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1 Introduction

Let Ω be an open set in Rn and let f be an arbitrary function in C∞
0 (Ω), i.e. an

infinitely differentiable function with compact support in Ω.
In this paper we discuss generalizations and applications of the inequality∫ ∞

0

capp(Mat,Mt)d(tp) ≤ c(a, p)
∫

Ω

|gradf |pdx, (1)

where a = const > 1, 1 ≤ p <∞, Mt = {x ∈ Ω : |f(x)| > t}, and capp is the so called
conductor p-capacitance (see (22) below). A discrete version of (1) and its analogue
involving second order derivatives of a nonnegative f were obtained by the author in
1972 [M4] (see also [M6] and [M7]).

By monotonicity of capp the conductor inequality (1) implies∫ ∞

0

capp(Mt,Ω)d(tp) ≤ C(p)
∫

Ω

|gradf |pdx, (2)
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which was also proved in [M4] with the best constant

C(p) = pp(p− 1)1−p. (3)

(For p = 2 inequality (2) with C(2) = 4 was used without explicit formulation already
in [M2], [M3].)

Inequality (2) and its various extensions are of independent interest and have
numerous applications to the theory of Sobolev spaces on Euclidean domains, Rie-
mannian manifolds, and metric spaces, to linear and nonlinear partial differential
equations, calculus of variations, theories of Dirichlet forms and Markov processes,
etc. ([M4], [Ad], [M5], [Dah], [Han], [Ko1], [Ko2], [Ra], [Ne], [AP], [Ka], [MN], [Vo],
[AH], [MP], [HMV], [Ai], [V1], [V2], [Gr], [Haj], [Ta], [Fi], [FU1], [FU2], [CS], [AX1],
[AX2], et al).

Note that the left-hand side in (2) can be zero for all f ∈ C∞
0 (Ω). (This happens

if and only if either p > n and Ω = Rn, or p = n and the complement of Ω has
zero n-capacity.) At the same time, the left-hand side in (1) is always positive if
f 6= 0. The layer cake texture of the left-hand side in the conductor inequality (1)
allows for significant corollaries which cannot be directly deduced from inequality (2).
For instance, as a straightforward consequence of (1) and the classical isocapacitance
property of a conductor (see (44) below), one deduces∫ ∞

0

d(tn)(
log

mn(Mt)
mn(Mat)

)n−1
≤ c(a)

∫
Ω

|gradf |ndx, (4)

where n > 1, mn is the n-dimensional Lebesgue measure, and a > 1. Note that (4) is
stronger than the well-known inequality∫ ∞

0

d(tn)(
log

mn(Ω)
mn(Mt)

)n−1
≤ c

∫
Ω

|gradf |ndx, (5)

(see [M4], [Han], [BW]) which is informative only if the volume of Ω is finite.
In the case p 6= n and p > 1, another straightforward consequence of (1) in a

similar flavor is the following improvement of the classical Sobolev inequality∫ ∞

0

|mn(Mt)
p−n

n(p−1) −mn(Mat)
p−n

n(p−1) |1−pd(tp) ≤ c(p, a)
∫

Ω

|gradf |pdx. (6)

Among other applications of conductor inequalities which seem to be unattainable
with the help of capacitary inequalities is a necessary and sufficient condition for the
two measure Sobolev type inequality ([M4], [M6], [M7]):(∫

Ω

|f |qdµ
)1/q

≤ C

(∫
Ω

|φ(x, gradf)|pdx+
∫

Ω

|f |pdν
)1/p

, (7)

where q ≥ p, µ and ν are locally finite Radon measures on Ω, and the function: Ω×
Rn 3 (x, y) → φ(x, y) is continuous and positively homogeneous in y of degree 1. The
characterization just mentioned is formulated in terms of the conductor capacitance
generated by the integral ∫

Ω

|φ(x, gradf)|pdx. (8)

In the one-dimensional case, when this capacitance is calculated explicitly (see
either Lemma 4 in [M4] or Lemma 2.2.2/2 in [M6]), this characterization takes the
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following simple form:

µ(σd(x))p/q ≤ const(τ1−p + ν(σd+τ (x))), (9)

where x, d and τ are such that σd+τ (x) ⊂ Ω.
In Sections 2 and 4 of the present article we derive some new conductor inequalities

for functions defined on a locally compact Hausdorff space X . It is worth mentioning
that, unlike the Sobolev inequalities, the conductor inequalities do not depend on
the dimension of X . Furthermore, with a lower estimate for the p-conductance by a
certain measure on X , one can readily deduce the Sobolev- Lorentz type inequalities
involving this measure.

