1.

(ii) Let 1 < p < ∞. Since the integrand in (2.4) does not change when z ∈ Sn−1

is replaced by −z, we may assume that zn = (en,z) > 0 in (2.7).
Let z′ = z − znen. Then (z′, en) = 0 and hence z2

n + |z′|2 = 1. Analogously,
with σ = (σ1, . . . , σn−1, σn) ∈ Sn−1

+ , we associate the vector σ′ = eσ − σnen.
Using the equalities (σ′, en) = 0, σn =

√
1− |σ′|2 and (z′, en) = 0, we find an

expression for (en − n(eσ, en)eσ, z
)

as a function of σ′:

(en − n(eσ, en)eσ, z
)

= zn − nσn

(
eσ,z

)
= zn − nσn

(
σ′ + σnen, z′ + znen

)
= zn − nσn

[(
σ′,z′

)
+ znσn

]
= −

[
n(1− |σ′|2)− 1

]
zn − n

√
1− |σ′|2

(
σ′,z′

)
. (3.9)

Let Bn−1 = {x′ = (x1, . . . , xn−1) ∈ Rn−1 : |x′| < 1}. By (2.4) and (3.9), taking
into account that dσ = dσ′/

√
1− |σ′|2, we may write (2.7) as

Cp =
2

ωn
sup

z∈Sn−1
+

{∫
Bn−1

Hn,p

(
|σ′|, (σ′,z′)

)(
1− |σ′|2

)n/2(p−1)√
1− |σ′|2

dσ′

}(p−1)/p

=
2

ωn
sup

z∈Sn−1
+

{∫
Bn−1

Hn,p

(
|σ′|, (σ′,z′)

)(
1−|σ′|2

)(n+1−p)/2(p−1)
dσ′

}(p−1)/p

, (3.10)

where

Hn,p

(
|σ′|, (σ′,z′)

)
=

∣∣∣[n(1− |σ′|2)− 1
]
zn+n

√
1− |σ′|2

(
σ′,z′

)∣∣∣p/(p−1)

. (3.11)

Let Bn = {x ∈ Rn : |x| < 1}. Using the well known formula (see e.g. [11],
3.3.2(3)),∫

Bn

g
(
|x|, (a,x)

)
dx = ωn−1

∫ 1

0

rn−1dr

∫ π

0

g
(
r, |a|r cos ϕ

)
sinn−2 ϕ dϕ ,

we obtain∫
Bn−1

Hn,p

(
|σ′|, (σ′,z′)

)(
1− |σ′|2

)(n+1−p)/2(p−1)
dσ′

= ωn−2

∫ 1

0

rn−2
(
1−r2

)(n+1−p)/2(p−1)
dr

∫ π

0

Hn,p

(
r, r|z′| cos ϕ, zn

)
sinn−3 ϕdϕ . (3.12)

Making the change of variable r = sinϑ in (3.12), we find∫
Bn−1

Hn,p

(
|σ′|, (σ′,z′)

)(
1− |σ′|2

)(n+1−p)/2(p−1)
dσ′ (3.13)

= ωn−2

∫ π

0

sinn−3 ϕdϕ

∫ π/2

0

Hn,p

(
sinϑ, |z′| sinϑ cos ϕ

)
sinn−2 ϑ cosn/(p−1) ϑdϑ ,
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where, by (3.11),

Hn,p

(
sinϑ, |z′| sinϑ cos ϕ

)
=

∣∣∣(n cos2 ϑ− 1)zn+n|z′| cos ϑ sinϑ cos ϕ
∣∣∣p/(p−1)

.

Introducing here the parameter γ = |z′|/zn and using the equality |z′|2 + z2
n = 1,

we obtain

Hn,p

(
sinϑ, |z′| sinϑ cos ϕ

)
= (1 + γ2)−p/2(p−1)

∣∣Gn(ϕ, ϑ; γ)
∣∣p/(p−1)

, (3.14)

where Gn(ϕ, ϑ; γ) is given by (3.6).
By (3.10), taking into account (3.13) and (3.14), we arrive at (3.4).

