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1 Introduction

Schauder estimates, i.e. coercive estimates of Hölder norms, of solutions to linear elliptic equations
and systems in domains with smooth boundaries have important applications to linear and especially
nonlinear boundary value problems (see, e.g., Agmon, Douglis, Nirenberg [1] and Gilbarg, Trudinger [4]).
In the present paper, these estimates are obtained for solutions of elliptic systems of second order in
polyhedral domains. The Dirichlet and Neumann conditions are given on the boundary or its parts. We
prove the solvability in weighted Hölder spaces, where the weights are powers of the distances to the
edges and vertices of the domain, and obtain regularity assertions for the solutions. As an example, we
consider boundary value problems in linear elasticity. We only mention that the results obtained can be
of use for various nonlinear equations in polyhedral domains.

There is an extensive bibliography concerning elliptic boundary value problems in domains with edges
(see e.g. the references in the books of Dauge [2], Nazarov and Plamenevskĭı [15]). However, most of
the works in this field deal with solutions in Sobolev spaces with or without weight. Moreover, often the
Neumann problem is not included. Whereas for the Dirichlet and mixed problems there is a solvability
theory in weighted spaces with so-called homogeneous norms, the study of the Neumann problem requires
the use of other classes of weighted spaces. For the Neumann problem to the Laplace equation we refer here
to the papers of Zajaczkowski and Solonnikov [17] (solutions in weighted L2 Sobolev spaces), Dauge [3] (Lp

Sobolev spaces without weight) and the preprints of Solonnikov [16], Grachev and Maz’ya [5] (weighted
Sobolev and Hölder spaces), for more general problems to the book of Nazarov and Plamenevskĭı [15]
(weighted L2 Sobolev spaces) and to our previous paper [13] (weighted Lp Sobolev spaces). In the sequel,
we apply the estimates of Green’s matrices given in our article [12] in order to prove the solvability in
weighted Hölder spaces. Note that pointwise estimates of Green’s functions of boundary value problems
in domains with edges were first obtained by Maz’ya and Plamenevskĭı [9, 10] and used for the proof of
solvability theorems in weighted Hölder spaces. Their results are applicable e.g. to the Dirichlet problem
but not to the Neumann problem.

We outline the main results of the paper. Let

K = {x ∈ R3 : ω = x/|x| ∈ Ω} (1.1)

be a polyhedral cone with faces Γj = {x : x/|x| ∈ γj} and edges Mj , j = 1, . . . , n. Here Ω is a curvilinear
polygon on the unit sphere bounded by the arcs γ1, . . . , γn. Suppose that K coincides with a dihedral
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angle Dj in a neighborhood of an arbitrary edge point x ∈ Mj . We consider the boundary value problem

L(∂x) u = −
3∑

i,j=1

Ai,j ∂xi
∂xj

u = f in K, (1.2)

u = gj on Γj for j ∈ J0, (1.3)

B(∂x)u =
3∑

i,j=1

Ai,j nj ∂xi
u = gk on Γk for k ∈ J1. (1.4)

where Ai,j are constant ` × ` matrices such that Ai,j = A∗j,i, J0 ∪ J1 = J = {1, . . . , n}, J0 ∩ J1 = ∅,
u, f, g are vector-valued functions, and (n1, n2, n3) denotes the exterior normal to Γk. We denote by H
the closure of the set {u ∈ C∞0 (K)` : u = 0 on Γj for j ∈ J0} with respect to the norm

‖u‖H =
(∫

K

3∑

j=1

|∂xj
u(x)|2 dx

)1/2

. (1.5)

(C∞0 (G) is the set of all infinitely differentiable functions u such that supp u is compact and contained in
G.) Throughout the paper, it is assumed that the sesquilinear form

bK(u, v) =
∫

K

3∑

i,j=1

Ai,j∂xiu · ∂xj v dx (1.6)

is H-coercive, i.e.,
bK(u, u) ≥ c ‖u‖2H for all u ∈ H. (1.7)

Due to Lax-Milgram’s lemma, this guarantees the existence and uniqueness of a weak solution of problem
(1.2)–(1.4).

In Section 2 we introduce weighted Hölder spaces and in the cone K. Let rj(x) denote the distance
of x to the edge Mj . For nonnegative integer l, σ ∈ (0, 1), β ∈ R and ~δ = (δ1, . . . , δn) ∈ Rn the space
Cl,σ

β,~δ
(K) contains all l times differentiable functions u satisfying the condition

sup
x∈K

|x|β−l−σ+|α|
n∏

j=1

(rj(x)
|x|

)max(0,δj−l−σ+|α|)
|∂α

x u(x)| < ∞ for |α| ≤ l

and some weighted Hölder conditions, while the space Λl,σ

β,~δ
(K) consists of l times differentiable functions

satisfying

sup
x∈K

|x|β−l−σ+|α|
n∏

j=1

(rj(x)
|x|

)δj−l−σ+|α|
|∂α

x u(x)| < ∞ for |α| ≤ l

and a weighted Hölder condition. We study, in particular, the relations between these spaces.
Section 3 contains some auxiliary results for the problem in a dihedron. We give here a regularity

assertion for the solution and study inhomogeneous boundary conditions.
In Section 4 we prove the existence and the uniqueness of solutions of problem (1.2)–(1.4) in weighted

Hölder spaces. The solvability holds under certain assumptions on the spectrum of operator pencils
A(λ) and Aj(λ) generated by the boundary value problem at the vertex of the cone and at the edges,
respectively. Here A(λ) is the operator of the parameter-dependent boundary value problem

L(λ)u = f in Ω, u = gj on γj for j ∈ J0, B(λ)u = gk on γk for k ∈ J1,

where the differential operators L(λ) and B(λ) are defined by

L(λ)u = ρ2−λ L(∂x)
(
ρλu(ω)

)
, B(λ)u = ρ1−λ B(∂x)

(
ρλu(ω)

)
,

ρ = |x|, ω = x/|x|. Furthermore, Aj(λ) are operators of boundary value problems for a system of
parameter-dependent ordinary differential equations. The eigenvalues of the pencils Aj(λ) are the roots
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of certain transcendental equations. For example, the Dirichlet problem for the Lamé system in a cone
is uniquely solvable in Λ2,σ

β,~δ
(K)3 for arbitrary f ∈ Λ0,σ

β,~δ
(K)3, gj ∈ Λ1,σ

β,~δ
(Γj)3 if the line Re λ = 2 + σ− β is

free of eigenvalues of the pencil A(λ) and the components of ~δ satisfy the inequalities

2− λ
(j)
1 < δj − σ < 2,

where λ
(j)
1 is the smallest positive solution of the equation (3 − 4ν) sin(λθj) = ±λ sin θj . Here ν is the

Poisson ratio, ν < 1/2, and θj denotes the angle at the edge Mj . The Neumann problem for the Lamé
system in a cone K with edge angles θj < π is uniquely solvable in C2,σ

β,~δ
(K)3 for arbitrary f ∈ C0,σ

β,~δ
(K)3,

gj ∈ C1,σ

β,~δ
(Γj) if the line Reλ = 2 + σ − β is free of eigenvalues of the pencil A(λ), the components of ~δ

satisfy the inequalities
max

(
2− π

θj
, 0

)
< δj − σ < 2, δj − σ 6= 1, (1.8)

and (in the case δj−σ < 1) the boundary data satisfy certain compatibility conditions on Mj . In general,
2 + σ − δj must be less than the first positive eigenvalue of the pencil Aj(λ). A feature of the Neumann
problem for the Lamé system is that λ = 1 is always an eigenvalue of this pencil. For θj < π this is
the smallest positive eigenvalue, while the second one is π/θj . Condition (1.8) allows that the number
2+σ− δj exceeds the eigenvalue λ = 1. However, then the boundary data must satisfy the compatibility
condition

~nj+ · gj+ = ~nj− · gj− on Mj . (1.9)

Here ~nj+ , ~nj− are the exterior normals to the sides Γj+ and Γj− , respectively, adjacent to Mj .
Furthermore, we study the smoothness of solutions. For example, we obtain the following result for the

weak solution u ∈ H of the Dirichlet problem for the Lamé system. If f ∈ Λl−2,σ

β,~δ
(K)3, gj ∈ λl−1,σ

β,~δ
(Γj)3,

the strip −1/2 ≤ Re λ ≤ l + σ − β contains no eigenvalues of the pencil A(λ), and the components of
~δ satisfy the inequalities l − λ

(j)
1 < δj − σ < l, then u ∈ Λl,σ

β,~δ
(K)3. In particular, for a convex cone we

obtain u ∈ Λ2,σ

1,~1
(K)3 with ~1 = (1, . . . , 1) and certain positive σ if f ∈ Λ0,σ

β,~δ
(K)3, gj ∈ Λ2,σ

β,~δ
(Γj)3. This

follows from a result of Kozlov, Mazya and Schwab [7] (see also [6, Th.3.5.3]) who proved that the strip
−2 ≤ Re λ ≤ 1 does not contain eigenvalues of the pencil A(λ) and from the obvious fact that λ

(j)
1 > 1

for θj < π. The same is true for the Dirichlet problem to system (1.2) if

3∑

i,j=1

(
Ai,jf

(j), f (i)
)
C` ≥ c

3∑

j=1

|f (j)|C` for all f (j) ∈ C`

(see [6, Th.8.6.2,Th.11.4.1]). The inclusion u ∈ Λ2,σ

1,~1
(K)3 implies, in particular, that the first derivatives of

u are Hölder continuous. For a nonconvex cone we obtain u ∈ Λ2,σ

2,~2
(K)3 with certain σ > 0 if f ∈ Λ0,σ

2,~2
(K)3,

gj ∈ Λ2,σ

2,~2
(Γj)3. This means, in particular, that u satisfies a Hölder condition.

Analogous results hold for the weak solution u ∈ H of the Neumann problem for the Lamé system.
If f ∈ Cl−2,σ

β,~δ
(K)3, gj ∈ Cl−1,σ

β,~δ
(Γj), the strip −1/2 ≤ Reλ ≤ l + σ − β contains at most the eigenvalue

λ = 0 of the pencil A(λ), the edge angles θj are less than π, the components of ~δ satisfy the inequalities

max
(
l − π

θj
, 0

)
< δj − σ < l, δj − σ 6= 1, 2, . . . , l − 1,

and (in the case δj − σ < l − 1) the compatibility condition (1.9), then there exists a constant vector c

such that u− c ∈ Cl,σ

β,~δ
(K)3.

In the last section we consider the problem with variable coefficients in a bounded domain of polyhedral
type. By means of the results of Section 5, we prove a regularity assertion for weak solutions.
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2 Weighted Hölder spaces

We introduce here weighted Hölder spaces with homogeneous and inhomogeneous norms in angles, dihe-
drons and polyhedral cones. For the case of an angle the imbeddings and relations between these spaces
are essentially proved in [8].

2.1 Weighted Hölder spaces in an angle

The space Λl,σ
δ (K). Let K be the angle {x = (x1, x2) : 0 < r < ∞, 0 < ϕ < θ}, where r, ϕ are the

polar coordinates of the point x. For arbitrary integer l ≥ 0 and real δ ≥ 0, σ ∈ (0, 1] we define Λl,σ
δ (K)

as the set of all l times continuously differentiable functions on K\{0} with finite norm

‖u‖Λl,σ
δ (K) =

∑

|α|≤l

sup
x∈K

|x|δ−l−σ+|α||∂α
x u(x)|+ 〈u〉l,σ,δ;K ,

where

〈u〉l,σ,δ;K =
∑

|α|=l

sup
x,y∈K

|x−y|≤|x|/2

|x|δ |∂
α
x u(x)− ∂α

y u(y)|
|x− y|σ .

It can be easily shown that the norm in Λl,σ
δ (K) is equivalent to

‖u‖ =
∑

|α|≤l

sup
x∈K

|x|δ−l−σ+|α||∂α
x u(x)|+

∑

|α|=l

sup
x,y∈K

∣∣|x|δ∂α
x u(x)− |y|δ∂α

y u(y)
∣∣

|x− y|σ .

Lemma 2.1 The space Λl,σ
δ (K) is continuously imbedded into Λl′,σ′

δ′ (K) if l + σ > l′ + σ′, l + σ − δ =
l′ + σ′ − δ′.

Proof: For l = l′ the assertion of the lemma is obvious. Let l > l′ and |α| = l′. By the mean value
theorem, there exists a real number t ∈ (0, 1) such that

∂α
x u(x)− ∂α

y u(y) = (∇∂αu)
(
x + t(y − x)

) · (x− y).

Furthermore, for |x− y| < |x|/2 we have |x− y| < |x|/2 <
∣∣x + t(y − x)

∣∣ and, therefore,

|x|δ′ |∂
α
x u(x)− ∂α

y u(y)|
|x− y|σ′ ≤ c

∣∣x + t(y − x)
∣∣δ′−σ′+1 ∣∣(∇∂αu)

(
x + t(y − x)

)∣∣. (2.1)

Consequently, 〈u〉l′,σ′,δ′;K can be estimated by the norm of u in Λl,σ
δ (K). This proves the lemma for the

case l > l′.

The space Cl,σ
δ (K). We introduce another class of weighted spaces. For integer l ≥ 0 and real δ,

σ, 0 ≤ δ < l + σ, 0 < σ ≤ 1, let Cl,σ
δ (K) be the space of all l times continuously differentiable functions

on K\{0} with finite norm

‖u‖Cl,σ
δ (K) =

∑

|α|≤l

sup
x∈K

|x|max(δ−l−σ+|α|,0)|∂α
x u(x)|+ 〈u〉l,σ,δ;K .

For δ ≥ l + σ we set Cl,σ
δ (K) = Λl,σ

δ (K).
Analogously to Lemma 2.1, the following result holds.

Lemma 2.2 The space Cl,σ
δ (K) is continuously imbedded into Cl′,σ′

δ′ (K) if l + σ > l′ + σ′, l + σ − δ =
l′ + σ′ − δ′, δ′ ≥ 0.

We describe a relation between the weighted Hölder space Cl,σ
δ (K) and the usual Hölder space Cl,σ(K).
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Lemma 2.3 The space Cl,σ
0 (K) coincides with Cl,σ(K).

Proof: Obviously Cl,σ(K) is continuously imbedded into Cl,σ
0 (K). We prove the imbedding Cl,σ

0 (K) ⊂
Cl,σ(K) for l = 0. First we show that any function u ∈ C0,σ

0 (K) is continuous at x = 0. We consider the
sequence of the points xn = 2−nx0, where x0 is an arbitrary point in K. Since |xn − xn+1| = |xn|/2, we
have

|u(xn)− u(xn+1)| ≤ c0 |xn − xn+1|σ = c0 |x0|σ 2−(n+1)σ, where c0 = 〈u〉0,σ,0;K .

Consequently,

|u(xn)− u(xm)| ≤ c0 |x0|σ
(
2−(n+1)σ + 2−(n+2)σ + · · ·+ 2−mσ

)
< c0 |x0|σ 1

2σ − 1
2−nσ

for m > n. Thus, {u(xn)} is a Cauchy sequence. The limit of this sequence is denoted by a. It can
be easily shown that the sequence {u(xn)} has the same limit if {xn} is an arbitrary sequence on the
ray from 0 to x0 such that xn → 0 as n → ∞. Now let {xn} be an arbitrary sequence in the angle
{x ∈ K : |ϕ − ϕ0| < arctan 1/2}, where r, ϕ are the polar coordinates of x and r0, ϕ0 that of x0. We
denote by yn the orthogonal projection of xn onto the line through 0 and x0. Then |xn − yn| ≤ |yn|/2
and, therefore, |u(xn) − u(yn)| ≤ c0 |xn − yn|σ < c0 |yn|σ. If xn tends to 0 as n → ∞, then lim |yn| = 0
and lim u(yn) = a. This implies lim u(xn) = a. Repeating this argument, we conclude that u(xn) → a
for an arbitrary sequence {xn} in K converging to 0. Thus, the function u is continuous at the vertex of
K. Next we show that

|u(x)− u(y)|
|x− y|σ ≤ c 〈u〉0,σ,0;K for u ∈ C0,σ

0 (K), |x− y| > |x|/2. (2.2)

Indeed, for |x− y| > |x|/2 we have |x− y| > |y|/3 and, therefore,

|u(x)− u(y)|
|x− y|σ ≤ 2σ |u(x)− u(0)|

|x|σ + 3σ |u(y)− u(0)|
|y|σ .