In Section 2 we are interested in conductor inequalities for the Dirichlet type
integral ∫

X
Fp[f ], (10)

where Fp is a measure valued operator acting on a function f and satisfying locality
and contractivity conditions. A prototype of (10) is the functional∫

Ω

|φ(x, grad f(x))|pdµ+
∫

Ω

|f(x)|pdν, (11)

where φ is the same as in (7).
In Theorem 1 proved is Section 2 we obtain the conductor inequality

Φ−1
(∫ ∞

0

Φ(tpcapp(Mat,Mt))
dt

t

)
≤ c(a, p)

∫
X
Fp[f ], (12)

where and elsewhere Mt = {x ∈ X : |f(x)| > t}, Φ is a positive convex function on
(0,∞), Φ(+0) = 0, and Φ−1 stands for the inverse of Φ. By capp the p-conductance
generated by the operator Fp is meant.

The short Section 3 is dedicated to a discussion of inequalities (4)-(6).
In Section 4 we derive the conductor inequality(∫ ∞

0

capp,Γ(Mat,Mt)q/pd(tq)
)p/q

≤ c(a, p, q) 〈f〉pp,Γ, (13)

where q ≥ p ≥ 1,

〈f〉p,Γ :=
(∫

X

∫
X
|f(x)− f(y)|p Γ(dx× dy)

)1/p

(14)

and capp,Γ is the p-capacitance corresponding to the seminorm (14). We apply (13)
to obtain a necessary and sufficient condition for a two measure Sobolev inequality
involving 〈f〉p,Γ.

In the last Section 5 we handle variants of the sharp capacitary inequality (2). We
show in Theorem 3 that a fairly general capacitary inequality is a direct consequence
of a one-dimensional inequality for functions with the first derivative in Lp(0,∞). A
corollary of this result is the following inequality with the best constant, complement-
ing (2)

(∫
Ω

capp(Mt,Ω)q/pd(tq)
)1/q

≤
( Γ

(
pq

q−p

)
Γ
(

q
q−p

)
Γ
(
p q−1

q−p

))1/p−1/q(∫
Ω

|grad f |pdx
)1/p

, (15)
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where q > p ≥ 1. Combined with an isocapacitary inequality, estimate (15) with
q = pn/(n− p), n > p, immediately gives the classical Sobolev estimate(∫

Ω

|f |
pn

n−p dx
)1−p/n

≤ c

∫
Ω

|grad f |pdx (16)

with the best constant (see [FF], [M1], [Ro], [Au], [Tal]). Another example of appli-
cation of Theorem 3 is the inequality

sup
∫ ∞

0

exp
(
−c capp(Mt,Ω)1/(1−p)

)
d exp(c tp/(p−1)) <∞, (17)

where c = const, the supremum is taken over all f ∈ C∞
0 (Ω) subject to ‖grad f‖Lp(Ω) ≤

1, and capp is the capacity generated by the norm ‖grad f‖Lp(Ω). Inequality (17) with
p = n is stronger than the sharp form of the Yudovich inequality [Yu] due to Moser
[Mo], which immediately follows from (17) and an isocapacitary inequality.

2 Conductor inequalities for a Dirichlet type inte-
gral with a locality property

Let X denote a locally compact Hausdorff space and let C(X ) stand for the space
of continuous real valued functions given on X . By C0(X ) we denote the set of the
functions f ∈ C(X ) with compact supports in X .

We introduce an operator Fp defined on a subset dom(Fp) of C(X ) and taking
values in the cone of nonnegative locally finite Borel measures on X . We suppose that
1 ∈ dom(Fp) and Fp is positively homogeneous of order p ≥ 1, i.e. for every real α,
f ∈ dom(Fp) implies αf ∈ dom(Fp) and

Fp[αf ] = |α|pFp[f ] (18)

It is also assumed that Fp is contractive, that is λ(f) ∈ dom(Fp) and

Fp[λ(f)] ≤ Fp[f ] (19)

for all f ∈ dom(Fp), where λ is an arbitrary real valued Lipschitz function on the line
R such that |λ′| ≤ 1 and λ(0) = 0. We suppose that the following locality condition
holds:

f(x) = c ∈ R on a compact set C =⇒
∫
C
Fp[f ] =

∫
C
Fp[c]. (20)

An example of the measure satisfying conditions (18)-(20) is given by (11), where

Ω× Rn 3 (x, z) → φ(x, z) ∈ R (21)

is a continuous function, positive homogeneous of degree 1 with respect to z. One
can take the space of locally Lipschitz functions on Ω as dom(Fp).

