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Abstract

Boundary value problems for second order elliptic differential equations and systems in a polyhe-
dral domain are considered. The authors prove Schauder estimates and obtain regularity assertions
for the solutions.
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1 Introduction

Schauder estimates, i.e. coercive estimates of Holder norms, of solutions to linear elliptic equations
and systems in domains with smooth boundaries have important applications to linear and especially
nonlinear boundary value problems (see, e.g., Agmon, Douglis, Nirenberg [1] and Gilbarg, Trudinger [4]).
In the present paper, these estimates are obtained for solutions of elliptic systems of second order in
polyhedral domains. The Dirichlet and Neumann conditions are given on the boundary or its parts. We
prove the solvability in weighted Holder spaces, where the weights are powers of the distances to the
edges and vertices of the domain, and obtain regularity assertions for the solutions. As an example, we
consider boundary value problems in linear elasticity. We only mention that the results obtained can be
of use for various nonlinear equations in polyhedral domains.

There is an extensive bibliography concerning elliptic boundary value problems in domains with edges
(see e.g. the references in the books of Dauge [2], Nazarov and Plamenevskii [15]). However, most of
the works in this field deal with solutions in Sobolev spaces with or without weight. Moreover, often the
Neumann problem is not included. Whereas for the Dirichlet and mixed problems there is a solvability
theory in weighted spaces with so-called homogeneous norms, the study of the Neumann problem requires
the use of other classes of weighted spaces. For the Neumann problem to the Laplace equation we refer here
to the papers of Zajaczkowski and Solonnikov [17] (solutions in weighted Ly Sobolev spaces), Dauge [3] (Ly,
Sobolev spaces without weight) and the preprints of Solonnikov [16], Grachev and Maz’ya [5] (weighted
Sobolev and Hoélder spaces), for more general problems to the book of Nazarov and Plamenevskii [15]
(weighted Lo Sobolev spaces) and to our previous paper [13] (weighted L, Sobolev spaces). In the sequel,
we apply the estimates of Green’s matrices given in our article [12] in order to prove the solvability in
weighted Holder spaces. Note that pointwise estimates of Green’s functions of boundary value problems
in domains with edges were first obtained by Maz’ya and Plamenevskii [9, 10] and used for the proof of
solvability theorems in weighted Holder spaces. Their results are applicable e.g. to the Dirichlet problem
but not to the Neumann problem.

We outline the main results of the paper. Let

K={zecR®: w=2a/|z| € Q} (1.1)

be a polyhedral cone with faces I'; = {z : z/|z| € ,} and edges M;, j = 1,...,n. Here Q is a curvilinear
polygon on the unit sphere bounded by the arcs 71, ...,7,. Suppose that I coincides with a dihedral



angle D; in a neighborhood of an arbitrary edge point « € M;. We consider the boundary value problem

3
L(Oa)u=— Y Ai;jOp0pu=[ ink, (1.2)
ij=1
u=g; on I'; for j € Jy, (1.3)
3
B(0;)u = Z AijnjOg,u=gr only for ke Jp. (1.4)
ij=1

where A; ; are constant ¢ x ¢ matrices such that A; ; = A%, JoUJ1 =J ={1,...,n}, JonJ; =0,

J,e
u, f, g are vector-valued functions, and (ni,nq,ng) denotes the exterior normal to I'y,. We denote by H

the closure of the set {u € C§°(K)*: uw=0on T, for j € Jy} with respect to the norm

3 1/2
b= (/. jzlwzju(x)ﬁdx) . (L5)

(C§°(Q) is the set of all infinitely differentiable functions u such that supp u is compact and contained in
G.) Throughout the paper, it is assumed that the sesquilinear form

3
b (u,v) = / > A jOpu- 0y vda (1.6)
Kij=1
is H-coercive, i.e.,
bic(u,u) > c|lul|3, for all u € H. (1.7)

Due to Lax-Milgram’s lemma, this guarantees the existence and uniqueness of a weak solution of problem
(1.2)—(1.4).

In Section 2 we introduce weighted Holder spaces and in the cone K. Let r;(z) denote the distance
of x to the edge M;. For nonnegative integer [, o € (0,1), 8 € R and 5= (01,...,0,) € R™ the space

Cl,a

4 g(IC) contains all [ times differentiable functions u satisfying the condition

) max(0,6; —l—o+]|al)
) |0Su(x)| < oo for |a <1

B—l—o+|al - Tj((E
o104 (22
ek j=1 “/El

and some weighted Holder conditions, while the space Alﬁ’[}(lC) consists of [ times differentiable functions

n
sup |:L,|,6’7l70+\a| H (Tj(.’t)
el j=1 |.Z"

and a weighted Holder condition. We study, in particular, the relations between these spaces.

Section 3 contains some auxiliary results for the problem in a dihedron. We give here a regularity
assertion for the solution and study inhomogeneous boundary conditions.

In Section 4 we prove the existence and the uniqueness of solutions of problem (1.2)—(1.4) in weighted
Holder spaces. The solvability holds under certain assumptions on the spectrum of operator pencils
2A(X) and A;()\) generated by the boundary value problem at the vertex of the cone and at the edges,
respectively. Here 2(()) is the operator of the parameter-dependent boundary value problem

satisfying

dj—l—o+]|al
) |0gu(x)] < oo for|al <1

LAu=f inQ, w=g; onn~;forjedy, B(ANu=gy onn~yforke i,
where the differential operators £(A) and B(A) are defined by
LOMNu=p*  L(0:) (P u(w)), BNu=p""?B(8:) (P u(w)),

p = |z|, w = z/|z|. Furthermore, A;(\) are operators of boundary value problems for a system of
parameter-dependent ordinary differential equations. The eigenvalues of the pencils A;(A) are the roots



of certain transcendental equations. For example, the Dirichlet problem for the Lamé system in a cone
is uniquely solvable in AZ’%(IC)?’ for arbitrary f € A;’E(IC)?’, gj € A;’}(Fj)?’ if the line ReA =2+ 0 — 3 is

free of eigenvalues of the pencil () and the components of 5 satisfy the inequalities
2—)\§j) <dj—0o <2,

where )\gj ) is the smallest positive solution of the equation (3 — 4v)sin(A;) = £Asinb;. Here v is the
Poisson ratio, v < 1/2, and 6, denotes the angle at the edge M;. The Neumann problem for the Lamé
system in a cone IC with edge angles 6; < 7 is uniquely solvable in C’;?(IC)zj’ for arbitrary f € Cg’g(lC)g’,
gj € C,;}?(Fj) if the line Re A = 2 + 0 — (3 is free of eigenvalues of the pencil 2(()), the components of 5
satisfy the inequalities

max (2— —,0) <8, —0 <2, & —0F#l, (1.8)

T
6;’
and (in the case §; —o < 1) the boundary data satisfy certain compatibility conditions on M;. In general,
2+ 0 — ¢; must be less than the first positive eigenvalue of the pencil A;(X). A feature of the Neumann
problem for the Lamé system is that A = 1 is always an eigenvalue of this pencil. For §; < 7 this is
the smallest positive eigenvalue, while the second one is 7/6;. Condition (1.8) allows that the number
240 —d; exceeds the eigenvalue A = 1. However, then the boundary data must satisfy the compatibility
condition
M, 95, =5 -g; on Mj. (1.9)
Here 7i;, , 7i;_ are the exterior normals to the sides I';, and I';_, respectively, adjacent to Mj.
Furthermore, we study the smoothness of solutions. For example, we obtain the following result for the
weak solution u € H of the Dirichlet problem for the Lamé system. If f € Al > U(IC)?’, gj € )\;_;"T(I’j)3,
the strip —1/2 < ReA <1+ a — [ contains no eigenvalues of the pencil 91(/\), and the components of
§ satisfy the inequalities | — )\ ) < 0;j —o <1, then u € Al ‘ (IC)3. In particular, for a convex cone we

obtain u € A?‘%(IC) with T = (1,...,1) and certain p051tlve oif f e A;‘T(IC)?’ AQU( ;)3. This

follows from a result of Kozlov, Mazya and Schwab [7] (see also [6, Th.3.5.3]) who proved that the strip

—2 < Re A <1 does not contain eigenvalues of the pencil 2(X) and from the obvious fact that /\1] ) > 1
for §; < m. The same is true for the Dirichlet problem to system (1.2) if

3 3
> (Aiif9 N = e D)ee for all f0) e Cf
ij=1 j=1
(see [6, Th.8.6.2,Th.11.4.1]). The inclusion u € Af"%(lC)3 implies, in particular, that the first derivatives of

u are Holder continuous. For a nonconvex cone we obtain u € A2"f(IC)3 with certain o > 0if f € Ag’g (K)3,

A2 ‘7( ;)2. This means, in particular, that u satisfies a Hélder condition.
Analogous results hold for the weak solution u € H of the Neumann problem for the Lamé system.
If f e C’lﬁ_;’"(lC)3, g; € Clﬁ_g’a(l“j), the strip —1/2 < Re A <1+ o — (3 contains at most the eigenvalue

A = 0 of the pencil (A), the edge angles §; are less than 7, the components of 5 satisfy the inequalities

0)<éj—o<l, 6—0c#1,2,...,1-1,

7r
max ([ — —
et
and (in the case §; — o < 1 — 1) the compatibility condition (1.9), then there exists a constant vector ¢
such that u —c € C;‘}(IC)?’.
In the last section we consider the problem with variable coefficients in a bounded domain of polyhedral
type. By means of the results of Section 5, we prove a regularity assertion for weak solutions.



2 Weighted Holder spaces

We introduce here weighted Holder spaces with homogeneous and inhomogeneous norms in angles, dihe-
drons and polyhedral cones. For the case of an angle the imbeddings and relations between these spaces
are essentially proved in [8].

2.1 Weighted Holder spaces in an angle

The space AS’G(K). Let K be the angle {x = (z1,22) : 0 <7 < 00, 0 < ¢ < 0}, where r, ¢ are the
polar coordinates of the point x. For arbitrary integer [ > 0 and real 6 > 0, o € (0, 1] we define Af;”(K)
as the set of all [ times continuously differentiable functions on K\{0} with finite norm

lall o ey = D sup [l =0 ()] + (w)r,o5:x
la]<1 €

where

5108 u(x) — D5 u(y)
U,0,6;K = sup |z
e T T
N e—yl<|=]/2

It can be easily shown that the norm in Af;a(K ) is equivalent to

Eaa _ 6804
full = 3 sup el pu(o) + Y sup WU W)

|oz\§lx€K |a‘:lx,y€K ‘x_y|g
Lemma 2.1 The space Ay (K) is continuously imbedded into Ag,’gl(K) ifl+o>U+0,l+0-0=
U'+o -4

Proof: For | =1’ the assertion of the lemma is obvious. Let | > I’ and |a| = I’. By the mean value
theorem, there exists a real number ¢ € (0, 1) such that

Igu(z) — dyu(y) = (VO u)(x + t(y — x)) - (z — y).
Furthermore, for |z — y| < |#[/2 we have |z — y| < |z|/2 < |z + t(y — x)| and, therefore,

|0z u(x) — Oyuly)|

6/
i |z — gyl

<clz+t(y— J;)|6,_U/+1 |(VO*u) (z + t(y — 2))|. (2.1)

Consequently, (u)y o 5,k can be estimated by the norm of v in Af;”(K). This proves the lemma for the
case [ >1'. m

The space Cf;’a (K). We introduce another class of weighted spaces. For integer I > 0 and real §,
0,0<6<l+0,0<0<1,let C(l;’U(K) be the space of all [ times continuously differentiable functions
on K\{0} with finite norm

lulloge ey = D sup o]0 02 u()] + ()i
laj<t®

For 6 > 1+ o we set Cé’U(K) = Ag’G(K).
Analogously to Lemma 2.1, the following result holds.

Lemma 2.2 The space Cé’U(K) is continuously imbedded into C'" (K)ifl+o>U+0,l+0—-0=
U'+o" —4,0 >0.

We describe a relation between the weighted Holder space C(l;’o (K) and the usual Holder space C'7 (K).



Lemma 2.3 The space Cy°(K) coincides with C7 (K).

