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SUMMARY

Asymptotic approximations for Green’s function for the operator −� in a long rod are derived. These
approximations are uniformly valid over the whole domain including the end regions of the rod. Connec-
tions are established between the asymptotic approximations in a long rod and the asymptotics in thin
domains. Overview of asymptotic approximations of Green’s kernels in a domain with a small hole and
domains with singularly perturbed smooth or conical boundaries is also given. Copyright q 2008 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The interest to the asymptotic analysis of Green’s functions for domains with perturbed boundaries
was initiated by the classical work of Hadamard [1]. The question of uniform asymptotic approx-
imations of Green’s functions for boundary value problems in singularly and regularly perturbed
domains was addressed in [2], and the detailed analysis for the Dirichlet problems in domains with
small holes was presented in [3]. Although some types of asymptotic approximations for Green’s
functions in singularly perturbed domains (for example, domains with small holes) have already
been used in the existing literature (see, for example, [4, 5]), the question of uniformity of such
approximations remained open until recently.
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2056 V. MAZ’YA AND A. MOVCHAN

The structure of this paper can be described as follows. Section 2 gives an overview of several
results for asymptotic approximations of Green’s kernels in domains with small holes or small
inclusions as well as in domains with singularly perturbed smooth or conical exterior boundaries.
Section 3 presents a detailed analysis of Green’s function of the Dirichlet–Neumann problem
in a long cylindrical body. We introduce the notion of a capacitary potential and its asymptotic
approximation in the elongated domain (see Section 3.1) and construct an asymptotic approximation
of Green’s function in the long rod in Sections 3.2 and 3.3. A version of the method of compound
asymptotic expansions of solutions to boundary value problems in singularly perturbed domains,
developed in [6], is used here to construct uniform asymptotic approximations of Green’s kernels.

2. OVERVIEW OF SOME BACKGROUND WORK

The recent papers [2, 3] give uniform asymptotic approximations of Green’s kernels for several
types of boundary value problems in singularly perturbed domains. To illustrate a concept of
uniform asymptotic approximations for Green’s functions, we begin with an example of a domain
with a small hole.

2.1. The Dirichlet problem in a domain with a small hole

Let � and � be bounded domains in Rn, n>2. Assume that � and � contain the origin O and
introduce the domain �ε ={x :ε−1x∈�}, as shown in Figure 1. Without loss of generality, we can
also assume that the minimum distance between the origin and the points of �� as well as the
maximum distance between the origin and the points of �� are equal to 1. Let Gε be Green’s
function of the Dirichlet problem for the Laplace operator in �ε =�\�ε. The notation |Sn−1|
is used for the (n−1)-dimensional measure of the unit sphere. By G and G we denote Green’s
functions of the Dirichlet problems in � and Rn \�, respectively. Also H stands for the regular
part of G, that is, H(x,y)=((n−2)|Sn−1|)−1|x−y|2−n−G(x,y), and P denotes the harmonic

ε

Ω ε

ω

Figure 1. A domain with a small hole.
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capacitary potential of �. The following asymptotic formula holds (see [2]):
Gε(x,y) = G(x,y)+ε2−nG(ε−1x,ε−1y)−((n−2)|Sn−1|)−1|x−y|2−n

+H(0,y)P(ε−1x)+H(x,0)P(ε−1y)−H(0,0)P(ε−1x)P(ε−1y)

−εn−2 cap�H(x,0)H(0,y)+O

(
εn−1

(min{|x|, |y|})n−2

)
(1)

uniformly with respect to x and y in �ε. Note that the remainder term in (1) is O(ε) on ��ε and
O(εn−1) on ��.

Although the above formula is uniformly valid in the whole domain �ε, it may look cumbersome.
The formula can be simplified if additional constraints are imposed on the positions of the points
x and y. Namely, if min{|x|, |y|}>2ε, then

Gε(x,y)=G(x,y)−εn−2 cap�G(x,0)G(0,y)+O

(
εn−1

(|x||y|)n−2min{|x|, |y|}
)

On the other hand, if max{|x|, |y|}< 1
2 , then

Gε(x,y)=ε2−nG
(x

ε
,
y
ε

)
−H(0,0)(P(ε−1x)−1)(P(ε−1y)−1)+O(max{|x|, |y|})

The asymptotic approximations above employ solutions of model problems defined in � and
Rn \�, independent of the small parameter ε, and such solutions can be efficiently implemented
into the numerical algorithms incorporating the asymptotic formulae for Green’s functions.