Let g and G denote open sets in X such that that the closure ḡ is a compact
subset of G. We introduce the p-capacitance of the conductor G\g (in other terms,
the relative p-capacity of the set ḡ with respect to G) as

capp(ḡ, G)=inf
{∫

X
Fp[ϕ] : ϕ ∈ dom(Fp), 0 ≤ ϕ ≤ 1 on G,
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ϕ = 0 outside a compact subset of G

and ϕ = 1 on a neighborhood of g
}
. (22)

Using the truncation

λ(ξ) = min
{ (ξ − ε)+

1− ε
, 1

}
with ε ∈ (0, 1) and ξ ∈ R, we see that the infimum in (22) does not change if the class
of admissible functions ϕ is enlarged to

{ ϕ ∈ dom(Fp) ∩ C0(X ) : ϕ ≥ 1 on g, ϕ ≤ 0 on X\G } (23)

(compare with Sect. 2.2 in [M6]).

Lemma 1. Let f ∈ dom(Fp) ∩ C0(X ) and let a = const > 1 and Mt = {x ∈ X :
|f(x)| > t}. Then the function t→ capp(Mat,Mt) is upper semicontinuous.

Proof. It follows from (20) that∫
X
Fp[f ] =

∫
supp f

Fp[f ] <∞. (24)

Let t0 > 0 and ε > 0. There exist open sets g and G such that

Mat ⊂ g, g ⊂ G, G ⊂Mt. (25)

It follows from the definition of capp that for all compact sets C ⊂ g

capp(C,G) ≤ capp(Mat0 ,Mt0) + ε (26)

(compare with Sect. 2.2.1 in [M6]). By (25),

max{f(x) : x ∈ g} < a t0, and min{f(x) : x ∈ G} > t0.

We denote

δ1 = t0 − a−1max{f(x) : x ∈ g}

and

δ2 = min{f(x) : x ∈ G} − t0.

Then

Ma(t0−δ) ⊂ g and G ⊂Mt0+δ

for every δ ∈ (0,min{δ1, δ2}). Putting C = Ma(t0−δ) in (26) and recalling that capp

decreases with enlargement of the conductor, we obtain

capp(Ma(t0−δ),Mt0+δ) ≤ capp(Mat0 ,Mt0) + ε. (27)

Using the monotonicity of capp again, we deduce from (27) that

capp(Mat,Mt) ≤ capp(Mat0 ,Mt0) + ε

for every t sufficiently close to t0. In other words, the function t→ capp(Mat,Mt) is
upper semicontinuous. The result follows.
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We prove a general conductor inequality in the integral form for the functional
(10).

Theorem 1. Let Φ denote an increasing convex (not necessarily strictly convex)
function given on [0,∞), Φ(0) = 0. Then inequality (12) holds for all f ∈ dom(Fp) ∩
C0(X ) and for an arbitrary a > 1 .

Proof. We have

capp(Mat,Mt) ≤
∫
X
Fp[ϕ]

for every ϕ ∈ dom(Fp) ∩ C0(X ) satisfying

ϕ = 1 on Mat, ϕ = 0 on X\Mt, and 0 ≤ ϕ ≤ 1 on X .

By the homogeneity of Fp and by (20),

tpcapp(Mat,Mt) ≤
∫

Mt

Fp[tϕ].

We set here

ϕ(x) =
Λt(f(x))
(a− 1)t

,

where
Λt(ξ) = min

{
(|ξ| − t)+, (a− 1)t

}
, ξ ∈ R, (28)

with ξ+ = (|ξ|+ ξ)/2. By Λt = const on Mat and by (20) we have

tpcapp(Mat,Mt) ≤
1

(a− 1)p

∫
Mt\Mat

Fp[Λt(f)].

Since the mapping ξ → Λt(ξ) is contractive and since the function t→
∫

Mt
Fp[f ] has

at most a countable set of discontinuities, it follows that

tpcapp(Mat,Mt) ≤
1

(a− 1)p

∫
Mt\Mat

Fp[f ] + tp
∫

Mat

Fp[1] (29)

for almost every t > 0. Hence,

∫ ∞

0

Φ(tpcapp(Mat,Mt))
dt

t
≤

∫ ∞

0

Φ
( 1

(a− 1)p

∫
Mt\Mat

Fp[f ] + tp
∫

Mat

Fp[1]
)dt
t

≤ 1
2

∫ ∞

0

Φ
( 2

(a− 1)p

∫
Mt\Mat

Fp[f ]
)dt
t

+
1
2

∫ ∞

0

Φ
(
2tp

∫
Mat

Fp[1]
)dt
t
. (30)