Proof: Obviously C*? (K) is continuously imbedded into C’é’”(K ). We prove the imbedding Cé’U(K ) C
C(K) for | = 0. First we show that any function u € Cy° (K) is continuous at = = 0. We consider the
sequence of the points x,, = 27"z, where x¢ is an arbitrary point in K. Since |z, — Zp11| = |2n]/2, We
have
2—(71-1—-1)07

U(Tp) —U(Tpt1)] S Co |Tn — Tpt1]” = Co |Xo where ¢ = (U)0,0,0;K -
u(zn) —w(@ni1)] < co |” |z0l” h (u)

Consequently,

w(@n) — w(@m)| < colaol” (27CFDT 4272 27T < g x| 201 27

for m > n. Thus, {u(z,)} is a Cauchy sequence. The limit of this sequence is denoted by a. It can
be easily shown that the sequence {u(z,)} has the same limit if {x,} is an arbitrary sequence on the
ray from 0 to xg such that x, — 0 as n — oo. Now let {z,,} be an arbitrary sequence in the angle
{z € K : |p — ¢o| < arctan1/2}, where r, ¢ are the polar coordinates of = and rg, po that of xo. We
denote by y, the orthogonal projection of x,, onto the line through 0 and zy. Then |z, — yn| < |yn|/2
and, therefore, |u(z,) — u(yn)| < co|zn — Ynl” < colyn|?. If 2, tends to 0 as n — oo, then lim |y, | =0
and limu(y,) = a. This implies limu(z,) = a. Repeating this argument, we conclude that u(z,) — a
for an arbitrary sequence {z,,} in K converging to 0. Thus, the function u is continuous at the vertex of
K. Next we show that

|u(z) — u(y)]

Fy—T < c(uooor forue CYO(K), |z —y| > |z|/2. (2.2)

Indeed, for |x — y| > |z|/2 we have |z — y| > |y|/3 and, therefore,

[u(@) = u@)l _ oo u(@) —w(O)] 4, |uly) —u(0)]
|z —ylo ~ || lyle

Using the inequalities

Co
20 —1

||
)

|u(z) — u(0)] < Z lu(2™"z) — w27 )| < o Z 27" |7 =
n=0 n=0

we obtain (2.2). Thus, we have proved that CJ7(K) = C%?(K). ;From this we can easily deduce the
equality C)7(K) = C(K) for [ > 1. m

Corollary 2.1 If k-1 < d—0 < k, k € {0,1,...,1}, then Cé’U(K) is continuously imbedded into
lek,aféﬂc(K)'

A relation between the spaces Ag"'(K ) and Cf;’”(K ). A relation between the above introduced
weighted spaces holds by means of the following version of Hardy’s inequality.

Lemma 2.4 Let u be a differentiable function on K\{0} and let r’|Vu(x)] < ¢ < oo for v € K.
Furthermore, we assume that

(i) 6 > 1 and u(xz) — 0 as |z| — o0 or (ii) 6 <1 and u(x) — 0 as |z| — 0.

Then sup ! |u(z)| < sup 7° |pu(x)|.
zeK |5 "1| zeK

Proof: If condition (i) is satisfied, then the assertion follows from the inequality

utro) < [ ot i< sup [Pt [+ ar

0<t<lr



Replacing the integration interval (r, 00) in the above inequality by (0, ), we can estimate |u(r, ¢)| in the
same way for case (ii). m

Let u € C’é’G(K), k—1<6—o0 <k, where k is an integer, 0 < k < [. Then, by Corollary 2.1, the
derivatives of u up to order | — k are continuous at z = 0. We denote by

pi—k(u) = Z i(aau)(())xa
la <~k

the Taylor polynomial of degree [ — k of .

Lemma 2.5 Letu € Cé’U(K), where k—1 < §—o0 < k < 1. For the inclusion u € Afs"g(K) it is necessary
and sufficient that p;_y = 0.

Proof: Tt u € Aﬁ;’U(K)7 then 0%u(z) = O(|z|"t7=9~Iel) and, consequently, (9%u)(0) = 0 for |a| <1 — k.
Suppose now that u € C3°(K) and (9%u)(0) = 0 for |a| <1 — k. We show that

sup |z|* 1=+l ‘aau(x)’ < cHuHCé,U(K) (2.3)

for |aof <I. If k > 0, then (2.3) is obviously satisfied for |a| > | — k + 1. Furthermore, we conclude from
Lemma 2.4 that

sup |20~ Hu(z)| < e1 sup |z]° 7" Vu(z)] < - < g Z sup 2|0~k 9%u(x) | (2.4)
|a|=l—k+1

what proves (2.3) for |a| <. If kK = 0, then the space C’é’o(K) is continuously imbedded into C»7~%(K).
Consequently,

sup |x|5_‘7|8“u(x)| = sup \a:|5_‘7|(80‘u)(x) - (8%)(0)] < c||u||Cé,a(K) for |a| = 1.
Using Lemma 2.4, we obtain (2.3) for || < I. Hence, u € A}7(K). m
Corollary 2.2 Ifu € Cé’U(K), k—=1<d6—0<k<lI thenu—p_g(u) € Aé’a(K) and

||u - pl_k(u)”Ag’”(K) S & ||UHC(ZS,0(K)

with a constant c independent of u.

2.2 Weighted Holder spaces in a dihedron

Definition of the spaces A% (D) and C47 (D). Let D be the dihedron {z = (2/,23) : ' = (z1,3,) €
K, z3 € R}, where K is an angle in the (z1,z2)-plane with vertex at the origin. The boundary of D
consists of two half-planes I'* and the edge M. For arbitrary integer [ > 0 and real 6, 0, 0 < 0 < 1, we
define Af;”(D) as the space of all functions with continuous derivatives up to order I on D\M such that

[ullzte () = > sup | |0 u(@) | + (u)esm < o0, (2.5)
laf<t®

where

5103
U)l,0,6;D = Z sup a’
(w)i,0 sup T

o=l
o=, yl<la’| /2

It can be easily shown that AS’U(D) is continuously imbedded into C'~Fk=0+o(D) if k —1 < § — o < k,
where k£ is nonnegative integer, k < [. Indeed for |a| =1 —k and |z — y| > |2’|/2 we have |z —y| > |v'|/3
and, consequently,
|07 u(z) — Fyuly)|
|1. _ y|k—5+d

< (|2'1/2)°~ 7 ogu(@)] + (Iy'1/3)° =7 1oy u)| < cllullyre (),



while for |x — y| < |2'|/2 the expression on the left hand side can be estimated by (u); s.5.p if K =0 and
by the supremum of |2/|°~7~*+1|Vovu(z)| if k > 1.
Let 0 < d <l+o0and 0 < o <1. Then by C’é"’(D) we denote the weighted Holder space with the

norm
l

||U||C(ls,a(D) = Hu”cl—k,kféi»a(p) + Z sup |x’|(5—l—n+|a\|8§u($)| + <U>l7g,5;D,
la|=I—k+17€P

where k = [§ — o] + 1, [s] denotes the greatest integer less or equal to s. In the case § > | + o we set
l,o l,o
C5” (D) = A;° (D).
The following lemma can be proved analogously to Lemma 2.1 (see also [11, Prop.1.4]).

Lemma 2.6 The space Ag’a (D) is continuously imbedded into Af;/,’ol D) ifl+o>V+0" andl4+o—-0=
'+ 0" — o' If additionally 6 > &' > 0, then there is the continuous imbedding Cé"g(D) cche (D).

Traces on the edge. Obviously, the trace of an arbitrary function u € Cé’a(D) on the edge M lies
in the space C!=%F=0+o (M) if k-1 <d—0 < k, k € {0,1,...,1}. The following lemma shows that every
function f € C'~Fk=9+7(Af) can be extended to a function u € Cé’U(D).

Lemma 2.7 Let f € C/=FF=0% (M), where k,I are integers, 0 < k < I, and 0,5 are real numbers,
0<o<1,k—1<§—0 <k Then there exists a function u € Cy°(D) such that 9 uly = 0 f for
7=0,1,...,1 — k and the following inequalities are satisfied:

(i) |2/|°" oo o2u()| < co llfllci-ra—steary for a = (a1, as,a3), a1+ az >0,
and for || >1—k, x € D.

(ii) [~ (04, (u(@) = f(@3))| < ;|| fllcr-rwstoary for j =0,1,....l—k, z €D,
Here the constants c; and c, are independent of f and x.
Proof: We set
w(x',z3) = (Bf)(2',x3) / fxs +tr)(t) dt, (2.6)

where r = |2/| and ¢ € C§°(R) is a function with support in (0, 1) satisfying the condition
1 1
/w(t)dtzl, /tjz/)(t)dt:O forj=1,...,1 - k.
0 0

Since 04, f is continuous for j = 0,1...,1 — k, we have 82, u(0,z3) = f)(z3). Furthermore,

|0%u(x |<csup|f N(zg)| forzeD, o] =j<1—k. (2.7)

We prove that
|8J oy u |<C7‘l+o 0=3= I llor-wn— S+ (M) (2.8)

ifv>lorj+v>I1—k. Firstlet]+ygl—k,u21. We set ¢, (t) =t (t) if j+v=1—k and

t o \l—k—j-v—1
Yiw(t) = /0 (l(t_ kT_)j _jV = ™ p(r)dr ifj4+v<l—k.

Obviously, supp ;. C (0,1), fo Yiu(t)dt =0 and w(l k=g V)( t) = t” ¢(t). Hence, partial integra-
tion yields

1 1
0.0 = / £ fOH) (g + tr) p(t) dt = (—1)'FI v / pt TR fR) (g 4 tr) 4y, (8) dt
0 0

= (- /01 PRI (R (g ) — U9 (ws)) 10 (8) dit



what implies (2.8). Now let j+v >1—k. For j =3 + 3", v=v'4+v" 7+ =1—k, we have

1
&l ovu = oo / " R (g 4 tr) p(t) dt

0

= Jreear L () W)

= [t - s Peyarior () o)

r

Consequently,

. . . z3+r
|85638ffv| < erttTiv / ’f(lik)(T)*f(lik)(xg)’dT
3
S | fU=R () — U=k xs! “’3”
up
z3<T<TZ+T

(1 — z3)kto =0 dr.

< e¢r 7= e

This implies (2.8) for j +v > 1 — k. Since

altaz

|8a <C Z pr—or—as |aagau |

for o = (e, e, a3), a1 + a2 > 0, we obtain assertion (i). Analogously to (2.1), we get

|5 ’aa 8a (y)|

| y\" < c|x’+t(y'—x’)|570+1 |(V8au)(x+t(y—x))’

with a certain t € (0,1) for |z — y| < |2’|/2. According to (i), the right-hand side of the last inequality
can be estimated by the norm of f in C'=%*=9+7 (M) for |a| = I. Hence,

(Wi < cllfllci-rn—s+oary - (2.9)

Together with (i) this implies that 9%u € AS7 (D) C A%*=9+9(D) for |a| =1 — k, ay + ag # 0. ;From
this and from (2.7) we conclude that 9%u € COk=9+7(D) for |a| = I — k, a1 + az # 0. Furthermore, from
the definition of u it follows that

‘3lk alk()|

|z — \k 5o < el fC M) gok-stoary  for z,y € D.

Consequently, 0%u € C**=9%7(D) for |a| = [ — k. This together with (2.7), (2.9) and assertion (i) implies
u € Cy°(D). It remains to prove (ii). Since 92, u(0,23) = fU)(x3) and § — o < k, we have (see Lemma
2.4)

P10 |97 (ula) — flas))| < sup 0T 0] < o[l ormrrro-san,
xz€D

for j =0,1,...,1 — k. The proof is complete. m

A relation between the spaces Af{”(’D) and C(l;’a (D). The following lemma can be proved
analogously to Lemma 2.5.

Lemma 2.8 Let u € Oy (D), where k —1 <6 —o <k, k€ {0,1,...,1}. For the inclusion u € A% (K)
it is necessary and sufficient that 0%u =0 on M for |a| <1 —k.

Now we are able to prove a relation between the spaces C’é’”(D) and Af;’a(’D) analogous to that given
in Corollary 2.2.