(iii) Let p = 2. By (3.4), (3.5) and (3.6),

C2 =
2√ωn−2

ωn
sup
γ≥0

1√
1 + γ2

{∫ π

0

dϕ

∫ π/2

0

Fn,2(ϕ, ϑ; γ) dϑ

}1/2

, (3.15)

where

Fn,2(ϕ, ϑ; γ)=
[
(n cos2 ϑ−1)+nγ cos ϑ sinϑ cos ϕ

]2cosn ϑ sinn−2 ϑ sinn−3 ϕ. (3.16)

The equalities (3.15) and (3.16) imply

C2 =
2√ωn−2

ωn
sup
γ≥0

1√
1 + γ2

{
I1 + γ2I2

}1/2
, (3.17)

where

I1 =
∫ π

0

sinn−3 ϕ dϕ

∫ π/2

0

(n cos2 ϑ− 1)2 sinn−2 ϑ cosn ϑ dϑ

=
√

π n(n− 1)Γ
(

n−2
2

)
Γ

(
n+1

2

)
8(n− 1)!

, (3.18)

I2 = n2

∫ π

0

sinn−3 ϕ cos2 ϕ dϕ

∫ π/2

0

sinn ϑ cosn+2 ϑ dϑ

=
√

π nΓ
(

n−2
2

)
Γ

(
n+1

2

)
8(n− 1)!

. (3.19)

By (3.17) we have

C2 =
2√ωn−2

ωn
max

{
I1/2

1 , I1/2
2

}
,

which together with (3.18) and (3.19) gives

C2 =
2√ωn−2

ωn
I1/2

1 =

√
(n− 1)Γ

(
n+2

2

)
2nπn/2

.

Hence (3.7) follows.
Since z ∈ Sn−1 and the supremum in γ = |z′|/zn in (3.15) is attained for γ = 0,

we have C2 = C2(en).
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4. An auxilliary algebraic inequality. Here we prove an algebraic inequality to
be used later for deriving an explicit formula for the sharp constant in the estimate
for the modulus of gradient in the case p = ∞.

Lemma 2. For all x ≥ 0 and any µ ≥ 1 the inequality holds(
µ + 1
µ + x

)µ−1

+
(

µ + 1
1 + µx

)µ−1

xµ+1 ≤ 2x +
µ(3µ + 1)
(µ + 1)2

(1− x)2. (4.1)

The equality sign takes place only for µ = 1 or x = 1.

Proof. Clearly, the inequality (4.1) becomes equality for µ = 1 or x = 1. Suppose
that µ ∈ (1,∞).

(i) The case 0 ≤ x < 1. Let us write (4.1) in the form(
µ + 1
µ + x

)µ−1

+
(

µx + x

1 + µx

)µ−1

x2 ≤ 2x +
µ(3µ + 1)
(µ + 1)2

(1− x)2.

Introducing the notation

F (x) =
(

µ + 1
µ + x

)µ−1

+
(

µx + x

1 + µx

)µ−1

x2, (4.2)

we find

F ′(x) = −µ− 1
µ + 1

(
µ + 1
µ + x

)µ

+ x

(
2 +

µ− 1
1 + µx

) (
µx + x

1 + µx

)µ−1

,

F ′′(x) =
µ(µ− 1)
(µ + 1)2

(
µ + 1
µ + x

)µ+1

+ µ

[
2(x + 1)
1 + µx

+
µ− 1

(1 + µx)2

](
µx + x

1 + µx

)µ−1

, (4.3)

F ′′′(x) = −µ(µ− 1)
(µ + 1)2

(
µ + 1
µ + x

)µ+2

+
µ(µ2 − 1)
x(1 + µx)3

(
µx + x

1 + µx

)µ−1

. (4.4)

By Taylor’s formula with Lagrange’s remainder term,

F (x) = F (1)+F ′(1)(x−1)+
1
2
F ′′(t) (x−1)2 = 2+2(x−1)+

1
2
F ′′(t) (x−1)2, (4.5)

where x ∈ [0, 1) and t ∈ (x, 1).
Note that F ′′(0) < F ′′(1). In fact, by (4.3),

F ′′(0) =
µ− 1
µ + 1

(
1 +

1
µ

)µ

, F ′′(1) =
2µ(3µ + 1)
(µ + 1)2

,

which together with the obvious inequality

µ− 1
µ + 1

e <
2µ(3µ + 1)
(µ + 1)2

implies F ′′(0) < F ′′(1).
Next we show that

F ′′(t) < max
{
F ′′(0), F ′′(1)

}
=

2µ(3µ + 1)
(µ + 1)2

(4.6)

for any t ∈ (0, 1).
Suppose the opposite assertion holds, i.e. there exists a point t ∈ (0, 1) at which

(4.6) fails. Hence F ′′(t) attains its maximum value on [0, 1] at an inner point τ , i.e.,