Let γ denote a locally integrable function on (0,∞) such that there exist the limits
γ(0) and γ(∞). Then the identity∫ ∞

0

(γ(t)− γ(at))
dt

t
= (γ(0)− γ(∞)) log a (31)

holds. Setting here

γ(t) := Φ
( 1

(a− 1)p

∫
Mt

Fp[f ]
)
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and using the convexity of Φ we obtain∫ ∞

0

Φ
( 2

(a− 1)p

∫
Mt\Mat

Fp[f ]
)dt
t

≤
∫ ∞

0

{
Φ

( 2
(a− 1)p

∫
Mt

Fp[f ]
)
− Φ

( 2
(a− 1)p

∫
Mat

Fp[f ]
)}dt

t

= log aΦ
( 2

(a− 1)p

∫
X
Fp[f ]

)
. (32)

By convexity of Φ,

∫ ∞

0

Φ
(
2tp

∫
Mat

Fp[1]
)dt
t
≤ 2

∫ ∞

0

Φ′
(
2tp

∫
Mat

Fp[1]
)
tp−1

∫
Mat

Fp[1] dt

≤ 2
∫ ∞

0

Φ′
(
2p

∫ t

0

τp−1

∫
Maτ

Fp[1] dτ
)
tp−1

∫
Mat

Fp[1] dt

=
1
p
Φ

(
2p

∫ ∞

0

τp−1

∫
Maτ

Fp[1] dτ
)
. (33)

Clearly, ∫ ∞

0

τp−1

∫
Maτ

Fp[1] dτ = (ap − 1)
∫ ∞

0

τp−1

∫
Mτ\Maτ

Fp[1] dτ. (34)

Using the truncation

λ(ξ) =

{
|ξ| for |ξ| > aτ

aτ for |ξ| ≤ aτ

together with (19), we deduce from (34) and (31) that∫ ∞

0

τp−1

∫
Maτ

Fp[1] dτ ≤ ap − 1
ap

∫ ∞

0

∫
Mτ\Maτ

Fp[f ]
dτ

τ

= log a
ap − 1
ap

∫
X
Fp[f ].

Combining this with (34), we arrive at∫ ∞

0

Φ
(
2tp

∫
Mat

Fp[1]
)dt
t
≤ 1
p
Φ

(
2p log a

ap − 1
ap

∫
X
Fp[f ]

)
.

Summing up (32) and the last inequality, we conclude by (30) that∫ ∞

0

Φ
(
tpcapp(Mat,Mt)

)dt
t

≤ 1
2
log a Φ

( 2
(a− 1)p

∫
X
Fp[f ]

)
+

1
2p

Φ
(
2p log a

ap − 1
ap

∫
X
Fp[f ]

)
,

and (12) follows. �
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Remark 1. Suppose that (20) is replaced with the following more restrictive
locality condition:

f(x) = const on a compact set C =⇒
∫
C
Fp[f ] = 0, (35)

which holds, for example, if the measure ν in (11) is zero.
Then the above proof becomes simpler. In fact, we can replace (30) with∫ ∞

0

Φ(tpcapp(Mat,Mt))
dt

t
≤

∫ ∞

0

Φ
( 1

(a− 1)p

∫
Mt\Mat

Fp[f ]
)
.

Estimating the right-hand side by (32) we obtain the inequality∫ ∞

0

Φ(tpcapp(Mat,Mt))
dt

t
≤ log a Φ

( 1
(a− 1)p

∫
X
Fp[f ]

)
. � (36)

The next statement follows directly from (12) and (36) by setting Φ(ξ) = ξq/p for
ξ ≥ 0.

Corollary 1. Let q ≥ p and let Fp satisfy the locality condition (20). Then for all
f ∈ dom(Fp) ∩ C0(X ) and for an arbitrary a > 1(∫ ∞

0

(
capp(Mat,Mt)

)q/p
d(tq)

)1/q

≤ C
(∫

X
Fp[f ]

)1/p

. (37)

If additionally Fp is subject to (35), then one can choose

C =
(q log a)1/q

a− 1
.

