Sharp pointwise estimates for analytic functions by the
L,-norm of the real part
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Abstract. We obtain sharp estimates of [R{e***)(f(z) — f(0))}| by the L,-norm of
Rf — w on the circle |(| = R, where |z|] < R,1 < p < 00, and « is a real valued function
on Dg. Here f is an analytic function in the disc Dr = {z : |z| < R} whose real part is
continuous on Dg, w is a real constant, and 3 f —w is orthogonal to some continuous function
® on the circle || = R. We derive two types of estimates with vanishing and nonvanishing
mean value of ®. The cases ® = 0 and ® = 1 are discussed in more detail. In particular,
we give explicit formulas for sharp constants in inequalities for |[R{e?®)(f(z) — £(0))}| with
p = 1,2,00. We also obtain estimates for |f(z) — f(0)| in the class of analytic functions
with two-sided bounds of |arg{f(z) — f(0)}|. As a corollary, we find a sharp constant in
the upper estimate of |Sf(z) — Sf(0)| by ||Rf — Rf(0)||, which generalizes the classical
Carathéodory-Plemelj estimate with p = oo.
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0 Introduction

In the present paper we consider an analytic function f on the disk Dp = {z : 2| < R}
whose real part is continuous on Dg. We obtain sharp estimates for

max [R{e"“? (f(z) — f(0))}

|2|=r

by the L,-norm of $f — w on the circle 0Dg, where 0 <r < R, 1 < p < 00, « is a real
valued function on Dg, and w is a real constant. We assume that

(§Rf —w, (I)) =0, (01)

where @ is a continuous function defined on the circle |(| = R.
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In Section 1 we prove the basic Lemma 1 which gives a general but somewhat implicit
representation of the best constant Cy ,(z,(z)) in the estimate of [R{e?®)(f(2) — £(0))}]
by ||Rf||, with the orthogonality condition (0.1).

Section 2 concerns the inequality

[R{ ™ (f(2) = FO)} < Cayp (2, a(2)) IRF = Wl (0.2)

with (Rf, ) = 0 and vanishing mean value of ® for |(| = R. By w in (0.2) we mean an
arbitrary real constant. The value ||Rf —w||, in the right-hand side of (0.2) can be replaced
by E,(Rf) which stands for the best approximation of R f by a real constant in the norm of
L,(0Dg).

The case ® = 0 is treated in more details. As a corollary of Lemma 1 we find the
representation for the sharp constant in (0.2)

Co, p(2,(2)) = R_l/pC'Ovp(r/R,a(z)), (0.3)

where

cos(¢p — ) — ycosa
1 —2ycosp+ 2

p/p-1) )PP
dy (0.4)

Oo,pw,a):%{/:

if 1 <p< oo, and

Co,0) = 22D, (0.5)

ysina + (1 — 2 cos? a)1/2

(1-~2)"?

In particular, we obtain the equality Cy o(y, @) = y[r(1 — ~+?)]7V/2.

For ® =0, p=1, and w = A;(R) = max{Rf(¢) : |(| = R} inequality (0.2) and formula
(0.5) imply the Hadamard-Borel-Carathéodory inequality. Also note, that by (0.2) and (0.6)
with ® =0, p =00, w =0, « =0, and o = 7/2 one gets the estimates

4
Co, (7, @) = - {sin alog + cos avarcsin (7y cos a)} . (0.6)

4 2 R
[Rf(2) = RF(0)| < — arcsin (%) IRflles |S(2) = SF(O)] < = log (R+ "

-Tr

) 1Rl

(see, for example, [8]). The first inequality is known as the ”Schwarz Arcussinus Formula”.
The right-hand side of the second inequality is, in fact, the sharp majorant for |f(z) — f(0)|.

For ® =0, a = 7/2 and any z with |z] = r < R, inequality (0.2) and formulas (0.3),
(0.4) imply

Sf(2) = SFO)] < S, (r/R) [IRS = wllp (0.7)



with the sharp constant

Sy(y) = ) {2/1 wdt}l/q, (0.8)

2R \* ) L= ()]

where ¢ = p/(p — 1), »#(y) = (27)/(1 +~?*). The integral in the right-hand side of (0.8)
can be expressed in terms of hypergeometric Gauss function and is evaluated explicitly for
a some values of p.

Section 3 concerns the inequality

[R{ P (f(2) = FOD}] < Cap (2,0(2)) [IRf = (RF, )/ (1, D),

which is valid by Lemma 1 for ® with a nonvanishing mean value on the circle |(| = R.
In case ® = 1 the last inequality takes the form

[R{E (f(2) = F0))}] < Cu,p (2, 0(2)) [[RS = RF(O)]l, (0.9)
and the sharp constant is defined by

Crp(2 a(2)) = RTVPC 4 (r/ R, af2)),

where
o . . p/(p—1) (p—1)/p
Ch,p(7, @) = 7 min cos(p —a) —ycosa A dy (0.10)
’ TR | J | 1—2ycosp+~2
if 1 <p < oo, and
Cii(y,a) = —1 (0.11)
1,1 v, 7_[_(1_72)7 .

