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ABSTRACT. Classical boundary integral equations of the harmonic potential theory on Lip-
schitz surfaces are studied. We obtain higher fractional Sobolev regularity results for their
solutions under weak conditions on the surface. These results are derived from a theorem
on the solvability of auxiliary boundary value problems for the Laplace equation in weighted
Sobolev spaces. We show that classes of domains under consideration are optimal.
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INTRODUCTION

e During more than a hundred years successful attempts to study boundary integral equa-
tions generated by elliptic boundary value problems in domains with nonsmooth boundaries
were made (for the history, see [Ke2|, [Ma4]). In particular, a comprehensive theory of inte-
gral equations on the boundaries of Lipschitz graph domains was developed in [JK1], [JK2],
[CMM], [Ver], [Kel], [Ca2], [Fab], [FKV], [DKV], [Cos]|, [MT1]-[MT5], and [MM]. All these
works concern solvability and regularity properties either in L,(0€2) or in fractional Sobolev
spaces WE(0Q), 0 < £ < 1.

Our goal is to study solutions of boundary integral equations in the fractional Sobolev
space sz(@Q) for p € (1,00) and ¢ > 1. Since the sole Lipschitz graph property of 9
does not guarantee higher regularity of solutions, we are forced to select an appropriate
subclass of Lipschitz domains depending on p and ¢ which allows to develop a solvability
and regularity theory analogous to the classical one for smooth domains. This subclass of
domains proves to be best possible in a certain sense.

Typeset by ApMS-TEX



2 V. MAZ’YA AND T. SHAPOSHNIKOVA
e We consider a bounded domain 2 C R", and we assume that its boundary 02 satisfies
the Lipschitz graph property, that is 9Q € C%!, which means that for every point O € 99
there exist a neighbourhood U and a Lipschitz function f on R~ such that
UNQ=Un{(z,y):z e R, y> f(x)}. (1)
We handle the internal and external Dirichlet problems
Aup =0in Q, trug = @4 on 09, (Dy)

and

Au_ =01in R™\Q, tru_ = p_ on 99,
u—(z) = O(|z[*™") as |z] — o0, (D-)

where the boundary trace is denoted by "tr”, as well as the internal and external Neumann
problems

Avy =0 in €, aaL: =14 on 0f), (NS)
and
) Ov_
Av_ =0in R"\Q, —— =1_ on 09,
ov
v—(z) = O(|z[*™") as |z — oo, (N-)

where v stands for the outer normal with respect to 2.

In what follows, we exclude the case n = 2, which will simplify the presentation. The
changes required in formulations, in comparison with dimensions n > 2, are the same as in
the logarithmic potential theory for smooth contours. Our proofs, given for n > 2, apply
to the two dimensional case after minor changes.

e A classical method for solving problems (D4 )— (NL) is representation of their solutions
using the double layer potential

Do(z) = /(‘%CF(C —z)o(Q)dsc, ze€ R™09Q,
o

and the single layer potential

Sp(:) = [ D¢ = 2p(Odse, = € RMo9
o0
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where I' is the fundamental solution of A with singularity at the origin. Putting u+ = Doy
and vy = Sp4, one arrives at the boundary integral equations

(£3I+ D)oy = oy, (2=)
and

(£31 + D*) p = s, (34)
where D* is the adjoint of D given by

D'p(a) = [ T = 2)plOdsc
o0

Looking for solutions of problems (D) and (Ni) with boundary data ¢+ = ¢ and
1+ = 1 in the form uy = Sp and v+ = Do, one obtains the integral equations on 0f2

Sp=¢, (4)
and
0
5,00 = . (5)

e Under the assumption that 02 is sufficiently smooth, one can apply such powerful
tools as pseudodifferential calculus to equations (24 )-(5), which results in a comprehensive
theory of their solvability in various spaces of differentiable functions.

We will develop a regularity theory of (24 )-(5) with respect to the scale of the fractional
Sobolev spaces sz (092) under weak smoothness assumptions on 92, when the corresponding
results in the theory of pseudodifferential operators on 02 are unavailable at the present
time. As a substitute, we rely upon an approach proposed in [Mall]-[Ma4], which reduces
the study of boundary integral equations to the study of the inverse operators of auxiliary
boundary value problems.

In the case p(£ — 1) > n — 1, our sole restriction on € is the inclusion of its boundary
in the class Wz‘f which means that every function f in the above definition of the Lipschitz
graph domain belongs to Wﬁ(R"‘l).

In the opposite case p(¢ — 1) < n — 1, the space M sz (R™~1) of pointwise multipliers in
W]f (R™~1) is used to define an admissible class of domains. We say that 9Q belongs to the
class M]f if every point O € OS2 has a neighborhood U such that QN U is given by (1) with
f € COLR™ 1Y) subject to

VfeMW, (R

(here and elsewhere we do not differentiate between spaces of scalar and vector valued
functions in our notation). Furthermore, the surface 9Q is said to be in the class MS(8) if

HVf,Rn_l‘|MW§_1 <0, (6)
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where § is a positive number and |-, R"7!|| mwe—1 is the norm in the multiplier space
MW/(R™1). Obviously, M} = o ME(6).

Several conditions, either necessary or sufficient for 9 € M]f (6), will be discussed in
Section 6. In particular, the inclusion 9Q € MS(0) := 5ﬂ0 M/ (6) is guaranteed by the
>

! wq(Vig f,1) Pt
B ol g

0 e} t
where w, (V. f,t) is the L, continuity modulus of the vector V. f = {0%f/0x{* ..., 0x0" 7'},
with a1 + -+ ap—1 = |a| = k, and ¢ is any number satisfying (n —1)/(¢ — 1) < ¢ < oo for

pll—1)<n—landp<g<ooforpl—1)=n—1.
Clearly, any surface in the class C*t¢, € > 0, belongs to M]f (0). However, there are
surfaces in C* which are not in M]f . Note that 09 € M;; admits vertices and edges on 02

in the case p({ — 1) <n — 1.

condition

e We give our main result concerning the boundary integral equations (24)-(5). In its
statement and in the sequel the notation W5 (9€2) © g with g € (W,;(99Q))* stands for the
subspace of functions ¢ € W3 (99Q) such that [, ¥gds = 0.

Theorem 1. Letn > 2, p € (1,00), and let ¢ be a noninteger, £ > 1. Suppose that OS) is
{4 L ; —

connected, 9 € W, for p({ —1) > n —1 and 0Q € M,(5) with some 6 = 6(n,p,{) > 0 for
p(l —1) <n—1. Then the following assertions hold.

(i) The operator 51+ D is an isomorphism of W(0RQ).

(ii) The operator I + D* is an isomorphism of Wi=1(69).

(137) The operator S maps isomorphically W]f—l(asz) onto W]f((‘?SZ).

(iv) The operator (0/0v)D maps continuously W,(0S2) into W,(02) © 1. There is a
continuous inverse

o N
(51)) WETH09) o1 — Wi(09) o 1.

(v) There is a continuous inverse

_ op
(~11+ D) who) o1 — Wi o9) o o

where P is the Wiener capacitary potential of Q and OP/0v € W[=(0Q) N(W/(0))*. The
equality (—%I + D) 1 =0 holds.
(vi) There is a continuous inverse

(ir+ D) Wi ) o1 - W) o 1.

The equality (—%I + D*) OP/0v = 0 holds.

Counterexamples in Section 7.3 show that Theorem 1 fails if Mﬁ((S) is replaced by sz.
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e The invertibility properties of the operators :I:%I + D, :I:%I + D*, S, and (0/0v)D in
Theorem 1 result from solvability properties of problems (D+) and (Ny) collected in the
next Theorem 2 which are of independent interest. The continuity properties of D, D*, S,
and (0/0v)D stated in Theorem 1 are deduced from the part of Theorem 2 concerning the
transmission problem

Aw, =0in Q, Aw_ =0in R"\Q,

tr wy —tr w_ = ¢, ag;j — 8;;_ = 1) on 02,
w-(z) = O(Jz*™") as |z| — oc. (7)

In the formulation of Theorem 2 and in the sequel, we use the weighted Sobolev space
W}e(Q) endowed with the norm

1/p
Qg = [ st 0002 VeuIPds) -+ o, ™
Q

Besides, WII; @ (R™\Q2) stands for the space of functions subject to ||u, B\ﬁ”wg,a < oo for

an arbitrary open ball B containing .

Theorem 2. Letn > 2, p € (1,00), a =1 — {¢} — 1/p, where £ is a noninteger, £ > 1.
Suppose that 0N) € W:f forp(d —1) >n—1 and 0N € Mg(é) with some § = d(n,p,¥), for
p(l —1)<n—1. Then

(i) For every o € WE(OR) there exists a unique solution uy € WzgéHl’a(Q) of problem
(Dy) and

’|U+,Q||Wy1+1,a <c ||80+739||W;~ (8)

This solution is represented uniquely as (Doy )y with oy € Wf(@Q) subject to equation
(24). Moreover, uy can be represented uniquely in the form Sp with p € sz_l(@ﬂ) subject
to equation (4).

(ii) For every o_ € W[(OQ) there exists a unique solution u_ € Wﬂ;l’a(]l%”\ﬁ) of
problem (D_) and for every ball B with B D 2,

. B\ 61,0 < e(B) [l 0. (9)
This solution is represented uniquely in the form
u_(z) = (Do_)(2) + CT(z), z€R™Q,

where C' is a constant, the singularity of the fundamental solution I is situated in €2, and
o_ € WH(OR) ©1, is a solution of the equation

(~3I+D)o_=¢_ —CT on 9. (10)
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Moreover, u_ can be represented uniquely in the form Sp with p € W;f_l(aQ) subject to
equation (4).

(iii) For every v, € Wi=H02) & 1 there exists a unique solution vy € W,;[,K]H’OC(Q) of
problem (N) subject to vy L 1 on Q and satisfying

o2, Rlygrere < el OUyg-1. (1)
This solution is represented uniquely in the form
vi(2) = (Sp4)(2) +C, z€Q,

where C' is a constant, p4 € Wﬁ_l(aﬂ) © 1 and p4 satisfies (3+). Moreover, vy can be

represented uniquely as
v4(2) = (Do)(z)+C, z€Q,

where C is a constant and o € WE(0Q) & 1 satisfies (5).