The asymptotic approximation of Green’s function for a two-dimensional domain with a small
hole can also be developed (see [3]), and it has the logε dependence, as outlined below. The
capacitary potential Pε for a two-dimensional domain �ε with a small hole �ε is defined as a
solution of the boundary value problem:

�Pε(x) = 0, x∈�ε

Pε(x) = 0, x∈��

Pε(x) = 1, x∈��ε

Its uniform asymptotic approximation, as ε→0, is given by the following formula:

Pε(x)∼ −G(x,0)+�(x/ε)−(2�)−1 log(|x|/ε)−�∞
(2�)−1 logε+H(0,0)−�∞

where H(x,y) is the regular part of Green’s function G(x,y) in the limit domain � without the
hole, and the quantities � and �∞ are defined as

�(g)= lim
|n|→∞

g(n,g)

and

�∞ = lim|g|→∞{�(g)−(2�)−1log|g|}
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2058 V. MAZ’YA AND A. MOVCHAN

Here, g(n,g) stands for Green’s function in the unbounded model domain R2\�. The uniform
asymptotic approximation of Green’s function Gε in a two-dimensional domain with a small hole
has the form

Gε(x,y) = G(x,y)+g(ε−1x,ε−1y)+(2�)−1 log(ε−1|x−y|)

+
(
(2�)−1 logε+�

(x
ε

)
−�∞+H(x,0)

)(
(2�)−1 logε+�

(y
ε

)
−�∞+H(0,y)

)
(2�)−1 logε+H(0,0)−�∞

−�(ε−1x)−�(ε−1y)+�∞+O(ε) (2)

We note that the structure of this asymptotic approximation resembles the one of formula (22)
(and formula (23)), constructed for an elongated body in the sequel of the paper; this resemblance
becomes apparent if one takes into account a logarithmic transformation of coordinates, which can
be used to link the corresponding geometries.

The analysis developed for domains with small holes can be extended to singularly perturbed
domains of other shapes and, in particular, to asymptotic approximations for Green’s kernels in
domains with singularly perturbed exterior boundaries (see Figures 2 and 4(a)).

2.2. Perturbation of a smooth exterior boundary

Consider an example of a bounded domain �−
ε in R3, as shown in Figure 2. Let �−

ε denote the
perturbed small part of the boundary, and l be a flat part of the boundary surrounding �−

ε , whereas
�− is the remaining unperturbed part of the exterior surface.

Green’s function for the Dirichlet–Neumann boundary value problem in �−
ε is introduced as a

solution of the following boundary value problem:

�Gε(x,y)+�(x−y) = 0, x,y∈�−
ε

Gε(x,y) = 0, x∈�−
ε ∪�−, y∈�−

ε

�Gε

�nx
(x,y) = 0, x∈ l, y∈�−

ε

To construct an asymptotic approximation of Gε, one also needs model limit domains shown
in Figure 3: the unperturbed limit domain �− and the unbounded domain D− corresponding

Figure 2. Domain with the perturbed boundary.
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Figure 3. (a) Unperturbed domain �− and (b) unbounded model domain D−.

to boundary layers near the perturbed boundary. Let G�− and gD− be Green’s functions of the
corresponding mixed boundary value problems in �− and D−. By H�− we denote the regular
part of G�− . The capacitary potential is introduced as a function P�− , harmonic in D−, which
satisfies the homogeneous Neumann condition on (�D−)\�−, equals to 1 on �−, and decays at
infinity. Then, the asymptotic approximation for Gε takes the following form:

Gε(x,y) = G�−(x,y)+ε−1gD−(ε−1x,ε−1y)−(4�|x−y|)−1

+H�−(0,y)P�−(ε−1x)+H�−(x,0)P�−(ε−1y)

−H�−(0,0)P�−(ε−1x)P�−(ε−1y)+O(ε) (3)

For the particular example of the domain in Figure 2, one can make a mirror reflection across
the flat part l of the boundary so that the extended set represents a domain with a small hole.
Then the method of images enables one to employ formula (1) and to deduce the asymptotic
approximation (3). Indeed, other shapes of the perturbed exterior boundaries can be considered: in
particular, this may include the case of a domain with a perturbed conical surface outlined below.