2ysina 4 /(1 —2)2 + 42 sin o
1 —~2

2
+ cos o arcsin ( 7COSO&) } . (0.12)
1+ ~2

2
Cl,oo(7,0) = ;{sinalog

In particular, C; o(v, ) = v[r(1 — 2] Y/2.
For p = oo, inequality (0.9) and the formula (0.12) for C} (7, «) imply the well-known
estimates for [Rf(2) — RF(O)], 13/(2) — SF(0)] and [£(2) — F(0)| by [RF — RF(O)||ne (sce,

for example, [3, 4, 9, 15]). In particular, we obtain the estimate

IRF(2) — RF(0)] < % arctan (%) RS — RF(O)]|oc, (0.13)

generally known as the ”Schwarz Arcustangens Formula.



In general, (0.4) i (0.10) lead to the inequality C; ,(v,a) < Co, »(7, @) which becomes
equality for some values of p and «. In particular, this is the case for p = 2. We also show
that Cy, (v, 7/2) = Co, p(7,7/2), that is the inequality

S/ (2) = SO < S (r/R)[IRF = RFO)]l, (0.14)

holds with the sharp constant S,(r/R) defined by (0.8). In conclusion we note that constant
(0.8) can be written in the form

0o (»=1)/p
(7 - 2p—1 2n+1 n
Sp(fy) = 271-](?2/7’ {2 [1 — %2(7)] 1/(2—2p) ZB (2p 53 > 22 (7)} ’ (0.15)
n=0

where B(u,v) is the Beta-function. Inequality (0.14) with the sharp constant (0.15) is a
generalization of the classical estimate

97(:) = 30 < 2 1og (7

- T

) IRF = REO) |

due to Carathéodory and Plemelj (see [4, 3]).

The present paper extends results of our article [11] dedicated to sharp two-sided param-
eter dependent estimates for R{e'*(f(z) — f(0))} by its maximal and minimal values on a
circle as well as to the sharp constant for |R{e*(f(z) — £(0))}| involving the value ||Rf]|oo-

1 Estimate of |[R{c“C)(f(2)— £(0))}| by ||Rf||, with asso-
ciated orthogonality condition

We set for real valued functions g and h defined on the circle |(| = R,
@)= [ gOmOlq
=R

and we denote the L,-norm, 1 < p < oo, of g by ||g|[,- We use the notations Af(z) =
f(z) — f(0) and

ia(z)
Gt =R (52 ) (L)

Since z plays the role of a parameter in what follows, we frequently do not mark the
dependence of « on z.
The following assertion is the main objective of this section.

Lemma 1. Let f be analytic on Dy with continuous real part on Dy, 1 < p < 0o, and let
a(z) be a real valued function, |z| < R. Further, let

Rf(C)@(¢)]dc| =0, (1.2)

I<I=R



where ® is a real continuous function on |(| = R. Then for any fixed point z,|z| = r < R,

there holds
[R{“EAF(2)} < Cop (2,a(2) ||RS]], (1.3)

with the sharp constant

1 .
C<I>,p(zv a) = R Aelﬂrﬁl HGZ,a - )‘q)qu (1.4)

where ¢ =p/(p—1) for 1 <p<oo,gq=o00 forp=1, and g =1 for p = co.
In particular, for any fived z,|z| = r < R, there holds

|AF(2)] < Ca,p(z, —arg Af(2))[[RS]]p- (1.5)
Proof. Let ® € C(0Dpg) and g € L,(0Dg) be fixed. Consider the functional
Bt = [ gOmCdL] (16)
IC|=R

on the linear manifold Cy = {h € C(0Dg) : (h,®) = 0} of the space L,(0Dg). We show
that

A = winllg = A2[lg. (1.7)

F, .
sup = min [lg — AV, (1.8)

where ¥ € L,(0Dg), L,v = {¢ € L,(0Dg) : (¢, ¥) = 0}.

Suppose the ¥ is continuous. Let 1 < p < oo. Given any € > 0, for every ¢ € L, ¢ there
exists p. € C(0Dg) such that || — .||, < e. In the case p = oo, there exists . € C(0Dpg)
such that the Lebesgue measure of the set £ = {¢ € 0Dg : ¢(() # ¢(()} does not exceed
 and ||zl < [[ollo

Assuming ||¥|[y # 0 we write ¢, = c.¥ + (. — . V), where c. = (¢, ¥)/[|[¥[3. Then
Ve = . — .V € Cy.