(iv) For every ¢v_ € W1 (9Q) there existi a unique solution v_ € Wgﬁl’a(ﬂ%n\ﬁ) of
problem (N_) and for every ball B with B D €,

lv—, B\Q 101410 < e(B)[¢—, 0Q|yp-1. (12)

The solution is represented uniquely in the form (Sp—_)_ with p_ € W]f_l(aQ) subject to
equation (3_). Moreover, v_ can be represented uniquely as

v_(z) = (Do)(z) + CT'(2), z€R™Q,
where C' = — faQ W_ds, o € Wf(@Q) 61, and o is subject to the equation

o 0
gy (Do) =1 — O T_. (13)

(v) For every (p,) € WE(GQ) x WEL(99Q) there exists a unique 50lutz’0n_(w+,w_) €
WyHl’a(Q) X W[€]+1’Q(R”,Q) of problem (T) and for every ball B with B D ,

p,loc
lws, Qllywsre + o, B\Qll o410 < e(B)(llo, 0wy + 19,02 ye-1).  (14)

This solution is given explicitly by

Wy = (S?/J)i + (Dg&)i on R”\@Q. (15)

This theorem follows essentially from Theorem 3 in Section 3 concerning the Wy]“’a—
solvability of the Dirichlet, Neumann, and transmission problems for equations with non-
zero right-hand sides. A typical statement, contained in Theorem 3, runs as follows.
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Letn > 2,1 <p<oo, {>1,and {{} > 0. If 00 € W]f forp( —1) >n—1 and
E . o .
00 € M,(5) with some 6 = 6(n,p,£), for p(£ —1) < n — 1, then the mapping

WL (Q) 5 u — {Au, tr u} € WIITH2(Q) x WE(09Q) (16)
18 i1somorphic.
In the case p(¢ — 1) > n — 1 the last assertion can be inverted for a subclass of Lipschitz
domains: the isomorphism property of the mapping (16) implies 99 € sz (Theorem 4).
Note that this implication fails for the whole class of Lipschitz domains. As for the case
p(f — 1) < n — 1, several examples in Section 6 illustrate the sharpness of the condition
N € M]f (6) in formulations of Theorems 1-3. In particular, Example 8 shows that in

general the condition 0f) € Mﬁ(&) in Theorem 3 cannot be improved by 02 € M;f n o,

e Although we deal with the Laplace operator in this paper, it can be replaced with the
operator A;;0%/0z;0z; with constant matrix coefficients A;; = [[A7f[[}",—;, subject to the

symmetry condition Aj7 = A7} and the Legendre-Hadamard strong ellipticity condition
(Azjna 77)515; 2 6‘5‘2‘77’27 c = const > 07

for all vectors £ € R™ and n € R™. The statement of the interior and exterior Dirichlet
problems does not change whereas the Neumann condition is replaced by

rs . Ouzx
(1/, A7 tr 92, > =Y.

In particular, one may include the Dirichlet and traction problems for the Lamé system
of linear elastostatics

pAu~+ (A + p) Vdiv u = 0.

This generalization requires only obvious changes in the proofs of Theorems 2 and 3. Si-
milarly, the proof of Theorem 1 remains intact in spite of the fact that Do and D*p become
singular integrals unlike the case of the Laplacian. Our argument is independent of the
existing theory of integral operators and can be carried over verbatim. In particular, we
make no use of the above mentioned deep theory of the layer potentials on Lipschitz graph
surfaces, because a higher regularity of the surfaces and functions allows a direct treatment
of the integral operators and equations.

A straightforward modification of our arguments leads to analogous higher regularity
results in the theory of hydrodynamical potentials related to the Stokes system

vAu —Vp =0, divu =0,

(see, for instance, [Lad] and Sect. 2.2 in [Mad4]).
Another promising extension of our results could be based upon the fact that no estimates
for fundamental solutions are required and only local theory of elliptic boundary value
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problems is used. Hence, in principle, one can develop an analogous theory of boundary
integral equations for elliptic operators with nonsmooth coefficients for domains on (p,[)-
manifolds introduced in Ch. 6 [MS1].

e We outline the structure of this paper. In Section 2 we collect auxiliary information
about pointwise multipliers in the fractional Sobolev spaces sz and weighted Sobolev spaces
Wf’a. We introduce and study a class of mappings, the so-called (p, k, a)-diffeomorphisms,
preserving V[/;fvo‘7 which play a crucial role in the subsequent treatment of the boundary
value problems.

Properties of problems (Dy), (Ni), and (7) to be used in the analysis of boundary
integral equations are studied in Section 3 (Proposition 6). The next section deals with
continuity properties of the potentials and their normal derivatives. Here, in particular,
definitions of all integral operators involved in Theorem 1 are given. Proof of Theorems 1
and 2 can be found in Section 5.

The short Section 6 is devoted to a discussion of the class le(é). In Section 7 we give a
number of examples of domains which demonstrate the sharpness of our solvability results
for the Dirichlet and Neumann problems as well as for corresponding integral equations.
Finally, the appendix contains a proof of an auxiliary result used in Section 3.

2. TooLs

2.1 The spaces MW/ (R"™!) and MW} (R%).

By B, (z) we mean the ball {£ € R*™!: |¢ — z| < r} and write B, instead of B,.(0).
We shall need the spaces Sioc and Sunis of functions on R”~! defined as follows. By Sioc
we denote the space

{u:nu e S forall n € CF(R" 1)}

and by Sunif we mean the space

{u: sup [ngulls < oof,

where n¢(z) =n(z — &), n € C(R" 1), n =1 on By. The space Sunit is endowed with the
norm
||u||Sunif = S.l&l-p ||’r]€u||s'

Let sz (R™~1) denote the fractional Sobolev space with the norm
1Dp,ew, R* ™z, + [lu, Rz,

where

1/p
D) = ([ Fgule ) = GygualP = an) - an
Rn—1
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with Vq being the gradient of order [¢], i.e. Vi ={07,..., 0 i}, i+ + o1 = [{].

In this section we collect some known properties of multlphers in W;f (R” D). The equiv-
alence a ~ b means that a/b is bounded and separated from zero by positive constants
depending on n, p, and /.

Proposition 1. ([MS1], Ch.3). Let ¢ be a positive noninteger and p € (1,00). Then

17, Rl aswe ~ I1Dp,e R* Hlarwz -1,y + 7Rl (18)
which can be written as
_ | Dp.ev,elln 1
v, R™ e ~ sup —————— 4 ||, R o, (19)
P cpnt (Crple))/p
diam(e)<1

and Cy ,(e) is the (n—1)- dimensional (¢, p)-capacity of a compact set e C R"~! (see [AH],
Sect. 2.2).

Let R" denote the upper half-space {z = (z,y) : € R" 1,y > 0}. We introduce the
weighted Sobolev space W*(R" ) with the norm
[(min{1, y})* ViU, Ry |2, + [ (min{1, y})*U, RY |1,
where k is a nonnegative integer. We always assume that
—1<ap<p-1

It is well known that the fractional Sobolev space W]f —e~l/p (R™~1) is the space of traces
on R™"~! of functions in the space W)»*(R"), where p € (1,00) (see [Usp]). A similar result
holds for the space M W]f (R 1),

We introduce the extension operator T for functions given on R"~! as

(T)(z,y) / C(t)y(z + yt)dt (20)

where ¢ € C°(R™™1), ¢ >0, and [ ((t)dt =1.
Rn—1

Proposition 2. ([MS1], Sect. 5.1.3). Let k be a positive integer and 1 < p < oo.
(i) IfT € MW}(R?), then there exists the trace y of T onR"™!, v € MWE==1P(Rn-1)
and

(13) Let Vg € MW; “ l/p(]R”_l), where s is a nonnegative integer and let T be the
extension of v defined by (20).
Then Vs .(Tvy) € MW}F*(R") and

||V5,Z(T7)7 Ri ||MWI’jaa <c ||vs,m'77 R™! ||MW§—°¢—1/17- (21)
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Proposition 3. Let ' € MW}F*(R"%) and let Tg := |[I, R || . If g € CF1([~To,T)),
then g(T') € MW*(R'}) and

k
l9(@). R gy < €Y 199, [=T0, Dol o [T REI
j=0

Proof. The assertion is obvious for k = 1. Let it be valid for £ — 1. For all u € C§°(R’}) we
have

lug(T), R [yt < N9(0) Vet RY i+ g’ (D) VT, RE s+ ug(T), RY Iz,

By induction assumption the first term in the right-hand side does not exceed

k—1
VR fyys-rie S 19, [T, ol IT R e
j=0
Using the induction assumption once more, we obtain
Jug’ (0) VT R g
< clJuVT, RY [lypr-i.a Z 19 *Y, [=To, To]ll 2 IT R+”3\4wk La- (22)
We have
[V, R e < VTR gyt [ R e (23)

Unifying the inequality

IVE R gt =1y < €T RE [l 0.0 + e(€)IT, RE (| k.o
(with an arbitrary € > 0), proved in Lemma 3 [MS2], with
IT, RE [lypo.e < e [IT R [y .0 (24)
(see estimate (15) in [MS2]), we obtain
VTR oty < [T R e (25)

Interpolating between W}F*(R") and W2*(R") we find
1-1/k 1/k
ID R gy < e lTRE N T RE o
which by (24) implies
|IT, R” HMWk 1o < clT, R+||kaa.
Combining the last inequality and (25) with (22), (23), we complete the proof.
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Corollary. Let y € MWE(R"™Y) and let o := ||v,R" . If g € C (=70, 70]), then
9(v) € MWS(R™™1) and

[0]+1

HQOﬂ,Rn‘”Mﬂng§<3§:ImU%[—vadHLwHVJR”4HLM¢-
§=0

Proof. The result follows from Proposition 3 by putting I' = T, where T is defined by
(20), and by referring to Proposition 2.