2.3. Green’s function for the Dirichlet–Neumann problem in a truncated cone

Consider an example involving a three-dimensional domain shown in Figure 4(a). Let K be an
infinite cone {x : |x|>0, |x|−1x∈�}, where � is a subdomain of the unit sphere S1 such that S1\�
has a positive two-dimensional harmonic capacity. The notations � and � are used for subdomains
of K separated from the vertex of K and from infinity by surfaces � and �, respectively (see
Figures 5 and 4(b)). By �ε we denote a domain involving a ‘small truncation’ of the conical part
of the boundary, i.e. �ε ={x∈� :ε−1x∈�}, where ε stands for a small positive parameter. The
conical surface is denoted by l, whereas �ε ={x :ε−1x∈�} stands for the part of surface near the
vertex of the truncated cone, as shown in Figure 4(a).

Let Gε and Gcone be Green’s functions for the Dirichlet–Neumann problem for −� in �ε and
the Neumann problem in K , respectively,

�xGε(x,y)+�(x−y) = 0, x,y∈�ε (4)

�Gε

�nx
(x,y) = 0, x∈ l, y∈�ε (5)

Gε(x,y) = 0, x∈�ε ∪�, y∈�ε (6)
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Figure 4. (a) A domain with a singularly perturbed conical boundary and (b) a limit unperturbed domain.
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Figure 5. Scaled region in the vicinity of the perturbed boundary.

and

�xGcone(x,y)+�(x−y) = 0, x,y∈K

�Gcone

�nx
(x,y) = 0, x∈ l, y∈K

Gcone(x,y) → 0, |x|→∞, y∈K

Also the notation G is used for Green’s function of the Dirichlet–Neumann problems for −� in
�, that is, G(x,y)=Gcone(x,y)−K(x,y), where the harmonic function K(x,y) is a solution of the
boundary value problem:

�xK(x,y) = 0, x,y∈�

�K
�nx

(x,y) = 0, x∈ l, y∈�

K(x,y) = Gcone(x,y), x∈�, y∈�
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We note that

K(0,y)=(s|y|)−1−G(0,y) and K(x,0)=(s|x|)−1−G(x,0)

where s is the area of K ∩S1.
To describe the model fields in the unbounded domain �, we use the scaled coordinates n=

ε−1x, g=ε−1y. Let P(n) be a relative capacitary potential of �, which solves the boundary value
problem:

�P(n) = 0, n∈�

P(n) = 1, n∈�

�P
�n

(n) = 0, n∈ l, P(n)→0 as |n|→∞

Green’s function g(n,g) for the unbounded domain � is represented as g(n,g)=Gcone(n,g)−
�(n,g), where �(n,g) is a solution of the model problem:

���(n,g) = 0, n,g∈�

�(n,g) = Gcone(n,g), n∈�, g∈�

��

�n�
(n,g) = 0, n∈ l, g∈�

�(n,g) → 0 as |n|→∞, g∈�

Then the required Green’s function Gε(x,y), solving problem (4)–(6), is approximated by the
following uniform asymptotic formula:

Gε(x,y) = G(x,y)+ε−1g(ε−1x,ε−1y)−Gcone(x,y)+K(0,y)P(ε−1x)+K(x,0)P(ε−1y)

−K(0,0)P(ε−1y)P(ε−1x)+O(ε�)

where � is a positive exponent depending on the cone opening.
In the following section, we present a new result including uniform asymptotic approximations

of Green’s functions for a mixed boundary value problem for the Laplacian in an elongated domain.
The Dirichlet boundary conditions are set at the end regions of this domain, whereas the Neumann
boundary conditions are prescribed on the lateral surface.

