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Abstract. We consider uniformly strongly elliptic systems of the second order with
bounded coefficients. First, sufficient conditions for the invariance of convex bodies obtained
for linear systems without zero order term in bounded domains and quasilinear systems of
special form in bounded and in a class of unbounded domains. These conditions are formu-
lated in algebraic form. They describe relation between the geometry of the invariant convex
body and the coefficients of the system. Next, necessary conditions, which are also sufficient,
for the invariance of some convex bodies are found for elliptic homogeneous systems with
constant coefficients in a half-space. The necessary conditions are derived by using a cri-
terion on the invariance of convex bodies for normalized matrix-valued integral transforms
also obtained in the paper. In contrast with the previous studies of invariant sets for elliptic
systems no a priori restrictions on the coefficient matrices are imposed.
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1 Main results and background

We consider linear systems of the form

A(x,Dx)u =
n∑

j,k=1

Ajk(x)
∂2u

∂xj∂xk
+

n∑
j=1

Aj(x)
∂u

∂xj
= 0 (1.1)

and certain quasilinear systems of the second order. Here Dx = (∂/∂x1, . . . , ∂/∂xn), u =
(u1, . . . , um), Ajk and Aj are bounded real (m × m)-matrix-valued functions in a proper
subdomain Ω of the Euclidean space Rn with boundary ∂Ω and closure Ω. Without loss of
generality we suppose that Ajk = Akj. We assume that the operator A(x,Dx) is uniformly
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strongly elliptic in Ω, i.e. that the inequality(
n∑

j,k=1

Ajk(x)σjσkζ, ζ

)
≥ δ|σ|2|ζ|2 (1.2)

holds with a positive constant δ for all vectors σ = (σ1, . . . , σn), ζ = (ζ1, . . . , ζm) and points
x ∈ Ω. Here and henceforth by | · | and (·, ·) we denote the length of a vector and the inner
product in the Euclidean space.

We are interested in conditions for the invariance of sets for system (1.1) and some quasi-
linear systems. We will not suppose beforehand that the principal part of a system under
consideration satisfies structural restrictions such as scalarity or diagonality.

The notion of invariant set for parabolic and elliptic systems and the first results con-
cerning these sets appeared in the paper by Weinberger [32]. By definition, a set S ⊂ Rm

is called invariant for elliptic system of the second order in a domain Ω if any continuous
in Ω and bounded classical solution u = (u1, . . . , um) of this system belongs to S under the
assumption that u|∂Ω ∈ S. It is noted in [32] that the componentwise maximum princi-
ple and the classical maximum modulus principle for parabolic and elliptic systems can be
interpreted as statements on the invariance of an orthant and a ball, respectively.

Henceforth by S we denote the closure of an arbitrary convex proper subdomain of
Rm. For brevity we say that S is a convex body. By ∂∗S we mean the set of points
a ∈ ∂S for which there exists the unit outward normal ν(a) to ∂S. We use the notation
NS = {ν(a) : a ∈ ∂∗S}. Here end in the sequel tA stands for the transposed matrix of A.

In section 2 we find the following sufficient condition for the invariance of convex bodies
for system (1.1).

Theorem 1. Let Ω be a bounded domain in Rn. Let S be a convex body in Rm and let the
coefficients of the system A(x,Dx)u = 0 in Ω satisfy the equalities

tAjk(x)ν = ajk(x;ν)ν , tAj(x)ν = aj(x;ν)ν (1.3)

for all x ∈ Ω and ν ∈ NS with ajk, aj : Ω×NS → R, 1 ≤ j, k ≤ n.
Then S is invariant for the system A(x,Dx)u = 0 in Ω.

Quasilinear systems of the form

B(x,Dx)u =
n∑

j,k=1

Bjk(x,Dxu)
∂2u

∂xj∂xk
= 0 (1.4)

in bounded and in a wide class of unbounded domains Ω are also considered in Section 2,
where u = (u1, . . . , um), Bjk are bounded real (m×m)-matrix-valued functions in Ω×Rmn.
Without loss of generality we suppose that Bjk = Bkj. We assume that the operator B(x,Dx)
is uniformly strongly elliptic in Ω, i.e. that the inequality(

n∑
j,k=1

Bjk(x,η)σjσkζ, ζ

)
≥ δ|σ|2|ζ|2 (1.5)
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holds with a positive constant δ for all vectors η ∈ Rmn,σ ∈ Rn, ζ ∈ Rm and points x ∈ Ω.
In the next assertion we describe a sufficient condition for the invariance of convex bodies

for system (1.4).

Theorem 2. Let Ω ⊂ Rn be (i) a bounded domain or (ii) an unbounded domain such that
the cone

Kh =

{
x ∈ Rn : x2

n > h2

n−1∑
i=1

x2
i , xn < 0

}
, h > 1,

belongs to the complement of Ω.
Let S be a convex body in Rm and let the coefficients of the system B(x,Dx)u = 0 in Ω

satisfy the equalities
tBjk(x,η)ν = bjk(x,η;ν)ν (1.6)

for all x ∈ Ω, η ∈ Rmn and ν ∈ NS with bjk : Ω× Rmn ×NS → R, 1 ≤ j, k ≤ n.
Then S is invariant for the system B(x,Dx)u = 0 in Ω.

In section 3 we explore the structure of an (m×m)-matrix A satisfying condition

tAν = a(ν)ν (1.7)

for any ν ∈ NS, where S is a convex polyhedral angle, a cylindrical or conical body and a
is a scalar function on NS.