2.2. (p, k,a)-diffeomorphisms.

In this section U and V are open subsets of R} = {z = (z,y) : # € R"" ',y > 0}. By
W]f’a(V) we denote the space of functions with the finite norm

(fmingr. = (Tsote i + \v(x,y>|P>dz)l/p,

where k is a positive integer, —1 < pa < p—1, and 1 < p < oco. A quasi-isometric
homeomorphism s : U — V will be called a (p, k, a)-diffeomorphism if the elements of its
Jacobi matrix s belong to the space of multipliers MW} —1(U).

The next proposition contains basic properties of (p, k, a)-diffeomorphisms, verified in
the same way as the corresponding properties of (p, k)-diffeomorphisms in Chapter 6 [MS1].
By ||+, UHMW;C—LC“ we denote the sum of the norms of the elements of »’ in the space

MWy=be(U).
Proposition 4. (i) If u € WF*(V) and 5 is a (p,k,a)-diffeomorphism: U — V, then
wosx € Whe(U) and

o0 5, U lygr < el Vo
1

(13) If 3 is a (p, k, a)-diffeomorphism, then =" is also a (p, k, a)-diffeomorphism.
(iii) If y € MW (V) and 5 is a (p, k, a)-diffeomorphism, then v o € MW}*(U) and

Iy o6 Ullarwgn < el Vil

(1) If 500 : U =V and 55 : V. — W are (p, k, a)-diffeomorphisms then their composition
wy 0 : U — W is a (p, k, a)-diffeomorphism.

Let T denote the extension operator defined by (20), where ((7) = 0 for |7| > 1. Consider
the Lipschitz domain

G={(z,y):xeR"", y> f(z)}, (26)
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where f is a Lipschitz function such that f(0) = 0 and |V f(z)| < L for almost all z € R*~1.
We introduce the mapping

x: RY S (&n) — (v,y)e G

by the equalities

x=¢ y=Kn+(Tf)&n), (27)
where K is a sufficiently large constant depending on L.

Proposition 5. Let ¢ be a noninteger, £ > 1, and let p € (1,00). If Vf € MWZf_l(R”_l),
then s is a (p, [{] + 1, «)-diffeomorphism.

Proof. First we show that for any £ € R"~* the mapping A\¢ : R} 5 — y = Kn+(Tf)(&,n)
is one-to-one, that the inverse mapping is Lipschitz and that

(Al < (K = L)~ (28)
e () = Ag (W] < eL(K — cL)7|ér — &ollrn-, (29)
where c is a constant depending on n. We fix x € R*~! and y € R}F. The operator

Tin— K Ny — (Te)(&n))

maps the segment {n : |n| < |y — f(z)|} into itself since

() < K~y = f(@)| + (T f)(En) = (TF)(E0)|
“Hy = f@)+ Lin) < A+ LKy = f()].

Besides, 7 is the contraction mapping, since |7(n1) — 7(n2)| < LK ~Y|n — n2|. Hence, there
exists a unique solution 7 of the equation

K'Yy —(Tf)(&n) =n,

or, equivalently, of the equation \¢(n) = v.
Let y1, y2 be arbitrary points in R} and let n; = )\gl(yj), j =1,2. The equality

m =12 =K' (y1 —y2 = (Tf)(@,m) + (Tf)(z,n2))

implies |71 — 02| < K=Y (Jy2 — y2| + L|n1 — n2|) which proves (28) by L < K. Since

Ve(Tf)(,n) = /c V(e + tn)dt

(Tf ) / C(t)EVF(E + t)dt (30)
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it follows from the equalities
y =KX () + (THE A W), 7=12

that

e (1) = A5 W) < LK ([[6 = Gallan— + NS () = Ag (0)])

which proves (29).
Thus, we showed the existence of the Lipschitz inverse mapping » ! defined by ¢ =
x,m = A;(y). The Jacobi matrix of s is given by

1 0
= (31)
Ve(Tf)  K+0(Tf)/on

where I is the identity (n — 1) x (n — 1)-matrix. Since det »’ = K+ 9(T'f)/0n and by (30)
|0(Tf)/On| < cL, it follows that det s’ > K — ¢L > 0. By Proposition 2, elements of '

belong to MWZEe]’a(R’}r) with o« =1 — {¢} — 1/p. The proof is complete. [
We say that a function ¢ defined on G belongs to the space sz (0G) if the function
R"! 5 2 — ¢(z, f(x)) belongs to WS(R™™'). This can be written as
€ W]f(aG) & P o x|gn-1 € W]f(]R”_l). (32)

By (32) and Proposition 4 (i), the inclusion u € W#Hl’a(G) implies tru € WS(9G) and
there exists a linear extension operator: sz(c?G) — W%Hl’a(G).
Note that (27) gives an extension of s to R™ = {(z,y) : z € R*7! y < 0}:
R™ > (&,1) — (z,y) € R"\G

and this extension has the same properties as the original mapping s». We preserve the
same notation s for the extended mapping so that now, s is a quasiisometric mapping of
R™ onto R™ and a (p, [¢] + 1, a)-diffeomorphic mapping of R’ and R onto G and R™\G,
respectively.

3. SOLVABILITY OF BOUNDARY VALUE PROBLEMS IN WEIGHTED SOBOLEV SPACES

Let W;,C’O‘(Q) be the space introduced before Theorem 2. We also need the weighted
Sobolev space W[ﬁ“’a(R”\ﬁ) supplied with the norm

1/p
o R\ g = (] ninfaise (w00, 1) (Vo )l + o))z )
RO\D
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Using a partition of unity and properties of the special Lipschitz domain (26) mentioned
at the end of the last section, we can introduce the space Wlf (092) and show that it is the
trace space for both WIEKHLO‘(Q) and Wﬂ“’“(w\ﬁ). We also need the space Wplo‘(Q)
obtained by completion of C§°() in the norm of W*(Q). By W, 1*(Q2) we denote the
space of distributions F' = go + div g with go € W)*(Q2) and g € (WO’O‘(Q))”. We supply
W, 1*(Q) with the norm

”FvQHWp—lva = inf(||gO,Q||W19,a + g, Q”(W;?"")n)v

where the infimum is taken over all representations F' = gy + div g.

The next theorem contains all information on auxiliary boundary value problems (D),
(N1), and (Z) to be used in the sequel.

Theorem 3. Let p € (1,00) and let « = 1 — {{} — 1/p, where { is noninteger, ¢ > 1.

Suppose that O € Wlf forp(l —1) >n—1 and 0N € M]f(d) with some § = d(n,p, L) for
p(l—1)<n-—1.
The mappings

WIHL(Q) 5 u — {Au, tru} € WIT1(Q) x WE(0Q), (33)
I/VE]Jr1 CR™MQ) D u— {Au—u, tru} € We] Lo(R™\Q) x We(ag) (34)
E]“ Q) 3> u— {Au—u, du/ov} € W[z L Q) x W]f (09), (35)
WMH YR™MQ) > u — {Au—u, Ou/ov} € W[Z H(R™M\Q) x W]f_l(aQ), (36)
WL Q) x WAL R™MQ) 3 (uy,u-)
ou ou_
— {Aug, Au_ —u_, tr(uy —u_), 6—: o
e (W=t Q) x WL RMQ) x WE(0Q) x WL (09)} (37)

are isomorphisms.

Proof. The continuity of the mappings (33)-(37) is obvious. Dealing with their invertibility,
we restrict ourselves to a detailed treatment of mapping (33), since the analysis of mappings
(34)-(37) is essentially the same. Let us show that the Dirichlet problem

Au=F in Q, wu=¢ on 00 (38)

with F' € WI[,Z]_LO‘(Q) and ¢ € W]f((?Q) is uniquely solvable in WI[,Z]H’Q(Q), and that

[, Q0 < e (1 Qlgp0-1.0 + 1@, 99w )-

Our starting point is the following auxiliary assertion.
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Lemma 1. Letp € (1,00), and let 0 < a + 1/p < 1. Suppose that the Lipschitz constants
of the functions f in (1) do not exceed a sufficiently small constant depending on n, p, and
«a. Then the mapping

W(Q) 3 u — {Au, tru} € W, Q) x WE~*"1/7(5Q)

s an 1somorphism.

This lemma, which is hardly new, will be proved in Appendix. Unfortunately, we could
find no direct reference to its statement and proof. We can only say that it is similar in
flavor to [GG] and [Tri], Sect. 5.7.2. By Lemma 1, problem (38) has a unique solution
u € W, *(Q). Therefore, it suffices to prove that this solution belongs to WIEZHI’O‘(Q).

Let U be a coordinate neighborhood of a point O € 02 and let V' denote an open set
such that O € V and V C U. We take a function y € C°(U),x =1 on V. Then

A(xu) = [A, x]u + xF.

Let s be the (p, [¢] + 1, @)-diffeomorphism defined by (27), where K = 1, and let o denote
its inverse. Clearly, ¢ maps U N 9€) onto an open subset of the hyperplane n = 0. Now,
(xu) o s satisfies the boundary value problem

XF) o+ ([A, x]u) o 5

div (AV((xu) o »)) = ( dct(o o ) (39)
(Xu) © %}Rn—l = (X(p) o (%|Rn—1)’ (40)

where
4= (07 0 3)*(0’ o x) (41)

det(o’ o x)

By Proposition 4 (i), (iii), the right-hand side of (39) belongs to W,[,Z]_l’a(R’}r) and the
Dirichlet data (40) are in WJ(R™"!). These data admit an extension ® € Wy]’Ll’a(Rﬁ).
Therefore, the function v := (yu) 0 3 — ® € W *(R"}) is a solution of the problem

div(AVv) —v=H on R}, v, , =0, (42)

where

XF) o+ ([A, x]u) o »

_
H= det(o’ o x)

—div(AV®) + & — (xu) o ». (43)

We shall consider the cases p(f —1) <n —1 and p({ — 1) > n — 1 separately.
The case p(f — 1) <n —1. Let 9Q € M (). By (31) and Proposition 2,

I — 5/, R o S| VER | pppeet.

n
+ HMW;L[]’
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This along with (6) and Proposition 2 implies

11— ARY < c|[VAR e < cd. (44)

||MWT[)‘-7]’°‘

We can replace [¢] in the left-hand side of (44) by any k& = 0,1,...[¢] because of the
imbedding M Wﬂ‘"(m) C MW}*(R). This imbedding follows from MW *(R%) =
Loo(R) D MW} (R) by interpolation between WI[;E]’O‘(R?_) and W) *(R") (see [Tri],
Sect. 3.4.2).