Lemma 2.9 LetuEC’ (D), where § >0,0< 0 <1, k—1<d—0 <k, and k is an integer, 0 < k < [.
Furthermore, let f; ; = 8;18$2u|M fori+j <l—Fk andu; j(x) = x(|2']) (Efi;)(x) where E is the operator

(2.6) and x is a smooth cut-off function on [0,00), suppx C [0,2), x = 1 on [0,1]. Then there is the
following decomposition for w:

1 o
u=wv+w, whereve Ay (D), w= Z Fui’jxﬁxQGCéiZ’g(D),m:0,1,2,....

i+j<i—k 77

Proof: We show first that w € C’é’”(D). Since f; ; € Cl=k=i=ik+o=3( A1) it follows from Lemma 2.7
that

|$/|max(0,5flfa+\a|) |8§‘w(m)| <c Z Hfiyj||Cl—k—i7j,k+ofé(M) <c ||u||C(z§,o(D) .

i+j<l—k
Furthermore,
(W)i4m,o,54mD < € Z iup [P R w(a)| < e ||“”C§"’(D) :
|| =l+m+1
In order to show that w € C'"%F=9+9(D) we consider the function 82 (u;;xix}) for |af = | — k.

Obviously, this is a linear combination of functions
(s g) 2y ™ ab™" where p <i, v <j, Y| =l—k—p—wv (2.10)

Since u; ; € Cl=k=i=3k=0+7(D)  the term (2.10) with g = i, v = j belongs to C**=9+(D). If y+v <

i+ j, then it follows from Lemma 2.7 that dJu; ; € Agiz+g+\'ﬂ( ). Consequently, (97u, ;)i a3 ™" €

A7 (D) € AYY°F(D) if p+v < i+ j. This implies that 93w € CO*=+7(D) for |a| = | —k. Thus, it
is shown that w € Céig’g(D). Furthermore, the norm of w can be estimated by the norm of « in Cé’U(D).

By means of Theorem 2.7, it can be easily shown that 0w = f; ; on M for a = (4,5,0), i+j <l —k.
From this we conclude that 0%(u — w) = 0 on M for |a] < I — k. Applying Lemma 2.8, we obtain
u—w e Aé’”(D). n

2.3 Weighted Holder spaces in a polyhedral cone

Let IC be the cone (1.1). We denote by 7;(x) the distance to the edge M; and by r(x) the distance to the
set S = M;U---UM,U{0}. The subset {z € K : r;(x) < 3r(z)/2} is denoted by K;. Furthermore, let J be
an arbitrary subset of J = {1,2,...,n}, | a nonnegative integer, 0 < o < 1, 8 € R, 5':~ (61,...,0,) ER™,
§; >0if j € J\J, and k; = [0; — o]+ 1. We introduce the functions h;(t) =t for j € J, h;(t) = max(¢,0)
for j € J\J and define Clﬁ’}(lC; J) as the set of all [ times continuously differentiable functions on K\S

with finite norm

—l—o+|al)
lullote sy = D suplal”™ ”"”H( ) o2 u(@)
’ | \<l
s, |3$ u(zx) — 8;‘u(y)|
+ Z Z I?é% | iz — yFiTo—s;
JeNT 1=tk o Zy <l /2

& |0%u(x) —8”‘u(y)|

8 J’ T y

+Y sw g H( " ) T (2.11)

=t lE—yl<r(z)/2

Furthermore, we define C’l"7 S(K) = C’l"7 (K #) and Al’o <(K) = C’l’o (K J). The trace spaces for C’ (IC J),

C;‘;(IC) and Al ‘ ~(K) on F are denoted by C’ (I‘J, J) C ( ) and A ~(I';), respectively.

It can be easﬂy shown (cf. Lemma 2.6) that ch {(K J) C C;/%(IC, J) ifl+o>U+0,l4+0—-p=

UV'to =B, l+0—0;>U+0 —& forj=1,...,n,8;,6 >0for j € J\J.



3 The model problem in a dihedron

3.1 The operator pencil generated by the boundary value problem
Let d* € {0,1}. We consider the problem
Lu=f inD, d*u+(1—d*)Bu=g* onT%, (3.1)

where L and B are the same differential operators as in (1.2) and (1.4), respectively. It is assumed in
this section that the sesquilinear form corresponding to this problem (i.e. the form (1.6) with D instead
of K) satisfies (1.7), where K has to be replaced by D.

We introduce the following operator pencil A(A). Let

2 2

L(0a,0) = = > Aij0s,0s,,  BE(0w,0)= Y A;;nio,,.

ij=1 i,5=1

Here nJlL are the components of the exterior normal to I'*. We define the differential operators £(\) and
B*()\) depending on the complex parameter A by

L) ulp) =122 L(9:,0) (Mulp),  BEA) ulp) = d ulp) + (1 = d*) r' = B¥(9,,0) (ru(e)),

where again r, p are the polar coordinates in the (a1, z2)-plane. Then A()) denotes the operator

W2(0,0)" 5 u — (E(/\)u, BTN ule)|__ B~ (\) u(gp)|w:0) € Lo(0,0)" x C* x C.

»=0"

As is known, A()\) is an isomorphism for all A € C except a countable set of isolated points, the eigenvalues
of the pencil A(\). All eigenvalues have finite geometric and algebraic multiplicities.

3.2 Boundary conditions on the sides of the dihedron

+
Lemma 3.1 Let g* ¢ A?‘d “hOMEV 1 > 1—mindE. There exists a vector function u € Ag’U(D)Z such
that d*u + (1 — d*) Bu = g* on T* and

||UHAQU(D)@ <c Z HgiHAfS-Fdi—l,"(Fi)Z’ (3:2)
+

where c is independent of gt and g~ .

Proof: Let (j be infinitely differentiable functions on (0, co) such that

“+oo
supp (i C (2’“*1,2]”1), |8ﬁ§k(r)| <c¢27%  and Z (e = 1. (3.3)

k=—o0

Setting ((z) = Cx(|]2'|) we can consider (;, as a function on D. Furthermore, let Cr(z) = Ce(2%z) and
gr(z) = g(2¥x). Then the support of ¢y is contained in {z : 1/2 < |2’| < 2}. Consequently, there exists a
function 1, € C47(D)* with support in {z : 1/4 < |2/| < 4} such that d*ay+(1—d*)Biy = k(=) 5
on I't and

- —dEYnx ~ _
ilerecoy < e 32075 Wil rnasose o < 2207 1ty gy

with constants c1, co independent of g and k. We set u = ZZ:(XLOO uy,, where uy(z) = @,(27%z). Then
d*u + (1 — d*)Bu = g on I'*. Since the support of uy, is contained in {z : 2872 < |2/| < 282}, we get

IN

¢ Sup lukll e pye < € 5up 2507 iy [l 1o (pye < ¢ sup 1SkgI grra -0 sy

||U||Agv°(p)e !

IN

c ||g||Aé+diflvU(Fj:)£'

This proves the lemma. m

We need an analogous assertion for the Neumann problem in the class of the spaces Cé’g.
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Lemma 3.2 Let dt =d~ =0, g* € Cy7(T%)!, § > o, g*(x) = 0 for |2'| > 1. In the case § < o+ 1 we
suppose further that for every xs € R there ewist vectors c(x3),d(z3) € C* such that

(Al,ﬂ”bli + A1,2ﬂ2i) c(xs) + (A2,1Tl% + A2,2n§E) d(z3) = goi(%)v (3.4)

where gO = gi|M and n* (nli7 nQi, 0) is the exterior normal to TF. Then there exists a vector function

U € C' (D! satisfying Bu = g& on T and an estimate analogous to (3.2).

Proof: 1t § > o + 1, then O3 7 (T'F) = A1 7(T*) and the assertion follows from Lemma 3.1.
Suppose that o < 5 <o+ 1 Then gO € CYo+1=9(M)f, and there is the representation

* = Bgf + GF, where (E¢)(x / oz +tl'|)p(t)dt, GF e Ay (T,

and ® is the same function as in the proof of Lemma 2.7. By the assumptions of the lemma, there exist
vector functions c,d € C%7F1=9(M)? satisfying (3.4). We set v(x) = 1 (Ec)(x) + x2 (Ed)(x). Then

B(agg)v’Fi = (A1 1n1 + Ajon5 ) Ec+ (A2 1n1 + Aj9n5 ) Ed
3
+ Z (Ai’lnli + Ai’gnét) (2105, Ec + 20, Ed)
i=1

(From Lemma 2.7 it follows that 210, Fc + ©20,,Ed € A};’U (D) for i = 1,2,3. Furthermore,
(Al)lnit + A172n§t) FEc+ (1427177,1i + AQ’QTL;E) Ed— Lagoi € A};’U(D)é.

Consequently, B(9,)v|p+ — g € A};"T(I‘i)é. Applying Lemma 3.1, we obtain the assertion of the lemma
inthecasec <d<o+1. m

Remark 3.1 The equations (3.4) are solvable for all ggE (z3) if and only if the homogeneous system
(Al,lnli + Al,gnf) c+ (AgJTLit + A272n2i) d=20 (35)

has only the trivial solution (¢, d) = 0 or, what is the same, if there does not exist a linear vector-function
p(z') = cxy +dxy satisfying B(9,)p = 0 on I'F. This is the case, for example, if A = 1 is not an eigenvalue
of the pencil A(\).

If the system (3.5) has nontrivial solution, then A = 1 is an eigenvalue of the pencil A()), and there
is an eigenfunction of the form (c;x1 + cawe)/|2’| corresponding to this eigenvalue. In this case for the
existence of a vector function u € C’;’U (D), 0 < < o+ 1, satisfying B(9,) u = g* on T'F it is sufficient
that g7 and g~ satisfy 2¢ — r’ compatibility conditions lx(¢g*,g7) =0on M, k=1,...,20 — ', where 1’
Apg A

12 A2z
of the Neumann problem for the Lamé system g+ and g~ must satisfy the condition n=™ - g =n™ - g~
on M (see [12, Sect.2.5]).

is the rank of the matrix ( ) and [, are linear functionals on C?*. For example, in the case

3.3 Regularity assertions for solutions in the spaces Afs’”

The next lemma follows from [14, Th.6.3.7] and [1, Th.9.3].

Lemma 3.3 Let Gy, Gy be bounded subdomains of R® such that Gy C Gg, Gy OD # 0 and GiNM = .
If w is a solution of (3.1), u € W2P(D N Gy)t, f € C'=29(DN Gy, gF € Cl+a*-1, T(MENGL) 1> 2,
0< o<1, thenue C(DNGy)". Furthermore,

llullct.o (DrGyye < € (”f“cl*?v”(DQGg)f + Z ||9i||cz+di—1,a(rimcz)z + ||U||C(DnG2)4>
T

with a constant ¢ independent of u.
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Let W/?(D\M) be the set of all functions u such that ¢gu € WHP(D) for all ¢ € C5°(D\M).

loc

Lemma 3.4 Let u € W2P(D\M)* be a solution of problem (3.1). If sup|a’|°" =7 |u(z)| < oo, f €
+
Ag_Q’U(D)Z, 1>2,0<0<1,and g* € Af{"d “LYE) then u € Ag’U(D)e and

lellate oy < € (Ifllgmze oy + Xi: 9% g% 1.0 ey + 50D 2 u()]). (3.6)

Proof: Due to Lemma 3.1, we may restrict ourselves to the case g& = 0. Let z,y be points in
D such that |x — y| < [2[/2. We introduce the functions @(§) = wu(|z’|§) and f(§) = f(]2'|). Since
L(O¢) (&) = |2')? f(€) in D and d¥a(€) + (1 — d*¥) B(d¢) i(€) = 0 on T'F, Lemma 3.3 implies

~ ogie) - g v ~
S Jozat + 3 1% U(m)— m’;“(”)’ < e (12'P 1 Fler-2o ey + Illcqay )

lal<t =

for [¢'| =1, | —n| < 1/2, where U = {( € D : | — &| < 3/4}. Here the constant c is independent of &.
Setting & = x/|2'| and n = y/|2'|, we conclude that

|8°‘u(x) - 8;‘u(y)|

Yol ogul@)| + Y Ja e |

sc( X W s @)X

laf=t lar|=t vyl la|<l—2
O*fIX) — (0 )Y
LY e ap D@L ). (3.7)
lae|=l—2 X, YEV, |z —yl XeV,
IX-Y|<|z'|/2

where V, = {X € D : |X — z| < 3]2’|/4}. Multiplying this inequality by |2'|°~'~7 and using the fact
that |2'|/4 < r(X) < 7|2'|/4 for X € V., we obtain (3.6). m

We further need the following modification of Lemma 3.4.