Remark 2. Let Fp satisfy (35). Then one can easily see that for every sequence
{tk}∞k=−∞, such that 0 < tk < tk+1,

tk → 0 as k → −∞ and tk →∞ as k →∞,

the following discrete conductor inequality holds:

∞∑
k=−∞

(tk+1 − tk)pcapp(Mtk+1 ,Mtk
) ≤

∫
X
Fp[f ]. (38)

Putting tk = ak, where a > 1, we see that

∞∑
k=−∞

apkcapp(Mak+1 ,Mak) ≤ (a− 1)−p

∫
X
Fp[f ]. (39)

Using Lemma 1 and monotonicity properties of the capacitance, we check that
inequality (39) is equivalent to (37) with q = p modulo the value of the coefficient c.
�

The capacitary inequality(∫ ∞

0

(
capp(Mt,X )

)q/p
d(tq)

)1/q

≤ C
(∫

X
Fp[f ]

)1/p

(40)
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results directly from (37).

An immediate consequence of (40) is the following criterion for the Sobolev type
inequality

‖f‖Lq(µ) ≤ C
(∫

X
Fp[f ]

)1/p

, (41)

where µ is a locally finite Radon measure on X , q ≥ p, and f is an arbitrary function
in dom(Fp) ∩ C0(X ).

Corollary 2. Inequality (41) holds if and only if

sup
µ(g)p/q

capp(g,X )
<∞. (42)

Criteria of such a kind were first obtained in [M1] - [M4].
Proof. The necessity of (42) is obvious and its sufficiency follows from the well-

known and easily checked inequality(∫ ∞

0

µ(Mt)d(tq)
)1/q

≤
(∫ ∞

0

µ(Mt)p/qd(tp)
)1/p

,

where q ≥ p ≥ 1 (see [HLP]).

3 Inequalities (4) and (6)

Let X = Ω, where Ω is an open set in Rn, and let Fp be defined by

Fp[f ] = |gradf(x)|pdx. (43)

Inequalities (4) and (6) follow directly from (1) combined with the isocapacitance
inequalities

capp(ḡ, G) ≥


cn

(
log

mn(G)
mn(g)

)1−n

for p = n

cp |mn(G)
p−n

n(p−1) −mn(g)
p−n

n(p−1) |1−p for p 6= n,

(44)

with
cn = nn−1ωn and cp = |n− p|p−1(p− 1)1−pωn for p 6= n, (45)

where ωn is the (n − 1)-dimensional area of the unit ball in Rn (see either [M4] or
Sect. 2.2.3 in [M6] ).

Remark 3. Let us compare the integrals in the left-hand sides of (4) and (5):∫ ∞

0

d(tn)(
log

mn(Mt)
mn(Mat)

)n−1
(46)

and ∫ ∞

0

d(tn)(
log

mn(Ω)
mn(Mt)

)n−1
, (47)
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where mn(Ω) < ∞. Clearly, the first of them exceeds the second. However, the
convergence of the second integral does not imply the convergence of the first. In
fact, let Br = {x ∈ Rn : |x| < r}, Ω = B2, and

f(x) =

{
5− |x| for 0 ≤ |x| < 1
2− |x| for 1 ≤ |x| < 2.

(48)

We have

Mt =


B2−t for 0 ≤ t < 1,
B1 for 1 ≤ t ≤ 4,
B5−t for 4 < t ≤ 5.

Let 1 < a < 4. Then both sets Mt and Mat for t ∈ (1, 4a−1) coincide with the ball
B1, which makes (46) divergent whereas integral (47) is finite. Furthermore, integral
(46) is convergent for a ≥ 4.

Therefore, inequality (4) is strictly better than (5), even for domains Ω of finite
volume. We see also that the convergence of integral (46) for a bounded function f
may depend on the value of a.

The same argument shows that inequality (6) for all f ∈ C∞
0 (Ω) with 1 < p < n,

i.e. ∫ ∞

0

d(tp)( 1

mn(Mat)
n−p

n(p−1)

− 1

mn(Mt)
n−p

n(p−1)

)p−1 ≤ c

∫
Ω

|grad f |pdx, (49)

improves the Lorentz space L np
n−p ,p(Ω) inequality∫ ∞

0

(
mn(Mt)

)n−p
n d(tp) ≤ c

∫
Ω

|grad f |pdx

which results from (2) and is stronger, in its turn, than the Sobolev inequality (16).

In conclusion we add that the convergence of integral in the left-hand side of (49)
may depend on the choice of a, as shown by function (48). �

4 Conductor inequality for a Dirichlet type integral
without locality conditions

Here the notation X has the same meaning as in Section 2. Let × stand for the
Cartesian product of sets and let Γ denote a nonnegative symmetric Radon measure
on X 2 := X × X , locally finite outside the diagonal {(x, y) ∈ X 2 : x = y}. We shall
derive a conductor inequality for the seminorm (14), where f is an arbitrary function
in C0(X ) such that

〈f〉p,Γ <∞. (50)

Clearly, the seminorm 〈f〉p,Γ is contractive, that is

〈λ(f)〉p,Γ ≤ 〈f〉p,Γ

with the same λ as in (19).
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Let as before g and G denote open sets in X such that g is a compact subset of
G. Similarly to Section 2, we introduce the capacitance of the conductor G\g

capp,Γ(ḡ, G) = inf
{
〈f〉pp,Γ : ϕ ∈ C0(X ), 0 ≤ ϕ ≤ 1 on G,

ϕ = 0 outside a compact subset of G

and ϕ = 1 on a neighborhood of g
}
.