F ′′(τ) = max
t∈[0;1]

F ′′(t) ≥ max
{
F ′′(0), F ′′(1)

}
=

2µ(3µ + 1)
(µ + 1)2

. (4.7)
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Taking into account (4.4), we have

F ′′′(τ) = −µ(µ− 1)
(µ + 1)2

(
µ + 1
µ + τ

)µ+2

+
µ(µ2 − 1)
τ(1 + µτ)3

(
µτ + τ

1 + µτ

)µ−1

= 0,

which is equivalent to(
µτ + τ

1 + µτ

)µ−1

=
τ(1 + µτ)3

(µ + 1)3

(
µ + 1
µ + τ

)µ+2

.

Combined with (4.3), this implies

F ′′(τ) =
µ(µ− 1)
(µ + 1)2

(
µ + 1
µ + τ

)µ+1 {
1 + τ(1 + µτ)

2(1 + τ)(1 + µτ) + µ− 1
(µ− 1)(µ + τ)

}
<

µ(µ− 1)
(µ + 1)2

(
µ + 1
µ + τ

)µ+1 {
2 +

2(1 + τ)(1 + µτ)
µ− 1

}
.

Therefore,

F ′′(τ) <
2µ

(µ + 1)2

(
µ + 1
µ + τ

)µ+1 {
(µ− 1) + (1 + τ)(1 + µτ)

}
=

2µ

(µ + 1)2

(
µ + 1
µ + τ

)µ+1 {
µτ2 + (µ + 1)τ + µ

}
. (4.8)

Setting

η(τ) =
µτ2 + (µ + 1)τ + µ

(µ + τ)µ+1
, (4.9)

we rewrite (4.8) as
F ′′(τ) < 2µ(µ + 1)µ−1η(τ). (4.10)

Noting that

η′(τ) =
µτ(µ− 1)(1− τ)

(µ + τ)µ+2
> 0

for 0 < τ < 1, by (4.9) and (4.10), we find

max
t∈[0;1]

F ′′(t) = F ′′(τ) < 2µ(µ + 1)µ−1η(1) =
2µ(3µ + 1)
(µ + 1)2

.

The latter contradicts (4.7) which proves (4.6) for all t ∈ (0, 1). Thus, it follows
from (4.2), (4.5) and (4.6) that(

µ + 1
µ + x

)µ−1

+
(

µx + x

1 + µx

)µ−1

x2 < 2x +
µ(3µ + 1)
(µ + 1)2

(x− 1)2

for all 0 ≤ x < 1. This means that for µ > 1 and 0 ≤ x < 1 the strict inequality
(4.1) holds.

(ii) The case x > 1. Since the function

G(x) =
(

µ + 1
µ + x

)µ−1

+
(

µx + x

1 + µx

)µ−1

x2 − 2x− µ(3µ + 1)
(µ + 1)2

(x− 1)2

satisfies the equality

G

(
1
x

)
=

1
x2

G(x),

we have by part (i) that G(x) < 0 for 0 ≤ x < 1 and hence G(x) < 0 for x > 1.
Thus, the strict inequality (4.1) holds for µ > 1 and x > 1.
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Corollary 1. For all y ≥ 0 and any natural n ≥ 2 the inequality holds

P2
n(y) + P2

n(−y) ≤ 2n2 + 4(n− 1)(3n− 2)y2

nn
, (4.11)

where

Pn(y) =

(√
1 + y2 + y

)n−1

(
1 + (n− 1)

(√
1 + y2 + y

)2
)(n−2)/2

. (4.12)

Proof. Suppose that 0 < x ≤ 1. We introduce the new variable

y =
1− x

2
√

x
∈ [0,∞). (4.13)

Solving the equation y = (x−1/2 − x1/2)/2 in
√

x, we find
√

x =
√

1 + y2 − y, i.e.,

x =
(√

1 + y2 − y
)2

=
1(√

1 + y2 + y
)2 ,

Putting µ = n− 1, we write (4.1) as

1(
n− 1 + x

)n−2 +
xn(

1 + (n− 1)x
)n−2 ≤

2n2x + (n− 1)(3n− 2)(1− x)2

nn
. (4.14)

By (4.13) we have (1− x)2 = 4y2x, hence (4.14) can be rewritten in the form

1

x
(
n− 1 + x

)n−2 +
xn−1(

1 + (n− 1)x
)n−2 ≤

2n2 + 4(n− 1)(3n− 2)y2

nn
. (4.15)