Using the inequalities

∣∣u(x)− u(0)
∣∣ ≤

∞∑
n=0

∣∣u(2−nx)− u(2−n−1x)
∣∣ ≤ c0

∞∑
n=0

|2−n−1x|σ =
c0

2σ − 1
|x|σ,

we obtain (2.2). Thus, we have proved that C0,σ
0 (K) = C0,σ(K). ¿From this we can easily deduce the

equality Cl,σ
0 (K) = Cl,σ(K) for l ≥ 1.

Corollary 2.1 If k − 1 ≤ δ − σ < k, k ∈ {0, 1, . . . , l}, then Cl,σ
δ (K) is continuously imbedded into

Cl−k,σ−δ+k(K).

A relation between the spaces Λl,σ
δ (K) and Cl,σ

δ (K). A relation between the above introduced
weighted spaces holds by means of the following version of Hardy’s inequality.

Lemma 2.4 Let u be a differentiable function on K\{0} and let rδ|∇u(x)| < c < ∞ for x ∈ K.
Furthermore, we assume that

(i) δ > 1 and u(x) → 0 as |x| → ∞ or (ii) δ < 1 and u(x) → 0 as |x| → 0.

Then sup
x∈K

rδ−1 |u(x)| ≤ 1
|δ − 1| sup

x∈K
rδ |∂ru(x)|.

Proof: If condition (i) is satisfied, then the assertion follows from the inequality

|u(r, ϕ)| ≤
∫ ∞

r

|∂tu(t, ϕ)| dt ≤ sup
0≤t≤r

∣∣tδ∂tu(t, ϕ)
∣∣ ·

∫ ∞

r

t−δ dt.
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Replacing the integration interval (r,∞) in the above inequality by (0, r), we can estimate |u(r, ϕ)| in the
same way for case (ii).

Let u ∈ Cl,σ
δ (K), k − 1 ≤ δ − σ < k, where k is an integer, 0 ≤ k ≤ l. Then, by Corollary 2.1, the

derivatives of u up to order l − k are continuous at x = 0. We denote by

pl−k(u) =
∑

|α|≤l−k

1
α!

(∂αu)(0) xα

the Taylor polynomial of degree l − k of u.

Lemma 2.5 Let u ∈ Cl,σ
δ (K), where k−1 ≤ δ−σ < k ≤ l. For the inclusion u ∈ Λl,σ

δ (K) it is necessary
and sufficient that pl−k = 0.

Proof: If u ∈ Λl,σ
δ (K), then ∂αu(x) = O(|x|l+σ−δ−|α|) and, consequently, (∂αu)(0) = 0 for |α| ≤ l− k.

Suppose now that u ∈ Cl,σ
δ (K) and (∂αu)(0) = 0 for |α| ≤ l − k. We show that

sup |x|δ−l−σ+|α| ∣∣∂αu(x)
∣∣ ≤ c ‖u‖Cl,σ

δ (K) (2.3)

for |α| ≤ l. If k > 0, then (2.3) is obviously satisfied for |α| ≥ l − k + 1. Furthermore, we conclude from
Lemma 2.4 that

sup |x|δ−σ−l|u(x)| ≤ c1 sup |x|δ−σ−l+1|∇u(x)| ≤ · · · ≤ cl−k+1

∑

|α|=l−k+1

sup |x|δ−σ−k+1|∂αu(x)| (2.4)

what proves (2.3) for |α| ≤ l. If k = 0, then the space Cl,σ
δ (K) is continuously imbedded into Cl,σ−δ(K).

Consequently,

sup |x|δ−σ|∂αu(x)| = sup |x|δ−σ
∣∣(∂αu)(x)− (∂αu)(0)

∣∣ ≤ c ‖u‖Cl,σ
δ (K) for |α| = l.

Using Lemma 2.4, we obtain (2.3) for |α| ≤ l. Hence, u ∈ Λl,σ
δ (K).

Corollary 2.2 If u ∈ Cl,σ
δ (K), k − 1 ≤ δ − σ < k ≤ l, then u− pl−k(u) ∈ Λl,σ

δ (K) and

‖u− pl−k(u)‖Λl,σ
δ (K) ≤ c ‖u‖Cl,σ

δ (K)

with a constant c independent of u.

2.2 Weighted Hölder spaces in a dihedron

Definition of the spaces Λl,σ
δ (D) and Cl,σ

δ (D). Let D be the dihedron {x = (x′, x3) : x′ = (x1, x2) ∈
K, x3 ∈ R}, where K is an angle in the (x1, x2)-plane with vertex at the origin. The boundary of D
consists of two half-planes Γ± and the edge M . For arbitrary integer l ≥ 0 and real δ, σ, 0 < σ ≤ 1, we
define Λl,σ

δ (D) as the space of all functions with continuous derivatives up to order l on D\M such that

‖u‖Λl,σ
δ (D) =

∑

|α|≤l

sup
x∈D

|x′|δ−l−σ+|α||∂α
x u(x)|+ 〈u〉l,σ,δ;D < ∞, (2.5)

where

〈u〉l,σ,δ;D =
∑

|α|=l

sup
x,y∈D

|x−y|<|x′|/2

|x′|δ |∂
α
x u(x)− ∂α

y u(y)|
|x− y|σ .

It can be easily shown that Λl,σ
δ (D) is continuously imbedded into Cl−k,k−δ+σ(D) if k − 1 ≤ δ − σ < k,

where k is nonnegative integer, k ≤ l. Indeed for |α| = l− k and |x− y| > |x′|/2 we have |x− y| > |y′|/3
and, consequently,

|∂α
x u(x)− ∂α

y u(y)|
|x− y|k−δ+σ

≤ (|x′|/2)δ−σ−k|∂α
x u(x)|+ (|y′|/3)δ−σ−k|∂α

y u(y)| ≤ c ‖u‖Λl,σ
δ (D),
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while for |x− y| < |x′|/2 the expression on the left hand side can be estimated by 〈u〉l,σ,δ;D if k = 0 and
by the supremum of |x′|δ−σ−k+1|∇∂αu(x)| if k ≥ 1.

Let 0 ≤ δ < l + σ and 0 < σ ≤ 1. Then by Cl,σ
δ (D) we denote the weighted Hölder space with the

norm

‖u‖Cl,σ
δ (D) = ‖u‖Cl−k,k−δ+σ(D) +

l∑

|α|=l−k+1

sup
x∈D

|x′|δ−l−σ+|α||∂α
x u(x)|+ 〈u〉l,σ,δ;D ,

where k = [δ − σ] + 1, [s] denotes the greatest integer less or equal to s. In the case δ ≥ l + σ we set
Cl,σ

δ (D) = Λl,σ
δ (D).

The following lemma can be proved analogously to Lemma 2.1 (see also [11, Prop.1.4]).

Lemma 2.6 The space Λl,σ
δ (D) is continuously imbedded into Λl′,σ′

δ′ (D) if l + σ > l′ + σ′ and l + σ− δ =
l′ + σ′ − δ′. If additionally δ > δ′ ≥ 0, then there is the continuous imbedding Cl,σ

δ (D) ⊂ Cl′,σ′

δ′ (D).

Traces on the edge. Obviously, the trace of an arbitrary function u ∈ Cl,σ
δ (D) on the edge M lies

in the space Cl−k,k−δ+σ(M) if k−1 ≤ δ−σ < k, k ∈ {0, 1, . . . , l}. The following lemma shows that every
function f ∈ Cl−k,k−δ+σ(M) can be extended to a function u ∈ Cl,σ

δ (D).

Lemma 2.7 Let f ∈ Cl−k,k−δ+σ(M), where k, l are integers, 0 ≤ k ≤ l, and σ, δ are real numbers,
0 < σ ≤ 1, k − 1 ≤ δ − σ < k. Then there exists a function u ∈ Cl,σ

δ (D) such that ∂j
x3

u|M = ∂j
x3

f for
j = 0, 1, . . . , l − k and the following inequalities are satisfied:

(i) |x′|δ−l−σ+|α| ∣∣∂α
x u(x)

∣∣ ≤ cα ‖f‖Cl−k,k−δ+σ(M) for α = (α1, α2, α3), α1 + α2 > 0,
and for |α| > l − k, x ∈ D.

(ii) |x′|δ−l−σ+j
∣∣∂j

x3

(
u(x)− f(x3)

)∣∣ ≤ cj ‖f‖Cl−k,k−δ+σ(M) for j = 0, 1, . . . , l − k, x ∈ D,

Here the constants cj and cα are independent of f and x.

Proof: We set

u(x′, x3) = (Ef)(x′, x3)
def
=

∫ 1

0

f(x3 + tr) ψ(t) dt, (2.6)

where r = |x′| and ψ ∈ C∞0 (R) is a function with support in (0, 1) satisfying the condition
∫ 1

0

ψ(t) dt = 1,

∫ 1

0

tj ψ(t) dt = 0 for j = 1, . . . , l − k.

Since ∂j
x3

f is continuous for j = 0, 1 . . . , l − k, we have ∂j
x3

u(0, x3) = f (j)(x3). Furthermore,
∣∣∂α

x u(x)| ≤ c sup
x3

|f (j)(x3)| for x ∈ D, |α| = j ≤ l − k. (2.7)

We prove that ∣∣∂j
x3

∂ν
r u(x)

∣∣ ≤ c rl+σ−δ−j−ν ‖f‖Cl−k,k−δ+σ(M) (2.8)

if ν ≥ 1 or j + ν > l − k. First let j + ν ≤ l − k, ν ≥ 1. We set ψj,ν(t) = tν ψ(t) if j + ν = l − k and

ψj,ν(t) =
∫ t

0

(t− τ)l−k−j−ν−1

(l − k − j − ν − 1)!
τν ψ(τ) dτ if j + ν < l − k.

Obviously, suppψj,ν ⊂ (0, 1),
∫ 1

0
ψj,ν(t) dt = 0 and ψ

(l−k−j−ν)
j,ν (t) = tν ψ(t). Hence, partial integra-

tion yields

∂j
x3

∂ν
r u =

∫ 1

0

tν f (j+ν)(x3 + tr) ψ(t) dt = (−1)l−k−j−ν

∫ 1

0

rl−k−j−νf (l−k)(x3 + tr)ψj,ν(t) dt

= (−1)l−k−j−ν

∫ 1

0

rl−k−j−ν
(
f (l−k)(x3 + tr)− f (l−k)(x3)

)
ψj,ν(t) dt
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what implies (2.8). Now let j + ν > l − k. For j = j′ + j′′, ν = ν′ + ν′′, j′ + ν′ = l − k, we have

∂j
x3

∂ν
r u = ∂j′′

x3
∂ν′′

r

∫ 1

0

tν
′
f (l−k)(x3 + tr)ψ(t) dt

=
∫

R
f (l−k)(τ) ∂j′′

x3
∂ν′′

r

1
r

(τ − x3

r

)ν′

ψ
(τ − x3

r

)
dτ

=
∫

R

(
f (l−k)(τ)− f (l−k)(x3)

)
∂j′′

x3
∂ν′′

r

1
r

(τ − x3

r

)ν′

ψ
(τ − x3

r

)
dτ.

Consequently,

∣∣∂j
x3

∂ν
r v

∣∣ ≤ c r−1−j′′−ν′′
∫ x3+r

x3

∣∣f (l−k)(τ)− f (l−k)(x3)
∣∣ dτ

≤ c r−1−j′′−ν′′ sup
x3≤τ≤x3+r

∣∣f (l−k)(τ)− f (l−k)(x3)
∣∣

|τ − x3|k+σ−δ

∫ x3+r

x3

(τ − x3)k+σ−δ dτ.

This implies (2.8) for j + ν > l − k. Since

∣∣∂α
x u(x)

∣∣ ≤ c

α1+α2∑
ν=1

rν−α1−α2
∣∣∂α3

x3
∂ν

r u(x)
∣∣

for α = (α1, α2, α3), α1 + α2 > 0, we obtain assertion (i). Analogously to (2.1), we get

|x′|δ
∣∣∂α

x u(x)− ∂α
y u(y)

∣∣
|x− y|σ ≤ c

∣∣x′ + t(y′ − x′)
∣∣δ−σ+1 ∣∣(∇∂αu)

(
x + t(y − x)

)∣∣

with a certain t ∈ (0, 1) for |x − y| < |x′|/2. According to (i), the right-hand side of the last inequality
can be estimated by the norm of f in Cl−k,k−δ+σ(M) for |α| = l. Hence,

〈u〉l,σ,δ;D ≤ c ‖f‖Cl−k,k−δ+σ(M) . (2.9)

Together with (i) this implies that ∂α
x u ∈ Λk,σ

δ (D) ⊂ Λ0,k−δ+σ(D) for |α| = l − k, α1 + α2 6= 0. ¿From
this and from (2.7) we conclude that ∂α

x u ∈ C0,k−δ+σ(D) for |α| = l− k, α1 +α2 6= 0. Furthermore, from
the definition of u it follows that

∣∣∂l−k
x3

u(x)− ∂l−k
y3

u(y)
∣∣

|x− y|k−δ+σ
≤ c ‖f (l−k)‖C0,k−δ+σ(M) for x, y ∈ D.

Consequently, ∂α
x u ∈ C0,k−δ+σ(D) for |α| = l−k. This together with (2.7), (2.9) and assertion (i) implies

u ∈ Cl,σ
δ (D). It remains to prove (ii). Since ∂j

x3
u(0, x3) = f (j)(x3) and δ − σ < k, we have (see Lemma

2.4)
rδ−l−σ+j

∣∣∂j
x3

(
u(x)− f(x3)

)∣∣ ≤ sup
x∈D

rδ−l−σ+j+1
∣∣∂j

x3
∂ru| ≤ c ‖f‖Cl−k,k+σ−δ(M)

for j = 0, 1, . . . , l − k. The proof is complete.

A relation between the spaces Λl,σ
δ (D) and Cl,σ

δ (D). The following lemma can be proved
analogously to Lemma 2.5.

Lemma 2.8 Let u ∈ Cl,σ
δ (D), where k − 1 ≤ δ − σ < k, k ∈ {0, 1, . . . , l}. For the inclusion u ∈ Λl,σ

δ (K)
it is necessary and sufficient that ∂αu = 0 on M for |α| ≤ l − k.

Now we are able to prove a relation between the spaces Cl,σ
δ (D) and Λl,σ

δ (D) analogous to that given
in Corollary 2.2.
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Lemma 2.9 Let u ∈ Cl,σ
δ (D), where δ ≥ 0, 0 < σ ≤ 1, k−1 ≤ δ−σ < k, and k is an integer, 0 ≤ k ≤ l.

Furthermore, let fi,j = ∂i
x1

∂j
x2

u|M for i+j ≤ l−k and ui,j(x) = χ(|x′|) (Efi,j)(x) where E is the operator
(2.6) and χ is a smooth cut-off function on [0,∞), suppχ ⊂ [0, 2), χ = 1 on [0, 1]. Then there is the
following decomposition for u:

u = v + w, where v ∈ Λl,σ
δ (D), w =

∑

i+j≤l−k

1
i! j!

ui,j xi
1x

j
2 ∈ Cl+m,σ

δ+m (D), m = 0, 1, 2, . . . .

Proof: We show first that w ∈ Cl,σ
δ (D). Since fi,j ∈ Cl−k−i−j,k+σ−δ(M), it follows from Lemma 2.7

that
|x′|max(0,δ−l−σ+|α|) ∣∣∂α

x w(x)
∣∣ ≤ c

∑

i+j≤l−k

‖fi,j‖Cl−k−i−j,k+σ−δ(M) ≤ c ‖u‖Cl,σ
δ (D) .