It is standard that there exists a bounded inverse (1 — A)~! to the operator 1 — A in R"}
with zero Dirichlet data on R™~!, acting from W} *(R’}) into WF~2*(R%), k = 0,1,...
(see [Tri]).

We write (42) in the form

v—(1-A)"1'Sv=(A-1)""'H (45)
with H given by (43) and

Sv =div((A — I)Vv).

This leads to the Neumann series

v = Z(u —A)IS)I(A-1)H

J

where the operator (1 — A)~!S has a small norm in WFtH*(R%), k = 0,1,..., owing to
(44).

Since H € W*(R%) and (A —1)"'H € W}*(R%), it follows that v € W}»*(R") and
therefore, yu € W>*(Q). Using the arbitrariness of the point O € 99 we derive that
u e W2(Q) and that

Hu,wng,a < C(HRQHWZQva + ”%QHWI}CY)

Now, the result for ¢ < 2 follows by reference to Lemma 1.
Let £ > 2. Using Proposition 4 and u € W2*(2) we obtain H € W»* (R’ ) which implies
v € W;”a(RZ‘r) by (45). Repeating this argument several times if necessary, we conclude

that u € W7T*(Q). This is the required result for p(f — 1) < n — 1.
The case p(¢ — 1) > n — 1. We have

JARY e < llf Ry, (46)

e
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Without loss of generality we may assume that ||V f,R"1||,_ < §, where ¢ is sufficiently
small. Then

I = ARy .. < ed. (47)

We introduce a cut-off function ¢ € C§°(Bs), ¢ = 1 on By and set ((£,n) = ((£/e,n/¢),
where ¢ is a small positive number. By (42)

div(AV(Cv)) — E_QCEU =g on RY, CEU‘Rn71 =0, (48)
where

g=CH+ VAV + div(vAV() — e 2w

with H and v defined as in the case p(£ — 1) <n — 1.

We know that u € W,*(2). Let us suppose that u € W»*(Q), 1 < k < [(]. Then
v e WP*RY) and H € Wi—1(R" ), which implies g € WpE=he(RT). We introduce new
coordinates (§/e,m/¢) and use the notations A, © and § for A, v, and ¢ as functions of
(&/e,n/e). Written in these dilated variables, problem (48) becomes

(1= A)(CD) — div((A = I)V(¢D)) = on RY, (|, =0.
By (46)

IVigA R [lyoe < e OmD/P) £ R |y

Besides, (47) holds with A replaced by A. Therefore, ||A — I, R || fpptee is sufficiently
small. This implies that the operator P given by

Pw = (1 - A)"'div((A — I)Vw)

is contractive in WFTH*(R%). Hence, (o € WFTh*(R") which implies u € With(Q).
This proves Theorem 3 for mapping (33).

We conclude with a few words about mappings (34)-(37). A direct analogue of Lemma 1
with A —1 instead of A and R™\Q) instead of €2 is required to prove the invertibility of (34).
As the first step in the treatment of mappings (35)-(37), involving the normal derivatives,
one shows that there exist the corresponding inverse mappings acting from

Wb (Q) x Wi 09), WHTHRMQ) x WEH(09),

and
/-1, l—1,a/mpn\ O 4 £—1
wii=te (@) x WL (R™MQ) x WE(99Q) x Wi—1(09)

into

1, Lioa/mn\ O 1« Lioa/mn\ O
Whe(Q), Whe®RN\Q), and Wh(Q) x Wh*(R™\Q),

p
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respectively. When handling (35)-(37), this fact plays the same role as Lemma 1 in the
above argument concerning (33). The proof of this fact is close to the proof of Lemma 1,
with mapping (27) instead of (100). Next, one needs only trivial changes in comparison
with the case of mapping (33) to establish the higher regularity of the solutions belonging
to each of the three just mentioned weighted Sobolev spaces. [J

Now we deduce certain properties of problems (D), (N+) and (Z) from Theorem 3.

Proposition 6. Let Q) satisfy conditions in Theorem 3. Then
1) For every € WE(OR) there exists a unique solution u, € Wit Q) o problem
P+ p + D
(D4.) subject to (8).
i1) For every o_ € W(OQ) there exists a unique solution u_ € WAt Lo pe\ 0 of
p p,loc
problem (D_) subject to (9).

(i1i) For every v, € Wi=H02) &1 there exists a unique solution vy € W,;[,K]H’OC(Q) of
problem (N.) subject to vy L 1 on Q and (11).

(iv) For every ¥_ € Wﬁ_l((‘)Q) there exists a unique solution v_ € Wﬂ:cl’a(R“\ﬁ) of
problem (N_) subject to (12).

(v) For every (v, ) € W]f((?Q) X WyHl’a(@Q) there exists a unique solution (wy,w_) €
WI[;EHLO‘(Q) X W[Z]H’Q(R”\ﬁ) of problem (Z) subject to (14).

p,loc

Proof. Assertion (i) was justified in Theorem 3.
Let us prove (ii). Since the local Lipschitz constant of 0f2 is small, the unique solvability

of problem (N_) in Wpl”fgc(R"\ﬁ) is standard. It suffices to prove that the solution u €

whe (R™\Q) belongs to W (R™\Q). Let x € C(R"),x = 1 on Q. Clearly,

p,loc p,loc
(1= A)(xu) = —xu — [A, xJu on R™\Q, tr(xu) = 0 on 9.
Since xu + [A, xJu € WF~h*(R™\Q) for u € WF*(R™\Q), it follows from Lemma 1 with

[4] replaced by k that u € WFth*(R™"\Q). Letting k = 1,..., [(], we arrive at (ii).

Proofs of (iii)-(v) require only obvious changes in this argment.

4. CONTINUITY PROPERTIES OF BOUNDARY INTEGRAL OPERATORS

We collect basic properties of the potentials Do and Sp with o € Wlf(aﬂ) and p €
WS=1(09) where, as usual, p € (1,00), £ > 1, and {¢} > 0.

Proposition 7. Let the notations Do and Sp refer to the double and single layer potentials
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defined on R™\0Q2. For almost all Q € ON) there exist the limits

(Do)(Q) —i%ﬁ / % o(¢)dsc,
OO\ B:(Q)
D@ =t oy [ s
OO\ B:(Q)
liny (Do)(2) = (21 + D)o (@)
zeQ
Iy (D)(2) = (= 41+ D)o(Q)
2€R™M\Q
: -1 p(¢)ds¢
(Sp)(Q) :== lim (Sp)(2) = g7 =,
= 5 n-2 ) [-@Q
So(5)1(Q) = Tm (@), (VSp)() = (~ 31+ D*)(@)
zeQ
9

5, 5P)-(Q) = lim (v(Q), (VSp)(2)) = (31 +D7)p(Q),

2ER™\Q

where (Sp)4 and (Sp)_ are restrictions of Sp to Q and R™\Q.

19

(49)

(50)

These classical properties of the layer potentials can be found in [Ver] for ¢ and p in
L,(0f)), where z — () means a nontangential approach. As a justification, a reference is
given in [Ver] to the methods developed in [CMM], [Call], and [FJR]. However, for our more
regular o and p, the above identities can be deduced directly by using the convergence of

the integral

/Iff )P +1p(Q) = p()I”
z|” 1+p{€} <
for almost every z € 0.
Proposition 8. The operators D, D*, and S satisfy
|Do, 00w < ¢ o, 02w
(D)4, Qo100 < cllo, 9wy
I(Do)—, B\Q 410 < e(B) |lo, 02wz
156, 09wy < llp, 99+
1(5P)+: Qllypa+1.0 < cllp, 0Q|yye-s
1(Sp)—. B\ g1, < e(B) |, 0 e+
1D p, 09l yys-+ < cllp. 0 1.
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where (Dp)+ and (Sp)+ are restrictions of Do and Sp to Q and R™\Q, respectively, and B
is an arbitrary ball containing 2.

Proof. Let us prove (54)-(56). Suppose o € W£(99). By Proposition 6 (v) the transmission
problem (Z) with ¢ = ¢ and ¥ = 0 has a unique solution (w;,w_) € WZEZHI’Q(Q) X
WMH’O‘(R”\Q) subject to

p,loc

[ws Qlyy 1.0 < clloy O [ye, (61)
lw—, B\Q|| 1.0 < e(B) |0, 9wz (62)

By Green’s formula, wy = D(wy —w_) = Do on R™\99 which implies (55), (56), and

Jtr 1w, 09wy < €0, 02wy

Since, Do = trw4 — /2 by (49), the last inequality leads to (54).

Combining (54) with (49) and (50) we see that tr (Do) and tr (Do) belong to W (92).
This together with Theorem 2 (i), (ii) lead to (55), (56).