3. THE DIRICHLET–NEUMANN PROBLEM IN A LONG ROD

Let C be the infinite cylinder {(x′, xn) :x′ ∈�, xn ∈R}, where � is a bounded domain in Rn−1 with
smooth boundary; here n�2. Also let C± denote the Lipschitz subdomains of C separated from
±∞ by surfaces �±, respectively.

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:2055–2068
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2062 V. MAZ’YA AND A. MOVCHAN

Let us introduce a positive number M and the vector M=(O′,M), where O′ is the origin of
Rn−1. It is assumed that the ratio (diam �)/M is small.

A long rod CM is defined as follows:

CM ={x :(x−M)∈C+, (x+M)∈C−}

The lateral surface of the rod is denoted by �, as shown in Figure 6.
Let GM (x,y) denote the fundamental solution for−� in the domainCM subject to zero Neumann

condition on the lateral surface � and zero Dirichlet conditions on the end parts �± of the boundary
of the long rod:

�xGM (x,y)+�(x−y) = 0, x,y∈CM

�GM

�nx
(x,y) = 0, x∈�, y∈CM

GM (x,y) = 0, x∈�±, y∈CM

In order to obtain an approximation of GM , we also introduce several model problems independent
of the cylinder length 2M .

CM

C

C

γ

γ

C

+

−

−

+

Figure 6. A long rod CM and associated unbounded model domains.
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UNIFORM ASYMPTOTIC APPROXIMATIONS OF GREEN’S FUNCTION 2063

We denote Green’s function of the Neumann problem in C by G∞(x,y):

�xG∞(x,y)+�(x−y) = 0, x,y∈C

�G∞
�nx

(x,y) = 0, x∈�, y∈C

G∞(x,y) = −(2|�|)−1|xn− yn|+O(exp(−	|xn− yn|)) as |xn|→∞
where 	 is a positive constant, and |�| is the (n−1)-dimensional measure of �.

Similarly, G+ and G− stand for the fundamental solutions for −� in the domains C±, with the
homogeneous boundary conditions defined as follows:

�xG
±(x±,y±)+�(x±−y±) = 0, x±,y± ∈C±

G±(x±,y±) = 0, x± ∈�±, y± ∈C±

�G±

�nx
(x±,y±) = 0, x± ∈�, y± ∈C±

and it is also assumed that G±(x±,y±) are bounded as x±
n →∓∞.

3.1. Capacitary potential

The capacitary potential PM is defined as a solution of the Dirichlet–Neumann boundary value
problem in CM :

�PM (x) = 0, x∈CM (7)

�PM
�n

(x) = 0, x∈� (8)

PM (x) = 1, x∈�− and PM (x)=0, x∈�+ (9)

We shall also use the solutions �± of the homogeneous Dirichlet–Neumann problems in semi-
infinite domains C± as follows:

��±(x±) = 0, x∈C± (10)

��±

�n
(x±) = 0, x± ∈� (11)

�±(x±) = 0, x∈�± (12)

and

�±(x±)=∓x±
n +�±∞+O(exp(−	|x±

n |)) as |x±
n |→∞ (13)

where 	 is a positive constant, x± =(x′, xn∓M) are local coordinates at the ends of the long rod
CM , and �±∞ are constant terms that depend on the geometry of the cross-section � and the end
parts �± of the boundary of the long rod.

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:2055–2068
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Theorem 1
The following asymptotic formula, uniform with respect to x∈CM , for the capacitary potential
PM (x) holds:

PM (x)= M+xn+�−∞−�−(x−)+�+(x+)

2M+�+∞+�−∞
+O(exp(−	M)) (14)

Here, the functions �±, variables x±, and the constants �±∞ are the same as in (10)–(13), and 	 is
a positive constant.

To prove this statement, we use the direct substitution of (14) into (8)–(9), which shows that the
remainder term is a harmonic function satisfying homogeneous Neumann boundary conditions on
the lateral surface of the rod and is exponentially small at the end parts �± of the boundary. Then
it remains to apply the estimate similar to Lemma 1.3 of Section 1.5 in [7].