Lemma 3.5 Let ¢, w be smooth functions with compact supports, 1» = 1 in a neighborhood of supp ¢.
Suppose that u € Wl (D\M) is a solution of problem (3.1), sup |2/[°~'=7|¢(z) u(z)| < oo, ¥f €

AS27(D)E and ¢gt € A?d “LOrEY, 1> 2,0< 0 < 1. Then ¢u € A7 (D) and
+ §—l—o
Iullape ye < € (IF1lgi-20 ye + ; 99 g s gy + 58 2P () ()] ).

Proof: Let U be the set {x € D: ¢(z) =1}. Then

Z |l,/|67l7<7+|a\|at; |+ Z |£L‘ |6

|ee|=l |a| =1

< ¢ (Mg + S0 grasmnoary + 308 70 u(2)])

|8a 8“u(y)|

Yy
—ylo

for & € supp ¢, where the norm in Af;”(u) is defined by (2.5) with I/ instead of D. For |z’| > ¢ > 0 this
estimate follows from Lemma 3.3, while for sufficiently small |2/] it is a consequence of (3.7). This implies
the assertion of the lemma. m

In the next lemma the eigenvalues of the pencil A()) play an important role.

Lemma 3.6 Let ¢, 1 be as in Lemma 3.5, and let u be a solution of problem (3.1) such that Yu €
+

Ag’U(D)é, YO u € Ag’U(D)Z, f € Ag_l’U(D)L’, Pyt € A?‘d T(TF)E. If there are no eigenvalues of the

pencil A(X) in the stripl+0c —§ <ReA <+ 140 — 9, then ¢u € A?‘l’”(D)Z and

1
¢l s pye < (Z 1903l 1o e + 1l gt e + Zi: IIwgi||Afs+di,a(Fi)g).
§=0
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Proof: Let y be an infinitely differentiable function on D such that ¥ = 1 in a neighborhood of supp ¢,
1) = 1 in a neighborhood of supp x. Obviously,

L(9.,0) (xu) = F =\ f + XL10gyu+ [L(92r,0), X] u

where L is a differential operator of first order and [L(9,/,0),x] = L(02,0)x — xL(9.,0) denotes
the commutator of L(d,/,0) and x. By our assumptions on u and f, the function F(-,x3) belongs to
Af;l’U(K)e for arbitrary fixed 3. Analogously, we have d*u + (1 — d*) B*¥(0,,0) (xu) = G*, where

GE(,3)]4+ € /\f;+‘1i’g(fyjt)Z for fixed 3. Consequently, by [9, Th.8.4], we obtain (yu)(-,z3) € A5™7(K)*
and

[(xw) 553)||A””(K)5 =< C<||F( 3 ”Al Lo ()t +Z“G » L3 ||Az+di 7 (T )

with a constant ¢ independent of x3. From this and from the inclusion ¥0,,u € Af;” (D)* we conclude
that

1

sup 2/ P10l 9 () (@) < ¢ (D IOl oy + 101l gs1r (D) + D g5 o )
+

x€D §j=0

for |a| <1+ 1. This implies, in particular, that yu € Ag’fl(D)e (cf. Lemma 2.6). Applying Lemma 3.5,
we obtain the assertion of the lemma. m

3.4 Regularity assertions for solutions of the Neumann problem in the spaces
Cy°

For the case d™ = d= = 0 (the case of the Neumann problem) we need annalogous assertions in the
spaces C’é’g

Lemma 3.7 Let ¢, ¥ be the same functzons as in Lemma 3.5, and let u € Wl P(D\M)* be a solution of
problem (3.1) with d* =d~ = 0. Ifpu € Cy7_ ., (D), ¥f € C5>7(D)!, pg* € C5 "7 (IF)", where
1>2,k>0,0>l4+0—-k—7>0,0<0<1,0<7<1, then¢>u€C’é’”(D)e and

H(buncl 7 (D) <c <||¢f||cl 2.9 (D) + Z ||w9 ||cl Lo(pye + HT/)UHCE . a+k+T(D)£).

Proof: By Lemma 2.9, v¥u admits the decomposition ¥u = v + w, where v € AR D)¢,

w e Ch7 (D) and

d— l o+k4+1 (

lase oy + 0l oy < el e

ST ¢ 2) L

okt
Let x be a smooth function such that ¢ = 1 in a neighborhood of supp ¢ and ) = 1 in a neighborhood of
supp x. Then yLv = xf — xLw € CéfQ’U(D)e. In the cases k = 0 and k£ = 1 it follows from the condition
on d that § > | — 2 4 ¢ and, consequently, Cli2 7(D) = AF2 (D). In the case k > 2, the inclusions
0 € A7,y (D) and xLo € CL27(D)f mply xLv € AL i (D) NG (D) € A7 (D).
Analogously, yBv € Af;l’o(l"i)e. Using Lemma 3.5, we obtain ¢v € A ?(D)* and

IN

qu”Af;"(D)‘f C (”XL'UHALE—Z,U(D)[ + ; HXB’UHAgﬂ,a(Fi ¢ + ”X’UHA”; Tl a+k+’r(D)Z)

IN

¢ (”wf”cf;“(mﬂ + zi: ||¢9i||c§—w(ri)e +Ywlgrepye + [P0l ye. (D)f)'

S—l—o+k+T

The result follows. m
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Lemma 3.8 Let ¢, ¢ be as in Lemma 3.5, and let u be a solution of problem (3.1) with d*™ =d~ =0
such that Yu € C27 (D), hdp,u € C27 (D), bf € CL 17 (D), hg* € CL7 (T, 1> 2, § > 0. If there
are no eigenvalues of the pencil A(N\) in the stripl+0 —0 <ReA<l+0o—0+1, then ¢u € C’é“’”(D)g
and

1
||¢u||c§+1"’(D)‘f <c (Z ”"/)aigu”qls)ff(p)z + H"/’f”c(l;l’a(z))é + Z ||¢gi‘|c§v0(pi)z>-
§=0 +

Proof: Suppose that k—1 <1+0 —6 < k, where k is an integer, k¥ <. Then both u and J,,u belong
to C!=kk+o=0(D)*. Consequently, the traces u;; of 82 94 u on M are from C!=F=i=itLk=o=0(AN)¢ for
i+ 7 <l—k. By Lemma 2.9, there is the representation

Pu = Z x1x2+v

i+j<l—k

where E is the extension operator (2.6) in the proof of Lemma 2.7, v € Ag’U(D)Z, OraV € Ag’a(D)e. By
means of Lemma 2.7, it can be shown that L(yu—v) € C5~ "7 (D)* and B(u—v) € C57(I'*F)¢. Therefore,
also Lv € C% "7(D)* and Bu|p+ € C57(T*)¢. From the inclusion v € A% (D) it follows that 9% Lv = 0
on M for |a| <1—k—2and §Bv = 0 on M gor j <1—Fk—1. We denote by F; ; the traces of 0% 87, Lv
on M,i+j=10—k—1, and by Gli_k the trace of O\"* Bu|p+ on M. Obviously, F; ; € CO**+o=3(M)¢ and
Gli_k € COF+o=3(M)E. Furthermore, by Lemma 2.9,

EF; i g —1,0 EGZ — o
pLo—¢ > Sp T € ATH(DY, $Bu—v 0 _lk; =k e AT (TF).
itj=l—k—1 Y’ :

Since A = [ — k + 1 is not an eigenvalue of the pencil A(\), there exist homogeneous matrix-valued
polynomials p; j(z1,2z2) and ¢&(z1,22) of degree [ — k + 1 such that

zi )
L(02) pij = L(0w, 0) pij = 1']'2 Iy, B(az)pi’jh“i =0, (3.8)

rlfk

L) q" =0, B(d,)q" |, = =]

Iy, B(0:)q |5 =0, (3.9)

where I; denotes the ¢ x ¢ identity matrix (see [12, Le.2.4]). We set

w)= > pii) +Zq ) (BGE,)(x).

i+j=l—k—1

(From Lemma 2.7 it follows that d,, EF; ; € Afﬂj 7.(D)" and 8,,EG,_y € A;jfk(D)é for k =1,2,3.
This together with (3.8) and (3.9) 1mphes that Y L(v — w) € AS"17(D)¢ and ¢ B(v — w) € AL7(DF)"
Furthermore, ¢ (v —w) € Af;g(D)e and Y0y, (v —w) € Ag’” (D). Applying Lemma 3.6, we conclude that

pv—w) € AéH’U(D)Z and, consequently, pu € C5T17(D)!. m

4 The boundary value problem in a cone

We consider problem (1.2)-(1.4) in the cone (1.1). B
Henceforth, J denotes the set of all j € J = {1,...,n} such that M; C Iy for at least one k € Jy.
Furthermore we set d; = 1 for j € Jy and d; = 0 for j € J;.

4.1 A regularity result for the solution

Using Lemmas 3.5 and 3.7, we can prove the following assertion.
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Lemma 4.1 Let u € I/Vlzo’f(f\S)e be a solution of problem (1.2)—(1.4). Suppose that u € C;/”Tg/ (K;J),

feC’;’_;’U(IC;j)Z and g; EC;T;j_l’U(Fj;j)e, where ' =3 —l—o+k+7,0;=0;—l—0o+k+72>0,
I+o>k+7,0<0<1,0<7<1. ThenuGC;’%(lC;j)e.

Proof: We restrict ourselves in the proof to the case J = (). The proof for J # @) proceeds analogously.

Let z be an arbitrary point in K, and let M; be the nearest edge to z. We introduce the functions
(&) = u(|zl€), f(&) = f(|z|¢) and §;(§) = g;(|x|§). Since @ is a solution of the problem L(J¢)a(§) =
|22 £(€) in K, B(d¢) @(€) = || §;(€) on T;, Lemma 3.7 implies

7] (f)max(076jflfa+\a|) |agﬂ(£)|
=1

<

n
2 F ~ o ~
<c (‘x| Hf”C;T;’G(Mg)[ + 221 |‘T| ”ngclBTgl»U(ijug)z + HUHC';}},(%)‘)
j=

for |a| <land |{| =1, where Uy = {n € K : |n—¢| < 3/4} and the norm in C;"}(Z/lg) is defined by (2.11)
with U instead of K. Setting ¢ = x/|z| and multiplying by |z|?~!=7, we obtain

n
|x|ﬁ—l—a+\a| H ,,,j(f)max(o,éj—l—cr—&-m‘) ’8§U($)|
j=1

<c (”fHC;__;’G(Vm)Z + Z ngHC;__gl’a(FjﬁVz)l + Hu”c;” _(me)a (4.1)
: = :

—l—k,5—(1—k)T

where V, = {X € £: |X — z| < 3|z|/4}. Analogously, using Lemma 3.7, we can estimate
|05 u(a) — Fjuly)|
|Z‘ _ y‘1+[51—a]—61+0

2? I] (Tj(x))5j |02 u(x) — Oyu(y)]

|| [z =yl

-

for [af =1 =1 -1 — 0], r1(y) = r(y), [z —y| <|z[/2 and

for |a| =1, |z —y| < r(x)/2

by the right-hand side of (4.1). This proves the lemma. m

Remark 4.1 Lemma 3.7 allows also to prove the following generalization of Lemma 4.1: If u € leo’f (K\S)*

is a solution of problem (1.2)-(1.4) such that Yu € Cg,’Tg,(lC; NE Yf € C’lﬁ_;’a(lC; J)¢ and g €

C’l'irdj_l’g(I‘j;j)f7 where ¢, 1 are smooth functions on €, ¢ = 1 in a neighborhood of supp ¢, and

B8
B3,3,6,8" are as in Lemma 4.1, then ¢u € C’;"}(IC; J)E.