We turn to the proof of (57)-(60). Let p € W/~'(8Q). By Proposition 6 (v) the

transmission problem (7) with ¢ = 0 and ¢ = p has a unique solution (wy,w_) €
WI[le’O‘(Q) X Wﬂ;@l’a(R”\ﬁ) subject to

[w, Qlyyie1.0 < el[th, 0Q|ye-1,

o, B\Q ygis1.e < e(B) [, 09 a1

By Green’s formula

. 8w+ ow_ .
ws = 5( 5 - ) = (s (63)
which implies (58), (59), and
ow_
Jtr w2 + 12 00 s < 0, O s (64)

Since D*p = dw_ /v — Lp by (53), we arrive at (60). Estimate (57) follows from (63) and
(64). O

We finish this section with discussion of properties of the normal derivatives of the double
layer potential with density in WS (09). By (55), the trace of V(Do) belongs to W/ ~*(0%2)
and defines a continuous operator: sz(aQ) — W]f_l((?Q).
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Proposition 9. Let o € WS(9Q). The operator defined by
0

= (Do)+(P) = (v(P), tx V(D)) (63)
maps WE(0) into WE=1(9Q) & 1 continuously and
0 0
5(D0)+ = g(Da)_ a.e. on 0. (66)

Proof. The components of v, expressed in a local cartesian system (z,y), depend smoothly
on Vf, where f is the function in (1). Since Vf € MWIf_l(R”_l), we conclude by Propo-
sition 3 that

veMWEI(09). (67)
Hence the operator

Wi0Q) 2o — %(DU)+(P) e Wi (09)

1s continuous.
Let us consider the solution (wy,w_) of problem (7°) with boundary conditions

dwy  dw_

trwy —trw_ =0 and 5 By 0 a.e. on 0f). (68)
By Green’s formula,
wy = Dtrwy — sy and S@w_ = Dtrw_ on . (69)
ov ov
Analogously,
w —Saw_ — Dtrw_ and S%—Dtrw on R™\Q (70)
T v - ov * '
Hence,
wy = D(trwy —trw_) = Do on €, (71)

w_ = D(trwy —trw_) = Do on R™\Q.
Now, equality (66) is a consequence of (68) and (Do) /0v L 1 follows from (71). O

The proposition just proved enables us to introduce the operator (0/0v)D by

(% D)o := %(Da)i (72)

and to conclude that (8/0v)D maps W} (95) into WE1(8Q) © 1.
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5. PROOF OF THEOREMS 1 AND 2

5.1 Proof of Theorem 1.

The continuity of the operators

D : WE(0Q) — W5 (09)
D*: szfl(aﬂ) — W]f*l(@Q)
S WEHOQ) — Wi(09)
)

5, D WE(0Q) — Wi (0Q) & 1

was established in Propositions 8 and 9.

Solvability of equation (21). Let uy € WI[,Z]H’Q(Q) satisfy problem (Dy) with ¢ €
WE(09). Then duy /0 € W1 (99). We find a solution v_ € W1/ (R™\Q) of problem
(N_) with ¢_ := Quy /Ov. By Green’s formula,

Ouy Ov_

u+:Dtru+—SE and SE:DtI"U_ on Q.

Hence, uy = D(truy —trv_) on Q. This together with (49) shows that oy = truy —tru_ €
WS(09) is a solution of (24).
We have

lo4, 0 we < |ltrug, OQ|ywe + [[trv—, OQ|ye
< o _.B\Q o).
_C(HU+,Q||Wg]+L + [|v ,B\Qllwgm ) (73)

By Proposition 6 (iv) and (67)

Ouy

HU_,B\QHWZLZHLQ < CH o

5 8QHW1§*1 <c ||U+, Q”WyHl’a'
The last norm does not exceed ¢ ||¢, 9€|w¢ by Proposition 7 (i) which together with (73)
leads to the estimate

o4, 0Qlwe < cllot, 0Qwe. (74)

Uniqueness for equation (24). Let (I 4+ D)o = 0 with o € sz(aﬂ). By Proposition 6

(v) we can find a solution (w,,w_) € WHT*(Q) x Wﬂ;;l’a(]l%"\ﬁ) of the transmission

problem for the Laplace equation on R™\0Q2 with boundary conditions (68). By (69),
wy = (Do)4. It follows from (49) and the definition of ¢ that trw; = 0. In view of
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Proposition 6 (i), w4 = 0 which together with (68) implies dw_/0v = 0. Proposition 6 (iv)
gives w_ = 0 and hence 0 = trwy — trw_ = 0. This completes the proof of (i).

Solvability of equation (3_). Let v_ € WMH’O‘(R”\Q) satisfy problem (N_) with ¢_ €

p,loc
W/, =1(8Q). Then trv_ € WS(99Q). We find a solution u, € WyHl’a(Q) of problem (D)
with ¢4 = trv_. By Green’s formula, v_ = S(0v_/0v — duy /Ov) which implies that
p— = Ov_/Ov — duy [Ov € W=(0Q) satisfies (3_).
By (67)

o=+ 09lyyg-+ < et Voo, 00 s + 1t Toug, 02 yg)

<c (”U_, B\QHWZ[)eHLa + HU+, QHWZEe]JrLa).
Owing to Proposition 6 (i), the last norm does not exceed c |[tr v, 0€2||yy¢ which is majorized
by ||v_,B\§||W[z]+1,a. Hence,
p
o= 9%y < o, B\ v,
Reference to Proposition 6 (iv) results in the estimate

o, 8QHW]ffl <clly-, 6)Q”szfL

Uniqueness for equation (3_). Let (%I + D*)p_ = 0, where p_ € sz_l(aﬂ). By

Proposition 6 (v) we can find a solution (w4,w_) € Wy]H’O‘(Q) X Wﬂ;l’a(]l%”\ﬁ) of the

transmission problem for the Laplace equation on R™\92 with boundary conditions

ow_ 3w+
trwy —trw_ =0 and 5 " 5y —P- on 0. (75)
By Green’s formula,
ow_ ow =
w_ =S8 5 — Dw_ and Sa—;—Dw+:O on R™\Q. (76)
Hence
ow_ 811)4. n\ =
w_ =S ( 9 —W) = Sp_ on R™\Q.
By (53)
ow_ .
5, = (21 +D")p-

which implies dw_ /v = 0 on 9. Using Theorem 2 (iv) we see that w_ = 0 on R™\Q.
This and (75) gives trwy = 0. Proposition 6 (i) shows that w; = 0. Therefore, p_ = 0 by
(75). This completes the proof of assertion (ii).
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We turn to assertion (iii).

Solvability of equation (4). Let uy € W,[,Z]H’O‘(Q) be a solution of (D4 ) with ¢4 := ¢ €

W]f(aﬁ). By u_ we denote a solution of (D_) with ¢_ := ¢, u_ € Wﬂ:cl’a(R”\ﬁ). Using

Green’s formula we obtain uy = S(Ju_ /v — duy /Ov) which together with (67) implies
that p = Qu_ /v — Quy /Ov € W)=1(09Q). Hence, p is a solution of (4). We have

Ou ou_
B L N

< C(||u+,Q||WZ[7e]+1,a + ||u,,B\§||W}[)e]+1,a>,

and in view of Proposition 6 (i), (ii),

1o, O ye-r < cllep, OQ |y

Uniqueness for equation (4). Let p € WS=(02) and Sp = 0 on Q. By (51), tr (Sp)+ =0
which together with Proposition 6 (i), (ii) implies (Sp)+ = 0. Since p = 9(Sp)_/ov —
9(Sp)+/0v by (52) and (53), it follows that p = 0.

Our next goal is assertion (iv).

Solvability of equation (5). Let ¢ € sz_l((‘)Q) © 1. By Proposition 7 (iii) there exists a
solution vy € WIEZ]H’Q (Q) of problem (N, ) with boundary data v, unique up to an arbitrary

constant term. By v_ we denote a unique Wy%:cl’a(R”\ﬁ)—solution of problem (N_) with

the same boundary data 1 which exists by Proposition 6 (iv). Let 0 = trvy — trv_. Then
(68) holds and by (69), vy = D o. This together with (72) gives (5). Choosing the value of
an arbitrary constant term in v; we obtain o L 1.
We have
o, 0w < by —Tros, 09 we + trv- — T, 09y,

where the bar over a function stands for its mean value. Hence,

llo, 8Q||W§ < ||vg —troy, Q||W;[7£]+1,a + ||U_,B\§||W;[)e]+1,a,

where B is a ball containing Q. Using Proposition 6 (iii), (iv), we obtain
lo; 0w < iy, 0]y e-r.
Uniqueness for equation (5). Let o € WS=(0€2) and let 8(Do)/dv = 0 on 9Q. By (72),

d(Do) 4 /0v = 0 and therefore, by Proposition 6 (ii), (iv), (Do) = const, (Do)_ = 0. It
follows from ¢ = tr (Do)4 — tr (Do)_ that o = const.
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Solvability of equation (2_). We recall that the capacitary potential P of €2 is a unique
solution of problem (D_) with the Dirichlet data 1 and that

oP
— —ds = cap () > 0.
aq Ov

Suppose that ¢_ € Wi(0Q) © OP/0v. Let u_ € Wﬂ:cl’a(R”\ﬁ) satisfy problem (D_).
Then du_ /v € W[~1(99Q) and

_ _ P
6Lds = Ou tr Pds = / Y- a—ds =
oq OV oa OV o0

By Proposition 6 (iii), there exists a solution vy € WI[,K]H’O‘(Q) of problem (N}) with
4 = Ou_/0v and vy L 1 on Q. By Green’s formula,

u_:Sau—_—Dtru_ and S%

5 = Dtrv, on R™\Q.

Hence, u— = D(trvg — tru_). This together with (50) shows that trvy — tru_ € W/(99)
is a solution of (2_).
From (D1)_ = 0 and (50) we find (—31 + D)1 = 0. Therefore, the function

o_:=truy —tru_ —trog +tru_
satisfies (2_). Clearly,

o= 0QUws <  (lltrvs, 0w + lleru_, 92 we)

< C(HU_,_,QHWyHl,a + ||u_,B\ﬁ||W]£z]+1,a). (77)

By Proposition 6 (ii) and (67)
Ou_ _
1o+, Qllyasre < ell—5—=, 0 we-r < ¢ flum, B\Q|y 1410

for an arbitrary ball B D Q. The last norm does not exceed ¢ ||¢_, 99w by Proposition
6 (ii), which together with (77) leads to

lo—, 0wy < cllo—, 0|y

Uniqueness for equation (2_). Suppose that o € ij(@Q) and (—1I + D)"'o = 0. By

Proposition 6 (v) we can find a solution (w4,w_) € Wy]H’O‘(Q) X Wﬂ:cl’a(R”\ﬁ) of the

transmission problem for the Laplace equation on R™\0Q with boundary conditions (68).
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In view of (70), w_ = (Do)_. It follows from (50) and the definition of o that trw_ = 0.
By Proposition 7 (ii), w— = 0 which together with (68) implies dw, /Ov = 0. Proposition
6 (iii) gives wy = const and hence o = trw, — trw_ = const. The result follows by o L 1.