3.2. Asymptotic approximation of Green’s function

Let H±(x±,y±) be functions defined in semi-infinite domains C±, and assume that they also
satisfy the Dirichlet–Neumann boundary value problems:

�x H
±(x±,y±) = 0, x±,y± ∈C± (15)

�H±

�nx
(x±,y±) = 0, x± ∈�, y± ∈C± (16)

H±(x±,y±) = G∞(x,y)+(2|�|)−1�±(y±), x∈�±, y± ∈C± (17)

and

H±(x±,y±)→0 as x±
n →∓∞ (18)

The asymptotic approximation is given by the following statement.

Theorem 2
Green’s function GM (x,y) is approximated by the asymptotic formula, uniform with respect to
x,y∈CM :

GM (x,y) = G∞(x,y)−H+(x+,y+)−H−(x−,y−)

−AM

|�|
(
1

2
−PM (x)

)(
1

2
−PM (y)

)
+ AM

4|�| +O(exp(−	M)) (19)

where AM =2M+�+∞+�−∞, and 	 is a positive constant.

In the text below, we present a formal argument that leads to the asymptotic formula (19).
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Let

GM (x,y)=G∞(x,y)−H+
M (x,y)−H−

M (x,y) (20)

where the functions H±
M are defined as solutions of the boundary value problems:

�x H
±
M (x,y) = 0, x,y∈CM

�H±
M

�n
(x,y) = 0, x∈�, y∈CM

H±
M (x,y) = G∞(x,y), x∈�±, y∈CM

H±
M (x,y) = 0, x∈�∓, y∈CM

We note that the sum
∑

± H±
M is symmetric, i.e.

H+
M (x,y)+H−

M (x,y)=H+
M (y,x)+H−

M (y,x)

The functions H±
M can be approximated by the formulae

H+
M (x,y) = H+(x+,y+)− 1

2|�|�
+(y+)

− PM (x)
(
H+(x+′

,−∞,y+)− 1

2|�|�
+(y+)

)
+h+

M

and

H−
M (x,y) = H−(x−,y−)− 1

2|�|�
−(y−)

− PM (x)
(
H−(x−′

,+∞,y−)− 1

2|�|�
−(y−)

)
+h−

M

with exponentially small remainder terms h±
M . Applying Green’s formula to the functions H± and

�± in the domains C±, respectively, we deduce that

H−(x−′
,+∞,y−)=− 1

2|�| {�
−(y−)−(M+yn+�∞− )}

and

H+(x+′
,−∞,y+)=− 1

2|�| {�
+(y+)−(M−yn+�∞+ )}

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:2055–2068
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Condition (13) yields

lim
y−
n →+∞

H−(y−′
,+∞,y−)=0

and

lim
y+
n →−∞

H+(y+′
,−∞,y+)=0

If A=2M+�+∞+�−∞, then the following identity holds:

H+
M (x,y)+H−

M (x,y) = H+(x+,y+)+H−(x−,y−)

+ A|�|
(
1

2
−PM (x)

)(
1

2
−PM (y)

)
− AM

4|�| (21)

Combining formulae (20) and (21) we deduce (19).
The direct substitution of (19) into (16) and (17) shows that the remainder term is a harmonic

function satisfying homogeneous Neumann boundary conditions on the lateral surface of the rod,
and it is exponentially small at the end parts �± of the boundary. Applying the estimate similar to
Lemma 1.3 of Section 1.5 in [7], we complete the proof.

Example of Green’s functions in model domains. In some cases, Green’s functions for model
problems required for the above asymptotic approximation can be constructed in a simple form.
As an illustration, we suggest an example involving a long rectangular strip. In this case, the
function G∞(x,y) is the Neumann function for the Laplacian in the infinite strip �={(x1, x2) :
−∞<x1<∞, |x2|<1/2}, given in the following form:

G∞(x,y)= 1

2�

∫ ∞

−∞
G̃(k, x2, y2)exp(−ik(x1− y1))dk

where

G̃(k, x2, y2) = cosh(k(x2+ y2))+cosh(k)cosh(k(x2− y2))

2k sinh(k)

−
{

(2k)−1 sinh(k(x2− y2)), x2>y2

−(2k)−1 sinh(k(x2− y2)), x2<y2

Assuming that the end regions of the rectangular domain are ‘flat’, i.e. they are located on the
vertical straight lines x1=±M , we can construct Green’s functions G± for semi-infinite strips as
follows:

G±(x±,y±)=G∞(x±, y±
1 , y±

2 )−G∞(x±,−y±
1 , y±

2 )

These model fields are readily applicable in the asymptotic formula of Theorem 2.