Setting x =
(√

1 + y2 + y
)−2

in the first term on the left-hand side of (4.15), we
obtain

1

x
(
n− 1 + x

)n−2 =

(√
1 + y2 + y

)2n−2

(
1 + (n− 1)

(√
1 + y2 + y

)2
)n−2 = P2

n(y). (4.16)

Similarly, putting x =
(√

1 + y2 − y
)2

in the second term on the left-hand side of
(4.15), we find

xn−1(
1 + (n− 1)x

)n−2 =

(√
1 + y2 − y

)2n−2

(
1 + (n− 1)

(√
1 + y2 − y

)2
)n−2 = P2

n(−y). (4.17)

Using (4.16) and (4.17), we can rewrite (4.15) as (4.11).

We give one more corollary of Lemma 2 containing an alternative form of (4.1)
with natural µ ≥ 2. However, we are not going to use it henceforth.

Corollary 2. For all x ≥ 0 and any natural n ≥ 2 the inequality holds
n+1∑
k=3

(
n + 1

k

) {
1(

n + x
)k−2

+
(−1)k(

1 + nx
)k−2

}
(1− x)k ≤ 0 . (4.18)

The equality sign takes place only for x = 1.
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Proof. We set µ = n, n ≥ 2, in (4.1):(
n + 1
n + x

)n−1

+
(

n + 1
1 + nx

)n−1

xn+1 ≤ 2x +
n(3n + 1)
(n + 1)2

(1− x)2.

Multiplying the last inequality by (n + 1)2, we write it as

(n + 1)n+1(
n + x

)n−1 +

(
(n + 1)x

)n+1(
1 + nx

)n−1 − 2(n + 1)2x− n(3n + 1)(1− x)2 ≤ 0. (4.19)

We rewrite the first term in (4.19):

(n + 1)n+1(
n + x

)n−1 =
[(n + x) + (1− x)]n+1(

n + x
)n−1 = (n + x)2 + (n + 1)(n + x)(1− x)

+
n(n + 1)

2
(1− x)2 +

n+1∑
k=3

( n + 1
k

) (1− x)k

(n + x)k−2
. (4.20)

Similarly, the second term in (4.19) can be written as(
(n + 1)x

)n+1(
1 + nx

)n−1 =
[(1 + nx)− (1− x)]n+1(

1 + nx
)n−1 =

(
1 + nx

)2 − (n + 1)
(
1 + nx

)
(1− x)

+
n(n + 1)

2
(1− x)2 +

n+1∑
k=3

(−1)k
( n + 1

k

) (1− x)k(
1 + nx

)k−2
. (4.21)

Using (4.20) and (4.21) in (4.19), we arrive at (4.18) with the left-hand side as
the sum of rational functions.

5. The case p = ∞. The next assertion is the main theorem of this paper. It is
based on the representation for the sharp constant Cp (1 < p < ∞) obtained in
Proposition 1. To find the explicit formula for C∞ we solve an extremal problem
with a scalar parameter entering the integrand in a double integral.

Theorem 1. Let u ∈ h∞(Rn
+), and let x be an arbitrary point in Rn

+. The sharp
coefficient Cp(x) in the inequality

|∇u(x)| ≤ C∞(x)
∣∣∣∣u∣∣∣∣

∞ (5.1)

is given by

C∞(x) =
4(n− 1)(n−1)/2 ωn−1

nn/2 ωnxn
. (5.2)

For p = ∞ the absolute value of the derivative of a harmonic function u with
respect to the normal to the boundary of the half-space at any x ∈ Rn

+ has the same
supremum as |∇u(x)|.

Proof. We pass to the limit as p → ∞ in (3.1), (3.2), (3.4) and (3.5). This results
in

C∞(x) = C∞ x−1
n , (5.3)

where

C∞ = sup
γ≥0

2ωn−2

ωn

√
1 + γ2

∫ π

0

sinn−3 ϕ dϕ

∫ π/2

0

∣∣Gn(ϕ, ϑ; γ)
∣∣ sinn−2 ϑ dϑ . (5.4)

Here, by (3.6),

Gn(ϕ, ϑ; γ) = (n cos2 ϑ− 1) + nγ cos ϑ sinϑ cos ϕ.
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We are looking for a solution of the equation

(n cos2 ϑ− 1) + nγ cos ϑ sinϑ cos ϕ = 0 (5.5)

as a function ϑ of ϕ. We can rewrite (5.5) as the second order equation in tanϑ:

tan2 ϑ− nγ cos ϕ tanϑ + 1− n = 0.