For instance, we show that the matrix A is scalar if S is a convex polyhedral cone with
p facets, p > m, a convex cone with smooth guide and convex compact body with smooth
boundary.

In other case, it is shown that if S is a convex polyhedral cone with m facets then the
matrix A is represented in the form

A =
(
t[ν1, . . . ,νm]

)−1 D t[ν1, . . . ,νm],

where D is a diagonal (m ×m)-matrix, νk is the unit outward normal to k-th facet of the
polyhedral cone and [ν1, . . . ,νm] means the (m×m)-matrix whose columns are ν1, . . . ,νm.
In particular, if S is the first orthant Rm

+ = {u = (u1, . . . , um) : u1 ≥ 0, . . . , um ≥ 0} then A
is diagonal.

At the end of section 3 we give examples of matrices A satisfying condition (1.7) for
certain three-dimensional convex bodies.

The results of auxiliary section 4 are used in section 5. In section 4 we consider the
matrix-valued integral transform

(Tu)(x) =

∫
Y

K(x, y)u(y)dµx(y), (1.8)

where x is an element of a point set X, µx is a depending on x ∈ X finite positive regular
Borel measure on the Borel σ-algebra of locally compact Hausdorff space Y , u is a real vector-
valued function with m components which are Borel and bounded on Y , kernel K(x, ·) of
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the transform is a real (m×m)-matrix-valued function with Borel and bounded elements on
Y for any x ∈ X. We suppose that K is normalized by the condition∫

Y

K(x, y)dµx(y) = I (1.9)

for any x ∈ X, where I is the identity (m×m)-matrix.
We say that S is invariant for the integral transform (1.8) if (Tu)(x) ∈ S for all x ∈ X

and for any bounded and Borel real m-component vector-valued function u which takes
values in S.

As a simple example of the integral transform for which any interval [α, β] is invariant,
we mention

(Su)(x) =

(∫ b

a

s(x, y)dy

)−1 ∫ b

a

s(x, y)u(y)dy,

where s(x, y) is continuous and positive function on the bounded set [c, d] × [a, b], u is a
continuous function on [a, b].

Another example of integral transform for which any interval [α, β] is invariant, is the
double layer potential

(Lϕ)(x) =
1

ωn

∫
Rn

ϕ(y)ω
D

(x, dy),

where ωn is the area of the unit sphere in Rn, D is an arbitrary convex bounded domain in
Rn, n ≥ 2, x ∈ D, ϕ belongs to the set of continuous functions on Rn with compact support,
and

ω
D

(x,B) =

∫
B∩∂D

(νy, y − x)

|y − x|n
dσy

is the solid angle at which the intersection of Borel set B ⊂ Rn and the boundary ∂D of
D is seen from the point x. Here νy is the outward unit normal to ∂D at the point y (see
Burago and Maz’ya [7]).

In section 4 we obtain the following necessary and sufficient condition on the matrix-
valued kernel K for which S is invariant for the transform T .

Proposition 1. A convex body S is invariant for transform (1.8) normalized by (1.9) if and
only if there exists a bounded non-negative function g : X × Y ×NS → R such that

tK(x, y)ν = g(x, y;ν)ν (1.10)

for almost all y ∈ Y .

In section 5 we consider a strongly elliptic system of the form

A0(Dx)u =
n∑

j,k=1

Ajk
∂2u

∂xj∂xk
= 0 (1.11)

in the half-space Rn
+, where Ajk = Akj are real constant (m×m)-matrices. For this system

we obtain the following two criteria for the invariance of some convex bodies, where the
matrix A is not necessarily symmetric.
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Theorem 3. An orthant Rm
+ (α1, . . . αm) = {u = (u1, . . . , um) : u1 ≥ α1, . . . , um ≥ αm} in

Rm is invariant for the system A0(Dx)u = 0 in Rn
+ if and only if

A0(Dx) = A diag{L1(Dx), . . . , Lm(Dx)} , (1.12)

where

Li(Dx) =
n∑

j,k=1

a
(i)
jk

∂2

∂xj∂xk
, i = 1, . . . ,m,

are scalar elliptic operators and A is a non-degenerate (m × m)-matrix such that operator
(1.12) is strongly elliptic.

Theorem 4. Let on the boundary of a convex body S ⊂ Rm there exists a set of unit
outward normals {ν1, . . . ,νm,νm+1} such that arbitrary m vectors of this collection are
linear independent. The body S is invariant for the system A0(Dx)u = 0 in Rn

+ if and only
if

A0(Dx) = A L(Dx) , (1.13)

where

L(Dx) =
n∑

j,k=1

ajk
∂2

∂xj∂xk

is a scalar elliptic operator and A is a non-degenerate (m × m)-matrix such that operator
(1.13) is strongly elliptic.

The proof of necessity in Theorems 3 and 4 is based on Proposition 1 on the invariance
criterion for normalized matrix-valued integral transforms.

The last assertion generalizes our earlier result [21] on criteria of validity of the classical
maximum modulus principle for solutions of system (1.11) in Rn

+. We note that convex
polyhedral cones with p > m facets, convex cones with smooth guide and convex compact
bodies with smooth boundary satisfy the condition mentioned in Theorem 4. Obviously, the
matrix A in Theorem 4 satisfies the inequality (Aζ, ζ) > 0 for any m-dimensional vector
ζ 6= 0.