3.3. Green’s function GM versus Green’s functions for unbounded domains

The result of Section 3.2 together with definitions of functions G∞ and G± lead to the following
theorem.

Copyright q 2008 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2008; 31:2055–2068
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Theorem 3
Green’s function GM (x,y) and the functions G±, G∞ are related by the following asymptotic
formula:

GM (x,y) = ∑
±
G±(x±,y±)−G∞(x,y)− 1

2|�|
∑
±

(�±(x±)+�±(y±))

−AM

|�|
(
1

2
−PM (x)

)(
1

2
−PM (y)

)
+ AM

4|�| +O(exp(−	M)) (22)

where 	 is a positive constant independent of M .

Corollary 1
Formula (22) allows for an equivalent representation involving the model fields �± defined as
solutions of the boundary value problems (10)–(13):

GM (x,y) = ∑
±
G±(x±,y±)−G∞(x,y)+ 1

4|�|
{
AM −2

∑
±

(�±(x±)+�±(y±))

}

−(|�|AM )−1
(
xn− 1

2
(�+∞−�−∞)+�+(x+)−�−(x−)

)

×
(
yn− 1

2
(�+∞−�−∞)+�+(y+)−�−(y−)

)
+O(exp(−	M)) (23)

where 	 is a positive constant independent of M .

The above formulae can be simplified if we introduce additional constraints on the positions of
the points x and y within CM .

When the points x and y are ‘far away’ from the ends �± of the long rod, the quantities H±
become exponentially small; hence, we arrive to the following corollary.

Corollary 2
When min{|x±M|/M, |y±M|/M}�Const, Green’s function GM is approximated by the following
formula:

GM (x,y) ∼ G∞(x,y)−(|�|AM )−1
(
xn− 1

2
(�+∞−�−∞)

)(
yn− 1

2
(�+∞−�−∞)

)

+ AM

4|�| as M→∞ (24)

Another simplified formula for Green’s function can be presented for the case when the points
x and y are sufficiently close to one of the ends of the rod.

Corollary 3
Assume that the points x and y are close to the left end �− of the long rod CM , i.e. max{x+M,

y+M}�Const. Then the function GM is approximated by the following formula:

GM (x,y)∼G−(x−,y−)−|�|G
−(x−′

,+∞,y−)G−(x−,y−′
,+∞)

AM
as M→∞ (25)

Similar approximation is valid near the other end �+ of the long rod.
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3.4. The Dirichlet–Neumann problem in a thin rod

By rescaling, the above results can be used to find an asymptotic approximation for Green’s
function G(ε) in a thin rod rather than the long rod. Let a thin domain be defined by

Cε ={x :ε−1(x−a)∈C+,ε−1(x+a)∈C−}
where the notations C± are the same as in the beginning of Section 3 (see Figure 6), 2a is the
length of the rod, and now ε is a positive small parameter. As above, it is assumed that Green’s
function is subject to zero Neumann condition on the cylindrical part of Cε and zero Dirichlet
condition on the remaining part of �Cε.

Theorem 4
The following asymptotic formula for G(ε)(x,y), uniform with respect to x,y∈�ε, holds:

G(ε)(x,y) = ε2−n

{
G+(ε−1(x−a),ε−1(y−a))+G−(ε−1(x+a),ε−1(y+a))−G∞(ε−1x,ε−1y)

−ε{2|�|−1a+ε(�+∞+�−∞)}−1
(

xn
ε|�| −

1

2
(�−∞−�+∞)+�+

(
x−a

ε

)
−�−

(
x+a

ε

))

×
(

yn
ε|�| −

1

2
(�−∞−�+∞)+�+

(
y−a

ε

)
−�−

(
y+a

ε

))

+ 1

4

(
(ε|�|)−12a+�−∞+�+∞−2

∑
±

(�±(ε−1(x∓a))+�±(ε−1(y∓a)))
)

+O(exp(−
/ε))

}
(26)

where 
 is a positive constant independent of ε.
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