It is straightforward that this infimum does not change if the class of admissible
functions ϕ is replaced with (23) (compare with the definition of capp(ḡ, G) in Sect.
2).

Theorem 2. For all f ∈ C0(X ) subject to (50), for all q ≥ p ≥ 1, and for an
arbitrary a > 1 the conductor inequality (13) holds.

Proof. The measurability of the function t→ capp,Γ(Mat,Mt) is proved word for
word as in Lemma 1.

Clearly,
(a− 1)ptp capp,Γ(Mat,Mt) ≤ 〈Λt(f) 〉pp,Γ (51)

with Λt defined by (28). Let Kt denote the conductor Mt\Mat. Since

S2 ⊂ (S × T ) ∪ (T × S) ∪ (S\T )2

for all sets S and T and since Γ is symmetric, it follows that

(a− 1)ptpcapp,Γ(Mat,Mt) ≤
(
2

∫
Kt×X

+
∫

(X\Kt)2

)
|Λt(f(x))− Λt(f(y))|p Γ(dx× dy)

≤ 2
∫

Kt×X
|f(x)− f(y)|p Γ(dx× dy) + 2(a− 1)ptpΓ(Mat × (X\Mt)). (52)

By Minkowski’s inequality,

(a− 1)p
(∫ ∞

0

(
capp,Γ(Mat,Mt)

)q/p
tq−1dt

)p/q

≤ A+B,

where

A = 2
(∫ ∞

0

(∫
Kt×X

|f(x)− f(y)|pΓ(dx× dy)
)q/p dt

t

)p/q

and

B = 2(a− 1)p
(∫ ∞

0

Γ(Mat × (X\Mt)q/ptq−1dt
)p/q

.

Since q ≥ p we have

A ≤ 2
(∫ ∞

0

γ(t)− γ(at)
t

dt
)p/q

,

where

γ(t) =
(∫

Mt×X
|f(x)− f(y)|pΓ(dx× dy)

)q/p

.

Using (31), we obtain
A ≤ 2(log a)p/q 〈f〉pp. (53)
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Let us estimate B. Clearly,

B = 2(a− 1)p
(∫ ∞

0

(∫
X 2

κ(x,Mat) κ(y,X\Mt) Γ(dx× dy)
)q/p

tq−1dt
)p/q

,

where κ(·, S) is the characteristic function of a set S. By Minkowski’s inequality,

B ≤ 2(a− 1)p

∫
X 2

(∫ ∞

0

κ(x,Mat) κ(y,X\Mt) tq−1dt
)p/q

Γ(dx× dy)

=
2(a− 1)p

qp/qap

∫
X 2

(
|f(x)|q − aq|f(y)|q

)p/q

+
Γ(dx× dy).

Obviously, the inequality |f(x)| ≥ a|f(y)| implies

|f(x)|q − aq|f(y)|q ≤ |f(x)|q ≤ aq

(a− 1)q

(
|f(x)| − |f(y)|

)q

+
.

Hence

B ≤ q−p/q〈f〉pp.

Summing up this estimate and (53), we arrive at (13) with

c(a, p, q) =
1 + 2(q log a)p/q

(a− 1)pqp/q
.

The proof is complete. �

To show the usefulness of inequality (13) we characterize a two-weight Sobolev type
inequality involving the seminorm 〈f〉p,Γ (see [M7] for other applications of (13)).

Corollary 3. Let q ≥ p ≥ 1, q ≥ r > 0, and let µ and ν be locally finite
nonnegative Radon measures on X . Inequality∫

X
|f |qdµ ≤ C

(
〈f〉qp,Γ +

(∫
X
|f |rdν

)q/r)
(54)

holds for every f ∈ dom(Fp) ∩ C0(X ) if and only if all bounded open sets g and G in
X such that g ⊂ G, satisfy the inequality

µ(g) ≤ Q
(
capp,Γ(g,G)q/p + ν(G)q/r

)
. (55)

The best constants C and Q in (54) and (55) are related by Q ≤ C ≤ c(p, q)Q.
Proof. The necessity of (55) and the estimate Q ≤ C are obtained by putting

an arbitrary function f ∈ dom(Fp) ∩ C0(X ) subject to f = 1 on g, f = 0 on X\G,
0 ≤ f ≤ 1, into (54).