4.2 Operator pencils generated by the boundary value problem

We introduce the following operator pencils 2 and A;.
1. Let Ho = {u e WH2(Q)*: u=0on~; for j € Jo} and

3
> A 0,,U -0,V da,

4,j=1

a(u,v; \) = Tog 2

1<|z|<2

where U(z) = p*w), V(2) = p~ 1" (w), u,v € Hg, and A € C. Then the operator A(\) : Hg — HE, is
defined by
(Ql()\)u,v)

Here (-, -)q denotes the extension of the Ly scalar product to Hg x Ha.

o =a(u,v; ), u,veEHq.
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2. Let I';, , I';_ be the faces of K adjacent to the edge M;. We introduce new Cartesian coordinates

y = (Y1,Y2,y3) such that M; coincides with the positive ys-axis and I';, , I';_ are contained in the half-

planes {y € R®: ¢ =0} and {y € R®: ¢ = 0;}, respectively, where r, ¢ are the polar coordinates in the
(y1,y2)-plane. Furthermore, we define the operators £;(\) and B;, (\) on the Sobolev space W22(0, 0;)*
by
_ 27 (A _ _ u(p) if j+ € Jo,
L0 ule) =P L), Bl ={ o ptf o ST

By A;()\) we denote the operator

W2(0,0;) 5 u— (Lj(x)u, B, (N ule)|,_y Bi- (N ulp) ;q):gj) € L5(0,0,)" x C* x C*.

As is known, the spectra of the pencils 2 and A; consist of isolated points, the eigenvalues. We denote
by )\gj ) the eigenvalue of the pencil A; with smallest positive real part and set u; = Re )\5] ),

4.3 Boundary data on the sides of the cone

We prove analogous assertions to Lemmas 3.1 and 3.2 for boundary conditions on the sides of the cone

K.

Lemma 4.2 Let g; € Alﬁ+;j_1’0(I‘j)Z forj=1,....n, where 0 <o <1,1>24f Jy #0 and ] > 1 else.

Then there exists a vector function u € AZ‘}(IC)Z such that w = g; on I'; for j € Jy, Bu = g; onL'; for
j € Ji, and

n
HUHA;%(;C)Z <c ; ”gj”A:T;j’lﬂ”(Fj)z (4.2)

with a constant c independent of g;, 7 =1,...,n.

Proof: Let () be smooth functions on (0, 00) satisfying (3.3). Setting (i () = (x(|z|) we can consider
(. as a function on K. We set hy ;(x) = (x(2Fz) g;(2%x) for j € Jo and hy j(x) = 2% i, (2%x) g;(2%x) for
j € J1. The support of hy,; is contained in {z : § < |#| < 2}. Consequently, by Lemma 3.1, there exists
a vector function wy, € Af@;j}(lC)‘Z such that wg(z) = 0 for || < 1/4 and |z| > 4, wx = hg; on I'; for
j € Jo, Bwg = hyj onI'; for j € Jy,

lwrll e goye <€ D e 105 =100 (4.3)
p.0 jedo p.s !

where c is independent of k. From this we conclude that the function ug () = wy (27 %) satisfies uj, = Ckgj
on I'; for j € Jy, Buy = (rg; for j € Ji and the estimate (4.3) with (g, instead of hy j. Thus, u = uy
has the desired properties. m

Analogously, using Lemma 3.2, one can prove the following result

Lemma 4.3 Let g; € AZ"}(FJ-)Z forjeJo, gj € C’;’g(l“j;j)e forj € Ji. For j € J\J we assume that
d; > o and that A =1 is not an eigenvalue of the pencil Aj(\) if 6; <1+ 0. Then there exists a vector
function u € C;?(IC; J)¢ such that u = g; on T for j € Jy, Bu=g; onT; forje Ji, and

lullczouee < e (0 Nasllezae,ye + 2 lillorew,ay )
j€Jo Jje€J1
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4.4 Estimates of Green’s matrix

Let x be a fixed real number such that the line Re A = —x — 1/2 is free of eigenvalues of the pencil 2.
We denote by V,12(K) the space of all functions u in K such that |z|" tu € Ly(K) and |z|*Vu € La(K)3
According to [12], there exists a unique solution G(z, &) of the problem

L(0:) G(x,8) = 0(x — &) Lo, x,§ €K, (4.4)
G(z,§) =0, zely, £k, je (4.5)
B(&T) G(.’L‘,f) =0, xe Fj, Eek, jep (46)

¢ denotes the £ x £ 1dentity matrix) such that the function x — T, elongs to the space
I, d he £ x £ identi i h that the functi () G, €) bel h

V.E2(KC)4¢ for every fixed € € K and for every smooth function ¢ on (0,00), ((t) =0 for t < 3, ((t) =
for t > 1. We denote by A_ < Re A < Ay the widest strip in the complex plane which contains the line
Re A = —k —1/2 and is free of eigenvalues of the pencil 2. By [12], Green’s function G(z, §) satisfies the
following estimates:

|000G(,6)] < ele =gl i g]/2 < 2] < 20¢), [ - €] < min(r(z), 7 (€)), (4.7)
020G, )] < elu gl ‘”‘H(|m_£|) EW g‘) (4.8)

if [€]/2 < |z| < 2|, |x—§| > min(r(x), r(£)),

~—
~—

)6“ if || < [¢1/2,(4.9)

|070¢ G(x,8)]

IN

)
‘8§8gG($7§)| < C|33|A+_|0“_E |§|—1—A+—\’Y\+s ( (x))‘;“*

I (%
5]@ n j»'Y
H( r ) if [2] > 2]€].(4.10)

c|x|A_—|a\+5 |§|—1—A_—|’y\ € (

Here 04 = pj — || —¢ for j € J and 6, = min(O,uj — |a| =€) for j ¢ J (¢ is an arbitrarily small
positive number).

Note that there are sharper estimates for the derivatives of G(z,&) with respect to p = |z| (see [12,
Rem.4.2]). In particular,

0205 Gl2,)] < clo—gTt Tl H(|x_§|) (4.11)

i [€]/2 < fa| < 2[¢], |2 —£| > mln( (@),r(£)),
d;

J, o

IA

0208G (. €)] < elafterlolohoe |§|+A++f ( iffa] < ll/2, (412)

5j.0

IN

if |z > 2[¢]. (4.13)

)
7)

|aaak } C|x|A,f\a|fk+e |£|717A,75 (

Remark 4.2 In some cases, when p; = 1, estimates (4.8)—(4.10) can be improved (see [12, Rem.4.3]).
Let the following conditions be satisfied for a certain index j:

(i) The strip 0 < ReX < 1 does not contain eigenvalues of the pencil A4;(\) and A = 1 is the only
eigenvalue on the line Re A = 1.

(ii) The eigenvectors of A;(X\) corresponding to the eigenvalue A = 1 are restrictions of linear vector
functions to the unit circle, while generalized eigenvectors corresponding to this eigenvalue do not
exist.

(iii) The ranks of the matrices N'.A and N ANT | where

Ain Asn Asa

A= ( Ao Az Ass ) and ./\/z(

+ + +
nq I, Ny I, ng Iy )
Ars Asz Asgs

nily nyly ngly
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(n™, n~ are the normal vectors to the faces I';, and I';_ adjacent to the edge M, I, denotes the

¢ x ¢ identity matrix, and N7 denotes the transposed matrix of N), coincide.

Then the number p; = 1 can be replaced by the real part M§_2)

on the right of the line Re A = 1.

of the first eigenvalue of the pencil A;(X)

Note that conditions (i)—(iii) are satisfied, e.g., for the Neumann problem to the Lamé system and in
anisotropic elasticity if the angle 6; at the edge M; is less than 7. Here the matrices N'.A and N ANT
have rank 5.

4.5 Solvability of the Neumann problem

In this subsection we restrict ourselves to the Neumann problem (1.2), (1.4) with J; = {1,...,n}. We
prove the existence of solutions in the space C;’E(IC)Z , where 0 < o < 1, # is a real number such that

the line ReA = 24 0 — 3 is free of eigenvalues of the pencil %, and the components §; of 5 satisfy the
conditions
max(2 — p;,0) <dj—0<2 and §;—0c#1 forj=1,...,n. (4.14)

Lemma 4.3 allows us to restrict ourselves to homogeneous boundary conditions.

Representation of the solution by Green’s matrix. We introduce the operator S which is
defined on ogvg(x)f by

- /,< G(z,€) - () de, (4.15)

where G(z, ) is the Green matrix introduced in the foregoing subsection with xk = 8 — o —5/2. Our goal
is to show that S realizes a continuous mapping from C’g’g(lC)l into C’;’g(IC)Z.

Note that, under the above conditions on &, we have C’O"T(IC) = AO";(IC). Let x be an arbitrary cut-off
function, x(z) = 1 for |z| < 1, x(x) = 0 for |x| > 2. Then Xf e Wor e 5,(IC)4 and (1—x)f € Wo’p 6,(IC)Z
for arbitrary f € CEU(IC) where 3' =3 —0—3/p, §; =0;—0—2/p+e,e>0,p> 1. Here W ’p(lC) is
the Sobolev space with the norm

o PSi 1/p
sy = ([ 3 falpotei H (2™ ozutwl ar) "
' la| <1
;From [13, Th.4.1] it follows that Sy f € W27?

Bl_i_ 6/
small positive number. In particular, Sf € Wl P(K\S)’.

L(K)f and S(1—x)f € W;I”:E 5 (K)¥ if ¢ is a sufficiently
A weighted L., estimate for the solution.

Lemma 4.4 Let f € CO U(IC) , where B is such that the line Re A\ = 2+ o — ( is free of eigenvalues of
the pencil A(N\) and the components of ¢ satisfy (4.14). Then uw = Sf satisfies the estimate

B—oc—2
sup |z u(z)| <c 0,0
IEK‘ | | | Hf”c (ic)/f

Moreover, if §; < 1+ o, then  sup |z|?~77! |Vu(z)| < cllfllcoeeye-
8,6

e,

Proof: Using (4.10), we obtain

/ G(m,f)ﬂf)d«s)chfHC;g(K)e / G, )1l T /1€ de
\E\<’\CZI/2 \E\<’\Cﬂvl/2
< elol I fllonsgne [ 167 T/ d < claP o |l e

K
1€l<|=]/2
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Analogously, this estimate holds for the integration domain {€ € K : || > 2|z|}. For the integration
domain {§ € K : |z|/2 < [§| < 2|z|}, we obtain, by means of (4.7), (4.8),

| [ 6.6 f€ de| < clfllonoqy [ 1o = 171617 TLrste/16D7 de < clal™ | fllgno -

This proves the first part of the lemma. The proof of the second part proceeds analogously. Here one
can make use of the fact that p; > 1if §; < 1+ 0. Consequently, it follows from (4.7), (4.8) that
08 G(x,8)| < clo — &2 for |z]/2 < [¢] < 2|z], || = 1. m

Two auxiliary inequalities. For the proof of Holder estimates we need the following lemma.

Lemma 4.5 1) Let a+ >3 and 0 < 3 < 2. Then

[ e e < coa
D
le—¢|>R
with a constant c, g independent of x and R.
2) Ifa+8<3,a>0 and 8 <2, then
[ e e < coar
D
le—¢I<R
Proof: 1) Let a+ > 3,0 < 3 < 2. Then
[ e taese [ pogetacerses
D D
r(€)>[z—¢I>R le—¢|>R
We denote by x* and £* the nearest points to x and £ on the edge M. If |z — £| > r(§) > R, then
|€ —z*| >r(§) > Rand | —a*| < |[€ — €|+ € — 2| < 7(§) + |€ — x| < 2|§ — | and, therefore,
[ emdero ez [ je-aten@ i = e
D D
lz—¢[>r(E)>R |E—a"|>R
Finally, since 2|z — &| > R + |z3 — &3] for | — £| > R, we obtain
“+00 R
/ o — €0 r(€) P de < c/ (R+ |5 — &))"~ de / P10 dr = ¢ B30,
S —0o0 0
|z—¢&|>R>r(E)

This proves the first part of the lemma.
2) Let «+ 8 <3, >0 and 8 < 2. Obviously,

[ weaerotas [ pegreta—ente
b D
lx—£&|<min(R,r(£)) |z—€|<R

We denote again by x* the nearest point to 2 on M. Since |{ —a*| < 2| — z| for 7(§) < |x — €|, we obtain

/ o — €7 ()7 de < / € — 2*[7r(€) P dE = c RF.
H(©)<IE ol <R oD oan

The proof of the lemma is complete. m

19



Corollary 4.1 Let x an arbitrary point of K such that r(x) < 27(z) and let K, = {6 € K: N7 |z| <
|¢| < N |z|}, where N is an arbitrary real number, N > 1. If o+ >3 and 0 < §; <2 forj=1,...,n,

then
n ] "y
/ |l‘—€|7a H (7‘](6)) df < C|.T|Bk R3*a*5k.
L1 (g
Ka J
lz—§|>R

Ifa+ B <3, a>0and 3; <2 for j=1,...,n, then

[ e H(”if))ﬁj d6 < claf? RS-0

Ky
|lz—¢&|<R
Here the constant c is independent of x and R.