Furthermore,

〈w〉l+m,σ,δ+m;D ≤ c
∑

|α|=l+m+1

sup
x∈D

|x′|δ−σ+j+1
∣∣∂α

x w(x)
∣∣ ≤ c ‖u‖Cl,σ

δ (D) .

In order to show that w ∈ Cl−k,k−δ+σ(D), we consider the function ∂α
x (ui,j xi

1x
j
2) for |α| = l − k.

Obviously, this is a linear combination of functions

(∂γ
xui,j) xi−µ

1 xj−ν
2 where µ ≤ i, ν ≤ j, |γ| = l − k − µ− ν. (2.10)

Since ui,j ∈ Cl−k−i−j,k−δ+σ(D), the term (2.10) with µ = i, ν = j belongs to C0,k−δ+σ(D). If µ + ν <

i + j, then it follows from Lemma 2.7 that ∂γ
xui,j ∈ Λl,σ

δ+i+j+|γ|(D). Consequently, (∂γ
xui,j)xi−µ

1 xj−ν
2 ∈

Λl,σ
δ−k+l(D) ⊂ Λ0,k−δ+σ

0 (D) if µ+ν < i+ j. This implies that ∂α
x w ∈ C0,k−δ+σ(D) for |α| = l−k. Thus, it

is shown that w ∈ Cl+j,σ
δ+j (D). Furthermore, the norm of w can be estimated by the norm of u in Cl,σ

δ (D).
By means of Theorem 2.7, it can be easily shown that ∂αw = fi,j on M for α = (i, j, 0), i + j ≤ l− k.

From this we conclude that ∂α(u − w) = 0 on M for |α| ≤ l − k. Applying Lemma 2.8, we obtain
u− w ∈ Λl,σ

δ (D).

2.3 Weighted Hölder spaces in a polyhedral cone

Let K be the cone (1.1). We denote by rj(x) the distance to the edge Mj and by r(x) the distance to the
set S = M1∪· · ·∪Mn∪{0}. The subset {x ∈ K : rj(x) < 3r(x)/2} is denoted by Kj . Furthermore, let J̃ be
an arbitrary subset of J = {1, 2, . . . , n}, l a nonnegative integer, 0 < σ < 1, β ∈ R, ~δ = (δ1, . . . , δn) ∈ Rn,
δj ≥ 0 if j ∈ J\J̃ , and kj = [δj −σ]+1. We introduce the functions hj(t) = t for j ∈ J̃ , hj(t) = max(t, 0)
for j ∈ J\J̃ and define Cl,σ

β,~δ
(K; J̃) as the set of all l times continuously differentiable functions on K\S

with finite norm

‖u‖Cl,σ

β,~δ
(K;J̃) =

∑

|α|≤l

sup
x∈K

|x|β−l−σ+|α|
n∏

j=1

(rj(x)
|x|

)hj(δj−l−σ+|α|) ∣∣∂α
x u(x)

∣∣

+
∑

j∈J\J̃

∑

|α|=l−kj

sup
x,y∈Kj

|x−y|<|x|/2

|x|β−δj

∣∣∂α
x u(x)− ∂α

y u(y)
∣∣

|x− y|kj+σ−δj

+
∑

|α|=l

sup
|x−y|<r(x)/2

|x|β
∏ (rj(x)

|x|
)δj

∣∣∂α
x u(x)− ∂α

y u(y)
∣∣

|x− y|σ . (2.11)

Furthermore, we define Cl,σ

β,~δ
(K) = Cl,σ

β,~δ
(K; ∅) and Λl,σ

β,~δ
(K) = Cl,σ

β,~δ
(K; J). The trace spaces for Cl,σ

β,~δ
(K; J̃),

Cl,σ

β,~δ
(K) and Λl,σ

β,~δ
(K) on Γj are denoted by Cl,σ

β,~δ
(Γj , J̃), Cl,σ

β,~δ
(Γj) and Λl,σ

β,~δ
(Γj), respectively.

It can be easily shown (cf. Lemma 2.6) that Cl,σ

β,~δ
(K; J̃) ⊂ Cl′,σ′

β′,~δ
(K; J̃) if l + σ > l′ + σ′, l + σ − β =

l′ + σ′ − β′, l + σ − δj ≥ l′ + σ′ − δ′j for j = 1, . . . , n, δj , δ
′
j ≥ 0 for j ∈ J\J̃ .
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3 The model problem in a dihedron

3.1 The operator pencil generated by the boundary value problem

Let d± ∈ {0, 1}. We consider the problem

Lu = f in D, d±u + (1− d±)Bu = g± on Γ±, (3.1)

where L and B are the same differential operators as in (1.2) and (1.4), respectively. It is assumed in
this section that the sesquilinear form corresponding to this problem (i.e. the form (1.6) with D instead
of K) satisfies (1.7), where K has to be replaced by D.

We introduce the following operator pencil A(λ). Let

L(∂x′ , 0) = −
2∑

i,j=1

Ai,j ∂xi
∂xj

, B±(∂x′ , 0) =
2∑

i,j=1

Ai,j n±j ∂xi
.

Here n±j are the components of the exterior normal to Γ±. We define the differential operators L(λ) and
B±(λ) depending on the complex parameter λ by

L(λ) u(ϕ) = r2−λ L(∂x′ , 0)
(
rλu(ϕ)

)
, B±(λ)u(ϕ) = d±u(ϕ) + (1− d±) r1−λ B±(∂x′ , 0)

(
rλu(ϕ)

)
,

where again r, ϕ are the polar coordinates in the (x1, x2)-plane. Then A(λ) denotes the operator

W 2(0, θ)` 3 u →
(
L(λ)u , B+(λ) u(ϕ)

∣∣
ϕ=0

,B−(λ)u(ϕ)
∣∣
ϕ=θ

)
∈ L2(0, θ)` × C` × C`.

As is known, A(λ) is an isomorphism for all λ ∈ C except a countable set of isolated points, the eigenvalues
of the pencil A(λ). All eigenvalues have finite geometric and algebraic multiplicities.

3.2 Boundary conditions on the sides of the dihedron

Lemma 3.1 Let g± ∈ Λl+d±−1,σ
δ (Γ±)`, l ≥ 1−min d±. There exists a vector function u ∈ Λl,σ

δ (D)` such
that d±u + (1− d±)Bu = g± on Γ± and

‖u‖Λl,σ
δ (D)` ≤ c

∑
±
‖g±‖

Λl+d±−1,σ
δ (Γ±)`

, (3.2)

where c is independent of g+ and g−.

Proof: Let ζk be infinitely differentiable functions on (0,∞) such that

supp ζk ⊂
(
2k−1, 2k+1

)
, |∂j

rζk(r)| ≤ c 2−kj , and
+∞∑

k=−∞
ζk = 1. (3.3)

Setting ζk(x) = ζk(|x′|) we can consider ζk as a function on D. Furthermore, let ζ̃k(x) = ζk(2kx) and
g̃k(x) = g(2kx). Then the support of ζ̃k is contained in {x : 1/2 < |x′| < 2}. Consequently, there exists a
function ũk ∈ Cl,σ(D)` with support in {x : 1/4 < |x′| < 4} such that d±ũk+(1−d±)Bũk = 2k(1−d±)ζ̃kg̃k

on Γ± and

‖ũk‖Cl,σ(D)` ≤ c1

∑
±

2k(1−d±) ‖ζ̃kg̃k‖Cl+d±−1,σ(D)` ≤ c2 2k(l+σ−δ) ‖ζkg‖
Λl+d±−1,σ

δ (Γ±)`

with constants c1, c2 independent of g and k. We set u =
∑+∞

k=−∞ uk, where uk(x) = ũk(2−kx). Then
d±u + (1− d±)Bu = g on Γ±. Since the support of uk is contained in {x : 2k−2 < |x′| < 2k+2}, we get

‖u‖Λl,σ
δ (D)` ≤ c sup

k
‖uk‖Λl,σ

δ (D)` ≤ c sup
k

2k(δ−l−σ)‖ũk‖Cl,σ(D)` ≤ c sup
k
‖ζkg‖

Λl+d±−1,σ
δ (Γ±)`

≤ c ‖g‖
Λl+d±−1,σ

δ (Γ±)`
.

This proves the lemma.

We need an analogous assertion for the Neumann problem in the class of the spaces Cl,σ
δ .
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Lemma 3.2 Let d+ = d− = 0, g± ∈ C1,σ
δ (Γ±)`, δ ≥ σ, g±(x) = 0 for |x′| > 1. In the case δ < σ + 1 we

suppose further that for every x3 ∈ R there exist vectors c(x3), d(x3) ∈ C` such that
(
A1,1n

±
1 + A1,2n

±
2

)
c(x3) +

(
A2,1n

±
1 + A2,2n

±
2

)
d(x3) = g±0 (x3), (3.4)

where g±0 = g±|M and n± = (n±1 , n±2 , 0) is the exterior normal to Γ±. Then there exists a vector function
u ∈ C2,σ

δ (D)` satisfying Bu = g± on Γ± and an estimate analogous to (3.2).

Proof: If δ ≥ σ + 1, then C1,σ
δ (Γ±) = Λ1,σ

δ (Γ±) and the assertion follows from Lemma 3.1.
Suppose that σ ≤ δ < σ + 1. Then g±0 ∈ C0,σ+1−δ(M)`, and there is the representation

g± = Eg±0 + G±, where (Eφ)(x) =
∫ 1

0

φ(x3 + t|x′|) ψ(t) dt, G± ∈ Λ1,σ
δ (Γ±)`,

and ψ is the same function as in the proof of Lemma 2.7. By the assumptions of the lemma, there exist
vector functions c, d ∈ C0,σ+1−δ(M)` satisfying (3.4). We set v(x) = x1 (Ec)(x) + x2 (Ed)(x). Then

B(∂x)v
∣∣
Γ± =

(
A1,1n

±
1 + A1,2n

±
2

)
Ec +

(
A2,1n

±
1 + A2,2n

±
2

)
Ed

+
3∑

i=1

(
Ai,1n

±
1 + Ai,2n

±
2

) (
x1∂xiEc + x2∂xiEd

)

¿From Lemma 2.7 it follows that x1∂xiEc + x2∂xiEd ∈ Λ1,σ
δ (D)` for i = 1, 2, 3. Furthermore,

(
A1,1n

±
1 + A1,2n

±
2

)
Ec +

(
A2,1n

±
1 + A2,2n

±
2

)
Ed− Eg±0 ∈ Λ1,σ

δ (D)`.

Consequently, B(∂x)v|Γ± − g± ∈ Λ1,σ
δ (Γ±)`. Applying Lemma 3.1, we obtain the assertion of the lemma

in the case σ ≤ δ < σ + 1.

Remark 3.1 The equations (3.4) are solvable for all g±0 (x3) if and only if the homogeneous system
(
A1,1n

±
1 + A1,2n

±
2

)
c +

(
A2,1n

±
1 + A2,2n

±
2

)
d = 0 (3.5)

has only the trivial solution (c, d) = 0 or, what is the same, if there does not exist a linear vector-function
p(x′) = cx1 +dx2 satisfying B(∂x)p = 0 on Γ±. This is the case, for example, if λ = 1 is not an eigenvalue
of the pencil A(λ).

If the system (3.5) has nontrivial solution, then λ = 1 is an eigenvalue of the pencil A(λ), and there
is an eigenfunction of the form (c1x1 + c2x2)/|x′| corresponding to this eigenvalue. In this case for the
existence of a vector function u ∈ C1,σ

δ (D)`, σ ≤ δ < σ + 1, satisfying B(∂x) u = g± on Γ± it is sufficient
that g+ and g− satisfy 2`− r′ compatibility conditions lk(g+, g−) = 0 on M , k = 1, . . . , 2`− r′, where r′

is the rank of the matrix
( A1,1 A2,1

A1,2 A2,2

)
and lk are linear functionals on C2`. For example, in the case

of the Neumann problem for the Lamé system g+ and g− must satisfy the condition n− · g+ = n+ · g−
on M (see [12, Sect.2.5]).

3.3 Regularity assertions for solutions in the spaces Λl,σ
δ

The next lemma follows from [14, Th.6.3.7] and [1, Th.9.3].

Lemma 3.3 Let G1, G2 be bounded subdomains of R3 such that G1 ⊂ G2, G1 ∩D 6= ∅ and G1 ∩M = ∅.
If u is a solution of (3.1), u ∈ W 2,p(D ∩G2)`, f ∈ Cl−2,σ(D ∩G2)`, g± ∈ Cl+d±−1,σ(Γ± ∩G2)`, l ≥ 2,
0 < σ < 1, then u ∈ Cl,σ(D ∩G1)`. Furthermore,

‖u‖Cl,σ(D∩G1)` ≤ c
(
‖f‖Cl−2,σ(D∩G2)` +

∑
±
‖g±‖Cl+d±−1,σ(Γ±∩G2)` + ‖u‖C(D∩G2)`

)

with a constant c independent of u.
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Let W l,p
loc(D\M) be the set of all functions u such that φu ∈ W l,p(D) for all φ ∈ C∞0 (D\M).

Lemma 3.4 Let u ∈ W 2,p
loc (D\M)` be a solution of problem (3.1). If sup |x′|δ−l−σ|u(x)| < ∞, f ∈

Λl−2,σ
δ (D)`, l ≥ 2, 0 < σ < 1, and g± ∈ Λl+d±−1,σ

δ (Γ±)`, then u ∈ Λl,σ
δ (D)` and

‖u‖Λl,σ
δ (D)` ≤ c

(
‖f‖Λl−2,σ

δ (D)` +
∑
±
‖g±‖

Λl+d±−1,σ
δ (Γ±)`

+ sup |x′|δ−l−σ|u(x)|
)
. (3.6)

Proof: Due to Lemma 3.1, we may restrict ourselves to the case g± = 0. Let x, y be points in
D such that |x − y| < |x′|/2. We introduce the functions ũ(ξ) = u(|x′|ξ) and f̃(ξ) = f(|x′|ξ). Since
L(∂ξ) ũ(ξ) = |x′|2 f̃(ξ) in D and d±ũ(ξ) + (1− d±)B(∂ξ) ũ(ξ) = 0 on Γ±, Lemma 3.3 implies

∑

|α|≤l

∣∣∂α
ξ ũ(ξ)

∣∣ +
∑

|α|=l

∣∣∂α
ξ ũ(ξ)− ∂α

η ũ(η)
∣∣

|ξ − η|σ ≤ c
(
|x′|2 ‖f̃‖Cl−2,σ(Uξ)` + ‖ũ‖C(Ūξ)`

)

for |ξ′| = 1, |ξ − η| < 1/2, where Uξ = {ζ ∈ D : |ζ − ξ| < 3/4}. Here the constant c is independent of ξ3.
Setting ξ = x/|x′| and η = y/|x′|, we conclude that

∑

|α|=l

|x′||α||∂α
x u(x)|+

∑

|α|=l

|x′|l+σ

∣∣∂α
x u(x)− ∂α

y u(y)
∣∣

|x− y|σ ≤ c
( ∑

|α|≤l−2

|x′||α|+2 sup
X∈Vx

∣∣(∂αf)(X)
∣∣

+
∑

|α|=l−2

|x′|l+σ sup
X,Y ∈Vx

|X−Y |<|x′|/2

∣∣(∂αf)(X)− (∂αf)(Y )
∣∣

|x− y|σ + sup
X∈Vx

∣∣u(X)
∣∣
)
, (3.7)

where Vx = {X ∈ D : |X − x| < 3|x′|/4}. Multiplying this inequality by |x′|δ−l−σ and using the fact
that |x′|/4 < r(X) < 7|x′|/4 for X ∈ Vx, we obtain (3.6).

We further need the following modification of Lemma 3.4.