The criteria on validity of the componentwise maximum principle for linear parabolic
system of general form were obtained in the paper by Otsuka [22]. In our papers [12]-[14]
and [21] (see also monograph [15] and references therein) the criteria for validity of other
type of maximum principles for parabolic systems were established, which are interpreted as
conditions for the invariance of compact convex bodies. Recently, criteria for the invariance
of any convex body (bounded or unbounded) for linear parabolic systems without zero order
term in the layer were obtained in [16].

Maximum principles for weakly coupled elliptic and parabolic systems are considered in
the books by Protter and Weinberger [23], and Walter [31] which also contain rich bibli-
ographies on this subject. There exists a wide bibliography on invariant sets for nonlinear
parabolic and elliptic systems with principal part subjected to various structural conditions
such as scalarity, diagonality and others (see, for instance, papers by Alikakos [2], Amann
[3], Bates [4], Bebernes and Schmitt [6], Bebernes, Chueh and Fulks [5], Chueh, Conley and
Smoller [8], Conway, Hoff and Smoller [9], Cosner and Schaefer [10], Kuiper [17], Lemmert
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[19], Redheffer and Walter [24, 25], Schaefer [27], Smoller [29], Weinberger [33] and references
there).

2 Sufficient conditions for the invariance of convex bodies for
strongly elliptic systems

By [Cb(Ω)]m we mean the space of bounded m-component vector-valued functions which
are continuous in Ω. The notation [Cb(∂Ω)]m has a similar meaning. Let [C2(Ω)]m denote
the space of m-component vector-valued functions with continuous derivatives up to the
second order in Ω. We omit m in the notations of above function spaces in the case m = 1.
Analogously we omit b in the notation of the space of continuous functions if Ω is bounded.

Now we obtain a sufficient condition for the invariance of a convex body in Rm for linear
uniformly strongly elliptic systems without zero order term in a bounded subdomain of Rn.

Proof of Theorem 1. We fix a point a ∈ ∂∗S. Let u ∈ [C(Ω)]m ∩ [C2(Ω)]m be a solution
of the system A(x,Dx)u = 0. Then A(x,Dx)ua = 0, where ua = u− a. Hence,

n∑
j,k=1

(
Ajk(x)

∂2ua
∂xj∂xk

, ν(a)

)
+

n∑
j=1

(
Aj(x)

∂ua
∂xj

, ν(a)

)

=
n∑

j,k=1

(
∂2ua
∂xj∂xk

, tAjk(x)ν(a)

)
+

n∑
j=1

(
∂ua
∂xj

, tAj(x)ν(a)

)
= 0.

By the last equality and (1.3) we arrive at

n∑
j,k=1

(
∂2ua
∂xj∂xk

, ajk(x)ν(a)

)
+

n∑
j=1

(
∂ua
∂xj

, aj(x)ν(a)

)

=
n∑

j,k=1

ajk(x)
∂2

∂xj∂xk
(ua,ν(a)) +

n∑
j=1

aj(x)
∂

∂xj
(ua,ν(a)) = 0.

Thus the function ua = (ua,ν(a)) satisfies the scalar equation

n∑
j,k=1

ajk(x)
∂2ua
∂xj∂xk

+
n∑
j=1

aj(x)
∂ua
∂xj

= 0.

By (1.2), (
n∑

j,k=1

σjσkζ,
tAjk(x)ζ

)
≥ δ|σ|2|ζ|2

for all ζ ∈ Rm, σ ∈ Rn and any x ∈ Ω. The last inequality with ζ = ν together with (1.3)
imply

n∑
j,k=1

ajk(x)σjσk ≥ δ|σ|2 (2.1)
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for any x ∈ Ω and all σ ∈ Rn. Therefore, by the maximum principle for solutions to the
uniformly elliptic equation without zero order term in a bounded domain Ω (see, e.g., Gilbarg
and Trudinger [11], Sect. 3.1) with the unknown function ua ∈ C(Ω) ∩ C2(Ω), we conclude
that (

u(x)− a,ν(a)
)
≤ max

y∈∂Ω

(
u(y)− a,ν(a)

)
, x ∈ Ω,

i.e., the half-space Rm
ν(a)(a) is invariant for the system A(x,Dx)u = 0 in Ω.

Using the known equality (Rockafellar [26], Theorem 18.8):

S =
⋂

a∈∂∗S

Rm
ν(a)(a) , (2.2)

we complete the proof.

Remark. Let A be a bounded non-degenerate (m × m)-matrix-valued function in Ω.
Since the systems A(x,Dx)u = 0 and A(x)A(x,Dx)u = 0 are equivalent, the formulated in
Theorem 1 sufficient condition for the invariance of convex bodies for A(x,Dx)u = 0 also
holds for the system A(x)A(x,Dx)u = 0.

It follows from the proof of Theorem 1 that condition (1.2) of uniformly strongly ellipticity
of the system A(x,Dx)u = 0 can be relaxed by putting ζ ∈ NS instead of all ζ ∈ Rm.

The following assertion of the Phragmén-Lindelöf type is borrowed from the book by
Landis [18] (Theorem 6.3).

Lemma 1. Denote by Kh the cone

x2
n > h2

n−1∑
i=1

x2
i , xn < 0 .