Solvability of equation (34). Let vy € WI[;E]H’O‘(Q) satisfy problem (N.) with ¢, €
ij_l(@(l) © 1. We assume that vy L 1 on 2. We find a solution u_ € Wﬂ:cl’a(]l%n\ﬁ) of
problem (D_) with p_ :=trv, € W(9Q). By Green’s formula,

vy = Dtrog — —8;+ and S—%u_ = Dtru_ on .
v v
Hence,
ou_ 8U+
vy =5 v v )

This together with (52) shows that du_/0v — dvy /Ov € W]f_l((%)) is a solution of (34).

Since SOP/dv = 1 on Q, it follows from (52) that (—11 + D*)0P/0v = 0. Therefore,
the function

Ou_  Ovy oP
Pt '_W_E+CE’ C = const, (78)

satisfies (34). The constant C' can be chosen to have py L 1 on 992. By (78) and (67)

14,02 1 < e (lltr Vou, 92 s + ltr Va, 00 o)

S C(HU-F?QHWI[)@]JFLQ + Hu_,B\ﬁHWILg]JFLQ).

Owing to Proposition 6 (iii), the last norm does not exceed c |[tr v, 09w which is ma-
jorised by ¢ ||vi, Q| +1.o. Hence,
P

s 0 gpes < o, g

Reference to Proposition 6 (iii) results in the estimate
o4 0%ye-1 < s, Oy

Uniqueness for equation (34). Let (=3I + D*)py = 0, where p, € W/=1(0Q) & 1. By
Proposition 6 (v) we can find a solution (w4,w_) € W,EéHl’a(Q) X Wﬂ:cl’a(]R”\ﬁ) of the
transmission problem for the Laplace equation on R™\92 with the boundary conditions

dw-_  dwy
ov ov

trwy —trw_ =0 and = p4 on ON. (79)
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By Green’s formula,

0 ow_
wy = Dtrwy — T and S 2= = Dtrw_ on Q. (80)
v v
Hence,
ow—  Ow
w+:S( 5 8;) = Sp4+ on (L
Owing to (52)
aw-i- *
0 (=51 + D%)py
which implies Owy /Ov = 0 on 0. Using Proposition 6 (iii), we see that wy = const on Q.
This and (79) gives tr w_ = const which implies w_ = constP. Using (79) again, we obtain

p+ = constOP/0v. This together with p, 1 1 completes the proof of assertion (v). O
Now, we are in a position to prove Theorem 2 stated in Introduction.
5.2 Proof of Theorem 2.

All assertions concerning the solvability of problems (Di), (Nx), and (7), as well as
estimates (8)-(14) have been proved in Proposition 6. We need to justify the representations
of the solutions to these problems by layer potentials.

(i) By Theorem 1 (i), there exists a unique solution oy € W}(8Q) to equation (2;). By
(49) and (55), (Do), is a solution of problem (D) in W TH%(Q). Hence, u; = (Do),
by Proposition 6 (i).

Theorem 1 (iii) implies the existence of a unique solution p € W]f_l((?Q) to equation
(4). From relations (51) and (58) we obtain that (Sp)4 is a solution of problem (D) in
WyHl’a(Q). Hence, uy = (Sp)+ by Proposition 6 (i).

(ii) By Theorem 1 (v), equation (10) has a solution o_ € Wlf(aQ) © 1 if and only if

oP
_—Cl')—ds=
/60(90 C )ayds 0

which is equivalent to

P
a—ds.

C= Y_
o0 aV

By (50) and (56), the function (Do_)_ + C'T'_ is a solution in Wﬂ:cl’a(]l%”\ﬁ) to problem
(D-). Hence, u_ = (Do_)_ + CT_ by Proposition 6 (ii).
According to Theorem 1 (iii), there exists a unique solution p € WE™1(8Q) to equation

(4). Using (51) and (59) we find that (Sp)_ is a solution of problem (D_) in W[E]’LI’Q(R"\Q).

p,loc
Hence, u_ = (Sp)_ by Proposition 6 (ii).
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(ili) In view of Theorem 1 (vi), there exists a unique solution py € Wi=1(9Q) & 1 to
equation (34). From (52) and (58) we obtain that (Sp); is a solution of problem (N5) in

WyHl’a(Q). Therefore, vy = (Sp)+ + C. The constant C' can be chosen to ensure vy L 1
on 2.
By Theorem 1 (iv), there exists a unique solution o € Wﬁ(@Q) ©1 to equation (5). From

(65) and (55) we find that (Dco)4+C is a solution of problem (A ) in WyHl’a(Q). Choosing
C' to ensure the orthogonality of (Do) +C and 1 on 2, we conclude that vy = (Do) +C.

(iv) Theorem 1 (ii) implies the existence of a unique solution p_ € sz_l((‘?Q) to equa-

tion (3_). It follows from (53) and (59) that (Sp_)_ is a solution of problem (N_) in
Wﬂ:cl’a(R"\ﬁ). Hence, v_ = (Sp_)_ by Proposition 6 (iv).
By Theorem 1 (iv), there exists a unique solution o € W]f((‘)Q) © 1 to equation (13)

provided

C=— W_ds.
o0

It follows from (72) and (56) that (Do)_ + CT_ is a solution of problem (N_) in the space

Wﬂjcl’a(R”\ﬁ). Therefore, v_ = (Do)_ + CT'_ by Proposition 6 (iv).

(v) We note that (Sv)++(Dy)4 belongs to WyHl’a(Q) and that (Sv)_+(Dyp)_ belongs
to Wgﬁl’a(R”\ﬁ) by (55), (58) and (56), (59), respectively. Furthermore, (Sv)+ + (D)

satisfies the boundary conditions of problem (7°) by (49), (50), (51), (53). The equality
wy = (SY)1 + (D)4 results from Proposition 6(v). The proof of Theorem 2 is complete.

6. SURFACES OF THE CLASS M (6)

Let p(¢ — 1) <n—1. According to Theorem 3.2.7/1 [MS1], the condition 0f) € sz(d) is
equivalent to the inequality

1D £ B gyt gy + IV £ R o, < (81)

Using known descriptions of the space M(W/~'(R"™!) — L,(R""')), stated in analytic
terms ([MS1], [KSa], [MVe], [Ve]), one can give various equivalent formulations of (81).

The following local characterization of sz(&) is contained in Lemma 7.8.1 [MS1]. Let n
be an even function in C§°(—1,1), n =1 on (—-1/2,1/2). We put

n(z) = { n(lzl/¢) if p(f —1) <n,
) n(loge/log|z|) if p(¢ — 1) = n.

Inequality (81) is equivalent to

lim sup HV("]sf)an_lHMWZf*1 < co.

e—0



HIGHER REGULARITY IN THE LAYER POTENTIAL THEORY 29

The following local condition, equivalent to 9 € M/(§), was obtained in [MS1], Sect.
7.7 and 7.8:
for every point O € 0N there exists a neighborhood U such that (1) holds with f satisfying

1i ( ”Dp,@(.ﬂBs)ve”Lp
im ([ sup

eCBe (Céfl,p(e)) e

; ||Vf,BE||Lw) <5, (s2)

where B. = {¢ e R"1 [{| < e},

_ P 1/p
Dp,e(f,Bg)(x)=</B Vigf(z) = Vigf(Q)l dC) '

FRISEETD

€

Simpler conditions sufficient for 9Q € M/ () can be obtained from (82) combined with

the well known inequality between the capacity and the Lebesgue measure:
ifp(l —1) <n—1, and

1 D N4 vas yellL,
hi%<suP Dot n)—1—|:|w—1> + ||vfuBs||Loo) < ¢d,
g eCBs (mesn_l(e)) (n—1)p

and if p(l —1)=n—1 and
i sup g (nes, -1 (€[~ /7 1Dy (£, Bo)vela, + IV £B]. ) < co
€~V \eCB.

then 02 € Mg(é).
This leads to the following condition, sufficient for 0S) € Mﬁ([)):

00 € Bf, and |[Vf,R" L < 6,

which is mentioned in Introduction (see [MS1], Corollary 7.7/2). ( Condition 89 € B,
can be improved for p(£ — 1) = n — 1, if one uses the Orlicz space Lyp(iog, 1)p—1 instead of
L, with an arbitrary ¢ but we shall not go into this.) Note that 02 € Bﬁo’p means that the
continuity modulus wiy of Vg f satisfies

1 P
wie (£)\ " dt
/0 <—t{£} " < 00, (83)
which implies, in particular, that any surface 9 in the class Cl-14+e with an arbitrary

e > 0 belongs to M}(0). O

The next example shows that condition (83), sufficient for 9Q € M](0), is sharp. It
demonstrates, in particular, that there exist surfaces in C14:1¢} which do not belong to M]f.
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Example 1. Let T denote a domain in R? with compact closure and the boundary OT.
By B7(~2) we denote the open disk of a sufficiently small radius r centered at an arbitrary
point O € OT. We assume that B! 7T = {(z1,y) € B® iz eRy > F(z1)}. Let
B = {a/ e R"2: |2/| < p}, where 2’ = (22, ... ,2,) and let n € C(BY" ), np=1
on B%n_z). Also let f(x) = F(x1)n(z') and U = BY? x Bén—2)_ We construct a bounded
domain 2 C R™ satisfying (1) whose boundary is smooth outside U. According to [MS1],
Sect. 3.3.2, for any increasing function w € C0, 1] satisfying the inequality

1 )
5/5 w(t)g—i—/o w(t)% < cw(d),

[Gaya-~

one can construct a function f of the above form such that the continuity modulus of Vi, f
does not exceed cw with ¢ = const, and

as well as the condition

f¢Wh(RM. (85)

Therefore, 0 ¢ Mﬁ. In the case 0Q € ClUAYL we have w(t) = t1 which implies (84).
Hence, the last inclusion is not sufficient for 02 to be in M;f . g

Now we shall see that surfaces in the class Mﬁ(d) with p(£ — 1) < n — 1 may have conic
vertices and s-dimensional edges if s <n —1—p(f —1).