Lemma 3.5 Let φ, ψ be smooth functions with compact supports, ψ = 1 in a neighborhood of supp φ.
Suppose that u ∈ W 2,p

loc (D\M)` is a solution of problem (3.1), sup |x′|δ−l−σ
∣∣ψ(x) u(x)

∣∣ < ∞, ψf ∈
Λl−2,σ

δ (D)` and ψg± ∈ Λl+d±−1,σ
δ (Γ±)`, l ≥ 2, 0 < σ < 1. Then φu ∈ Λl,σ

δ (D)` and

‖φu‖Λl,σ
δ (D)` ≤ c

(
‖ψf‖Λl−2,σ

δ (D)` +
∑
±
‖ψg±‖

Λl+d±−1,σ
δ (Γ±)`

+ sup
x∈D

|x′|δ−l−σ
∣∣ψ(x)u(x)

∣∣
)
.

Proof: Let U be the set {x ∈ D : ψ(x) = 1}. Then

∑

|α|=l

|x′|δ−l−σ+|α||∂α
x u(x)|+

∑

|α|=l

|x′|δ
∣∣∂α

x u(x)− ∂α
y u(y)

∣∣
|x− y|σ

≤ c
(
‖f‖Λl−2,σ

δ (U)` +
∑
±
‖g±‖

Λl+d±−1,σ
δ (Γ±∩Ū)`

+ sup
X∈U

r(X)δ−l−σ
∣∣u(X)

∣∣
)

for x ∈ supp φ, where the norm in Λl,σ
δ (U) is defined by (2.5) with U instead of D. For |x′| > ε > 0 this

estimate follows from Lemma 3.3, while for sufficiently small |x′| it is a consequence of (3.7). This implies
the assertion of the lemma.

In the next lemma the eigenvalues of the pencil A(λ) play an important role.

Lemma 3.6 Let φ, ψ be as in Lemma 3.5, and let u be a solution of problem (3.1) such that ψu ∈
Λl,σ

δ (D)`, ψ∂x3u ∈ Λl,σ
δ (D)`, ψf ∈ Λl−1,σ

δ (D)`, ψg± ∈ Λl+d±,σ
δ (Γ±)`. If there are no eigenvalues of the

pencil A(λ) in the strip l + σ − δ ≤ Re λ ≤ l + 1 + σ − δ, then φu ∈ Λl+1,σ
δ (D)` and

‖φu‖Λl+1,σ
δ (D)` ≤ c

( 1∑

j=0

‖ψ∂j
x3

u‖Λl,σ
δ (D)` + ‖ψf‖Λl−1,σ

δ (D)` +
∑
±
‖ψg±‖

Λl+d±,σ
δ (Γ±)`

)
.
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Proof: Let χ be an infinitely differentiable function on D such that χ = 1 in a neighborhood of supp φ,
ψ = 1 in a neighborhood of suppχ. Obviously,

L(∂x′ , 0) (χu) = F
def
= χf + χL1∂x3u + [L(∂x′ , 0), χ]u,

where L1 is a differential operator of first order and [L(∂x′ , 0), χ] = L(∂x′ , 0)χ − χL(∂x′ , 0) denotes
the commutator of L(∂x′ , 0) and χ. By our assumptions on u and f , the function F (·, x3) belongs to
Λl−1,σ

δ (K)` for arbitrary fixed x3. Analogously, we have d±u + (1 − d±)B±(∂x′ , 0) (χu) = G±, where
G±(·, x3)|γ± ∈ Λl+d±,σ

δ (γ±)` for fixed x3. Consequently, by [9, Th.8.4], we obtain (χu)(·, x3) ∈ Λl+1,σ
δ (K)`

and
‖(χu)(·, x3)‖Λl+1,σ

δ (K)` ≤ c
(
‖F (·, x3)‖Λl−1,σ

δ (K)` +
∑
±
‖G±(·, x3)‖Λl+d±,σ

δ (Γ±)`

)

with a constant c independent of x3. From this and from the inclusion ψ∂x3u ∈ Λl,σ
δ (D)` we conclude

that

sup
x∈D

|x′|δ−l−1−σ+|α| ∣∣∂α
x (χu)(x)

∣∣ ≤ c
( 1∑

j=0

‖ψ∂j
x3

u‖Λl,σ
δ (D)` + ‖ψf‖Λl−1,σ

δ
(D)` +

∑
±
‖ψg±‖

Λl+d±,σ
δ (Γ±)`

)

for |α| ≤ l + 1. This implies, in particular, that χu ∈ Λl,σ
δ−1(D)` (cf. Lemma 2.6). Applying Lemma 3.5,

we obtain the assertion of the lemma.

3.4 Regularity assertions for solutions of the Neumann problem in the spaces
Cl,σ

δ

For the case d+ = d− = 0 (the case of the Neumann problem) we need annalogous assertions in the
spaces Cl,σ

δ .

Lemma 3.7 Let φ, ψ be the same functions as in Lemma 3.5, and let u ∈ W 2,p
loc (D\M)` be a solution of

problem (3.1) with d+ = d− = 0. If ψu ∈ Ck,τ
δ−l−σ+k+τ (D)`, ψf ∈ Cl−2,σ

δ (D)`, ψg± ∈ Cl−1,σ
δ (Γ±)`, where

l ≥ 2, k ≥ 0, δ ≥ l + σ − k − τ > 0, 0 < σ < 1, 0 < τ < 1, then φu ∈ Cl,σ
δ (D)` and

‖φu‖Cl,σ
δ (D)` ≤ c

(
‖ψf‖Cl−2,σ

δ (D)` +
∑
±
‖ψg±‖Cl−1,σ

δ (Γ±)` + ‖ψu‖Ck,τ
δ−l−σ+k+τ (D)`

)
.

Proof: By Lemma 2.9, ψu admits the decomposition ψu = v + w, where v ∈ Λk,τ
δ−l−σ+k+τ (D)`,

w ∈ Cl,σ
δ (D)` and

‖v‖Λk,τ
δ−l−σ+k+τ (D)` + ‖w‖Cl,σ

δ (D)` ≤ c ‖ψu‖Ck,τ
δ−l−σ+k+τ (D)` .

Let χ be a smooth function such that ψ = 1 in a neighborhood of supp φ and ψ = 1 in a neighborhood of
supp χ. Then χLv = χf −χLw ∈ Cl−2,σ

δ (D)`. In the cases k = 0 and k = 1 it follows from the condition
on δ that δ > l − 2 + σ and, consequently, Cl−2,σ

δ (D) = Λl−2,σ
δ (D). In the case k ≥ 2, the inclusions

v ∈ Λk,τ
δ−l−σ+k+τ (D)` and χLv ∈ Cl−2,σ

δ (D)` imply χLv ∈ Λk−2,τ
δ−l−σ+k+τ (D)` ∩ Cl−2,σ

δ (D)` ⊂ Λl−2,σ
δ (D)`.

Analogously, χBv ∈ Λl−1,σ
δ (Γ±)`. Using Lemma 3.5, we obtain φv ∈ Λl,σ

δ (D)` and

‖φv‖Λl,σ
δ (D)` ≤ c

(
‖χLv‖Λl−2,σ

δ (D)` +
∑
±
‖χBv‖Λl−1,σ

δ (Γ±)` + ‖χv‖Λk,τ
δ−l−σ+k+τ (D)`

)

≤ c
(
‖ψf‖Cl−2,σ

δ (D)` +
∑
±
‖ψg±‖Cl−1,σ

δ (Γ±)` + ‖ψw‖Cl,σ
δ (D)` + ‖ψv‖Λk,τ

δ−l−σ+k+τ (D)`

)
.

The result follows.
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Lemma 3.8 Let φ, ψ be as in Lemma 3.5, and let u be a solution of problem (3.1) with d+ = d− = 0
such that ψu ∈ Cl,σ

δ (D)`, ψ∂x3u ∈ Cl,σ
δ (D)`, ψf ∈ Cl−1,σ

δ (D)`, ψg± ∈ Cl,σ
δ (Γ±)`, l ≥ 2, δ > σ. If there

are no eigenvalues of the pencil A(λ) in the strip l + σ − δ ≤ Re λ ≤ l + σ − δ + 1, then φu ∈ Cl+1,σ
δ (D)`

and

‖φu‖Cl+1,σ
δ (D)` ≤ c

( 1∑

j=0

‖ψ∂j
x3

u‖Cl,σ
δ (D)` + ‖ψf‖Cl−1,σ

δ (D)` +
∑
±
‖ψg±‖Cl,σ

δ (Γ±)`

)
.

Proof: Suppose that k− 1 < l +σ− δ ≤ k, where k is an integer, k ≤ l. Then both u and ∂x3u belong
to Cl−k,k+σ−δ(D)`. Consequently, the traces ui,j of ∂i

x1
∂j

x2
u on M are from Cl−k−i−j+1,k−σ−δ(M)` for

i + j ≤ l − k. By Lemma 2.9, there is the representation

ψu = ψ
∑

i+j≤l−k

Eui,j

i!j!
xi

1 xj
2 + v,

where E is the extension operator (2.6) in the proof of Lemma 2.7, v ∈ Λl,σ
δ (D)`, ∂x3v ∈ Λl,σ

δ (D)`. By
means of Lemma 2.7, it can be shown that L(ψu−v) ∈ Cl−1,σ

δ (D)` and B(ψu−v) ∈ Cl,σ
δ (Γ±)`. Therefore,

also Lv ∈ Cl−1,σ
δ (D)` and Bv|Γ± ∈ Cl,σ

δ (Γ±)`. From the inclusion v ∈ Λl,σ
δ (D)` it follows that ∂α

x Lv = 0
on M for |α| ≤ l− k− 2 and ∂j

rBv = 0 on M gor j ≤ l− k− 1. We denote by Fi,j the traces of ∂i
x1

∂j
x2

Lv

on M , i + j = l− k− 1, and by G±l−k the trace of ∂l−k
r Bv|Γ± on M . Obviously, Fi,j ∈ C0,k+σ−δ(M)` and

G±l−k ∈ C0,k+σ−δ(M)`. Furthermore, by Lemma 2.9,

ψ Lv − ψ
∑

i+j=l−k−1

EFi,j

i! j!
xi

1 xj
2 ∈ Λl−1,σ

δ (D)`, ψ Bv − ψ
EG±l−k

(l − k)!
rl−k ∈ Λl,σ

δ (Γ±)`.

Since λ = l − k + 1 is not an eigenvalue of the pencil A(λ), there exist homogeneous matrix-valued
polynomials pi,j(x1, x2) and q±(x1, x2) of degree l − k + 1 such that

L(∂x) pi,j = L(∂x′ , 0) pi,j =
xi

1 xj
2

i! j!
I`, B(∂x) pi,j

∣∣
Γ± = 0, (3.8)

L(∂x) q± = 0, B(∂x) q±
∣∣
Γ± =

rl−k

(l − k)!
I`, B(∂x) q±

∣∣
Γ∓ = 0, (3.9)

where I` denotes the `× ` identity matrix (see [12, Le.2.4]). We set

w(x) =
∑

i+j=l−k−1

pi,j(x′) (EFi,j)(x) +
∑
±

q±(x′) (EG±l−k)(x).

¿From Lemma 2.7 it follows that ∂xk
EFi,j ∈ Λl−1,σ

δ+l−k(D)` and ∂xk
EGl−k ∈ Λl−1,σ

δ+l−k(D)` for k = 1, 2, 3.
This together with (3.8) and (3.9) implies that ψL(v − w) ∈ Λl−1,σ

δ (D)` and ψB(v − w) ∈ Λl,σ
δ (Γ±)`.

Furthermore, ψ (v −w) ∈ Λl,σ
δ (D)` and ψ∂x3(v −w) ∈ Λl,σ

δ (D)`. Applying Lemma 3.6, we conclude that
φ(v − w) ∈ Λl+1,σ

δ (D)` and, consequently, φu ∈ Cl+1,σ
δ (D)`.

4 The boundary value problem in a cone

We consider problem (1.2)–(1.4) in the cone (1.1).
Henceforth, J̃ denotes the set of all j ∈ J = {1, . . . , n} such that Mj ⊂ Γk for at least one k ∈ J0.

Furthermore we set dj = 1 for j ∈ J0 and dj = 0 for j ∈ J1.

4.1 A regularity result for the solution

Using Lemmas 3.5 and 3.7, we can prove the following assertion.
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Lemma 4.1 Let u ∈ W 2,p
loc (K\S)` be a solution of problem (1.2)–(1.4). Suppose that u ∈ Ck,τ

β′,~δ′
(K; J̃)`,

f ∈ Cl−2,σ

β,~δ
(K; J̃)` and gj ∈ C

l+dj−1,σ

β,~δ
(Γj ; J̃)`, where β′ = β − l− σ + k + τ , δ′j = δj − l− σ + k + τ ≥ 0,

l + σ > k + τ , 0 < σ < 1, 0 < τ < 1. Then u ∈ Cl,σ

β,~δ
(K; J̃)`.

Proof: We restrict ourselves in the proof to the case J̃ = ∅. The proof for J̃ 6= ∅ proceeds analogously.
Let x be an arbitrary point in K, and let M1 be the nearest edge to x. We introduce the functions

ũ(ξ) = u(|x|ξ), f̃(ξ) = f(|x|ξ) and g̃j(ξ) = gj(|x|ξ). Since ũ is a solution of the problem L(∂ξ) ũ(ξ) =
|x|2f̃(ξ) in K, B(∂ξ) ũ(ξ) = |x| g̃j(ξ) on Γj , Lemma 3.7 implies

n∏

j=1

rj(ξ)max(0,δj−l−σ+|α|) ∣∣∂α
ξ ũ(ξ)

∣∣

≤ c
(
|x|2 ‖f̃‖Cl−2,σ

β,~δ
(Uξ)` +

n∑

j=1

|x| ‖g̃j‖Cl−1,σ

β,~δ
(Γj∩Uξ)` + ‖ũ‖Ck,τ

β′,~δ′ (Uξ)`

)

for |α| ≤ l and |ξ| = 1, where Uξ = {η ∈ K : |η− ξ| < 3/4} and the norm in Cl,σ

β,~δ
(Uξ) is defined by (2.11)

with Uξ instead of K. Setting ξ = x/|x| and multiplying by |x|β−l−σ, we obtain

|x|β−l−σ+|α|
n∏

j=1

rj(ξ)max(0,δj−l−σ+|α|) ∣∣∂α
x u(x)

∣∣

≤ c
(
‖f‖Cl−2,σ

β,~δ
(Vx)` +

n∑

j=1

‖g̃j‖Cl−1,σ

β,~δ
(Γj∩Vx)` + ‖u‖Ck,σ

β−l−k,~δ−(l−k)~1
(Vx)`

)
, (4.1)

where Vx = {X ∈ K : |X − x| < 3|x|/4}. Analogously, using Lemma 3.7, we can estimate

|x|β−δ1

∣∣∂α
x u(x)− ∂α

y u(y)
∣∣

|x− y|1+[δ1−σ]−δ1+σ
for |α| = l − 1− [δ1 − σ], r1(y) = r(y), |x− y| < |x|/2 and

|x|β
∏(rj(x)

|x|
)δj

∣∣∂α
x u(x)− ∂α

y u(y)
∣∣

|x− y|σ for |α| = l, |x− y| < r(x)/2

by the right-hand side of (4.1). This proves the lemma.

Remark 4.1 Lemma 3.7 allows also to prove the following generalization of Lemma 4.1: If u ∈ W 2,p
loc (K\S)`

is a solution of problem (1.2)–(1.4) such that ψu ∈ Ck,τ

β′,~δ′
(K; J̃)`, ψf ∈ Cl−2,σ

β,~δ
(K; J̃)` and ψgj ∈

C
l+dj−1,σ

β,~δ
(Γj ; J̃)`, where φ, ψ are smooth functions on Ω, ψ = 1 in a neighborhood of supp φ, and

β, β′, ~δ, ~δ′ are as in Lemma 4.1, then φu ∈ Cl,σ

β,~δ
(K; J̃)`.

4.2 Operator pencils generated by the boundary value problem

We introduce the following operator pencils A and Aj .
1. Let HΩ = {u ∈ W 1,2(Ω)` : u = 0 on γj for j ∈ J0} and

a(u, v; λ) =
1

log 2

∫

K
1<|x|<2

3∑

i,j=1

Ai,j∂xiU · ∂xj V dx,

where U(x) = ρλ(ω), V (x) = ρ−1−λv(ω), u, v ∈ HΩ, and λ ∈ C. Then the operator A(λ) : HΩ → H∗Ω is
defined by (

A(λ)u, v
)
Ω

= a(u, v;λ), u, v ∈ HΩ .