The sufficiency of (55) results by the following argument:∫
X
|f |qdµ =

∫ ∞

0

µ(Mt)d(tq)

≤ Q
(∫ ∞

0

capp,Γ(Mat,Mt)q/pd(tq) +
∫ ∞

0

ν(Mt)q/rd(tq)
)

≤ Q
(
c(a, p, q)q/p〈f〉qp,Γ +

(∫
X
|f |rdν

)q/r)
,

12



where c(a, p, q) is the same constant as in (13). The proof is complete. �

Remark 4. Using the obvious identity

〈|f |〉1,Γ =
∫ ∞

0

Γ(Mt × (X\Mt))dt

instead of the conductor inequality (13), we deduce with the same argument that the
inequality (∫

X
|f |qdµ

)1/q

≤ C
(
〈f〉1,Γ +

∫
X
|f |dν

)
(56)

with q ≥ 1 holds if and only if for all bounded open sets g ⊂ X

µ(g)1/q ≤ C( Γ(g × (X\g)) + ν(g) )

with the same value of C as in (56).

5 Sharp capacitary inequalities and their applica-
tions

Let Ω denote an open set in Rn and let the function

Ω× Rn 3 (x, z) → φ(x, z) ∈ R

be continuous and positively homogeneous of degree 1 with respect to y. Clearly, the
measure

Fp[f ] := |φ(x, grad f(x))|pdx

satisfies (18), (19), and (35). Hence, (40) implies the inequality(∫ ∞

0

capp(Mt,Ω)q/pd(tq)
)1/q

≤ C
(∫

Ω

|φ(x, grad f(x))|pdx
)1/p

, (57)

where capp is the p-capacitance corresponding to the integral (8), C = const > 0,
and f is an arbitrary function in C∞

0 (Ω). The next assertion gives the sharp value of
C for q > p. In case q = p the sharp value of C is given by (3) and is obtained by the
same argument.

Proposition 1. Inequality (57) with q > p ≥ 1 holds with

C =
( Γ

(
pq

q−p

)
Γ
(

q
q−p

)
Γ
(
p q−1

q−p

))1/p−1/q

. (58)

This value of C is sharp if either Ω is a ball or Ω = Rn.
Proof. Let

ψ(t) =
∫ ∞

t

(∫
|f(x)|=τ

|φ(x,N(x))|p|grad f(x)|p−1ds(x)
)1/(1−p)

dτ

with ds standing for the surface element and N(x) denoting the normal vector at x
directed inward Mτ . Further, let t(ψ) denote the inverse function of ψ(t). Then∫

Ω

|φ(x, grad f(x))|pdx =
∫ ∞

0

|t′(ψ)|pdψ (59)
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(see either [M4] or Sect. 22.2 and 2.3 of [M6] for more details). By Bliss’ inequality
[Bl] (∫ ∞

0

t(ψ)q dψ

ψ1+q(p−1)/p

)1/q

≤
( p

q(p− 1)

)1/q

C
(∫ ∞

0

|t′(ψ)|pdψ
)1/p

, (60)

with C as in (58), and by (59) this is equivalent to(∫ ∞

0

d(t(ψ)q)
ψq(p−1)/p

)1/q

≤ C
(∫

Ω

|φ(x, grad f(x))|pdx
)1/p

.

In order to obtain (57) with C given by (58) it remains to recall that

capp(Mt) ≤
1

ψ(t)p−1
(61)

(see either [M4] or Lemma 2.2.2/1 in [M6]). The constant (58) is best possible since
(57) becomes equality for radial functions. �

Following [M4] (see also [M6], Sect. 2.2.1), we introduce the weighted perimeter
minimizing function σ on (0,∞) by

σ(m) := inf
∫

∂g

|φ(x,N(x))|pds(x), (62)

where the infimum is extended over all bounded open sets g with smooth boundaries
subject to

mn(g) ≥ m.