Let h > 1. Let Ω be an unbounded domain and let Kh belong to the complement of Ω. Let

L(x,Dx) =
n∑

j,k=1

ajk(x)
∂2

∂xj∂xk

be a scalar uniformly elliptic operator in Ω with the ellipticity constant

e = sup
x∈Ω,|ξ|=1

∑n
j=1 ajj(x)∑n

j,k=1 ajk(x)ξjξk

and let a subelliptic function u(x) be continuous in the closure of Ω and nonpositive on the
boundary of Ω. Then one of the following assertions holds:

(a) u(x) ≤ 0 everywhere in Ω;
(b)

lim inf
r→∞

M(r)/rch
−s

> 0 ,

where
M(r) = max{u(x) : x ∈ Ω, |x| = r}

and c > 0 is a constant depending on e and s = n− 2.
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Let u ∈ Cb(Ω) ∩ C2(Ω) be a solution of L(x,Dx)u = 0 in an unbounded domain Ω
described in Lemma 1. We introduce the function

w(x) = u(x)−M,

where
M = sup

y∈∂Ω
u(y).

Since L(x,Dx)w = 0 in Ω, it follows from Lemma 1 that w(x) ≤ 0 everywhere in Ω. Thus,
for any solution u ∈ Cb(Ω) ∩ C2(Ω) of the equation L(x,Dx)u = 0 the maximum principle

u(x) ≤ sup
y∈∂Ω

u(y), x ∈ Ω, (2.3)

holds.

Now, we turn to

Proof of Theorem 2. We fix a point a ∈ ∂∗S. Let v ∈ [Cb(Ω)]m ∩ [C2(Ω)]m be a solution
of system (1.4). Then B(x,Dx)va = 0, where va = v − a.

Consider the linear system

n∑
j,k=1

Ajk(x)
∂2u

∂xj∂xk
= 0,

where Ajk(x) = Bjk(x,Dxva(x)) and u ∈ [Cb(Ω)]m ∩ [C2(Ω)]m is an unknown vector-valued
function. In particular, the last system has the solution u = va.

Putting A1 = · · · = An = 0 in the proof of Theorem 1 and using the maximum principle
(2.3) for the scalar uniformly elliptic equation L(x,Dx)u = 0 in an unbounded domain Ω
described in Lemma 1, we arrive at Theorem 2.

3 Matrices subject to (1.7) for certain convex bodies

We say that an (m×m)-matrix A satisfies condition (1.7) for a convex body S if condition
(1.7) holds for any ν ∈ NS. In this section we describe the structure of matrices A which
satisfy (1.7) for certain classes of convex bodies.

Polyhedral angles. We introduce the polyhedral angle

Rm
+ (αm−k+1, . . . , αm) = {u = (u1, . . . , um) : um−k+1 ≥ αm−k+1, . . . , um ≥ αm},

where k = 1, . . . ,m. In particular, Rm
+ (αm) is a half-space, Rm

+ (αm−1, αm) is a dihedral
angle, and Rm

+ (α1, . . . αm) is an orthant in Rm.

Lemma 2. A matrix A of order m satisfies (1.7) for the polyhedral angle Rm
+ (αm−k+1, . . . , αm)

if and only if all nondiagonal elements of m−k+ 1-th,. . . , m-th rows of A are equal to zero.
In particular, a matrix A of the second order satisfies (1.7) for the half-plane R2

+(α2) if
and only if A is upper triangular.
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Proof. Let ej stand for the unit vector of the j-th coordinate axis. The vectors νm−k+1 =
−em−k+1, . . . ,νm = −em form the family of unit outward normals to Rm

+ (αm−k+1, . . . , αm).

By A(j) we denote the j-th row of the matrix A. Let A = ((aj,k)) satisfy (1.7) for
Rm

+ (αm−k+1, . . . , αm). Then for any j = m− k + 1, . . . ,m we have

tAνj = a(νj)νj , (3.1)

i.e.,
tA(j) = a(−ej)ej .

Hence, all elements of the column tA(j), except for j-th one, are equal to zero.
Conversely, let all nondiagonal elements of the m − k + 1-th,. . . , m-th rows of A equal

zero. Then (3.1) holds with a(νj) = aj,j, j = m− k+ 1, . . . ,m, i.e., A is subject to (1.7) for
Rm

+ (αm−k+1, . . . , αm).

Cylinders. Let

Rm
− (βm−k+1, . . . , βm) = {u = (u1, . . . , um) : um−k+1 ≤ βm−k+1, . . . , um ≤ βm}

be a polyhedral angle and αm−k+1 < βm−k+1, . . . , αm < βm.
Let us introduce a polyhedral cylinder

Cm(αm−k+1, . . . , αm; βm−k+1, . . . , βm) = Rm
+ (αm−k+1, . . . , αm)∩Rm

− (βm−k+1, . . . , βm), k < m.

In particular, Cm(αm; βm) is a layer and Cm(αm−1, αm; βm−1, βm) is a rectangular cylinder.

Since the collection of unit outward normals to polyhedral cylinder

Cm(αm−k+1, . . . , αm; βm−k+1, . . . , βm)

consists of the vectors em−k+1,−em−k+1 . . . , em,−em, the next auxiliary assertion can be
proved similarly to Lemma 2.

Lemma 3. A matrix A of order m satisfies (1.7) for the polyhedral cylinder

Cm(αm−k+1, . . . , αm; βm−k+1, . . . , βm)

if and only if all nondiagonal elements of m − k + 1-th, m − k + 2-th,. . . , m-th rows of A
are equal to zero.

In particular, a matrix A of the second order satisfies (1.7) for a strip C2(α2; β2) if and
only if A is upper triangular.

Let us introduce the body

Smk (R) = {u = (u1, . . . , um) : u2
m−k+1 + · · ·+ u2

m ≤ R2}, m ≥ 3,

which is a spherical cylinder for k = 2, . . . ,m− 1.