Example 2. Let s be an integer, 1 < s <n —1, and let x = (x1,... ,2,_1) € R*71,
We use the notations £ = (z1,...,2s) and n = (Zs41,...,Zn—1). Consider the domain
G = K,_s x R* where K,,_; is the (n — s)-dimensional cone

{(n,y) :y>—-Alnl}, A= const>0. (86)

The well known equivalence relation

1/p
o R s~ ([ lot6 ) R )

1/p
([ I Rl (57)

implies that the Hardy type inequality

|U|pd:13 n—1p
/Rnl @D = cllo,R* e (88)
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holds for all v € C§°(R™™1) if and only if

[w|Pdn —1-
< n S|P
/R pppe=ny < © IR s

holds for all w € C§°(R™~17%). Tt is standard that the last inequality is valid if and only if
p({ —1) < n—1—s. One can easily check that D, ¢|n| = c|n|*~*. Hence, (88) is equivalent
to Dpeln| € M(W/S=H(R"™!) — Ly(R"1)). By (18) and (19), the last inclusion can be
written as V|n| € MW/~ (R"!). Thus, the domain G belongs to M/ N C%! if and only if
s <n—1—p(f—1). Under this restriction on the dimension of the edge, 0G € Mf(c A). O

Remark 1. Suppose that for any point O € 02 there exists a neighborhood U such
that U N Q is C*°-diffeomorphic to the domain R® x {(z,y) : vy > f(Ts41,.---,%n-1)},
0 <s<n-—2 ie. the dimensions of boundary singularities are at most n — 1 — s. Then
relation (87) shows that (6) is equivalent to

IV f, Rnilis”]\/j’v[/zf—l <co
and, in particular, it takes the form
||v f; ]Rn—l—s”v[/]f;:lif < co

if n—1—s < p(¢—1) < n—1. Inother words, 9 € M[(6) if and only if (n—1—s)-dimensional
domain {(z,y) : y > f(Ts41,.-. ,Tn—1)} belongs to Mf(cé).

7. SHARPNESS OF CONDITIONS IMPOSED ON 0Of)

7.1. On the necessity of inclusion 0f) € Wlf in Theorem 3.

We start out with showing that the condition 9€) € W]f is necessary for the solvability
in W#]H’a(ﬂ) of the Dirichlet problem

Au=ge W), uloa = ¢ € Wy (09) (89)
provided €2 is subject to some regularity assumptions. It is worth noting that certain
additional conditions on 9€) should be imposed to guarantee the above statement. For
example, it is well known that the problem

Au=g¢€ L), ulga=0

is uniquely solvable in WZ(Q) for any convex domain which is not necessarily in VV23 /2
(p=2,a=0,¢=23/2).
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Theorem 4. Let one of the following conditions hold:
either £ € (1,2), 0Q € C1, and the continuity modulus w of the normal to S satisfies
the Dini condition

/0 w(t)% < 00, (90)

or £ >2 and 00 € C1=1H1,
If for every ¢ € WS(0Q) problem (89) has a solution u € WZEZHI’Q(Q), a=1-{{}-1/p,
then 02 € W]f.

Proof. Let ¢ be a nonnegative function vanishing on U N 0€), where U is an arbitrary
coordinate neighborhood. It is well known that condition (90) guarantees that u € C(Q)
and the outer normal derivative at any point of U N 0f2 is positive. Let us use the mapping
A = 3! with s introduced in Section 2.2. Since f € CU-LY(R"!) and V,u, u, €
Wl (V N Q) for any set V with V' C U, it follows that V,u o A and u, o A belong to
W2 (5(V N Q)). Therefore, tr (V,uo\) and tr (u, o \) are in WS((V n0%)). Observing
that (W]f N Loo)(22(V N ON)) is a multiplication algebra, we conclude that

Vf=—tr(Vyuo)/tr(u,o\) € W]f(%(V NoN)).

The result follows from the arbitrariness of V and U.

Remark 2. By the above proof we have shown that the inclusion 0f2 € W]f is necessary

for the solvability of problem (D) in WyHl’a(Q) for all p € W]f((‘)Q) under the conditions
imposed on 0f2 in Theorem 4. Note that 0€2 W]f is also sufficient in the case p(/—1) > n—1
by Theorem 2.

7.2. Sharpness of inclusion 0f) € Bﬁo,p.

Using Remark 2 we show in the following example that no condition on 02 weaker than
99 € B, , (condition (83)) can give the solvability of problem (D) in W,Eng’a(Q) for all
Yt € WIf(@Q). We recall that 092 € BY_  is sufficient for 99 € Mg(d) and hence for this

oo,p

solvability in the case p(¢ — 1) < n — 1 (see Theorem 2 and Sect. 5).
Example 3. Let 2 be the domain described in Example 1. By (85) and Theorem 4,
problem (D) for Q is not generally solvable in W#]H’Q(Q) if o € WS(09).

The next example of the same nature demonstrates the sharpness of the conditions
00 € sz and 0N € Bﬁo’p for the solvability of the Neumann problem.

Example 4. We use the domains 7" and €2 from Example 1. Let 0T be a simple contour
and let (o, 3) denote the arc B N OT. We choose an arbitrary point 7 € 9T \(«, #) and
introduce a function v € Wlf_l(ﬁT) equal to zero on («,3) and at the point 7, negative
on (7,a) and positive on (3, 7). We require also that = is orthogonal to one on 97T. Since
T € Cl4=11 the problem

Ah =0in R*\T, 0h/0v =~ on OT
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has a solution h € (I/V][EﬂOC N Loo ) (R?\T).
Let ¢ € C5°(R?), ¢ = 1 on T and let n be the cut-off function from Example 1. The

function v(z,y) = h(x1,y) ((z1,y) n(z’) satisfies the Neumann problem
Av—v=gin R"\Q, 0v/0v =1) on 09 (91)
with

g = hAn +29VAV( € WHRMQ) c WL (R™\Q)

and
¥ =ndh/Ov + hon/dx € W, (09Q).

If the problem (91) is solvable in Wy]H’Q(R”\ﬁ) for all g € Wy]_l’a(R”\ﬁ) and ¢ €
WS=H(09), then v € Wi (RM\Q) and hence h € WTH(R2\T). By x we denote a

p,loc
conjugate harmonic function of h such that h(a) = 0. Clearly, x € W,EEHI’&(RQ\T). Since

the first derivative of x|sr is equal to 7, it follows that x = 0 on B7(n2) NOT and x > 0 on 97T
Repeating the proof of Theorem 4 with R?\T and y|sr instead of Q and ¢, respectively,

we obtain that 0T € ij which implies 02 € sz. However, this is not true in view of (85),

and therefore, problem (91) is not solvable in WyHl’a(R”\ﬁ), in general. One sees that no

matter how weak the violation of the inclusion 0f2 € Bf;o’p be, it may lead to the breakdown
of the solvability in Wy]ﬂ’a (Q), p(¢ — 1) < n, for the Neumann problem (91).

7.3 Sharpness of the condition 9Q € M/ (4) in Theorem 3.

It was mentioned before Theorem 4, that the inclusion 02 € W]f is not necessary for

the solvability of the Dirichlet problem in W#Hl’a(Q). Hence, there is no necessity of
the condition M} (6). However, we show in this section that inclusion 9Q € M](d) is best
possible in a certain sense. In fact, the following two examples demonstrate that inequality
(6), where p(£ —1) < n—1 and ¢ is not small, does not suffice, in general, for the W#Hl’a—

solvability of the Dirichlet and Neumann problems.

Example 5. Let a domain €2 coincide with the domain G in Example 2 in a neighborhood
of the origin. We adopt the same notations as in Example 2. Let u be a positive harmonic
function in Q, satisfying tru = ¢, € Wll)(aQ) with ¢ vanishing on U N 9. It is well

known that for small r = (|n|? + y2)!/?

u(@) = C(E)r'e(w) + O(r™), (92)

where 1 > Ay > A > 0, w = (n/r,y/r), ® is smooth on {(n,y) € K,—s : 7 = 1}, and C
is smooth and positive near the origin of R%. Moreover, the asymptotic relation (92) is

infinitely differentiable and therefore u € WZEZ}H’O‘(Q) if and only if n — 1 —s > p(f— ). If
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s < n — 2, one can make A arbitrarily small by choosing sufficiently large A in (86). In the
case s = n — 2, we have A > 1/2 and A — 1/2 can be made arbitrarily small by increasing
the value of A.

According to Example 2, 02 € M£ if and only if n —1 —s > p(¢ — 1). At the same
time, one can choose A to have u ¢ WyHl’a(Q) if and only if n — 1 —s <pl for s <n—2
and 1 < p(f —1/2) for s = n — 2. Thus, the inclusion 9Q € M/ N C%* does not imply the
solvability of (D4) in WyHl’a(Q) for all ¢ € WS(8Q) if pl > n—1—5> p({ —1) for
s<n—2and p({—1/2) >1>p(l—1) for s=n—-2. 0

In the next example we shall see that the inclusion 0f2 & Mif(é) in Theorem 3 cannot be
replaced by 0f2 € M]f N Cl, for a particular choice of p and /.