First, consider the case 1 < p < oo. If ¥ = 0, then (1.7) follows from (1.8) because
C(0Dg) is dense in L,(0Dg). For ||¥|]y # 0 inequality ||¢ — ¢c||, < e implies the estimate
Il = @ellp < €+ [ee|[[¥]], with

(e W) _ (e~ 0| _ [l — el pllely _ 12,

le.| = = < < €.
415 45 45 45

Hence, ||¢ — .||, < ke, where k = 1+ ||¥]|,||¥]|,||¥||;?. Thus Cg is dense in L, s, which,
in view of (1.8), implies (1.7).



Now, let p = co. If ¥ =0, it follows from (1.6) and ||¢¢||e0 < ||¢]]oo that

‘FQ(SOeN > ‘Fg(90>|
eells — el

= 2||gllz.(2)- (1.9)

Since mes £ < ¢, we have ||g||z,(zy — 0 as ¢ — 0 which leads to (1.7) by (1.8) and (1.9). If
[|¥||2 # 0, then taking into account the estimates

[Fy(pe) = Fo()| < [Fa(e — o)l + [Fy(oe — @),

[lpe = Pelloo < feell[W]]oe,

and v 4 2 v
lc.| = [(pe, W) _ (e — ¢, V)] < el ]ool W] e,

13 IRd1-

we obtain
|[Fy(@e)l = [Fy(o)] = 2 (Kllgllie +119llL.ey) llelloo,
where k = ||W||%||¥||;2 This, together with the estimate ||®:]loc < [|©]loe + ||| ¥]]s0,

implies
|Fy (o)l S 1 {’Fg(‘P”
|@elloo — 14 2ke | ||¢]|oo

Combining this with(1.8) and using the arbitrariness of € we arrive at (1.7) with p = occ.
Let us apply the duality relation (1.7). The Cauchy-Schwarz formula

— 2 (kllgllie + ||9||L1(E>)} :

=i L (=
FR =80+ g | RO (1.10)

(see, for example, [3, 12]) represents an analytic function in Dg with the real part Rf
continuous on Dpg . Clearly, (1.10) implies

1 z
TR Jig=r ¢~ 2

Af(z) Rf(Q)dc]- (1.11)

Using (1.11) and (1.1), we obtain

weeare) = pr{ [ S woua} = [ G0 Rr@la 1

=k G~ %

Hence and by (1.2), the sharp constant Co, ,(z, @) in

[R{e“Af(2)} < Ca,p(2,0) RSl (1.13)
can be written in the form
1 1
Co, p(2,00) = — sup / G..o(Q)h(C)|dC]| - 1.14
Y p( ) ’/TR heCa Hth |<|:R ( ) ( )| | ( )



Therefore, applying (1.7) to the functional (1.6) with ¢(¢) = G, .((), we arrive at the
representation (1.4) for the sharp constant in (1.3).

We have proved that inequality (1.3) with the sharp constant Ce ,(2,(2)) is valid at
any point z € Dpg for any fixed real valued function a(z) on Dy and any analytic function
f on Dg with real part continuous in Dg. Having f fixed in (1.3) and choosing a to satisfy
a(z) = —arg Af(z), we arrive at (1.5). I

Remark 1. Obviously, (1.4) implies

1
6072<Z7a) = ﬁ||GZ,aH27 (115)
and
C = L G = (G @8] 152) 1.16
<1>,2(2704)—7TR (G- all3 = (Geay ®)2I@5%) 7, (1.16)

if [|@|]> # 0. | |
Let us evaluate ||G, |2 With the notation ( = Re™, z = re'™,y = r/R one has
- eiareiT f)/eioz

= - — = — . 1.17
C — Reit — reit e’L(th) — ( )

Setting ¢ =t — 7 and using (1.17) we obtain

io 2 T+T ia 2
i e )
|| ) ||2 Cl=R C . | C| v Cir eilt—7) — ol

T el cos(ip — ycosa)?
= Ry’ R - =— d 1.18
7 /_W[ (ew— )] dp = / 1—27(:08904-7) e (118)

and making elementary calculations, we arrive at

/” (cos(p — @) —ycosa)? | m

_x (1 —2ycosp+~2)? L — 2’
which together with (1.18) gives

R
1G.all5 = et (1.19)
Hence and by (1.15), (1.16) we conclude
T
Co o(z,a) = , 1.20
0,2(2 ) TR(R? — r?) (1.20)
and
1 2 (Gla @)2}1/2
Co o(2,a) = - = , 1.21
waters) = oz (S 2
provided ||®||2 # 0. I

We need one more auxiliary assertion. Its proof, given in [11], is reproduced here for
readers’ convenience.