Lemma 4. A matrix A of order m satisfies (1.7) for the body Smk (R) if and only if:
(i) all nondiagonal elements of m− k + 1-th, m− k + 2-th,. . . , m-th rows of A are equal

to zero;
(ii) all m− k + 1-th, m− k + 2-th,. . . , m-th diagonal elements of A are equal.
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Proof. The set of unit outward normals to the cylinder Smk (R) is formed by them-dimensional
vectors

(0, . . . , 0, γm−k+1, . . . , γm) , (3.2)

where γ2
m−k+1 + · · ·+ γ2

m = 1.
Let the matrixA = ((aj,k)) satisfy (1.7) for the cylinder Smk (R). The vectors em−k+1, . . . , em

are contained in the set of unit outward normals to Smk (R). Therefore, the necessity of con-
dition (i) in the present Lemma is established in the same way as in Lemma 2. By ν∗ we
denote the unit outward normal to Smk (R) with

γm−k+1 = · · · = γm =
1√
k
.

Since tAν∗ = a(ν∗)ν∗, it follows that

aj,j = a(ν∗), j = m− k + 1, . . . ,m.

The necessity of (ii) follows.
Conversely, if the matrix A has the structure, described in (i), (ii) and am−k+1,m−k+1 =

· · · = am,m = a, then it satisfies (1.7) for all unit vectors of the form (3.2) with a(ν) = a.

Cones. By Km
p we denote a convex polyhedral cone in Rm with p facets. Let, further,

{ν1, . . . ,νp} be the set of unit outward normals to the facets of this cone. By [v1, . . . ,vm]
we mean the (m×m)-matrix whose columns are m-component vectors v1, . . . ,vm.

We give an auxiliary assertion of geometric character.

Lemma 5. Let p ≥ m. Then any system ν1, . . . ,νm of unit outward normals to m different
facets of Km

p is linear independent.

Proof. By Fi we denote the facet of Km
p for which the vector νi is normal, 1 ≤ i ≤ m. Let

Ti be the supporting plane of this facet. We place the origin of the coordinate system with
the orthonormal basis e1, . . . , em at an interior point O of Km

p and use the notation x = Oq,
where q is the vertex of the cone. Further, let di = dist (O, Fi), i = 1, . . . ,m. Since

q =
m⋂
i=1

Ti ,

it follows that x = (x1, . . . , xm) is the only solution of the system

(νi, x) = di, i = 1, 2, . . . ,m,

or, which is the same,
m∑
j=1

(νi, ej)xj = di, i = 1, 2, . . . ,m.

The matrix of this system is t[ν1, . . . ,νm]. Consequently,

det t[ν1, . . . ,νm] 6= 0.

This implies the linear independence of the system ν1, . . . ,νm.
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Lemma 6. Let there exist a system of unit outward normals {ν1, . . . ,νm,ν} on the boundary
of a convex body S such that arbitrary m vectors of this system are linear independent. A
matrix A of order m satisfies (1.7) for the body S if and only if A is scalar.

Proof. By assumption, arbitrary m vectors in the collection {ν1, . . . ,νm,ν} are linear inde-
pendent. Hence there are no zero coefficients γi in the representation ν = γ1ν1 + · · ·+γmνm.

Let (1.7) hold. Then

tAν = aν, tAν1 = a1ν1, . . . ,
tAνm = amνm , (3.3)

where a, a1, . . . , am are scalars. Therefore,

a
m∑
i=1

γiνi = aν = tAν = tA
m∑
i=1

γiνi =
m∑
i=1

γiaiνi.

Thus,
m∑
i=1

(a− ai)γiνi = 0.

Hence, ai = a for i = 1, . . . ,m and consequently A is a scalar matrix.
Conversely, if A = a diag {1, . . . , 1}, then (1.7) with a(γ) = a holds for S.

Lemma 7. A matrix A of order m satisfies (1.7) for the convex polyhedral cone Km
m if and

only if

A =
(
t[ν1, . . . ,νm]

)−1 D t[ν1, . . . ,νm] , (3.4)

where D is diagonal.
A matrix A of order m satisfies (1.7) either for the convex polyhedral cone Km

p with p > m
or for any convex cone with a smooth guide if and only if A is scalar.

Proof. (i) If S = Km
m, we write (1.7) as

tAν1 = a1ν1, . . . ,
tAνm = amνm , (3.5)

where {ν1, . . . ,νm} is the set of unit outward normals to the facets of Km
m. These normals

are linear independent by Lemma 5. Let D = diag {a1, . . . , am}. Equations (3.5) can be
written as

tA[ν1, . . . ,νm] = [ν1, . . . ,νm] D,
which leads to the representation

A =
(
t[ν1, . . . ,νm]

)−1 D t[ν1, . . . ,νm] . (3.6)

Now, (3.6) is equivalent to (3.4).

(ii) Let us consider the cone Km
p with p > m. By {ν1, . . . ,νm} we denote a system of

unit outward normals to m facets of Km
p . Let also ν be a normal to a certain m+1-th facet.

By Lemma 5, arbitrary m vectors in the collection {ν1, . . . ,νm,ν} are linear independent.
Using Assertion 4, we complete the proof for the case p > m.
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(iii) Let (1.7) hold for the cone K with a smooth guide. This cone K can be inscribed
into a polyhedral cone Km

m+1. Let {ν1, . . . ,νm,ν} be a system of unit outward normals to
the facets of Km

m+1. This system is a subset of the collection of normals to the boundary
of K. By Lemma 5, arbitrary m vectors in the set {ν1, . . . ,νm,ν} are linear independent.
Repeating word by word the argument used in (ii) we arrive at the scalarity of A.