Proof: Let a+ 0 >3and 0 < 3; < 2,j=1,...,n. Weset S ={ € K, : |[t—& > R, ri(§) < 3r(&)}
and So = {£ € Ky @ |z =& > R, m(€) > 3r(&)}. If £ € Si, then r;(§) > c|¢] for j # k with a certain
¢ > 0. Hence, by means of the substitution £ = |z| 7, we obtain

/'”” ¢ (|§|))_6j§0"”'3_“ I

|| =181

—Q

(r(m)) ™ dn.

Here [z|7!'S; ={neK: N <|n| <N, |n— |z|'z| > R/\x|, re(n) < 2r(n)}. Due to Lemma 4.5, the
right-hand side of the last inequality is majorized by c|z|% R3=®=Fx,
The set Sy is nonempty only if R < (N +1)|z|. Since |z — §| > c|x| for ri(z) < 2r(x), re(§) > 37(E),

we obtain
/|xf£\“ (|'§|))_6"d5§c|xa / H<|£|> dg

\xI/N<\§\<N\xI

_ C/ |x‘3—a S C// |(E|Bk RB_a_ﬁk.
This proves the first part of the lemma. The proof of the second part proceeds analogously. m

Weighted Hélder estimates. Let K; = {x € K : rj(z) < 3r(x)/2}, j = 1,...,n. We denote by ¢;
a smooth function on § with support in ; N 2 which is extended to KC by ¢;(x) = ¢;(z/|z|). Our goal

is to show that ¢;u € CO 2;00 % I(K)* for 6; > o+ 1 and ¢ju € C’1 1;00 % I(K)* for 6; < o + 1.

Lemma 4.6 Let f be as in Lemma 4.4 and let s=0if 6; >0+ 1, s=11if0; <o+ 1. Then

B—5; |0z, u(x )785 u(y)|
|’1}| |$ y‘2+g — —C”f”Cg:g(}C)f

(4.16)

forx € K, |x —y| < r;j(x)/2, where ¢ is independent of x and y.

Proof: First note that p; > 1if s = 1. Obviously

|03, u() — 0y uly)] < 1 llco-s ocye /’C|3§,.G(I,€) =05, Gy e T ru(€/1eh7 " de (417)
' k

We consider the integral on the right over the subdomains IC;U =
6] > 3laf}, ¥ = {o € K |xl/3 < |¢] < 3z, o — ¢ < min(r(z
€] < 3|z, |z — &| > min(r(z),r(£)}. By (4.10), we have

{zek: | <|a|/3}, K& ={zek:
),r(€)}, and K = {z € K : ||/3 <

)\ 05,541
0,6(.6) ~ 05,600 <lr—3l 3 [@2G)E ] < elo — y 5111 g 1mA-—= (FE))°

la|=s+1 |Z|
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for € € ICS), where  is a point on the line between = and y and ¢; 11 = min(0, u; —s — 1 —¢). Using
the inequalities |z|/2 < |Z] < 3|z|/2 and r(x)/2 < r(Z) < 3r(x)/2, we obtain

[ 1066 = 05,600 7 T rutes i)~ ae
: k

< cla =yl faf* o fa e [
K

%

gl Pt T e/ 1ED 7 de
k
< el =yl a7 (/) < el o — g PO (4.18)

Analogously, this inequality can be proved for ICS) by means of (4.9).
Using (4.7), (4.8) and Corollary 4.1, we obtain

02,G(.) — 03, Glw.€)] 1617 [T et/ €)™ de
k

K@ ur®
|z—¢|<2|z—y|
sc [ (e-dr -7l TTme/leh o de
K®ur® k
|z—¢]<2]|z—y|
< cfalP (ja= + [ylP) o — g < PP — P, (4.19)

Ifée K and | —&| > 2|2 — y|, then every point Z on the line between x an y satisfies the inequalities
|z —¢&| < 3lr—£&|/2 < 3r(x)/2 < 3r(Z), and |Z — £| > |z — y|. Consequently, by (4.7) and (4.8,

|0;,G(2,€) = 95, G(y. )| < clo —yllz — €[>
Thus, using Corollary 4.1, we obtain

/ 105, G2,€) — 8,Gy, )] 617 T rae/ Iy de
k

K@

|lz—€|>2]z—y|
<clz]” Pz -yl / & — &7 [ rn(€/1€D7 % de < el o — y[T7 7% (4.20)
K® 4§
[Z—€&|>]z—y|

Finally, we consider the integral over the set {¢ € Kk |z —¢&| > 2|z — y|}. By (4.8), we have

s s . o T(JE) 0j,s+1

where again Z is a point on the line between z and y. Since |z — £| < |Z — |, we obtain, by means of
Corollary 4.1,

|837G($af) - a;G(y, €)| |§|‘7*5 Hrk(ﬁ/m)""sk dé’
k

K
lz—€[>2]z—y|
S c‘mlo'—ﬁ |:L._y|rj<§j)5qu+1 / |.i'_€|_2_s_6j’s+l HTk(§/|£DU_6k dé—
K@ k
|Z—¢>]z—yl
< clali P o —yPHome T ey (3) et < O o — y [P0 (4.21)

Inequality (4.17) together with (4.18)—(4.21) imply the assertion of the lemma. m
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Lemma 4.7 Estimate (4.16) is valid for x € K;, y =tx, 1/2 <t < 3/2.

Proof: As in the proof of Lemma 4.6, we show that the inequalities (4.18)—(4.21) are satisfied. By
(4.13), we have

|02,G(2,€) = 0;,G(y.€)| = lo =yl [(870,G)(2,)| < cla —y| |a|*- 7= g ~17A-~=

for & € IC;U, where Z is a point on the line between x and y. This implies (4.18). The proof of (4.19) and
(4.20) is the same as in the case |z —y| < r;(x)/2. Finally, we can prove (4.21) by means of the estimate

105, G(2,6) = 0;,G(y, &)| = |z — y|[(020,G)(%,€)| < el —yl|z — €77
which follows from (4.11). m

Corollary 4.2 Estimate (4.16) is valid for x € K;, |z —y| < |z|/2.

Proof: By Lemma 4.6, inequality (4.16) is valid for € K;, | — y| < r;(x). Analogously to the proof
of Lemma 2.3, one can conclude from this inequality that the restriction of u to the set {z € I, : |z| = p}
is continuous at z* = M; N{x : |z| = p} for any p and that (4.16) is valid for x € K}, |z| = |y| = p,
|z —y| < |%|/2. jFrom this and from Lemma 4.7 it follows that

|07, u(@) = O5uy)| < |(03,0)(@) — (93, w)(ylal/lyD)| + [(95,u) (ylol/Iy]) — (93, 1) (y)]

< c‘mléj—0'|x_y|2+o'—s—6—j

for x € K, |z — y| < |z|/2. The lemma is proved. m

Existence and uniqueness of solutions in C;’g.(IC)Z.

Theorem 4.1 Let [ € Cg:g(lC)g and g; € C;:;(Fj)e for g =1,...,n, where 0 < o < 1, B is such that

the line Re A = 240 — 3 is free of eigenvalues of the pencil A, and the components d; ofg satisfy (4.14).
Then there exists a unique solution u € C’;‘}(IC)Z of problem (1.2), (1.4).

Proof: Due to Lemma 4.3, we may assume, without loss of generality, that g; = 0for j =1,...,n. We
consider the vector function u = Sf, where the operator S is defined by (4.15). Let ¢;, ¥;, j=1,...,n
be smooth functions on €2, ¥; = 1 in a neighborhood of supp ¢;, ¥; = 0 outside K; N2, 1 + -+ ¢ = 1.
We extend ¢; and ¥, to K\{0} by ¢,(x) = ¢;(z/|z]), ¥;(x) = ¢;(z/|z|). It follows from Lemma 4.4
and Corollary 4.2 that 1;u € Cgf;ﬁo—éj (K)tif §; > 1 — o and Yju € c;f(;jo:o—éj (K)¢ if §; < 1— 0. Since
YLy € Cg’g(lC)e we conclude from Lemma 4.1 and Remark 4.1 that ¢ju € Cé’g(lC)é for j =1,...,n.
This implies u € C;’E(IC)E.

We prove the uniqueness of the solution. Suppose that u € C’;’g(IC)Z, Lu=0in K, and Bu = 0

on Ty, j=1,....,n. Let x be a smooth cut-off function on K equal to one for |z| < 1 and to zero for
|z| > 2. Furthermore, let 3’ = 8 — o —3/2 and 0’ be real numbers such that max(0,d; —o —1) <} < 1.

From the inclusion u € C;?(IC)E it follows that yu € W;jis 5 (K)¢ and (1 — x)u € W;is g,(IC)Z, where

£ is an arbitrary positive number. Consequently, L(xu) = —L((1 — x)u) € W[gi - (K)¢ and B(xu) =

€,0’

—B((1 - x)u) € W;//ffg/ (T;)*. Applying [12, Th.4.2], we obtain yu € WE;Q_E 5/(IC)E if ¢ is sufficiently

small. Hence, u € ng’g_s 5 (K)* and [12, Th.4.1] implies u = 0. The proof of the theorem is complete. m
Remark 4.3 Suppose that conditions (i)—(iii) of Remark 4.2 are satisfied for some j. Then in Theorem
4.1 the condition (4.14) for §; can be replaced by max(2 — ,u§»2), 0) <d; —0 <2, 0; —o # 1, where ,u§2)
is the real part of the first eigenvalue on the right of the line Re A = 1. However, in this case, g™ and g~
have to satisfy some compatibility conditions on the edge M; if §; < 1+ o (see Remark 3.1).
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4.6 Regularity assertions for the solution of the Neumann problem

Next we will show that the solution in Theorem 4.1 belongs to ch (K)* if, additionally to the conditions

B/ 6/
of Theorem 4.1, f € C’;, ;‘7 (K)t and g; € C’;;f (T';)¢, where [, o/, 8’ and the components of 6’ satisfy
the following conditions: )

(i) The closed strip between the lines ReA =240 — 3 and Re A =1’ + ¢/ — 3’ is free of eigenvalues of
the pencil A(\).

(ii) max(l — p;,0) <9 —o' <1, & —o' #1,2,...,1=1forj=1,...,n

If, additionally to the conditions of Theorem 4.1, f € C’O/Jé, (K)t and g; € C’;/Ué,( )¢, where o/, 3" and &
satisfy (i) and (ii) with { = 2, then in all estimates in the proof of Theorem 4.1 one can replace o, 3 and

5 by o', 3 and 5. Consequently, the following assertion holds.

Lemma 4.8 Letu € CQ’U(IC)E be a solution of problem (1.2), (1.4), where f € C’g’g(lC) ncoe. (K)¢ and

B/ 6/
g; € C’;’g( ) N C;,Ug/( v)z. Suppose that for o, 3, § the conditions of Theorem 4.1 are fulfilled, while
o', 3,8 satisfy (i) and (i) with | = 2. Then u € C* .0 ()L

8,6
Analogously, using the estimates in the proof [12, Th.4.1], we obtain the following result.

Lemma 4.9 Letu € C’2 U(IC) be a solution of problem (1.2), (1.4), where f € CO’U(IC) ﬂWE;p& (K)¢ and
gj € C;g( HEN W;, ;/pp( )¢, Suppose that for o, 3, § the conditions of Theorem 4.1 are fulfilled, that
the closed strip between the lines ReA=2+o0 — [ and ReA=2—(3—3/p is free of eigenvalues of the

pencil A(N), and that max(2 — p15,0) < 65 +2/p <2 forj=1,...,n. Thenu € Wﬁ/’pél (K)L.
Conversely, under the above assumptions on f and g;, every solution u € w2p, (K)¢ belongs to

2 5/ 6/
0 (1L
C 5 g(lC) .

The following lemma can be proved analogously to Lemma 4.1 using Lemma 3.8.