Here (·, ·)Ω denotes the extension of the L2 scalar product to H∗Ω ×HΩ.
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2. Let Γj+ , Γj− be the faces of K adjacent to the edge Mj . We introduce new Cartesian coordinates
y = (y1, y2, y3) such that Mj coincides with the positive y3-axis and Γj+ , Γj− are contained in the half-
planes {y ∈ R3 : ϕ = 0} and {y ∈ R3 : ϕ = θj}, respectively, where r, ϕ are the polar coordinates in the
(y1, y2)-plane. Furthermore, we define the operators Lj(λ) and Bj±(λ) on the Sobolev space W 2,2(0, θj)`

by

Lj(λ) u(ϕ) = r2−λ L
(
rλu(ϕ)

)
, Bj±(λ)u(ϕ) =

{
u(ϕ) if j± ∈ J0,

r1−λ B
(
rλu(ϕ)

)
if j± ∈ J1.

By Aj(λ) we denote the operator

W 2(0, θj)` 3 u →
(
Lj(λ)u , Bj+(λ)u(ϕ)

∣∣
ϕ=0

, Bj−(λ)u(ϕ)
∣∣
ϕ=θj

)
∈ L2(0, θj)` × C` × C`.

As is known, the spectra of the pencils A and Aj consist of isolated points, the eigenvalues. We denote
by λ

(j)
1 the eigenvalue of the pencil Aj with smallest positive real part and set µj = Re λ

(j)
1 .

4.3 Boundary data on the sides of the cone

We prove analogous assertions to Lemmas 3.1 and 3.2 for boundary conditions on the sides of the cone
K.

Lemma 4.2 Let gj ∈ Λl+dj−1,σ

β,~δ
(Γj)` for j = 1, . . . , n, where 0 < σ < 1, l ≥ 2 if J1 6= ∅ and l ≥ 1 else.

Then there exists a vector function u ∈ Λl,σ

β,~δ
(K)` such that u = gj on Γj for j ∈ J0, Bu = gj on Γj for

j ∈ J1, and

‖u‖Λl,σ

β,~δ
(K)` ≤ c

n∑

j=1

‖gj‖
Λ

l+dj−1,σ

β,~δ
(Γj)`

(4.2)

with a constant c independent of gj, j = 1, . . . , n.

Proof: Let ζk be smooth functions on (0,∞) satisfying (3.3). Setting ζk(x) = ζk(|x|) we can consider
ζk as a function on K. We set hk,j(x) = ζk(2kx) gj(2kx) for j ∈ J0 and hk,j(x) = 2k ζk(2kx) gj(2kx) for
j ∈ J1. The support of hk,j is contained in {x : 1

2 < |x| < 2}. Consequently, by Lemma 3.1, there exists
a vector function wk ∈ Λl,σ

β,~δ
(K)` such that wk(x) = 0 for |x| < 1/4 and |x| > 4, wk = hk,j on Γj for

j ∈ J0, Bwk = hk,j on Γj for j ∈ J1,

‖wk‖Λl,σ

β,~δ
(K)` ≤ c

∑

j∈J0

‖hk,j‖
Λ

l+dj−1,σ

β,~δ
(Γj)`

(4.3)

where c is independent of k. From this we conclude that the function uk(x) = wk(2−kx) satisfies uk = ζkgj

on Γj for j ∈ J0, Buk = ζkgj for j ∈ J1 and the estimate (4.3) with ζkgj instead of hk,j . Thus, u =
∑

uk

has the desired properties.
Analogously, using Lemma 3.2, one can prove the following result

Lemma 4.3 Let gj ∈ Λ2,σ

β,~δ
(Γj)` for j ∈ J0, gj ∈ C1,σ

β,~δ
(Γj ; J̃)` for j ∈ J1. For j ∈ J\J̃ we assume that

δj ≥ σ and that λ = 1 is not an eigenvalue of the pencil Aj(λ) if δj < 1 + σ. Then there exists a vector
function u ∈ C2,σ

β,~δ
(K; J̃)` such that u = gj on Γj for j ∈ J0, Bu = gj on Γj for j ∈ J1, and

‖u‖C2,σ

β,~δ
(K;J̃)` ≤ c

( ∑

j∈J0

‖gj‖C2,σ

β,~δ
(Γj)` +

∑

j∈J1

‖gj‖C1,σ

β,~δ
(Γj ;J̃)`

)
.

16



4.4 Estimates of Green’s matrix

Let κ be a fixed real number such that the line Re λ = −κ − 1/2 is free of eigenvalues of the pencil A.
We denote by V 1,2

κ (K) the space of all functions u in K such that |x|κ−1u ∈ L2(K) and |x|κ∇u ∈ L2(K)3

According to [12], there exists a unique solution G(x, ξ) of the problem

L(∂x) G(x, ξ) = δ(x− ξ) I`, x, ξ ∈ K, (4.4)
G(x, ξ) = 0, x ∈ Γj , ξ ∈ K, j ∈ J0, (4.5)
B(∂x)G(x, ξ) = 0, x ∈ Γj , ξ ∈ K, j ∈ J1 (4.6)

(I` denotes the ` × ` identity matrix) such that the function x → ζ
(
|x−ξ|
r(ξ)

)
G(x, ξ) belongs to the space

V 1,2
κ (K)`×` for every fixed ξ ∈ K and for every smooth function ζ on (0,∞), ζ(t) = 0 for t < 1

2 , ζ(t) = 1
for t > 1. We denote by Λ− < Re λ < Λ+ the widest strip in the complex plane which contains the line
Re λ = −κ− 1/2 and is free of eigenvalues of the pencil A. By [12], Green’s function G(x, ξ) satisfies the
following estimates:

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x− ξ|−1−|α|−|γ| if |ξ|/2 < |x| < 2|ξ|, |x− ξ| < min(r(x), r(ξ)), (4.7)

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x− ξ|−1−|α|−|γ|

n∏

j=1

( rj(x)
|x− ξ|

)δj,α
n∏

j=1

( rj(ξ)
|x− ξ|

)δj,γ

(4.8)

if |ξ|/2 < |x| < 2|ξ|, |x− ξ| > min(r(x), r(ξ)),
∣∣∂α

x ∂γ
ξ G(x, ξ)

∣∣ ≤ c |x|Λ+−|α|−ε |ξ|−1−Λ+−|γ|+ε
n∏

j=1

(rj(x)
|x|

)δj,α
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

if |x| < |ξ|/2,(4.9)

∣∣∂α
x ∂γ

ξ G(x, ξ)
∣∣ ≤ c |x|Λ−−|α|+ε |ξ|−1−Λ−−|γ|−ε

n∏

j=1

(rj(x)
|x|

)δj,α
n∏

j=1

(rj(ξ)
|ξ|

)δj,γ

if |x| > 2|ξ|.(4.10)

Here δj,α = µj − |α| − ε for j ∈ J̃ and δj,α = min(0, µj − |α| − ε) for j 6∈ J̃ (ε is an arbitrarily small
positive number).

Note that there are sharper estimates for the derivatives of G(x, ξ) with respect to ρ = |x| (see [12,
Rem.4.2]). In particular,

∣∣∂α
x ∂k

ρG(x, ξ)
∣∣ ≤ c |x− ξ|−1−|α|−k

n∏

j=1

( rj(x)
|x− ξ|

)δj,α

(4.11)

if |ξ|/2 < |x| < 2|ξ|, |x− ξ| > min(r(x), r(ξ)),
∣∣∂α

x ∂k
ρG(x, ξ)

∣∣ ≤ c |x|Λ+−|α|−k−ε |ξ|−1−Λ++ε
n∏

j=1

(rj(x)
|x|

)δj,α

if |x| < |ξ|/2, (4.12)

∣∣∂α
x ∂k

ρG(x, ξ)
∣∣ ≤ c |x|Λ−−|α|−k+ε |ξ|−1−Λ−−ε

n∏

j=1

(rj(x)
|x|

)δj,α

if |x| > 2|ξ|. (4.13)

Remark 4.2 In some cases, when µj = 1, estimates (4.8)–(4.10) can be improved (see [12, Rem.4.3]).
Let the following conditions be satisfied for a certain index j:

(i) The strip 0 < Re λ < 1 does not contain eigenvalues of the pencil Aj(λ) and λ = 1 is the only
eigenvalue on the line Reλ = 1.

(ii) The eigenvectors of Aj(λ) corresponding to the eigenvalue λ = 1 are restrictions of linear vector
functions to the unit circle, while generalized eigenvectors corresponding to this eigenvalue do not
exist.

(iii) The ranks of the matrices N A and N AN T , where

A =
( A1,1 A2,1 A3,1

A1,2 A2,2 A3,2

A1,3 A2,3 A3,3

)
and N =

( n+
1 I` n+

2 I` n+
3 I`

n−1 I` n−2 I` n−3 I`

)
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(n+, n− are the normal vectors to the faces Γj+ and Γj− adjacent to the edge Mj , I` denotes the
`× ` identity matrix, and N T denotes the transposed matrix of N ), coincide.

Then the number µj = 1 can be replaced by the real part µ
(2)
j of the first eigenvalue of the pencil Aj(λ)

on the right of the line Reλ = 1.

Note that conditions (i)–(iii) are satisfied, e.g., for the Neumann problem to the Lamé system and in
anisotropic elasticity if the angle θj at the edge Mj is less than π. Here the matrices N A and N AN T

have rank 5.

4.5 Solvability of the Neumann problem

In this subsection we restrict ourselves to the Neumann problem (1.2), (1.4) with J1 = {1, . . . , n}. We
prove the existence of solutions in the space C2,σ

β,~δ
(K)`, where 0 < σ < 1, β is a real number such that

the line Re λ = 2 + σ − β is free of eigenvalues of the pencil A, and the components δj of ~δ satisfy the
conditions

max(2− µj , 0) < δj − σ < 2 and δj − σ 6= 1 for j = 1, . . . , n. (4.14)

Lemma 4.3 allows us to restrict ourselves to homogeneous boundary conditions.

Representation of the solution by Green’s matrix. We introduce the operator S which is
defined on C0,σ

β,~δ
(K)` by

(Sf)(x) =
∫

K
G(x, ξ) · f(ξ) dξ, (4.15)

where G(x, ξ) is the Green matrix introduced in the foregoing subsection with κ = β−σ− 5/2. Our goal
is to show that S realizes a continuous mapping from C0,σ

β,~δ
(K)` into C2,σ

β,~δ
(K)`.

Note that, under the above conditions on ~δ, we have C0,σ

β,~δ
(K) = Λ0,σ

β,~δ
(K). Let χ be an arbitrary cut-off

function, χ(x) = 1 for |x| < 1, χ(x) = 0 for |x| > 2. Then χf ∈ W 0,p

β′+ε,~δ′
(K)` and (1−χ)f ∈ W 0,p

β′−ε,~δ′
(K)`

for arbitrary f ∈ C0,σ

β,~δ
(K)`, where β′ = β − σ− 3/p, δ′j = δj − σ− 2/p + ε, ε > 0, p > 1. Here W l,p

β,~δ
(K) is

the Sobolev space with the norm

‖u‖W l,p

β,~δ
(K) =

( ∫

K

∑

|α|≤l

|x|p(β−l+|α|)
n∏

j=1

(rj(x)
|x|

)pδj ∣∣∂α
x u(x)

∣∣p dx
)1/p

.

¿From [13, Th.4.1] it follows that Sχf ∈ W 2,p

β′+ε,~δ′
(K)` and S(1− χ)f ∈ W 2,p

β′−ε,~δ′
(K)` if ε is a sufficiently

small positive number. In particular, Sf ∈ W 2,p
loc (K\S)`.

A weighted L∞ estimate for the solution.

Lemma 4.4 Let f ∈ C0,σ

β,~δ
(K)`, where β is such that the line Re λ = 2 + σ − β is free of eigenvalues of

the pencil A(λ) and the components of δ satisfy (4.14). Then u = Sf satisfies the estimate

sup
x∈K

|x|β−σ−2
∣∣u(x)

∣∣ ≤ c ‖f‖C0,σ

β,~δ
(K)`

Moreover, if δj < 1 + σ, then sup
x∈Kj

|x|β−σ−1
∣∣∇u(x)

∣∣ ≤ c ‖f‖C0,σ

β,~δ
(K)` .

Proof: Using (4.10), we obtain
∣∣∣

∫

K
|ξ|<|x|/2

G(x, ξ) f(ξ) dξ
∣∣∣ ≤ c ‖f‖C0,σ

β,~δ
(K)`

∫

K
|ξ|<|x|/2

|G(x, ξ)| |ξ|σ−β
∏

rj(ξ/|ξ|)σ−δj dξ

≤ c |x|Λ−+ε ‖f‖C0,σ

β,~δ
(K)`

∫

K
|ξ|<|x|/2

|ξ|σ−β−1−Λ−−ε
∏

rj(ξ/|ξ|)σ−δj dξ ≤ c |x|2+σ−β ‖f‖C0,σ

β,~δ
(K)` .
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Analogously, this estimate holds for the integration domain {ξ ∈ K : |ξ| > 2|x|}. For the integration
domain {ξ ∈ K : |x|/2 < |ξ| < 2|x|}, we obtain, by means of (4.7), (4.8),

∣∣∣
∫

G(x, ξ) f(ξ) dξ
∣∣∣ ≤ c ‖f‖C0,σ

β,~δ
(K)`

∫
|x− ξ|−1|ξ|σ−β

∏
rj(ξ/|ξ|)σ−δj dξ ≤ c |x|σ−β+2 ‖f‖C0,σ

β,~δ
(K)` .

This proves the first part of the lemma. The proof of the second part proceeds analogously. Here one
can make use of the fact that µj > 1 if δj < 1 + σ. Consequently, it follows from (4.7), (4.8) that
|∂α

x G(x, ξ)| ≤ c |x− ξ|−2 for |x|/2 < |ξ| < 2|x|, |α| = 1.

Two auxiliary inequalities. For the proof of Hölder estimates we need the following lemma.

Lemma 4.5 1) Let α + β > 3 and 0 ≤ β < 2. Then
∫

D
|x−ξ|>R

|x− ξ|−α r(ξ)−β dξ ≤ cα,β R3−α−β

with a constant cα,β independent of x and R.
2) If α + β < 3, α ≥ 0 and β < 2, then

∫

D
|x−ξ|<R

|x− ξ|−α r(ξ)−β dξ ≤ cα,β R3−α−β

Proof: 1) Let α + β > 3, 0 ≤ β ≤ 2. Then
∫

D
r(ξ)>|x−ξ|>R

|x− ξ|−α r(ξ)−β dξ ≤ c

∫

D
|x−ξ|>R

|x− ξ|−α−β dξ ≤ cR3−α−β

We denote by x∗ and ξ∗ the nearest points to x and ξ on the edge M . If |x − ξ| > r(ξ) > R, then
|ξ − x∗| ≥ r(ξ) > R and |ξ − x∗| ≤ |ξ − ξ∗|+ |ξ∗ − x∗| ≤ r(ξ) + |ξ − x| < 2|ξ − x| and, therefore,

∫

D
|x−ξ|>r(ξ)>R

|x− ξ|−α r(ξ)−β dξ ≤ c

∫

D
|ξ−x∗|>R

|ξ − x∗|−α r(ξ)−β dξ = c R3−α−β .

Finally, since 2|x− ξ| > R + |x3 − ξ3| for |x− ξ| > R, we obtain
∫

D
|x−ξ|>R>r(ξ)

|x− ξ|−α r(ξ)−β dξ ≤ c

∫ +∞

−∞
(R + |x3 − ξ3|)−α dξ3

∫ R

0

r1−β dr = c′R3−α−β .