Conversely, (1.7) is an obvious consequence of the scalarity of A for S = K.
The proof is complete.

Let us consider condition (1.7) in the case m = 3. Using notation and Lemmas 2-4,6, 7
we obtain the following statements.

(i) A matrix A satisfies (1.7) for the half-space R3
+(α3) = {u = (u1, u2, u3) : u3 ≥ α3}

and the layer C3(α3; β3) = {u = (u1, u2, u3) : α3 ≤ u3 ≤ β3} if and only if all non-diagonal
elements of the third row of A are equal to zero.

(ii) A matrix A satisfies (1.7) for the dihedral angle R3
+(α2, α3) = {u = (u1, u2, u3) : u2 ≥

α2, u3 ≥ α3} and the rectangular cylinder C3(α2, α3; β2, β3) = {u = (u1, u2, u3) : α2 ≤ u2 ≤
β2, α3 ≤ u3 ≤ β3} if and only if all non-diagonal elements of the second and third rows of A
are equal to zero.

(iii) A matrix A satisfies (1.7) for the orthant R3
+(α1, α2, α3) = {u = (u1, u2, u3) : u1 ≥

α1, u2 ≥ α2, u3 ≥ α3} and the parallelepiped C3(α1, α2, α3; β1, β2, β3) = {u = (u1, u2, u3) :
α1 ≤ u1 ≤ β1, , α2 ≤ u2 ≤ β2, α3 ≤ u3 ≤ β3} if and only if A is diagonal.

(iv) A matrix A satisfies (1.7) for the circular cylinder S3
2(R) = {u = (u1, u2, u3) :

u2
2 + u2

3 ≤ R2} if and only if all non-diagonal elements of the second and third rows of A are
equal to zero and the diagonal elements of the same rows are equal.

(v) A matrix A satisfies (1.7) for the three-hedral cone K3
3 with unit outward normals

ν1,ν2,ν3 to their facets if and only if

A =
(
t[ν1,ν2,ν3]

)−1 D t[ν1,ν2,ν3],

where D is diagonal.

(vi) A matrix A satisfies (1.7) either for the convex polyhedral cone K3
p with p facets,

p > 3, or for any convex cone with a smooth guide or for an arbitrary compact convex body
with smooth boundary if and only if A is scalar.

4 Criterion for the invariance of convex bodies for normalized
matrix-valued integral transforms

Let ν be a fixed m-dimensional unit vector, let a be a fixed m-dimensional vector, and let
Rm

ν (a) = {u ∈ Rm : (u− a,ν) ≤ 0}.
Now we obtain a necessary and sufficient condition on the matrix-valued kernel K for

which S is invariant for the integral transform T defined by (1.8) and normalized by (1.9).

Proof of Proposition 1. (i) Necessity. Suppose that S is invariant for T . Let x ∈ X be
fixed. We take a point a ∈ ∂∗S and denote ν(a) by ν.
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By (1.9), we have

(Tu)(x)− a =

∫
Y

K(x, y)
(
u(y)− a

)
dµx(y). (4.1)

We represent tK(x, y)ν as

tK(x, y)ν = g(x, y;ν)ν + f(x, y;ν), (4.2)

where
g(x, y;ν) =

(
tK(x, y)ν,ν

)
(4.3)

and
f(x, y;ν) = tK(x, y)ν −

(
tK(x, y)ν,ν

)
ν. (4.4)

Suppose there exists a setM⊂ Y with µx(M) > 0 such that for all y ∈M, the inequality

f(x, y;ν) 6= 0 (4.5)

holds, and for all y ∈ Y \M the equality f(x, y;ν) = 0 is valid.
Further, we set

u(y)− a = αf(x, y;ν)− βν, (4.6)

where α > 0, β ≥ 0. It follows from (4.4) and (4.6) that

(u(y)− a,ν) = −β ≤ 0, |u(y)− a| =
(
α2|f(x, y;ν)|2 + β2

)1/2
(4.7)

and
(u(y)− a, tK(x, y)ν) = α|f(x, y;ν)|2 − β

(
tK(x, y)ν,ν

)
. (4.8)

We introduce a Cartesian coordinate system Oξ1 . . .Oξm−1 in the hyperplane, tangent
to ∂S with the origin at the point O = a. We direct the axis Oξm along the interior
normal to ∂S. Let e1, . . . , em denote the coordinate orthonormal basis of this system and
let ξ′ = (ξ1, . . . , ξm−1).

We use the notation
λ = sup{|f(x, y;ν)| : y ∈ Y }.

Let ∂S be described by the equation ξm = F (ξ′) in a neighbourhood of O, where F is convex
and differentiable at O.