Lemma 4.10 Let u € Cl’” (IC)Z be a solution of the Neumann problem (1.2), (1.4) such that pO,u €

cg"( Y Iff € Olﬂ+1”;(IC) ;€ 0;+11/§’P(r]) . and the strip |+ 0 — 8§ <ReA<l+0— 6+ 1 is free of

eigenvalues of the pencil Aj()\), j=1,...,n, thenu € Clﬂ':ll’%(/C)l and

1

lellgresageye < e ( 3100V ullcronye + 1 gt ye + 3 losllcre r,ye)-

3 0 -
B+1 =0 =

Theorem 4.2 Let u € 02 J(IC)Z be a solution of problem (1.2), (1.4), where f € Cg’%(IC) nct-2e (K)*

/8/ 6/
and g; € C’1 U( i) C;, ;/U (T;)%, 1 > 2. We suppose that for o, 8,8 the conditions of Theorem 4.1 are
fulfilled, whzle l,o',3,8 satisfy (i) and (ii). Then u € C’éf&/ (K)*.
Proof: If 1+ o' — 8, <2for j=1,...,n, then f € C%7 LK), g; e C (1),

B —1+42,6"—(1—-2)T B —1+42,6"—(1—-2)T
’

where max(2 — p;,0) < 6; — I +2 — 0’ < 2. Consequently, Lemma 4.8 implies u € Cﬁ/ 2,5 — (1 2)1(IC)£.

Applying Lemma 4.1, we obtain u € CZB,U&, (K)L.
Suppose that 2 < [ + o' — 53» < 3 for j = 1,...,n. This is only possible if u; > 2. Then f €
0,0 ¢ 1,0’ e e a I _ 5
Cﬁ/—l+2,§’—(l—2—s)T(K) , 95 € Cﬁ’—l+2,§’—(l—2—s)f(rj) , where ¢ is such that 0 < ¢} =l +2+¢e—0' <2.
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_(K)¢. From this and from Lemma 4.1 we

_(K)*. Furthermore,

Consequently, Lemma 4.8 implies u € Cﬂ/ 142,57 (I—2—e)T

3,07 2,0’
conclude that u € C@/ 185 —(1—3— E)T(IC) and, therefore, pd,u € CB' 42,5 (1—8—e)T

Lpdyu = pd,f +2f € C%

£
B —1+2,8'—(I— 3)1(’C) » Bpd, “ir = ppg; +9; € CLF

3¢

B/ —1+2,8"—(1— 3)1(F ) ’
where 0 < 5;- —1l+3-0" < 1forj=1,...,n Consequently, by Theorem 4.8, we have pd,u €
2,0’ ¢ . 3,0’ Y4
C’ﬁ, 12,5 (1 5)1(IC) Since u belongs to the same space, Lemma 4.10 implies u € C’ﬁ, 43,5 (1 5)1(IC) .

Using again Lemma 4.1, we get u € Cé/a(s/(lC) . Thus, the theorem is proved for 2 <1+ ¢' — 4§} < 3.
We prove by induction in k that the assertion of the lemma is true if k — 1 <+ 0 — 5;- < k, where
k is an integer, k > 3. For k = 3 this is shown above. Suppose that & > 4 and that the theorem is

1—2,0’ 1—3,0’ Vi 1—2,0’ RY4
proved for k —2 < l+o0' =48 < k-1 SincefEC'ﬂ,& (K)* CCﬁ, 15/(K) andg]eCﬂ/ 15/(F)’

the induction hypothesis implies v € C’l Lo’ (IC) and, consequently, pd,u € C’;, 22‘75, (KC)*. On the other

hand, Lpd,u = p0,f +2f € CIIG,S:&, (IC) and Bpapu|1,j = pd,g; + g; € C’lﬁ, 2105'( ;)t. Hence, by the

induction hypothesis, we have pd,u € Cé/ 11‘7 5 (K)*. From this and from Lemma 4.10 we conclude that
ue 0;75, (K)°.

Finally, we assume that [ + o' — &} € [k; — 1,k;) for j = 1,...,n with different k; € {1,...,1}. Then
let 91,...,1, be smooth functions on Q such that 1; > 0, 1; = 1 near M; N S? and > ¢; = 1. We
extend 1; to K by the equality ¢;(z) = ¢;(z/|z|). Then 921;(x) < c|z|~1*l. Using the first part of the
proof, one can show by induction in ! that ¢;u € C;/J(s/ (K)! for j = 1,...,n. The proof of the theorem
is complete. m

Remark 4.4 If conditions (i)—(iii) of Remark 4.2 are satisfied for some j, then in the conditions of
Theorem 4.2 on ¢,d;,0’,d; and [ the number 11; can be replaced by the real part u( ) of the first eigenvalue

of the pencil A;(\) on the right of the line Re A = 1. However, if 6’ o' <1—1, then g% and g~ must
satisfy certain compatibility conditions on the edge M;.

4.7 Solvability of the Dirichlet and mixed problems in weighted Holder spaces
We consider problem (1.2)-(1.4) and denote by J the set of all j € J = {1,...,n} such that M, C T}, for
at least one k € Jy. Furthermore, we set d; =1 for j € Jy and d; = 0 for j € J;. The following theorem
can be proved analogously to Theorem 4.1. In the case J = {1,2,...,n} (when C" "(IC J) = Al ‘ =(K)),

the proof is even easier. Then it suffices to show that the solution of (1.2) with homogeneous boundary
conditions (1.3), (1.4) satisfies the estimate

n . 6]‘7270'
sup |$|ﬁ 2—aH (Tj(x)) ‘u(x)’ < c”fHAZ"}(’C)”

el j=1 |.T|
and to apply Lemmas 4.1 and 4.2.

Theorem 4.3 Suppose that there are no eigenvalues of the pencil A(\) on the line Re A =2+ 0 — 3 and
that the components of § satisfy the inequalities

2—p;<dj—0<2 for j e J, max(2 — p;,0) < —0<2, 0 —c#1 forjeJ\j.

Then for all [ € CZ’E(IC; N, g € C’;—gdj’a(Fj,j)z there exists a unique solution u € C’;?(IQJ)@ of
problem (1.2)—(1.4).

Furthermore, the following regularity assertions are valid.
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Theorem 4.4 Letu € C’Z’U(IC )¢ be a solution of problem (1.2)~(1.4), where 3,8 satisfy the conditions

of Theorem 4.3. If f € C',;/ i/g (K;J), g5 € C’;, y—d“a (T, J)¢, the closed strip between the lines Re \ =
2+0—0B and ReA=1+0'— [ is free of eigenvalues of the pencil A(N), and the components 0f5” satisfy
the inequalities

l—pj <o —o <l for j e J, max(l — p;,0) <05 —o' <l, & —0' #1,2,...,1 -1 forj e J\J,

then u € Clﬂf'—&,(lC )t

4.8 Boundary value problems for the Lamé system

The Dirichlet for the Lamé system. We consider the problem
—M<Au +(1-2v)"'vv. u) =fimK, u=g; only, j=1,2,...,J, (4.22)

where p is the shear modulus and v is the Poisson ratio. In order to apply Theorems 4.3 and 4.4, we need
some information on the eigenvalues of the pencils A;()\) and A(X). Let 6; be the angle at the edge M;.
Then the eigenvalue /\§] ) with smallest positive real part of A;(\) is the the smallest positive solution
of the equation (3 — 4v)sin(6;A) = £Asinb; (see, e.g., [6, Sec.3.1]). Note that 1 < Aﬁ”(ej) < m/0; for
§; < mand 1/2 < )\gj)(ﬁj) < m/0; for m < 0; < 2mw. Furthermore, we mention that the eigenvalues of
the pencil 2(()) lie outside the strip —1 < Re A < 0. In the case when € is a subset of a half-sphere Si
and Si\Q contains a nonempty open set even the strip —2 < Re A < 1 is free of eigenvalues of the pencil
2A(N) (see [6, Th.3.5.3, 3.6.1]).

We consider the weak solution of problem (4.22), i.e., a vector function u € V;"?(K)3 = Wh2(K)?

0,0
satisfying

/ZUW u)e; (v dx—/f vdx—l—Z/ gj-vdr foralveH, u=g; only, j=1,.

3,j=1
(4.23)
Here o(u) = {0;j(u)} is the stress tensor connected with the strain tensor {e; ;(u)} = {3 (9, u; + 0z, u;)}
by the Hooke law

05 =2u ( (51,1 + 22+ 63,3) di 5 + 5i,j>

1—2v

Theorem 4.5 1) Suppose that | — )\gj) <dj—o <l forj=1,...,n and that the line ReA=1+0 -
does not contain eigenvalues of the pencil A(X). Then Problem (4.22) has a unique solution u € A;‘%(IC)S
for arbitrary f € Alﬁ_g’U(IC)?’ and g; € Alﬁ_g’U(Fj)s.

2) Let u € V;"*(K)? be a solution of problem (4.23), where f € H* ﬂA;_SQ’U(IC)?’ and g; € Alﬁ_gl.’o(ljj)?’.
Suppose that | — )\gj) <d;—o <l forj=1,...,n and that there are no eigenvalues of the pencil A(X) in
the strip —1/2 <ReA <l+o— . Thenu € Ag‘}(lC)?’.

Proof: The first part of the theorem follows immediately from Theorems 4.3 and 4.4. We prove the
second part for [ = 2. Let V;?(IC) = W;;(IC) nwh? . _(K)nw?>? *_Q.T(IC) and let V;?’Q(IC) be the

B—1,6—T B—2,8 o
corresponding trace space. Furthermore, let x+ be a smooth cut-off function on K equal to zero near
1 0,2 3 3/2,2 3
the vertex of the cone and y_ =1 — 4. Then x4+ f € V Cote_a/25 (K)? and xg+ € Vﬁ—o:l:s—S/Q,g’( i)°,
where 07 = d; —0—1+¢ forj =1,...,nand ¢ is an arbltrarlly small positive number. Using [13, Th.5.5],

we conclude that xy+u € V (K)* Now it suffices to note that a result analogous to Lemma 4.9

a:te 3/2, 5
is valid for the Dirichlet problem in the spaces Aﬁ’ .. This implies y+u € A% ‘T(IC)Z. Thus, the theorem is

proved for [ = 2. Applying Theorem 4.4, we obtain the result for [ > 2. m
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For example, for an arbitrary polyhedral cone one can choose l =2, 3 =2and 6; =2forj=1,...,n.
We conclude from the second part of the last theorem that the weak solution u € VOI’2 (K)? belongs to
A;g(icﬁ if feH* ﬂAg:g(IC)?’, g; € Ajzg(rj)?ﬁ and ¢ is sufficiently small. Since AE:;(IC)i” c A8:§(IC)3 this
means that u is Holder continuous on K.

If IC is convex, then one can choose, e.g., I =2, § =1and §; =1 for j = 1,...,n. Provided o is
sufficiently small, we obtain v € Af’[lf(IC)?’ if feH N A(l)’}’(lC)?’ and g; € Af"%(I‘j)g’. This means that

even the first derivatives of u are Hélder continuous on K.

The Neumann problem for the Lamé system. We consider the problem

1
1—2v

— U (Au + VV. u) =f ink, o(ui=g; onTj. (4.24)

Again we give some results concerning the spectra of the pencils A;(\) and 2A(X). If the angle 6; at the
edge M; is greater than =, then the eigenvalue of the pencil A;(\) with smallest positive real part is
A9 = ¢,(6;)/6;, where £, (6) is the smallest positive solution of the equation ¢~ sin& + 6= !sinf = 0
(see, e.g. [6, Sect.4.2]). Note that 1/2 < )\:(L]) <1 form < 0; <2m. If §; < m, then the eigenvalues with
smallest positive real parts are A(lj) =1 and )\gj) =7/6;.

Furthermore, we mention that the eigenvalues of the operator pencil 2((A) lie outside the strip —1 <
Re A < 0 if the cone K is Lipschitz. The number A = 0 is the only eigenvalue on the line Re A = 0. The
eigenvectors corresponding to the eigenvalue A = 0 are the constant vectors. Generalized eigenvectors
corresponding to this eigenvalue do not exist (see [6, Th.4.3.1]).