Since 0 ≤ ϑ ≤ π/2, we find that the nonnegative root of this equation is

ϑγ(ϕ) = arctan
hγ(ϕ)

2
, (5.6)

where

hγ(ϕ) = nγ cos ϕ +
(
4(n− 1) + n2γ2 cos2 ϕ

)1/2

. (5.7)

Taking into account that the function Gn(ϕ, ϑ; γ) is nonnegative for 0 ≤ ϑ ≤
ϑγ(ϕ), 0 ≤ ϕ ≤ π, and using the equalities∫ ϑ

0

Gn(ϕ, ϑ; γ) sinn−2 ϑdϑ =
[
cos ϑ + γ cos ϕ sinϑ

]
sinn−1 ϑ ,

∫ π

0

sinn−3 ϕ dϕ

∫ π/2

0

Gn(ϕ, ϑ; γ) sinn−2 ϑ dϑ = γ

∫ π

0

sinn−3 ϕ cos ϕ dϕ = 0,

we write (5.4) as

C∞ = sup
γ≥0

4ωn−2

ωn

√
1 + γ2

∫ π

0

sinn−3 ϕ dϕ

∫ ϑγ(ϕ)

0

Gn(ϕ, ϑ; γ) sinn−2 ϑdϑ

= sup
γ≥0

4ωn−2

ωn

√
1 + γ2

∫ π

0

[
cos ϑγ(ϕ)+γ cos ϕ sinϑγ(ϕ)

]
sinn−1 ϑγ(ϕ) sinn−3 ϕdϕ. (5.8)

By (5.6),

sinϑγ(ϕ) =
hγ(ϕ)√

4 + h2
γ(ϕ)

, (5.9)

cos ϑγ(ϕ) =
2√

4 + h2
γ(ϕ)

. (5.10)

By (5.9) and (5.10), we find

cos ϑγ(ϕ) + γ cos ϕ sinϑγ(ϕ) =
2 + γhγ(ϕ) cos ϕ√

4 + h2
γ(ϕ)

. (5.11)

Using (5.9), (5.11), and the identity

2 + γhγ(ϕ) cos ϕ =
4 + h2

γ(ϕ)
2n

,

where hγ(ϕ) is defined by (5.7), we can write (5.8) as

C∞ = sup
γ≥0

2ωn−2

nωn

√
1 + γ2

∫ π

0

hn−1
γ (ϕ)(

4 + h2
γ(ϕ)

)(n−2)/2
sinn−3 ϕ dϕ.

Introducing the parameter

α =
nγ

2
√

n− 1
,
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and taking into account (5.7), we obtain

C∞ = sup
α≥0

4ωn−2(n− 1)(n−1)/2

ωn

√
n2 + 4(n− 1)α2

∫ π

0

Pn

(
α cos ϕ

)
sinn−3 ϕ dϕ , (5.12)

with Pn defined by (4.12). The change of variable t = cos ϕ in (5.12) implies

C∞ = sup
α≥0

4ωn−2(n− 1)(n−1)/2

ωn

√
n2 + 4(n− 1)α2

∫ 1

−1

Pn(αt)(1− t2)(n−4)/2 dt. (5.13)

Integrating in (5.13) over (−1, 0) and (0, 1), we have

C∞ = sup
α≥0

4ωn−2(n− 1)(n−1)/2

ωn

√
n2 + 4(n− 1)α2

∫ 1

0

Pn(αt) + Pn(−αt)
(1− t2)(4−n)/2

dt.

Applying the Schwarz inequality, we see that

C∞ ≤ sup
α≥0

An√
n2 + 4(n− 1)α2

{∫ 1

0

(
Pn(αt)+Pn(−αt)

)2

(1− t2)(4−n)/2
dt

}1/2

, (5.14)

where

An =
4ωn−2(n−1)(n−1)/2

ωn

{∫ 1

0

dt

(1− t2)(4−n)/2

}1/2

. (5.15)

By (4.12),

Pn(y)Pn(−y) =
(
4(n− 1)y2 + n2

)(2−n)/2

,

which implies
Pn(y)Pn(−y) ≤ n2−n. (5.16)

Combining (5.16) and (4.11), we obtain(
Pn(y)+Pn(−y)

)2 ≤ P2
n(y)+P2

n(−y) + 2n2−n ≤ 2n2+4(n−1)(3n−2)y2

nn
+

2
nn−2

.