We put β = max {F (ξ′) : |ξ′| = αλ}. By (4.7),

(u(y)− a, em) = β ≥ 0, |u(y)− a| ≤ (α2λ2 + β2)1/2,

which implies u(y) ∈ S for all y ∈ Y .
By invariance of the convex body S, this gives(

(Tu)(x)− a,ν
)

=

∫
Y

(
K(x, y)

(
u(y)− a

)
,ν
)
dµx(y)

(4.9)

=

∫
Y

(
u(y)− a, tK(x, y)ν

)
dµx(y) ≤ 0.
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Now, by (4.9) and (4.8),

0 ≥
(
(Tu)(x)− a,ν

)
=

∫
Y

[
α|f(x, y;ν)|2 − β

(
tK(x, y)ν,ν

)]
dµx(y),

which along with (1.9) leads to

0 ≥
(
(Tu)(x)− a,ν

)
= α

(∫
M
|f(x, y;ν)|2dµx(y)− β

α

)
. (4.10)

By differentiability of F at O, we have β/α→ 0 as α→ 0. Consequently, one can choose
α so small that the second factor on the right-hand side of (4.10) becomes positive, which
contradicts the assumption µx(M) > 0. Therefore, f(x, y;ν) = 0 for almost all y ∈ Y .

Since x ∈ X and a ∈ ∂∗S are arbitrary, we arrive at (1.10) by (4.2).
Now we show that g(x, y;ν) ≥ 0 for any x ∈ X, ν ∈ NS and almost all y ∈ Y .

Suppose that there exist points x ∈ X and a ∈ ∂∗S such that g(x, y;ν) < 0 on the set
S ⊂ Y with µx(S) > 0. We choose the vector-valued function u(y) ∈ S, y ∈ Y , such that
−ε ≤

(
u(y)− a,ν

)
< 0 with ε > 0 for y ∈ Y \S and

(
u(y)− a,ν

)
= −1 for y ∈ S. Then,

by (1.10),(
(Tu)(x)− a,ν

)
=

∫
Y

(
K(x, y)

(
u(y)− a

)
,ν
)
dµx(y)

=

∫
S
g(x, y;ν) (u(y)− a,ν) dµx(y) +

∫
Y \S

g(x, y;ν) (u(y)− a,ν) dµx(y),

which will be positive for sufficiently small ε, and this contradicts to the invariance of S.
Therefore, µx(S) = 0.

(ii) Sufficiency. Suppose that (1.10) holds with a non-negative g(x, y;ν) for any x ∈ X,
ν ∈ NS and almost all y ∈ Y . We choose a point a ∈ ∂∗S and fix a point x ∈ X. Let
u(y) ∈ S for any y ∈ Y . Then (u(y)− a,ν) ≤ 0 for y ∈ Y , and therefore(

(Tu)(x)− a,ν
)

=

∫
Y

(
K(x, y)

(
u(y)− a

)
,ν
)
dµx(y)

=

∫
Y

g(x, y;ν) (u(y)− a,ν) dµx(y) ≤ 0.

Hence, (Tu)(x) − a ∈ Rm
ν (a). This, by arbitrariness of x ∈ X and a ∈ ∂∗S, and represen-

tation (2.2) of the convex body S in Rm, proves the sufficiency.

5 Criteria for the invariance of some convex bodies for strongly
elliptic systems

According to Shapiro [28] (see also Lopatinskǐı [20]) there exists a bounded solution of the
problem

A0(Dx)u = 0 in Rn
+, u = f on ∂Rn

+, (5.1)
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with f ∈ [Cb(∂Rn
+)]m, such that u is continuous up to ∂Rn

+, and can be represented in the
form

u(x) =

∫
∂Rn

+

M
(
y − x
|y − x|

)
xn

|y − x|n
f(y′)dy′. (5.2)

Here y = (y′, 0), y′ = (y1, . . . , yn−1), andM is a continuous (m×m)-matrix-valued function
on the closure of the hemisphere Sn−1

− =
{
x ∈ Rn : |x| = 1, xn < 0

}
such that∫

Sn−1
−

M(σ)dσ = I. (5.3)

Here, as before, I mean the identity (m×m)-matrix.
We note that equality (5.2) can be represented in the form

u(x) =

∫
∂Rn

+

M
(
y − x
|y − x|

)
f(y′) ω(x, dy′), (5.4)

where

ω(x,B) =

∫
B

xn
|y − x|n

dy′

is the solid angle at which a Borel set B ⊂ ∂Rn
+ is seen from the point x ∈ Rn

+. The solid
angle ω(x, ·) is a finite regular Borel measure on ∂Rn

+ for any fixed x ∈ Rn
+, and ω(x,B) ≥ 0.

The uniqueness of a solution of the Dirichlet problem (5.1) in the class [Cb(Rn
+)]m ∩

[C2(Rn
+)]m can be derived by means of standard arguments from (5.2) and from local esti-

mates of derivatives of solutions to elliptic systems (see Agmon, Douglis and Nirenberg [1],
Solonnikov [30]).

We note, that analog of Proposition 1 can be proved almost word by word for the transform
(5.2) normalized by (5.3) with continuous matrix-valued kernel, defined on the space of
bounded and continuous vector-valued functions. The only difference in the formulations of
similar statements is that the word ”almost” disappears. In view of this remark, we shall
further refer to Proposition 1 for the transform (5.2).

Proof of Theorem 3. (i) Necessity. Let an orthant Rm
+ (α1, . . . αm) in Rm be invariant for

the system A0(Dx)u = 0 in Rn
+. Applying Proposition 1 to representation (5.2) and using

Lemma 2, we conclude that a unique solution of the Dirichlet problem (5.1) is given by

u(x) =

∫
∂Rn

+

D

(
y − x
|y − x|

)
xn

|y − x|n
f(y′)dy′ , (5.5)

where D is a diagonal (m ×m)-matrix-valued kernel with the elements D1, . . . ,Dm on the
main diagonal.