This proves the first part of the lemma.
2) Let α + β < 3, α ≥ 0 and β < 2. Obviously,

∫

D
|x−ξ|<min(R,r(ξ))

|x− ξ|−α r(ξ)−β dξ ≤
∫

D
|x−ξ|<R

|x− ξ|−α−β dξ = c R3−α−β .

We denote again by x∗ the nearest point to x on M . Since |ξ−x∗| < 2|ξ−x| for r(ξ) < |x− ξ|, we obtain
∫

D
r(ξ)<|ξ−x|<R

|x− ξ|−α r(ξ)−β dξ ≤
∫

D
|ξ−x∗|<2R

|ξ − x∗|−α r(ξ)−β dξ = c R3−α−β .

The proof of the lemma is complete.
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Corollary 4.1 Let x an arbitrary point of K such that rk(x) < 2 r(x) and let Kx = {ξ ∈ K : N−1 |x| <
|ξ| < N |x|}, where N is an arbitrary real number, N > 1. If α + βk > 3 and 0 ≤ βj < 2 for j = 1, . . . , n,
then ∫

Kx

|x−ξ|>R

|x− ξ|−α
n∏

j=1

(rj(ξ)
|ξ|

)−βj

dξ ≤ c |x|βk R3−α−βk .

If α + βk < 3, α ≥ 0 and βj ≤ 2 for j = 1, . . . , n, then
∫

Kx

|x−ξ|<R

|x− ξ|−α
n∏

j=1

(rj(ξ)
|ξ|

)−βj

dξ ≤ c |x|βk R3−α−βk .

Here the constant c is independent of x and R.

Proof: Let α+βk > 3 and 0 ≤ βj < 2, j = 1, . . . , n. We set S1 = {ξ ∈ Kx : |x−ξ| > R, rk(ξ) < 3r(ξ)}
and S2 = {ξ ∈ Kx : |x − ξ| > R, rk(ξ) > 3r(ξ)}. If ξ ∈ S1, then rj(ξ) ≥ c |ξ| for j 6= k with a certain
c > 0. Hence, by means of the substitution ξ = |x| η, we obtain

∫

S1

|x− ξ|−α
n∏

j=1

(rj(ξ)
|ξ|

)−βj ≤ c |x|3−α

∫

|x|−1S1

∣∣∣ x

|x| − η
∣∣∣
−α (

rk(η)
)−βk dη.

Here |x|−1S1 = {η ∈ K : N−1 < |η| < N,
∣∣η − |x|−1x

∣∣ > R/|x|, rk(η) < 2 r(η)}. Due to Lemma 4.5, the
right-hand side of the last inequality is majorized by c |x|βk R3−α−βk .

The set S2 is nonempty only if R < (N +1)|x|. Since |x− ξ| > c |x| for rk(x) < 2 r(x), rk(ξ) > 3 r(ξ),
we obtain

∫

S2

|x− ξ|−α
n∏

j=1

(rj(ξ)
|ξ|

)−βj

dξ ≤ c |x|−α

∫

K
|x|/N<|ξ|<N |x|

n∏

j=1

(rj(ξ)
|ξ|

)−βj

dξ

= c′ |x|3−α ≤ c′′ |x|βk R3−α−βk .

This proves the first part of the lemma. The proof of the second part proceeds analogously.

Weighted Hölder estimates. Let Kj = {x ∈ K : rj(x) < 3r(x)/2}, j = 1, . . . , n. We denote by φj

a smooth function on Ω with support in Kj ∩ Ω which is extended to K by φj(x) = φj(x/|x|). Our goal
is to show that φju ∈ C

0,2+σ−δj

β−δj ,0 (K)` for δj > σ + 1 and φju ∈ C
1,1+σ−δj

β−δj ,0 (K)` for δj < σ + 1.

Lemma 4.6 Let f be as in Lemma 4.4 and let s = 0 if δj > σ + 1, s = 1 if δj < σ + 1. Then

|x|β−δj
|∂s

xi
u(x)− ∂s

yi
u(y)|

|x− y|2+σ−s−δj
≤ c ‖f‖C0,σ

β,~δ
(K)` (4.16)

for x ∈ Kj, |x− y| < rj(x)/2, where c is independent of x and y.

Proof: First note that µj > 1 if s = 1. Obviously

∣∣∂s
xi

u(x)− ∂s
yi

u(y)
∣∣ ≤ ‖f‖C0,σ

β,~δ
(K)`

∫

K

∣∣∂s
xi

G(x, ξ)− ∂s
yi

G(y, ξ)
∣∣ |ξ|σ−β

∏

k

rk(ξ/|ξ|)σ−δk dξ (4.17)

We consider the integral on the right over the subdomains K(1)
x = {x ∈ K : |ξ| < |x|/3}, K(2)

x = {x ∈ K :
|ξ| > 3|x|}, K(3)

x = {x ∈ K : |x|/3 < |ξ| < 3|x|, |x − ξ| < min(r(x), r(ξ)}, and K(4)
x = {x ∈ K : |x|/3 <

|ξ| < 3|x|, |x− ξ| > min(r(x), r(ξ)}. By (4.10), we have

∣∣∂s
xi

G(x, ξ)− ∂s
yi

G(y, ξ)
∣∣ ≤ |x− y|

∑

|α|=s+1

∣∣(∂α
x G)(x̃, ξ)

∣∣ ≤ c |x− y| |x̃|Λ−−s−1+ε |ξ|−1−Λ−−ε
(r(x̃)
|x̃|

)δj,s+1
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for ξ ∈ K(1)
x , where x̃ is a point on the line between x and y and δj,s+1 = min(0, µj − s − 1 − ε). Using

the inequalities |x|/2 < |x̃| < 3|x|/2 and r(x)/2 < r(x̃) < 3r(x)/2, we obtain
∫

K(1)
x

∣∣∂s
xi

G(x, ξ)− ∂s
yi

G(y, ξ)
∣∣ |ξ|σ−β

∏

k

rk(ξ/|ξ|)σ−δk dξ

≤ c |x− y| |x|Λ−−s−1+ε r(x/|x|)δj,s+1

∫

K(1)
x

|ξ|σ−β−1−Λ−−ε
∏

k

rk(ξ/|ξ|)σ−δk dξ

≤ c |x− y| |x|σ−β−s+1r(x/|x|)δj,s+1 ≤ c |x|δj−β |x− y|2+σ−s−δj . (4.18)

Analogously, this inequality can be proved for K(2)
x by means of (4.9).

Using (4.7), (4.8) and Corollary 4.1, we obtain
∫

K(3)
x ∪K(4)

x

|x−ξ|<2|x−y|

∣∣∂s
xi

G(x, ξ)− ∂s
yi

G(y, ξ)
∣∣ |ξ|σ−β

∏

k

rk(ξ/|ξ|)σ−δk dξ

≤ c

∫

K(3)
x ∪K(4)

x

|x−ξ|<2|x−y|

(|x− ξ|−1−s + |y − ξ|−1−s
)|ξ|σ−β

∏

k

rk(ξ/|ξ|)σ−δk dξ

≤ c |x|σ−β
(|x|δj−σ + |y|δj−σ

) |x− y|2+σ−s−δj ≤ c′ |x|δj−β |x− y|2+σ−s−δj . (4.19)

If ξ ∈ K(3)
x and |x− ξ| > 2|x− y|, then every point x̃ on the line between x an y satisfies the inequalities

|x̃− ξ| < 3|x− ξ|/2 < 3r(x)/2 < 3r(x̃), and |x̃− ξ| > |x− y|. Consequently, by (4.7) and (4.8,
∣∣∂s

xi
G(x, ξ)− ∂s

yi
G(y, ξ)

∣∣ ≤ c |x− y| |x̃− ξ|−2−s.

Thus, using Corollary 4.1, we obtain
∫

K(3)
x

|x−ξ|>2|x−y|

∣∣∂s
xi

G(x, ξ)− ∂s
yi

G(y, ξ)
∣∣ |ξ|σ−β

∏

k

rk(ξ/|ξ|)σ−δk dξ

≤ c |x|σ−β |x− y|
∫

K(3)
x

|x̃−ξ|>|x−y|

|x̃− ξ|−2−s
∏

k

rk(ξ/|ξ|)σ−δk dξ ≤ c |x|δj−β |x− y|2+σ−s−δj . (4.20)

Finally, we consider the integral over the set {ξ ∈ K(4)
x : |x− ξ| > 2|x− y|}. By (4.8), we have

∣∣∂s
xi

G(x, ξ)− ∂s
yi

G(y, ξ)
∣∣ ≤ c |x− y| |x̃− ξ|−2−s

( rj(x̃)
|x̃− ξ|

)δj,s+1

,

where again x̃ is a point on the line between x and y. Since |x − ξ| < |x̃ − ξ|, we obtain, by means of
Corollary 4.1,

∫

K(4)
x

|x−ξ|>2|x−y|

∣∣∂s
xi

G(x, ξ)− ∂s
yi

G(y, ξ)
∣∣ |ξ|σ−β

∏

k

rk(ξ/|ξ|)σ−δk dξ

≤ c |x|σ−β |x− y| rj(x̃)δj,s+1

∫

K(4)
x

|x̃−ξ|>|x−y|

|x̃− ξ|−2−s−δj,s+1
∏

k

rk(ξ/|ξ|)σ−δk dξ

≤ c |x|δj−β |x− y|2+σ−s−δj−δj,s+1 rj(x̃)δj,s+1 ≤ c′ |x|δj−β |x− y|2+σ−s−δj . (4.21)

Inequality (4.17) together with (4.18)–(4.21) imply the assertion of the lemma.
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Lemma 4.7 Estimate (4.16) is valid for x ∈ Kj, y = tx, 1/2 < t < 3/2.

Proof: As in the proof of Lemma 4.6, we show that the inequalities (4.18)–(4.21) are satisfied. By
(4.13), we have

∣∣∂s
xi

G(x, ξ)− ∂s
yi

G(y, ξ)
∣∣ = |x− y|

∣∣(∂α
x ∂ρG)(x̃, ξ)

∣∣ ≤ c |x− y| |x̃|Λ−−s−1+ε |ξ|−1−Λ−−ε

for ξ ∈ K(1)
x , where x̃ is a point on the line between x and y. This implies (4.18). The proof of (4.19) and

(4.20) is the same as in the case |x− y| < rj(x)/2. Finally, we can prove (4.21) by means of the estimate
∣∣∂s

xi
G(x, ξ)− ∂s

yi
G(y, ξ)

∣∣ = |x− y|
∣∣(∂α

x ∂ρG)(x̃, ξ)
∣∣ ≤ c |x− y| |x̃− ξ|−2−s

which follows from (4.11).

Corollary 4.2 Estimate (4.16) is valid for x ∈ Kj, |x− y| < |x|/2.

Proof: By Lemma 4.6, inequality (4.16) is valid for x ∈ Kj , |x− y| < rj(x). Analogously to the proof
of Lemma 2.3, one can conclude from this inequality that the restriction of u to the set {x ∈ Kj : |x| = ρ}
is continuous at x∗ = Mj ∩ {x : |x| = ρ} for any ρ and that (4.16) is valid for x ∈ Kj , |x| = |y| = ρ,
|x− y| < |x|/2. ¿From this and from Lemma 4.7 it follows that

∣∣∂s
xi

u(x)− ∂s
yi

u(y)
∣∣ ≤

∣∣(∂s
xi

u)(x)− (∂s
xi

u)(y|x|/|y|)
∣∣ +

∣∣(∂s
xi

u)(y|x|/|y|)− (∂s
xi

u)(y)
∣∣

≤ c |x|δj−σ|x− y|2+σ−s−δ−j

for x ∈ Kj , |x− y| < |x|/2. The lemma is proved.

Existence and uniqueness of solutions in C2,σ

β,~δ
(K)`.

Theorem 4.1 Let f ∈ C0,σ
β,δ (K)` and gj ∈ C1,σ

β,~δ
(Γj)` for j = 1, . . . , n, where 0 < σ < 1, β is such that

the line Re λ = 2 + σ− β is free of eigenvalues of the pencil A, and the components δj of ~δ satisfy (4.14).
Then there exists a unique solution u ∈ C2,σ

β,~δ
(K)` of problem (1.2), (1.4).

Proof: Due to Lemma 4.3, we may assume, without loss of generality, that gj = 0 for j = 1, . . . , n. We
consider the vector function u = Sf , where the operator S is defined by (4.15). Let φj , ψj , j = 1, . . . , n
be smooth functions on Ω, ψj = 1 in a neighborhood of supp φj , ψj = 0 outside Kj ∩Ω, φ1 + · · ·φn = 1.
We extend φj and ψj to K\{0} by φj(x) = φj(x/|x|), ψj(x) = ψj(x/|x|). It follows from Lemma 4.4
and Corollary 4.2 that ψju ∈ C

0,2−σ−δj

β−δj ,0 (K)` if δj > 1− σ and ψju ∈ C
1,1−σ−δj

β−δj ,0 (K)` if δj < 1− σ. Since

ψjLu ∈ C0,σ

β,~δ
(K)` we conclude from Lemma 4.1 and Remark 4.1 that φju ∈ C2,σ

β,~δ
(K)` for j = 1, . . . , n.

This implies u ∈ C2,σ

β,~δ
(K)`.

We prove the uniqueness of the solution. Suppose that u ∈ C2,σ

β,~δ
(K)`, Lu = 0 in K, and Bu = 0

on Γj , j = 1, . . . , n. Let χ be a smooth cut-off function on K equal to one for |x| < 1 and to zero for
|x| > 2. Furthermore, let β′ = β− σ− 3/2 and δ′j be real numbers such that max(0, δj − σ− 1) < δ′j < 1.
From the inclusion u ∈ C2,σ

β,~δ
(K)` it follows that χu ∈ W 2,2

β′+ε,~δ′
(K)` and (1 − χ)u ∈ W 2,2

β′−ε,~δ′
(K)`, where

ε is an arbitrary positive number. Consequently, L(χu) = −L
(
(1 − χ)u

) ∈ W 0,2

β′−ε,~δ′
(K)` and B(χu) =

−B
(
(1 − χ)u

) ∈ W
1/2,2

β′−ε,~δ′
(Γj)`. Applying [12, Th.4.2], we obtain χu ∈ W 0,2

β′−ε,~δ′
(K)` if ε is sufficiently

small. Hence, u ∈ W 0,2

β′−ε,~δ′
(K)` and [12, Th.4.1] implies u = 0. The proof of the theorem is complete.

Remark 4.3 Suppose that conditions (i)–(iii) of Remark 4.2 are satisfied for some j. Then in Theorem
4.1 the condition (4.14) for δj can be replaced by max(2 − µ

(2)
j , 0) < δj − σ < 2, δj − σ 6= 1, where µ

(2)
j

is the real part of the first eigenvalue on the right of the line Reλ = 1. However, in this case, g+ and g−

have to satisfy some compatibility conditions on the edge Mj if δj < 1 + σ (see Remark 3.1).
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4.6 Regularity assertions for the solution of the Neumann problem

Next we will show that the solution in Theorem 4.1 belongs to Cl,σ′

β′,~δ′
(K)` if, additionally to the conditions

of Theorem 4.1, f ∈ Cl−2,σ′

β′,~δ′
(K)` and gj ∈ Cl−1,σ′

β′,~δ′
(Γj)`, where l, σ′, β′ and the components of ~δ′ satisfy

the following conditions:

(i) The closed strip between the lines Re λ = 2 + σ− β and Reλ = l′ + σ′ − β′ is free of eigenvalues of
the pencil A(λ).

(ii) max(l − µj , 0) < δ′j − σ′ < l, δ′j − σ′ 6= 1, 2, . . . , l − 1 for j = 1, . . . , n.

If, additionally to the conditions of Theorem 4.1, f ∈ C0,σ′

β′,~δ′
(K)` and gj ∈ C1,σ′

β′,~δ′
(Γj)`, where σ′, β′ and ~δ′

satisfy (i) and (ii) with l = 2, then in all estimates in the proof of Theorem 4.1 one can replace σ, β and
~δ by σ′, β′ and ~δ′. Consequently, the following assertion holds.