Therefore,(
Pn(αt) + Pn(−αt)

)2 ≤ 4
nn−2

(
1 +

(n− 1)(3n− 2)
n2

α2t2
)

. (5.17)

By (5.14), (5.15), (5.17) and by∫ 1

0

(1− t2)(n−4)/2 dt =
√

π Γ
(

n−2
2

)
2Γ

(
n−1

2

) ,

∫ 1

0

t2(1− t2)(n−4)/2 dt =
√

π Γ
(

n−2
2

)
2(n− 1)Γ

(
n−1

2

) ,

we find

C∞ ≤
4ωn−2

√
π (n− 1)(n−1)/2Γ

(
n−2

2

)
ωnnn/2Γ

(
n−1

2

) sup
α≥0

(
n2 + (3n− 2)α2

n2 + 4(n− 1)α2

)1/2

. (5.18)

Note that

d

dα

(
n2 + (3n− 2)α2

n2 + 4(n− 1)α2

)
= − 2α(n− 2)n2(

n2 + 4(n− 1)α2
)2 < 0 for α > 0,
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therefore the supremum in α on the right-hand side of (5.18) is attained for α = 0.
Thus,

C∞ ≤
4ωn−2

√
π (n− 1)(n−1)/2Γ

(
n−2

2

)
ωnnn/2Γ

(
n−1

2

) =
4(n− 1)(n−1)/2 ωn−1

nn/2 ωn
. (5.19)

Besides, in view of (5.12) and (4.12),

C∞ ≥ 4ωn−2(n− 1)(n−1)/2

nωn

∫ π

0

Pn(0) sinn−3 ϕ dϕ

=
4ωn−2(n− 1)(n−1)/2

nωn

∫ π

0

sinn−3 ϕ

n(n−2)/2
dϕ

=
4ωn−2

√
π (n− 1)(n−1)/2Γ

(
n−2

2

)
ωnnn/2Γ

(
n−1

2

) =
4(n− 1)(n−1)/2 ωn−1

nn/2 ωn
,

which together with (5.3) and (5.19) proves the equality (5.2).
Since z ∈ Sn−1 and the supremum with respect to the parameter

α =
nγ

2
√

n− 1
=

n|z′|
2zn

√
n− 1

,

in (5.12) is attained for α = 0, it follows that the absolute value of the directional
derivative of a harmonic function u with respect to the normal en to ∂Rn

+, taken at
an arbitrary point x ∈ Rn

+, has the same supremum as |∇u(x)|.

Remark 2. Inequality (5.1) can be written in the form

|∇u(x)| ≤ C∞(x) sup
y∈Rn

+

∣∣u(y)
∣∣. (5.20)

Using here (5.2), we arrive at the explicit sharp inequality

|∇u(x)| ≤ 4(n− 1)(n−1)/2 ωn−1

nn/2 ωnxn
sup

y∈Rn
+

∣∣u(y)
∣∣ ,

which generalizes the real value analog (1.5) of (1.2) to harmonic functions in the
n-dimensional half-space.

From (5.20) it follows that

|∇u(x)| ≤ C∞(x) sup
y∈Rn

+

∣∣u(y)− ω
∣∣ (5.21)

with an arbitrary constant ω. Minimizing (5.21) in ω, we obtain

|∇u(x)| ≤ C∞(x)
2

oscRn
+
(u), (5.22)

where oscRn
+
(u) is the oscillation of u on Rn

+.
Inequalities (5.2), (5.22) imply the sharp estimate

|∇u(x)| ≤ 2(n− 1)(n−1)/2 ωn−1

nn/2 ωnxn
oscRn

+
(u),

which is an analogue of (1.3) for harmonic functions in Rn
+.
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quelques propriétés nouvelles de ces fonctions dans le voisinage d’un point singulier essentiel,
Acta Soc. Sci. Fennicae 35, N. 7 (1908), 1–35.

[11] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, “Integrals and Series, Vol. 1, Elemen-
tary Functions”, Gordon and Breach Sci. Publ., New York, 1986.

E-mail address: kresin@ariel.ac.il

E-mail address: vlmaz@mai.liu.se

E-mail address: vlmaz@liv.ac.uk


	1. Introduction
	2. Auxilliary assertion
	3. The case 1p <
	4. An auxilliary algebraic inequality
	5. The case p=
	Acknowledgments
	REFERENCES