Let f0 be a scalar function that is continuous and bounded on ∂Rn
+, and let

us(x) =

∫
∂Rn

+

D

(
y − x
|y − x|

)
xn

|y − x|n
csf0(y′)dy′, s = 1, . . . ,m,
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where c1 = (1, . . . , 0), . . . , cm = (0, . . . , 1). We denote

us(x) =

∫
∂Rn

+

Ds

(
y − x
|y − x|

)
xn

|y − x|n
f0(y′)dy′ . (5.6)

According to (5.5), the vector-valued function us is a solution of the boundary value
problem A0(Dx)us = 0 in Rn

+, us = csf0 on ∂Rn
+. Let s be fixed. Setting us instead of u in

A0(Dx)u = 0, we get the following m boundary value problems

Ais(Dx)us = 0 in Rn
+, us = f0 on ∂Rn

+, i = 1, 2 . . . ,m.

Here Ais(Dx) is a scalar differential operator
n∑

j,k=1

A(is)
jk

∂2

∂xj∂xk
,

where A(is)
jk is the element of the matrix Ajk situated at the intersection of the i-th row and

the s-th column.
We consider the scalar equations

Ass(Dx)us = 0 and Aps(Dx)us = 0 in Rn
+

with the boundary condition us = f0 on ∂Rn
+, where p is a fixed element of the set {1, . . . ,m}

and p 6= s.
By the original assumption, the operator A0(Dx) is strongly elliptic, so the operator

Ass(Dx) is elliptic.

Without loss of generality it can be assumed that A(ss)
nn > 0. Setting

xn =

√
A(ss)
nn yn ,

we perform a linear change of variables that takes the operator Ass(Dx) to the canonical
form

Ãss(Dy) =
n∑
i=1

∂2

∂y2
i

. (5.7)

Assume that the function f0 in (5.6) has compact support. If we apply the Fourier

transform with respect to the variables y1, . . . , yn−1 to the equation Ãss(Dy)ũs(y) = 0 then
we obtain

d2F [ũs]

dy2
n

− |ξ′|2F [ũs] = 0 ,

where ξ′ = (ξ1, . . . , ξn−1) and |ξ′| = (ξ2
1 + · · ·+ ξ2

n−1)1/2. The last equation implies

F [ũs](ξ
′, yn) = F [ũs](ξ

′, 0) exp(−|ξ′|yn) = F [f̃0](ξ′) exp(−|ξ′|yn) .

At the same time we transform the equation Aps(Dx)us = 0 to the variables y1, . . . , yn,
and then we apply to it the Fourier transform with respect to y1, . . . , yn−1. As a result,

Ã(ps)
nn

d2F [ũs]

dy2
n

− 2i
dF [ũs]

dyn

n−1∑
j=1

Ã(ps)
jn ξj − F [ũs]

n−1∑
j,k=1

Ã(ps)
jk ξjξk = 0. (5.8)
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From the last equation and the equality F [ũs](ξ
′, yn) = F [f̃0](ξ′) exp(−|ξ′|yn) we conclude

that
n−1∑
s=1

Ã(ps)
jn ξj = 0,

i.e., Ã(ps)
jn = 0 for all j = 1, . . . , n− 1. Therefore, differentiating F [ũs](ξ

′, yn) with respect to
yn and substituting the result in (5.8), we find that

Ã(ps)
nn |ξ′|2 −

n−1∑
j,k=1

Ã(ps)
jk ξjξk = 0.

Hence, Ã(ps)
jk = δjkÃ(ps)

nn , 1 ≤ j, k ≤ n − 1. Thus, the operator Ãps(Dy) turns out to be the
Laplacian (up to a constant factor) , i.e.,

Ãps(Dy) = Ã(ps)
nn

n∑
i=1

∂2

∂y2
i

. (5.9)

The inverse transformation of variables y → x in (5.9) and (5.7) gives

Aps(Dx) = bpsAss(Dx) = bps

n∑
j,k=1

A(ss)
jk

∂2

∂xj∂xk
(5.10)

for all p 6= s. Taking into account the arbitrariness of s ∈ {1, . . . ,m}, we arrive at (1.12),

where A = ((bps)) and a
(s)
jk = A(ss)

jk . The non-singularity of the matrix A follows from the
strong ellipticity of the operator A0(∂/∂x).

(ii) Sufficiency. By Theorem 2 together with Lemma 2, and the equivalence of the systems

A diag{L1(Dx), . . . , Lm(Dx)}u = 0

and
diag{L1(Dx), . . . , Lm(Dx)}u = 0 ,

we conclude that representation (1.12) is sufficient for the invariance of the orthant Rm
+ (α1, . . . αm)

for the system A0(Dx)u = 0 in Rn
+.

The proof of Theorem 4 is quite similar to the proof of Theorem 3 with some distinctions.
Namely, the proof of necessity in Theorem 4 starts, by Proposition 1 and Lemma 6, with
representation of a unique solution of the Dirichlet problem (5.1) in the form

u(x) =

∫
∂Rn

+

Φ

(
y − x
|y − x|

)
xn

|y − x|n
f(y′)dy′

instead of representation (5.5), where Φ is diagonal (m×m)-matrix-valued kernel with the
only element ϕ on the main diagonal. So, D1 = · · · = Dm = ϕ in (5.6) and, therefore,
u1 = · · · = um. Then, using similar arguments as in the proof of Theorem 3, we arrive at
the equalities

Aps(Dx) = bpsL(Dx)

instead of (5.10), where p, s ∈ {1, . . . ,m} and L(Dx) is a scalar elliptic operator.
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