According to [M4] (see also Corollary 2.2.3/2 in [M6]), the following isocapacitance
inequality holds

capp(g,G) ≥
(∫ mn(G)

mn(g)

dm

σ(m)p′

)1−p

. (63)

Therefore, (57) leads to

Corollary 4. For all f ∈ C∞
0 (Ω)

(∫ ∞

0

(∫ mn(Ω)

mn(Mt)

dm

σ(m)p′

)−q/p′

d(tq)
)1/q

≤ C
(∫

Ω

|φ(x, grad f(x))|pdx
)1/p

(64)

with q > p and C defined by (58). For p = 1 the last inequality should be replaced by(∫ ∞

0

σ(mn(Mt))qd(tq)
)1/q

≤
∫

Ω

|φ(x, grad f(x))|dx (65)

with q ≥ 1. �

By the way, this corollary, combined with the classical isoperimetric inequality

s(∂g) ≥ n1/n′ω1/n
n mn(g)1/n′ ,

immediately gives the following well-known sharp result.

Corollary 5. ([FF] and [M1] for p = 1, [Ro], [Au], [Tal] for p > 1) Let n > p ≥ 1
and q = pn(n − p)−1. Then every f ∈ C∞

0 (Rn) satisfies the Sobolev inequality (16)
with
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c = π−1/2n−1/2
( p− 1
n− p

)1/p′( Γ(n)Γ(1 + n/2)
Γ(n/p)Γ(1 + n− n/p)

)1/n

.

The next assertion resulting from (59) and (61) shows that a quite general capac-
itary inequality is a consequence of a certain inequality for functions of one variable.

Theorem 3. Let α and β be positive nondecreasing functions on (0,∞) such that

sup
∫ ∞

0

β(ψ1−p)d(α(t(ψ))) <∞, (66)

with the supremum taken over all absolutely continuous functions [0,∞) 3 ψ → t(ψ) ≥
0 subject to t(0) = 0 and ∫ ∞

0

|t′(ψ)|pdψ ≤ 1. (67)

Then
sup

∫ ∞

0

β(capp(Mt,Ω))dα(t) <∞ (68)

with the supremum extended over all f subject to∫
Ω

|φ(x, grad f(x))|pdx ≤ 1. (69)

The least upper bounds (66) and (68) coincide. �

In fact, the above Proposition 1 is a particular case of Theorem 3 corresponding
to the choice

α(t) = tq and β(ξ) = ξq/p.

The next result is another consequence of Theorem 3.

Proposition 2. For every c > 0

sup
∫ ∞

0

exp
( −c
capp(Mt,Ω)1/(p−1)

)
d(exp(c tp

′
)) <∞, (70)

where the supremum is taken over all f ∈ C∞
0 (Ω) subject to (69) and p′ = p/(p− 1),

p > 1.
Proof. It follows from a theorem by Jodeit [Jo] that

sup
∫ ∞

0

exp(t(ψ)p′ − ψ)dψ <∞,

with the supremum taken over all absolutely continuous functions [0,∞) 3 ψ →
t(ψ) ≥ 0 subject to t(0) = 0 and (67). Hence, for every c > 0,

sup
∫ ∞

0

exp(c t(ψ)p′ − c ψ)dψ <∞.

It remains to refer to Theorem 3 with

α(t) = exp(c tp
′
) and β(ξ) = exp(−c ξ1/(1−p)). �
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A direct consequence of Proposition 2 and the isocapacitance inequality (44) is
the following celebrated Moser’s result.

Corollary 6. [Mo] Let mn(Ω) <∞ and let

{f} := {f ∈ C∞
0 (Ω) : ‖grad f‖Ln(Ω) ≤ 1}.

Then

sup
{f}

∫
Ω

exp(nω1/(n−1)
n |f(x)|n

′
) dx <∞.

Proof. The first inequality (44) can be written as

mn(g) ≤ mn(G) exp
(
−nω1/(n−1)

n capn(g,G)1/(1−n)
)
.

Hence, putting c = nω
1/(n−1)
n and p = n in (70) we obtain∫ ∞

0

mn(Mt)d exp
(
nω1/(n−1)

n tn
′)
<∞.

The result follows.

Remark 5. One needs no changes in proofs to see that the main results of this
section, Propositions 1 and 2 as well as Theorem 3, hold true if Ω is an open subset of a
Riemannian manifold, grad f is the Riemannian gradient, and mn is the Riemannian
measure.

We can go even further extending the results just mentioned to the measure valued
operator Fp[f ] in Section 2 subject to the condition

Fp[λ(f)] = |λ′(f)|pFp[f ] (71)

with the same λ as in (19). In fact, (71) implies∫
X
Fp[f ] =

∫ ∞

0

|t′(ψ)|pdψ, (72)

where t(ψ) is the inverse of the function

ψ(t) =
∫ ∞

t

∣∣∣ d
dτ
Fp[f ](Mτ )

∣∣∣1/(1−p)

dτ.

Identity (72) is the core of the proof of Theorem 3.
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