Lemma 4.8 Let u ∈ C2,σ

β,~δ
(K)` be a solution of problem (1.2), (1.4), where f ∈ C0,σ

β,~δ
(K)` ∩C0,σ′

β′,~δ′
(K)` and

gj ∈ C1,σ

β,~δ
(Γj)` ∩ C1,σ′

β′,~δ′
(Γj)`. Suppose that for σ, β, ~δ the conditions of Theorem 4.1 are fulfilled, while

σ′, β′, ~δ′ satisfy (i) and (ii) with l = 2. Then u ∈ C2,σ′

β′,~δ′
(K)`.

Analogously, using the estimates in the proof [12, Th.4.1], we obtain the following result.

Lemma 4.9 Let u ∈ C2,σ

β,~δ
(K)` be a solution of problem (1.2), (1.4), where f ∈ C0,σ

β,~δ
(K)`∩W 0,p

β′,~δ′
(K)` and

gj ∈ C1,σ

β,~δ
(Γj)` ∩W

1−1/p,p

β′,~δ′
(Γj)`. Suppose that for σ, β, ~δ the conditions of Theorem 4.1 are fulfilled, that

the closed strip between the lines Re λ = 2 + σ − β and Re λ = 2 − β − 3/p is free of eigenvalues of the
pencil A(λ), and that max(2− µj , 0) < δ′j + 2/p < 2 for j = 1, . . . , n. Then u ∈ W 2,p

β′,~δ′
(K)`.

Conversely, under the above assumptions on f and gj, every solution u ∈ W 2,p

β′,~δ′
(K)` belongs to

C2,σ

β,~δ
(K)`.

The following lemma can be proved analogously to Lemma 4.1 using Lemma 3.8.

Lemma 4.10 Let u ∈ Cl,σ

β,~δ
(K)` be a solution of the Neumann problem (1.2), (1.4) such that ρ∂ρu ∈

Cl,σ

β,~δ
(K)`. If f ∈ Cl−1,p

β+1,~δ
(K)`, gj ∈ C

l−1/p,p

β+1,~δ
(Γj)`, and the strip l + σ − δ ≤ Reλ ≤ l + σ − δ + 1 is free of

eigenvalues of the pencil Aj(λ), j = 1, . . . , n, then u ∈ Cl+1,p

β+1,~δ
(K)` and

‖u‖Cl+1,σ

β+1,~δ
(K)` ≤ c

( 1∑

j=0

‖(ρ∂ρ)ju‖Cl,σ

β,~δ
(K)` + ‖f‖Cl−1,σ

β+1,~δ
(K)` +

n∑

j=1

‖gj‖Cl,σ

β+1,~δ
(Γj)`

)
.

Theorem 4.2 Let u ∈ C2,σ

β,~δ
(K)` be a solution of problem (1.2), (1.4), where f ∈ C0,σ

β,~δ
(K)` ∩ Cl−2,σ′

β′,~δ′
(K)`

and gj ∈ C1,σ

β,~δ
(Γj)` ∩ Cl−1,σ′

β′,~δ′
(Γj)`, l ≥ 2. We suppose that for σ, β, ~δ the conditions of Theorem 4.1 are

fulfilled, while l, σ′, β′, ~δ′ satisfy (i) and (ii). Then u ∈ Cl,σ′

β′,~δ′
(K)`.

Proof: If l + σ′ − δ′j < 2 for j = 1, . . . , n, then f ∈ C0,σ′

β′−l+2,~δ′−(l−2)~1
(K)`, gj ∈ C1,σ′

β′−l+2,~δ′−(l−2)~1
(Γj)`,

where max(2− µj , 0) < δ′j − l + 2− σ′ < 2. Consequently, Lemma 4.8 implies u ∈ C2,σ′

β′−l+2,~δ′−(l−2)~1
(K)`.

Applying Lemma 4.1, we obtain u ∈ Cl,σ′

β′,~δ′
(K)`.

Suppose that 2 < l + σ′ − δ′j < 3 for j = 1, . . . , n. This is only possible if µj > 2. Then f ∈
C0,σ′

β′−l+2,~δ′−(l−2−ε)~1
(K)`, gj ∈ C1,σ′

β′−l+2,~δ′−(l−2−ε)~1
(Γj)`, where ε is such that 0 < δ′j − l + 2 + ε − σ′ < 2.
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Consequently, Lemma 4.8 implies u ∈ C2,σ′

β′−l+2,~δ′−(l−2−ε)~1
(K)`. From this and from Lemma 4.1 we

conclude that u ∈ C3,σ′

β′−l+3,~δ′−(l−3−ε)~1
(K)` and, therefore, ρ∂ρu ∈ C2,σ′

β′−l+2,~δ′−(l−3−ε)~1
(K)`. Furthermore,

Lρ∂ρu = ρ∂ρf + 2f ∈ C0,σ′

β′−l+2,~δ′−(l−3)~1
(K)`, Bρ∂ρu

∣∣
Γj

= ρ∂ρgj + gj ∈ C1,σ′

β′−l+2,~δ′−(l−3)~1
(Γj)`,

where 0 < δ′j − l + 3 − σ′ < 1 for j = 1, . . . , n. Consequently, by Theorem 4.8, we have ρ∂ρu ∈
C2,σ′

β′−l+2,~δ′−(l−3)~1
(K)`. Since u belongs to the same space, Lemma 4.10 implies u ∈ C3,σ′

β′−l+3,~δ′−(l−3)~1
(K)`.

Using again Lemma 4.1, we get u ∈ Cl,σ′

β′,~δ′
(K)`. Thus, the theorem is proved for 2 < l + σ′ − δ′j < 3.

We prove by induction in k that the assertion of the lemma is true if k − 1 < l + σ − δ′j < k, where
k is an integer, k ≥ 3. For k = 3 this is shown above. Suppose that k ≥ 4 and that the theorem is
proved for k − 2 < l + σ′ − δ′j < k − 1. Since f ∈ Cl−2,σ′

β′,~δ′
(K)` ⊂ Cl−3,σ′

β′−1,~δ′
(K)` and gj ∈ Cl−2,σ′

β′−1,~δ′
(Γj)`,

the induction hypothesis implies u ∈ Cl−1,σ′

β′−1,~δ′
(K)` and, consequently, ρ∂ρu ∈ Cl−2,σ′

β′−2,~δ′
(K)`. On the other

hand, Lρ∂ρu = ρ∂ρf + 2f ∈ Cl−3,σ′

β′−1,~δ′
(K)` and Bρ∂ρu

∣∣
Γj

= ρ∂ρgj + gj ∈ Cl−2,σ′

β′−1,~δ′
(Γj)`. Hence, by the

induction hypothesis, we have ρ∂ρu ∈ Cl−1,σ′

β′−1,~δ′
(K)`. From this and from Lemma 4.10 we conclude that

u ∈ Cl,σ′

β′,~δ′
(K)`.

Finally, we assume that l + σ′ − δ′j ∈ [kj − 1, kj) for j = 1, . . . , n with different kj ∈ {1, . . . , l}. Then
let ψ1, . . . , ψn be smooth functions on Ω such that ψj ≥ 0, ψj = 1 near Mj ∩ S2, and

∑
ψj = 1. We

extend ψj to K by the equality ψj(x) = ψj(x/|x|). Then ∂α
x ψj(x) ≤ c |x|−|α|. Using the first part of the

proof, one can show by induction in l that ψju ∈ Cl,σ′

β′,~δ′
(K)` for j = 1, . . . , n. The proof of the theorem

is complete.

Remark 4.4 If conditions (i)–(iii) of Remark 4.2 are satisfied for some j, then in the conditions of
Theorem 4.2 on σ, δj , σ

′, δj and l the number µj can be replaced by the real part µ
(2)
j of the first eigenvalue

of the pencil Aj(λ) on the right of the line Re λ = 1. However, if δ′j − σ′ < l − 1, then g+ and g− must
satisfy certain compatibility conditions on the edge Mj .

4.7 Solvability of the Dirichlet and mixed problems in weighted Hölder spaces

We consider problem (1.2)–(1.4) and denote by J̃ the set of all j ∈ J = {1, . . . , n} such that Mj ⊂ Γk for
at least one k ∈ J0. Furthermore, we set dj = 1 for j ∈ J0 and dj = 0 for j ∈ J1. The following theorem
can be proved analogously to Theorem 4.1. In the case J̃ = {1, 2, . . . , n} (when Cl,σ

β,~δ
(K; J̃) = Λl,σ

β,~δ
(K)),

the proof is even easier. Then it suffices to show that the solution of (1.2) with homogeneous boundary
conditions (1.3), (1.4) satisfies the estimate

sup
x∈K

|x|β−2−σ
n∏

j=1

(rj(x)
|x|

)δj−2−σ ∣∣u(x)
∣∣ ≤ c ‖f‖Λ0,σ

β,~δ
(K)`

and to apply Lemmas 4.1 and 4.2.

Theorem 4.3 Suppose that there are no eigenvalues of the pencil A(λ) on the line Re λ = 2+σ−β and
that the components of ~δ satisfy the inequalities

2− µj < δj − σ < 2 for j ∈ J̃ , max(2− µj , 0) < δj − σ < 2, δj − σ 6= 1 for j ∈ J\J̃ .

Then for all f ∈ C0,σ

β,~δ
(K; J̃)`, gj ∈ C

1+dj ,σ

β,~δ
(Γj , J̃)` there exists a unique solution u ∈ C2,σ

β,~δ
(K, J̃)` of

problem (1.2)–(1.4).

Furthermore, the following regularity assertions are valid.
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Theorem 4.4 Let u ∈ C2,σ

β,~δ
(K, J̃)` be a solution of problem (1.2)–(1.4), where β,~δ satisfy the conditions

of Theorem 4.3. If f ∈ Cl−2,σ′

β′,~δ′
(K; J̃)`, gj ∈ C

l−1+dj ,σ′

β′,~δ′
(Γj , J̃)`, the closed strip between the lines Re λ =

2+σ−β and Reλ = l +σ′−β′ is free of eigenvalues of the pencil A(λ), and the components of ~δ′ satisfy
the inequalities

l − µj < δ′j − σ′ < l for j ∈ J̃ , max(l − µj , 0) < δ′j − σ′ < l, δ′j − σ′ 6= 1, 2, . . . , l − 1 for j ∈ J\J̃ ,

then u ∈ Cl,σ′

β′,~δ′
(K; J̃)`.

4.8 Boundary value problems for the Lamé system

The Dirichlet for the Lamé system. We consider the problem

−µ
(
∆u + (1− 2ν)−1∇∇ · u

)
= f in K, u = gj on Γj , j = 1, 2, . . . , J, (4.22)

where µ is the shear modulus and ν is the Poisson ratio. In order to apply Theorems 4.3 and 4.4, we need
some information on the eigenvalues of the pencils Aj(λ) and A(λ). Let θj be the angle at the edge Mj .
Then the eigenvalue λ

(j)
1 with smallest positive real part of Aj(λ) is the the smallest positive solution

of the equation (3 − 4ν) sin(θjλ) = ±λ sin θj (see, e.g., [6, Sec.3.1]). Note that 1 < λ
(j)
1 (θj) < π/θj for

θj < π and 1/2 < λ
(j)
1 (θj) < π/θj for π < θj < 2π. Furthermore, we mention that the eigenvalues of

the pencil A(λ) lie outside the strip −1 ≤ Re λ ≤ 0. In the case when Ω is a subset of a half-sphere S2
+

and S2
+\Ω contains a nonempty open set even the strip −2 ≤ Reλ ≤ 1 is free of eigenvalues of the pencil

A(λ) (see [6, Th.3.5.3, 3.6.1]).
We consider the weak solution of problem (4.22), i.e., a vector function u ∈ V 1,2

0 (K)3 = W 1,2

0,~0
(K)3

satisfying

∫

K

3∑

i,j=1

σi,j(u) εi,j(v) dx =
∫

K
f · v dx +

n∑

j=1

∫

Γj

gj · v dx for all v ∈ H, u = gj on Γj , j = 1, . . . , n.

(4.23)
Here σ(u) = {σi,j(u)} is the stress tensor connected with the strain tensor {εi,j(u)} = {1

2 (∂xiuj +∂xj ui)}
by the Hooke law

σi,j = 2µ
( ν

1− 2ν

(
ε1,1 + ε2,2 + ε3,3

)
δi,j + εi,j

)

Theorem 4.5 1) Suppose that l − λ
(j)
1 < δj − σ < l for j = 1, . . . , n and that the line Re λ = l + σ − β

does not contain eigenvalues of the pencil A(λ). Then Problem (4.22) has a unique solution u ∈ Λl,σ

β,~δ
(K)3

for arbitrary f ∈ Λl−2,σ

β,~δ
(K)3 and gj ∈ Λl−1,σ

β,~δ
(Γj)3.

2) Let u ∈ V 1,2
0 (K)3 be a solution of problem (4.23), where f ∈ H∗∩Λl−2,σ

β,~δ
(K)3 and gj ∈ Λl−1,σ

β,~δ
(Γj)3.

Suppose that l− λ
(j)
1 < δj − σ < l for j = 1, . . . , n and that there are no eigenvalues of the pencil A(λ) in

the strip −1/2 ≤ Re λ ≤ l + σ − β. Then u ∈ Λl,σ

β,~δ
(K)3.

Proof: The first part of the theorem follows immediately from Theorems 4.3 and 4.4. We prove the
second part for l = 2. Let V 2,2

β,~δ
(K) = W 2,2

β,~δ
(K) ∩W 1,2

β−1,~δ−~1
(K) ∩W 2,2

β−2,~δ−2·~1(K) and let V
3/2,2

β,~δ
(K) be the

corresponding trace space. Furthermore, let χ+ be a smooth cut-off function on K equal to zero near
the vertex of the cone and χ− = 1− χ+. Then χ±f ∈ V 0,2

β−σ±ε−3/2,~δ′
(K)3 and χg± ∈ V

3/2,2

β−σ±ε−3/2,~δ′
(Γj)3,

where δ′j = δj−σ−1+ε for j = 1, . . . , n and ε is an arbitrarily small positive number. Using [13, Th.5.5],
we conclude that χ±u ∈ V 2,2

β−σ±ε−3/2,~δ′
(K)` Now it suffices to note that a result analogous to Lemma 4.9

is valid for the Dirichlet problem in the spaces Λl,σ

β,~δ
. This implies χ±u ∈ Λ2,σ

β,~δ
(K)`. Thus, the theorem is

proved for l = 2. Applying Theorem 4.4, we obtain the result for l > 2.
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For example, for an arbitrary polyhedral cone one can choose l = 2, β = 2 and δj = 2 for j = 1, . . . , n.
We conclude from the second part of the last theorem that the weak solution u ∈ V 1,2

0 (K)3 belongs to
Λ2,σ

2,~2
(K)3 if f ∈ H∗ ∩Λ0,σ

2,~2
(K)3, gj ∈ Λ2,σ

2,~2
(Γj)3 and σ is sufficiently small. Since Λ2,σ

2,~2
(K)3 ⊂ Λ0,σ

0,~0
(K)3 this

means that u is Hölder continuous on K.
If K is convex, then one can choose, e.g., l = 2, β = 1 and δj = 1 for j = 1, . . . , n. Provided σ is

sufficiently small, we obtain u ∈ Λ2,σ

1,~1
(K)3 if f ∈ H∗ ∩ Λ0,σ

1,~1
(K)3 and gj ∈ Λ2,σ

1,~1
(Γj)3. This means that

even the first derivatives of u are Hölder continuous on K.

The Neumann problem for the Lamé system. We consider the problem

−µ
(
∆u +

1
1− 2ν

∇∇ · u
)

= f in K, σ(u)~n = gj on Γj . (4.24)

Again we give some results concerning the spectra of the pencils Aj(λ) and A(λ). If the angle θj at the
edge Mj is greater than π, then the eigenvalue of the pencil Aj(λ) with smallest positive real part is
λ

(j)
1 = ξ+(θj)/θj , where ξ+(θ) is the smallest positive solution of the equation ξ−1 sin ξ + θ−1 sin θ = 0

(see, e.g. [6, Sect.4.2]). Note that 1/2 ≤ λ
(j)
1 < 1 for π < θj ≤ 2π. If θj < π, then the eigenvalues with

smallest positive real parts are λ
(j)
1 = 1 and λ

(j)
2 = π/θj .