By a weak solution of problem (4.24) we mean a vector function u € H = Wol’;(IC)P’ satisfying

3 n
/’C Z 0'1'7j(u) E@j(@) dr = //Cf -vdx +Jz_;/r7 9; -vdzr (425)

ij=1

for all v € H. We assume that the right-hand side of (4.25) defines a continuous functional on H. This
assumption is satisfied, e.g., for vector functions f € Cg’g(K)3 and g; € C’;’;(Fj)?’ with compact supports

if—o<b5/2andd;—0<2,j=1,...,n.

Theorem 4.6 1) Let f € C’;}Q’J(IC)S, gj € C’;S}’J(Fj):j, 1 > 2. Suppose that the line ReA=1+o0 — (3 is

free of eigenvalues of the pencil A(N\) and the components ofg satisfy the inequalities

l—% <dj—o <l ifb; >, max(l—g ,0)<édj—o <, dj—0#1,2,...,1-1 for6; <m. (4.26)
J J
If 6; —1 <1 —1 we assume additionally that the boundary data satisfy the compatibility condition (1.9).

Then there exists a unique solution u € C’lﬂ"g(lC)3 of problem (4.24).

2) Suppose that f € C;_;’U(IC)B and g; € C’;_;’U(Fj)3, where 3 is such that the strip —1/2 < Re A <
24 0 — (3 contains at most one eigenvalue, the eigenvalue A = 0, of the pencil A(\) and the components
of 0 satisfy (4.26). Furthermore, we assume that the boundary data satisfy the compatibility condition
(1.9) if 6; — o <l —1. Then the weak solution u has the representation u = c + v, where ¢ is a constant

vector and v € C’;’%(IC)g.

Proof: The first part follows from Theorems 4.1, 4.2 and Remark 4.3. The second part can be proved
analogously to Theorem 4.5. Let first [ = 2 and let x4+ be the same cut-off functions as in the proof of

0,2 1/2,2
Theorem 4.5. Then x4 f € Wﬁfaiaf?,/z,i' (K)? and xg+ € Wﬁioj:afii/?,g’(rj)?)’ where 0 = 0; —0 —1+¢
for j = 1,...,n and € is an arbitrarily small positive number. Using [13, Le.5.4,Th.5.3] and the above
given property of the pencil 2(()), we conclude that y+u = ¢ + vy, where vy € W;fo’:t‘€73/2 5 (K0)L.

Lemma 4.9 yields vy € C;’E(IC)S. This implies the desired representation for w in the case [ = 2. Using
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Theorem 4.2, we obtain the result for [ > 2. m

Let, for example, K be a Lipschitz cone, f € C’g’;(lC)B, g; € C’;g(f‘j)g, where o € (0,1) is such that
o < min(§4(0;)/6;) (here the minimum is taken over all j with 6; > m) and the strip 0 < Re A < o is
free of eigenvalues of the pencil 2(\). Then there exists a constant vector ¢ such that u—c € C;g(lC)?’ C

Cg:g (K)3. This means, in particular, that u is Hélder continuous in K.

5 The problem in a bounded domain

5.1 Formulation of the problem
Let G be a bounded domain of polyhedral type in R3. This means that

(i) the boundary 9G consists of smooth (of class C*°) open two-dimensional manifolds I'; (the faces of
G),j=1,...,n, smooth curves M, (the edges), k =1,...,m, and corners z(1), ... x(@

(ii) for every & € M, there exist a neighborhood U and a diffeomorphism (a C'*° mapping) k¢ which
maps G NU; onto D¢ N By, where D¢ is a dihedron of the form K¢ x R with a plane wedge K¢ and
B is the unit ball,

(iii) for every corner z) there exist a neighborhood U; and a diffeomorphism ~; mapping G NU; onto
K; N By, where KC; is a cone with vertex at the origin.

We consider the problem
Lu=f inG, u=g; onl,forjeJy, Bu=g; onT; forjeJi, (5.27)

where
Lu=— 3" 8, (Aij(2)00,u) + 3 Ai(x) du+ Ao(z)u, Bu= Y A ;j(z)n;su,

1,j=1 i=1 ij=1
JoUJ1 ={1,2,...,n}, JonJ; = 0. The corresponding sesquilinear form is
3 3
b(u,v) = / ( Z A jOp,u - 0x;0 + ZAiaziu -+ Agu -5) dx.
g ij=1 i=1

Let H = {u € Wh2(G)* : w = 0 on T for j € Jo}, where W12(G) denotes the Sobolev space of all
functions quadratically summable on G together with their derivatives of first order. As in the previous
sections, we assume that A; ; = A}, for 4,5 = 1,2, 3. Furthermore, we suppose that

|b(u, u)| > 1 ||UH%/VL?(Q)5 — ¢ ||u||i2(g)@ for all u € H (5.28)

with certain positive constants c¢; and c,.

5.2 Model problems and corresponding operator pencils

We introduce the operator pencils generated by problem (5.27) for the singular boundary points.
1) Let £ be an edge point, and let I';, ,I";_ be the faces of G adjacent to . Then by D¢ we denote the
dihedron which is bounded by the half-planes I';, tangential to I'j, at § and consider the model problem

L°(&,0z)u=f inDg, u=g;, onlj forjy € o, B(§0,)u=g;, onlj forji e Jy,

where s s
L°(&,0,) = — Z Aij(€) 0,0, ,  B(E,0:) = Z Ai i (&) 1 Oy,
i,j=1 i,j=1
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The operator pencil corresponding to this model problem (see Section 4.2) is denoted by A¢(A). Further-
more, we denote by A (§) the eigenvalue with smallest positive real part of A¢(\) and set

p; = inf ReAi(§) forj=1,...,m

£eM;

2) Let #(®) be a corner of G and let J®*) be the set of all indices j such that z(*) ¢ T;. By our
assumptions, there exist a neighborhood U of z(*) and a diffeomorphism s mapping G N onto K N B;
and I'; NU onto I'; N By for j € J*) | where K is a polyhedral cone with vertex 0 and I'7 are the faces of
this cone. Without loss of generality, we may assume that the Jacobian matrix «'(z) coincides with the
identity matrix I at 2(*). We consider the model problem

Lo(x(k),ﬁx)u: f inK, u=g; onljforje Jék), B(x(k) Oz)u=g; on I forje J(k),

where Jo(k) =JonJH®, J:Ek) = J{k). The operator pencil generated by this model problem (see Section
4.2) is denoted by A (N).

5.3 Smoothness of weak solutions

We introduce the weighted Holder space C’ (g J) where J denotes the set of all j=1,...,m such that

M; C T, for at least one k € Jy (i.e. the D1r1chlet condition is given on at least one face I'y, adjacent to
the the edge M), I is a nonnegative integer, 0 < o < 1, 3= (B1,...,Bq) € RY §= (01,...,0m) € R™
§; > 0 for j ¢ J. We denote by r;(x) the distance of 2 to the edge M;, by pi(z) the distance to the
corner (¥, by r(x) the distance to S (the set of all edge points and corners), and by p(x) the distance
to the set X = {z() ... 2@}, Furthermore, let G; . = {z € G : r;(x) < 3r(x)/2, pr(x) < 3p(z)/2} and
k; =[0; —o]+1. Then C’éﬁj’g(g ;.J) is defined as the set of all [ times continuously differentiable functions

on G\S with finite norm

lulcte g = > suwp Hpk )Pt 0+IQ\H(

lal<l T€9 k=1

hj(6;—l—o+]|al)
) 02 u(a)

o - oY
+ Z Z Z sup Pk ($)6k75j| |xU(_x;kJ+ZfL§Jy)‘

z,y€G;
1<j<m, ]€J k=1|a|=l-k; |o— y|<p;:(z)/2

d m ocu(z) — 6%
+ swp  [[on(@™ I (Tj(l‘))zi] 0% u(z) — 05u(y)| |

ol @245 =1 PE)

Here, the functions h; are defined as hj(t) =t for j € J, hj(t) = max(t,0) for j & J. For J = {1,...,m}

and J = ) we will use the notation Clﬁi'}(g; {1,...,m}) = Ali( G) and O%}(g, 0) = CL° g(g) The trace
spaces on I'; for Algg(g), Clﬁi%(g) and Clﬁi%(g;J) are denoted by A%}US(FJ-), Clﬁi%(F-) and leﬂ(I‘J,J)
respectively.

We consider the solution u € H of problem (5.27) with homogeneous Dirichlet conditions (i.e., g; =0
for j € Jy). This means that u satisfies the equation

b(u,v) /f vdzx + Zg] vdx for all v e H. (5.29)
JEJ

Suppose that f € C’QE”(Q; J), g; € C,%*;’U(Fj;j)e for j € Ji, where I > 2, 0 < o < 1, the strip

—1/2 < Re X < 1+ o — ; contains no eigenvalues of the pencil 2(\), k = 1,...,d, and the components
of ¢ satisfy the inequalities

l—pj<dj—o<l for j € J, max(l — p;,0) <0 —o<l, 0, —c#1,2,...,0—1 for j & J.

Under these conditions, the right-hand side of (5.29) defines a continuous functional on H.
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Theorem 5.1 Under the above assumptions on f and g, the solution u € H of problem (5.29) belongs
to c;:(;v”(g)f.

Proof: We restrict ourselves in the proof to the Neumann problem. The proof for the Dirichlet and
mixed problems proceeds analogously. Suppose first that the support of u is contained in a sufficiently
small neighborhood U of the corner z(¥). By x we denote a diffeomorphism mapping G N onto KNV,
where K is a cone with sides I'; and vertex at the the origin, and V is a neighborhood of the origin. We

assume that «/(z(®)) = I. Then the vector function @(z) = u(k~*(z)) is a solution of the problem

L(z,0,)a=f in K, B(x,d,)0=4g, onF;,jeJ(k),

where f(z) = f(k~(x)), §;(x) = g;(x " (x)), and L, B are differential operators of second and first order,
respectively. Here the prlnmpal part L° (0,0;) of L with coefficients frozen at the origin coincides with
Lo (2™, d,). Analogously, B(0,9,) = B(z®,d,). ;{From the inclusions f € C’l 2U(IC)E, g; € C;%’J(F;)f
k>
it follows that f € Wé, YK g€ W;, 1{2 *(09)!, where B, = f— o +¢ — 3/2 8 =0j—0—1+e,¢is
an arbitrarily small positive number. Hence, by [13, Th.7.1], we have u € W;? 5 (K)*. Let x be a smooth
cut-off function equal to one near the origin and to zero outside the unit ball, and let x.(z) = x(x/¢).
We introduce the operators

Es = st(xaam) + (]- - Xs)zo(o,af)a BE = XEB(xa az) + (1 - XE)B(Oaam)

For a vector function u with sufficiently small support in a neighborhood of the origin we have Li=L.u
and Bii = B.i. Obviously, the operators A, = (L., B.) and Ay = (LO(O dz),B(0,0,)) are continuous
operators
l,o 1,2 1—2,0 122 llo’ l3/22

Col s MW () — O 27 () n w2 “x (e Frtn W 4S9 (5:30)
(From Theorems 4.1 and 4.2, Lemma 4.9 and [13, Th.4.2,Th.5.3] it follows that A is an isomorphism.
Since, the difference A, — Ag is small in the operator norm (5.30) for small ¢, it follows that A, is an
isomorphism (5.30) if ¢ is sufficiently small. From this we conclude that @ € C’;"’ g(IC)Z. This proves

k>

the theorem for solutions u with support in a small neighborhood of the angle (*). Analogously, this
assertion can be proved for the case when the support of u is contained in a small neighborhood of an
arbitrary edge point. Using a partition of unity on G, we obtain the result for arbitrary u € H. m

Remark 5.1 In the case J®*) € J; the number \ = 0 is always an eigenvalue of the pencil A (N). If this
is the only eigenvalue in the strip —1/2 < Re A < [+ 0 — B, the eigenvectors are constant and generalized
eigenvectors corresponding to A = 0 do not exist, then the solution v € ‘H has the representation v = c+v
in a neighborhood of z(*), where ¢ is a constant vector and v € Cé—;,a(g)e-

Using a result analogous to Lemma 4.2, one can prove the same regularity assertion for the weak
solution of problem (5.27) with inhomogeneous Dirichlet conditions and boundary data g; € A%"S(I‘j)e ,

j € Jo.
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