Example 6. Let the domain {2 be described in a neighborhood of O by the inequality
y > f(x), where

f(x) = Cn(x,0)|z.[/log(|z1])

with C' > 7 /4 and n € Cg°(B1/2), n = 1 on By 4. By ((t) we denote the conformal mapping
of the domain

{t =x1 +ixg : |t| < 1/2, x5 > Clz1|/log(|x1])}

into the half-disk {¢ : Im{ > 0, |(| < 1}, ¢(0) = 0. By virtue of Sect. 7.6.1 [MS1], the
function u(z) = n(22)Im ¢(z; + iz2) does not belong to W2 () and satisfies the Dirichlet
problem

Au = fe Ly(), truzgoEWQ?’/Q(@Q). (93)

Replacing © by R"\Q and using the function v(z) = 7(2z)Re((z1 + iz2), we arrive at a
solution of the Neumann problem

Av—v=f€LyQ), 0v/dv=1ecW,>00), (94)

which does not belong to W2(€2). Thus, there is no solvability in W2(Q2) and in W2 (R™\Q)
of problems (93) and (94) in spite of the inclusion 0f2 € ]\423/2 nct.

The same result can be obtained for problem (N_) by making small changes in the above
argument. We require that the domain Q is such that R™\Q coincides with the domain G
from Example 2 near the origin O. We note that there exists a harmonic function in R™\Q
satisfying ou/dv = ¢_ € sz_l(@Q) with ¢_ = 0 in a neighborhood of O such that the
asymptotic representation (92) holds with C'(0) # 0. The rest of the argument is literally
the same as in the case of problem (D).
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7.4 Sharpness of the condition 9Q € M/ (4) in Theorem 1.

Here we give counterexamples concerning the solutions o and p of integral equations (2)
and (3_). First we show that solvability properties of (21 ) and (3_) proved in Theorem 1
may fail if 9Q € M/ N C%' and 9Q ¢ M(6).

Example 7. Let us consider the domain () at the beginning of Example 2 with n = 3
and s = 0. Now we deal with the three dimensional conic singularity {z = (r,0,w): r >
0,0<0<7m—¢,0<w< 27}, where ¢ > 0 and 0 is the angle between y-axis and z.

We asume that the functions ¢4 and ¢_ in (24) and (3_) vanish near the vertex of this
cone. It was proved in [LeM] that solutions of (24) and (3_) may have the asymptotic
representations

0+ (2) = 0(0) + e [2]* + O(|=['F9),
p—(2) = c2 |71+ O(|"))

with 4 > 0, 0 < A < 1, and nonzero c¢; and cy. The exponent A can be made arbitrarily
small by diminishing the value of €. Also note that these asymptotic formulae can be
differentiated. According to Example 2, 02 € sz if and only if p(¢ — 1) < 2. However, for
pl > 2, one can choose A in the cone (70) so large that o, ¢ Wﬁ(@Q) and p_ ¢ Wlf_l(é?ﬂ).
Now, suppose that p_ € W]f_l(ﬁfl) is a solution of (4) with ¢ = 1 near O, 0 < p <1
on 0f). Let us denote the solutions of the interior and exterior Dirichlet problems for the
Laplace equation with the same boundary data ¢ by u; and u_. It is well known that

Viu_(2) = o(|z]F71) as|z| = 0for k=1,2

and

ut(2) = cl2| a(0) (1 +o(|2]*)) as |z =0,

where p > 0, « is smooth, o/(m —¢) # 0, and A > 0 can be made arbitrarily small by
choosing a sufficiently small ¢ > 0. The above asymptotics of u, can be differentiated.
Hence, p = 0u_ /Ov — Ju, /Ov admits the differentiable representation

p(z) = 32" 71 (1 + o(|2]"))

which contradicts the inclusion p € W}=(09). O
We finish with an example demonstrating that, in general, the condition 02 € Mﬁ(é) in
Theorem 1 (iii) cannot be improved by 09 € Mf N C 1,

Example 8. Consider the same domain (2 as in Example 6. Let p € W21 / *(09) be a
solution of (4) with ¢ = 1 near O and 0 < ¢ < 1 on 9. By uy and u_ we mean the solution
of interior and exterior Dirichlet problems for the Laplace equation with truy = ¢. Using
the conformal mapping ¢ — ((t) one can show that u admits the differentiable asymptotic
representation
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uy(2) = H(&) Im¢(t) (1 + [log |t |71) as [t] — 0,

where § = (z3,... ,2,-1,y) and H is a smooth function, H(0) # 0. We also have Viu_(z) =
o(|z|F~1) as |z| — 0 for k = 1,2. Hence p = Ou_/0v — Ouy /Ov admits the differentiable
representation

p(z) = c H(€) [og|t] [*“/™ (1 + [log |t]|)

for sufficiently small |¢| and |¢| — 0. One can check directly that the function in the right-
hand side does not belong to I/V21 /% in any neighborhood of O for C' > 7 /4. If the condition

0N € WQ?’ / %(6) in Theorem 1 (iii) could be replaced by € € VV23 /% C1', one would have a
contradiction.

7.5 Appendix: proof of Lemma 1.

Since 9Q € C%1, it follows from the extension theorem from [Usp] mentioned between
Propositions 1 and 2 that problem (38) can be reduced to the case ¢ = 0.

Let qu (Q) be the completion of C§°(£2) in the norm of W/ (2) and let Wq_,l(Q) stand
for the dual of W (Q2). We choose s = 5(p, @) so that the imbeddings

Whe(Q) ¢ WHQ), (95)
W(Q) C W (Q), (96)
W, () c W) (97)

hold. By Hoélder’s inequality these imbeddings follow from
s>p, s<p/(1+ap) for a>0,

ss>p, s<p for a =0,
s >p/(1+ap), s<p for a<O0.

We can put, for example,

s=+(1+min{p/(p—1—ap), p}) for a <0

and
s = %(1 + min{p/(l + ap), p}) for a > 0.

Since s’ > 2, the operator

WL(Q) s u— Aue W, Q) (98)
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is a monomorphism. We show the existence of a bounded inverse to (98) defined on W ().

Let ' € W_,'(Q) and let u € W} () be a solution to problem (38) with ¢ = 0. We
denote by U a small coordinate neighborhood of a point O € 9€) and by V an open set such
that O € V and V C U. We take a function x € C$°(U),x = 1 on V. Then

A(xu) = [A, x]u + X F. (99)
Let s be the bi-Lipschitz diffeomorphism: R’} > (§,1) — (x,y) € G defined by

=& y=n+f(&), (100)

and let o denote its inverse. Clearly, o maps U N 02 onto an open subset of the hyperplane
1n = 0. Now, (xu) o s satisfies the boundary value problem

div (AV((xu) o »)) = (xF) o ¢+ ([A, x]u) 0 >x on R} (101)
(xu) 0 5|g,—1 =0, (102)

where
A= (0" 03x)* (0’ 0 x). (103)

Obviously, the right-hand side of (39) belongs to W, '(Q2). Therefore, the function v :=
(xu) o 3 € WL (R™) is a solution of the problem

div(AVv) —v = H on R, Uan_l =0, (104)
where
H = (xF) 0 52+ (I8, xJu) 0 3¢ — (xu1) o 5. (105)
Clearly,
17 =5/ R ||z <clVAR |z,
which implies
I —ARY L. <e, (106)

where ¢ is sufficiently small.
It is a classical fact that the Dirichlet problem

—Aw+w=go+divg on R}, w =0 (107)

Rn—1

with go € Ly(R’) and g € (Ly(R’}))", 1 < ¢ < 00, is uniquely solvable in qu (R%). (This
follows from the representation of w and the continuity of a singular integral operator in
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L,(R™).) Let (1— A)~! stand for the inverse operator of problem (107). We write (104) in
the form

v—(1-A)1Sv=(A-1)""'H (108)

with H given by (105) and

Sv =div((A — I)Vv). (109)
This leads to the Neumann series
v=> (1-A)"'Sy(A-1)""H, (110)
=0

where the operator (1 — A)~"S has a small norm in W, (R") for every ¢ € (2,s'] owing to
(106). Hence
o, RY lws < ell(A—=1)7 H Ry ;.

Using (105) and the arbitrariness of the point O € 0f2, we obtain
lu, Qflwy < e(I1F, Q-+ + [lu, Qlz,)- (111)

By Sobolev’s imbedding theorem, u € Lo, /n—2)(2) if n > 2. Thus, u € W21n/(n—2)(Q)
by (111). Using Sobolev’s theorem again, we see that u € Loy /(;,—4)(2) if n > 4 and

u € Ly () if n < 4. Therefore, by (111), u € W;n/(n_4)(ﬂ) if n >4 and v € WL(Q) if

n < 4. Repeating this argument m times, m > n(s’ — 2)/2s’, we conclude that u € W (Q)
and arrive at the estimate

[u, Qlwy, < e (1F Dy + 1w Qs )

This implies
[, lw, < e (1F Dy + flus Q)

< (1B Qo+ 1F. Q) < eI F QY yyr.
Hence, operator (98) is isomorphic. By duality, the operator

WD) > u— Aue W Q) (112)
is isomorphic as well. This fact, combined with (95), shows that the operator

.17l -1,
AW Q) — Wb (@)
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is a monomorphism.
Let F € W, () and let u € W (Q) be a solution of (38) with ¢ = 0. In view of (96),
u € W,*(2). It remains to prove the estimate

1, Q.o < C[IF, Q10 (113)

It is well known that there exists a bounded inverse (1 — A)~! to the operator 1 — A in
R’} with zero Dirichlet data on R"~! acting from W)~2(R" ) into W*(R"), k = 1,2,...
(cfr. [GG], [Tri]). Using this inverse, we write (104) in the form (108) and arrive at the
Neumann series (110), where the operator (1—A)~1S has a small norm in W, *(R" ) owing
to (106). Hence,

o, R e < € [[(A = 1) HLRY 1.0

Using the arbitrariness of the point O € 92 and (105), we obtain
o, g < (1 Uy + s ) (114)
It follows from the one-dimensional Hardy inequality that for an arbitrary small g > 0
[, Qoo < 0 l|u, Qllyyr.e + Cleo) [Ju, Q| L, - (115)
Since the operator (112) is isomorphic and the imbedding (97) holds, we have
Ju, Az, < erllu, Qwr < o [F,Qfly -+ < ea |[FQyy e,
which, together with (114) and (115) completes the proof.
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