Furthermore, we mention that the eigenvalues of the operator pencil A(λ) lie outside the strip −1 <
Re λ < 0 if the cone K is Lipschitz. The number λ = 0 is the only eigenvalue on the line Re λ = 0. The
eigenvectors corresponding to the eigenvalue λ = 0 are the constant vectors. Generalized eigenvectors
corresponding to this eigenvalue do not exist (see [6, Th.4.3.1]).

By a weak solution of problem (4.24) we mean a vector function u ∈ H = W 1,2

0,~0
(K)3 satisfying

∫

K

3∑

i,j=1

σi,j(u) εi,j(v) dx =
∫

K
f · v dx +

n∑

j=1

∫

Γj

gj · v dx (4.25)

for all v ∈ H. We assume that the right-hand side of (4.25) defines a continuous functional on H. This
assumption is satisfied, e.g., for vector functions f ∈ C0,σ

β,~δ
(K)3 and gj ∈ C1,σ

β,~δ
(Γj)3 with compact supports

if β − σ < 5/2 and δj − σ < 2, j = 1, . . . , n.

Theorem 4.6 1) Let f ∈ Cl−2,σ

β,~δ
(K)3, gj ∈ Cl−1,σ

β,~δ
(Γj)3, l ≥ 2. Suppose that the line Re λ = l + σ− β is

free of eigenvalues of the pencil A(λ) and the components of ~δ satisfy the inequalities

l− ξ+(θj)
θj

< δj−σ < l if θj > π, max(l− π

θj
, 0) < δj−σ < l, δj−σ 6= 1, 2, . . . , l−1 for θj < π. (4.26)

If δj − 1 < l − 1 we assume additionally that the boundary data satisfy the compatibility condition (1.9).
Then there exists a unique solution u ∈ Cl,σ

β,~δ
(K)3 of problem (4.24).

2) Suppose that f ∈ Cl−2,σ

β,~δ
(K)3 and gj ∈ Cl−1,σ

β,~δ
(Γj)3, where β is such that the strip −1/2 < Re λ ≤

2 + σ − β contains at most one eigenvalue, the eigenvalue λ = 0, of the pencil A(λ) and the components
of ~δ satisfy (4.26). Furthermore, we assume that the boundary data satisfy the compatibility condition
(1.9) if δj − σ < l − 1. Then the weak solution u has the representation u = c + v, where c is a constant
vector and v ∈ Cl,σ

β,~δ
(K)3.

Proof: The first part follows from Theorems 4.1, 4.2 and Remark 4.3. The second part can be proved
analogously to Theorem 4.5. Let first l = 2 and let χ± be the same cut-off functions as in the proof of
Theorem 4.5. Then χ±f ∈ W 0,2

β−σ±ε−3/2,~δ′
(K)3 and χg± ∈ W

1/2,2

β−σ±ε−3/2,~δ′
(Γj)3, where δ′j = δj − σ− 1 + ε

for j = 1, . . . , n and ε is an arbitrarily small positive number. Using [13, Le.5.4,Th.5.3] and the above
given property of the pencil A(λ), we conclude that χ±u = c + v±, where v± ∈ W 2,2

β−σ±ε−3/2,~δ′
(K)`.

Lemma 4.9 yields v± ∈ C2,σ

β,~δ
(K)3. This implies the desired representation for u in the case l = 2. Using

26



Theorem 4.2, we obtain the result for l > 2.

Let, for example, K be a Lipschitz cone, f ∈ C0,σ

2,~2
(K)3, gj ∈ C1,σ

2,~2
(Γj)3, where σ ∈ (0, 1) is such that

σ < min(ξ+(θj)/θj) (here the minimum is taken over all j with θj > π) and the strip 0 < Re λ ≤ σ is
free of eigenvalues of the pencil A(λ). Then there exists a constant vector c such that u− c ∈ C2,σ

2,~2
(K)3 ⊂

C0,σ
0,0 (K)3. This means, in particular, that u is Hölder continuous in K.

5 The problem in a bounded domain

5.1 Formulation of the problem

Let G be a bounded domain of polyhedral type in R3. This means that

(i) the boundary ∂G consists of smooth (of class C∞) open two-dimensional manifolds Γj (the faces of
G), j = 1, . . . , n, smooth curves Mk (the edges), k = 1, . . . ,m, and corners x(1), . . . , x(d),

(ii) for every ξ ∈ Mk there exist a neighborhood Uξ and a diffeomorphism (a C∞ mapping) κξ which
maps G ∩ Uξ onto Dξ ∩B1, where Dξ is a dihedron of the form Kξ ×R with a plane wedge Kξ and
B1 is the unit ball,

(iii) for every corner x(j) there exist a neighborhood Uj and a diffeomorphism κj mapping G ∩ Uj onto
Kj ∩B1, where Kj is a cone with vertex at the origin.

We consider the problem

Lu = f in G, u = gj on Γj for j ∈ J0, Bu = gj on Γj for j ∈ J1, (5.27)

where

Lu = −
3∑

i,j=1

∂xj

(
Ai,j(x)∂xiu

)
+

3∑

i=1

Ai(x) ∂xiu + A0(x)u, Bu =
3∑

i,j=1

Ai,j(x)nj ∂xiu,

J0 ∪ J1 = {1, 2, . . . , n}, J0 ∩ J1 = ∅. The corresponding sesquilinear form is

b(u, v) =
∫

G

( 3∑

i,j=1

Ai,j∂xiu · ∂xjv +
3∑

i=1

Ai∂xiu · v + A0u · v
)

dx.

Let H = {u ∈ W 1,2(G)` : u = 0 on Γj for j ∈ J0}, where W 1,2(G) denotes the Sobolev space of all
functions quadratically summable on G together with their derivatives of first order. As in the previous
sections, we assume that Ai,j = A∗j,i for i, j = 1, 2, 3. Furthermore, we suppose that

|b(u, u)| ≥ c1 ‖u‖2W 1,2(G)` − c2 ‖u‖2L2(G)` for all u ∈ H (5.28)

with certain positive constants c1 and c2.

5.2 Model problems and corresponding operator pencils

We introduce the operator pencils generated by problem (5.27) for the singular boundary points.
1) Let ξ be an edge point, and let Γj+ , Γj− be the faces of G adjacent to ξ. Then by Dξ we denote the

dihedron which is bounded by the half-planes Γ◦j± tangential to Γj± at ξ and consider the model problem

L◦(ξ, ∂x)u = f in Dξ, u = gj± on Γ◦j± for j± ∈ J0, B(ξ, ∂x) u = gj± on Γ◦j± for j± ∈ J1,

where

L◦(ξ, ∂x) = −
3∑

i,j=1

Ai,j(ξ) ∂xi∂xj , B(ξ, ∂x) =
3∑

i,j=1

Ai,j(ξ)nj ∂xi .
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The operator pencil corresponding to this model problem (see Section 4.2) is denoted by Aξ(λ). Further-
more, we denote by λ1(ξ) the eigenvalue with smallest positive real part of Aξ(λ) and set

µj = inf
ξ∈Mj

Re λ1(ξ) for j = 1, . . . ,m.

2) Let x(k) be a corner of G and let J (k) be the set of all indices j such that x(k) ∈ Γj . By our
assumptions, there exist a neighborhood U of x(k) and a diffeomorphism κ mapping G ∩ U onto K ∩ B1

and Γj ∩U onto Γ◦j ∩B1 for j ∈ J (k), where K is a polyhedral cone with vertex 0 and Γ◦j are the faces of
this cone. Without loss of generality, we may assume that the Jacobian matrix κ′(x) coincides with the
identity matrix I at x(k). We consider the model problem

L◦(x(k), ∂x)u = f in K, u = gj on Γ◦j for j ∈ J
(k)
0 , B(x(k), ∂x)u = gj on Γ◦j for j ∈ J

(k)
1 ,

where J
(k)
0 = J0 ∩ J (k), J

(k)
1 = J

(k)
1 . The operator pencil generated by this model problem (see Section

4.2) is denoted by Ak(λ).

5.3 Smoothness of weak solutions

We introduce the weighted Hölder space Cl,σ
~β,~δ

(G; J̃), where J̃ denotes the set of all j = 1, . . . , m such that

Mj ⊂ Γk for at least one k ∈ J0 (i.e. the Dirichlet condition is given on at least one face Γk adjacent to
the the edge Mj), l is a nonnegative integer, 0 < σ < 1, ~β = (β1, . . . , βd) ∈ Rd, ~δ = (δ1, . . . , δm) ∈ Rm,
δj ≥ 0 for j 6∈ J̃ . We denote by rj(x) the distance of x to the edge Mj , by ρk(x) the distance to the
corner x(k), by r(x) the distance to S (the set of all edge points and corners), and by ρ(x) the distance
to the set X = {x(1), . . . , x(d)}. Furthermore, let Gj,k = {x ∈ G : rj(x) < 3r(x)/2, ρk(x) < 3ρ(x)/2} and
kj = [δj − σ] + 1. Then Cl,σ

~β,~δ
(G; J̃) is defined as the set of all l times continuously differentiable functions

on G\S with finite norm

‖u‖Cl,σ
~β,~δ

(G;J̃) =
∑

|α|≤l

sup
x∈G

d∏

k=1

ρk(x)βk−l−σ+|α|
m∏

j=1

(rj(x)
ρ(x)

)hj(δj−l−σ+|α|) ∣∣∂α
x u(x)

∣∣

+
∑

1≤j≤m, j 6∈J̃

d∑

k=1

∑

|α|=l−kj

sup
x,y∈Gj,k

|x−y|<ρk(x)/2

ρk(x)βk−δj

∣∣∂α
x u(x)− ∂α

y u(y)
∣∣

|x− y|kj+σ−δj

+
∑

|α|=l

sup
|x−y|<r(x)/2

d∏

k=1

ρk(x)βk

m∏

j=1

(rj(x)
ρ(x)

)δj

∣∣∂α
x u(x)− ∂α

y u(y)
∣∣

|x− y|σ .

Here, the functions hj are defined as hj(t) = t for j ∈ J̃ , hj(t) = max(t, 0) for j 6∈ J̃ . For J̃ = {1, . . . , m}
and J̃ = ∅ we will use the notation Cl,σ

~β,~δ
(G; {1, . . . ,m}) = Λl,σ

~β,~δ
(G) and Cl,σ

~β,~δ
(G; ∅) = Cl,σ

~β,~δ
(G). The trace

spaces on Γj for Λl,σ
~β,~δ

(G), Cl,σ
~β,~δ

(G) and Cl,σ
~β,~δ

(G; J̃) are denoted by Λl,σ
~β,~δ

(Γj), Cl,σ
~β,~δ

(Γj) and Cl,σ
~β,~δ

(Γj ; J̃),
respectively.

We consider the solution u ∈ H of problem (5.27) with homogeneous Dirichlet conditions (i.e., gj = 0
for j ∈ J0). This means that u satisfies the equation

b(u, v) =
∫

G
f · v dx +

∑

j∈J1

gj · v dx for all v ∈ H. (5.29)

Suppose that f ∈ Cl−2,σ
~β,~δ

(G; J̃)`, gj ∈ Cl−1,σ
~β,~δ

(Γj ; J̃)` for j ∈ J1, where l ≥ 2, 0 < σ < 1, the strip
−1/2 < Re λ < l + σ − βk contains no eigenvalues of the pencil A(λ), k = 1, . . . , d, and the components
of ~δ satisfy the inequalities

l − µj < δj − σ < l for j ∈ J̃ , max(l − µj , 0) < δj − σ < l, δj − σ 6= 1, 2, . . . , l − 1 for j 6∈ J̃ .

Under these conditions, the right-hand side of (5.29) defines a continuous functional on H.
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Theorem 5.1 Under the above assumptions on f and g, the solution u ∈ H of problem (5.29) belongs
to Cl−2,σ

~β,~δ
(G)`.

Proof: We restrict ourselves in the proof to the Neumann problem. The proof for the Dirichlet and
mixed problems proceeds analogously. Suppose first that the support of u is contained in a sufficiently
small neighborhood U of the corner x(k). By κ we denote a diffeomorphism mapping G ∩ U onto K ∩ V,
where K is a cone with sides Γ◦j and vertex at the the origin, and V is a neighborhood of the origin. We
assume that κ′(x(k)) = I. Then the vector function ũ(x) = u(κ−1(x)) is a solution of the problem

L̃(x, ∂x) ũ = f̃ in K, B̃(x, ∂x) ũ = g̃j on Γ◦j , j ∈ J (k),

where f̃(x) = f(κ−1(x)), g̃j(x) = gj(κ−1(x)), and L̃, B̃ are differential operators of second and first order,
respectively. Here the principal part L̃◦(0, ∂x) of L̃ with coefficients frozen at the origin coincides with
L◦(x(k), ∂x). Analogously, B̃(0, ∂x) = B(x(k), ∂x). ¿From the inclusions f̃ ∈ Cl−2,σ

βk,~δ
(K)`, g̃j ∈ Cl−1,σ

βk,~δ
(Γ◦j )

`

it follows that f̃ ∈ W l−2,2

β′k,~δ′
(K)`, g̃j ∈ W

l−3/2,3

β′k,~δ′
(Γ◦j )

`, where β′k = β − σ + ε− 3/2, δ′j = δj − σ − 1 + ε, ε is

an arbitrarily small positive number. Hence, by [13, Th.7.1], we have u ∈ W l,2

β′k,~δ′
(K)`. Let χ be a smooth

cut-off function equal to one near the origin and to zero outside the unit ball, and let χε(x) = χ(x/ε).
We introduce the operators

L̃ε = χεL̃(x, ∂x) + (1− χε)L̃◦(0, ∂x), B̃ε = χεB̃(x, ∂x) + (1− χε)B̃(0, ∂x)

For a vector function ũ with sufficiently small support in a neighborhood of the origin we have L̃ũ = L̃εũ
and B̃ũ = B̃εũ. Obviously, the operators Ãε = (L̃ε, B̃ε) and Ã0 =

(
L̃◦(0, ∂x), B̃(0, ∂x)

)
are continuous

operators

Cl,σ

βk,~δ
(K)` ∩W l,2

β′k,~δ′
(K)` → Cl−2,σ

βk,~δ
(K)` ∩W l−2,2

β′k,~δ′
(K)` ×

∏ (
Cl−1,σ

βk,~δ
(Γ◦j )

` ∩W
l−3/2,2

β′k,~δ′
(Γ◦j )

`
)
. (5.30)

¿From Theorems 4.1 and 4.2, Lemma 4.9 and [13, Th.4.2,Th.5.3] it follows that Ã0 is an isomorphism.
Since, the difference Ãε − Ã0 is small in the operator norm (5.30) for small ε, it follows that Ãε is an
isomorphism (5.30) if ε is sufficiently small. From this we conclude that ũ ∈ Cl,σ

βk,~δ
(K)`. This proves

the theorem for solutions u with support in a small neighborhood of the angle x(k). Analogously, this
assertion can be proved for the case when the support of u is contained in a small neighborhood of an
arbitrary edge point. Using a partition of unity on G, we obtain the result for arbitrary u ∈ H.

Remark 5.1 In the case J (k) ⊂ J1 the number λ = 0 is always an eigenvalue of the pencil Ak(λ). If this
is the only eigenvalue in the strip −1/2 < Re λ < l+σ−βk, the eigenvectors are constant and generalized
eigenvectors corresponding to λ = 0 do not exist, then the solution u ∈ H has the representation u = c+v
in a neighborhood of x(k), where c is a constant vector and v ∈ Cl−2,σ

~β,~δ
(G)`.

Using a result analogous to Lemma 4.2, one can prove the same regularity assertion for the weak
solution of problem (5.27) with inhomogeneous Dirichlet conditions and boundary data gj ∈ Λl,σ

~β,~δ
(Γj)`,

j ∈ J0.
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