Lemma 2. Let |z| =r < R. The relations hold

, _r(rcosa—R) B
\Igﬁlirjlg Gz,oz(C) - W7 lrcrllg)é Gz,oa(C) - R2 — 2

Proof. Setting ¢ =t — 7 in (1.17), we obtain

r(rcosa+ R)

G..(() =R .
olC) <<—z e — 1 —2ycosp+~2
Consider the function

_ cos(¢ —a) —ycosa

9(¢)

<.
1—2vycosp+~2 ' el =m

We have
(72 — 1) cosasinp + (72 + 1) sina cos p — 27y sin

(1 —2ycosp +~2)?

9'(p) =

Solving the equation g ’(¢) = 0, we find

. (1 —~%)sinc 27 + (1 4+7?) cosa
singp = , cospy = :
1+ 27y cosa + 72 1+ 27y cosa + 72
and
, (1 —~?)sina 2y — (1++9*) cosa
sinp_ = cos p_ =

1—2ycosa +~2’ 1—2ycosa+~2"’

) () - denle—0) —yema)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

where ¢ and @_ are critical points of g(¢). Setting (1.25) and (1.26) into (1.24) we arrive

at
_ ycosa+1

9(p+) = 1_772, g(p-)

ycosa — 1
It follows from (1.24) that

cosa  yCosa — Ccosq
144 a 1—~2

_ ycosa—cosa yeosa + 1

g(—m) = g(m) T ST iop 9(p+),
ycosa —cosa _ ycosa — 1
g(=m) = g(m) = —— v === e 9(p-),

it follows from (1.23), (1.24) that

- ez (01) yecosa+1  r(rcosa+ R)
max = - -
_ ez vyeosae—1  r(rcosa— R)
§R == _ == frg
min (C — Z) 19(-) =17 " I

which implies (1.22). The proof is complete.



2 Estimate for [R{e“*Af(2)}| by ||Rf —w||, if the mean
value of @ on the circle (| = R is equal to zero

Let us assume that fIC\:R ®(¢)|d¢| = 0. Replacing f with f —w, where w is a real constant,

in Lemma 1, we obtain an estimate for |[R{e*®Af(2)}|.

Proposition 1. Let f be analytic on Dg with continuous real part on Dy, 1 < p < 0o, and
let a(z) be a real valued function, |z| < R. Further, let

R ()@ (¢)]d¢| =0, (2.1)

I{I=R

where @ is a real continuous function on |(| = R, for which
[ e -o. 2.2)
ICI=R

Then for any fized point z,|z| = r < R, and arbitrary real constant w there holds
(R{“ DAL ()} < Ca,p (2,0(2)) [|Rf = wll, (2.3)

with the sharp constant Co, ,(z, a(2)) given by (1.4).

In particular, for any fized point z,|z| = r < R, and arbitrary real constant w, the
inequality holds

[Af(2)] < Co p(2, —arg Af(2))[[ RS — wl]p. (2.4)

Remark 2. The norm ||Rf — wl|, in (2.3) and (2.4) can be replaced with the best
approximation E,(Rf) of Rf by a real constant in the norm of the space L,(0Dg)

B,(Rf) = min ][R ~ ], (2.5)
Note that
By(Rf) = |IR] — RFO)2 (2:6)
and
Ew(Rf) = 504(R), 2.7

where Q¢(R) = Af(R) — Bf(R) is the oscillation of $f on the circle |(| = R. Here and in
what follow, A;(R) = max{Rf(¢) : || = R} and By(R) = min{Rf(() : |¢| = R}.
Indeed, we have

IRf = wlla = { /|< R —w12|d<|}1/2 - @{ | mene) —w]?dso}m, 2.5)

-7



which implies the representation

™

1/2
Ba() = min RS — wlle = VE{ [ [RrRE) - At |

—T

where

A= o / " RF(Re)dp = RF(0)

which proves (2.6).
Since the minimum value in

Eo(Rf) = min [[Rf — wf|

is attained at w = [Af(R) + Bf(R)]/2 and hence,

Eo(Rf) = HW_ Af(R);”Bf(R)H _ AR Af(R);Bf(R)

relation (2.7) follows. I

We introduce the set
Wi, a0) ={w € C:aq <|argw| <aaVm —as < |argw| <7 — a1}, (2.9)

where 0 < ay < ag < /2.

The next assertion contains explicit consequences of Proposition 1 for & = 0. It also
provides an estimate of |Af(z)| for a class of analytic functions in Dg with continuous
real part in Dp for which Af(z) € W(ay,as),z € Dg. Similarly to Remark 2, the norm
||Rf — wl||, in the next inequalities can be replaced by E,(Rf).

Corollary 1. Let f be analytic on Dg with continuous real part on D, 1 < p < 0.
Further, let a(z) be a real valued function, |z| < R. Then for any fized point z,|z| = r < R,
and for an arbitrary real constant w the inequality holds

[(R{ A ()} < Co,p (2,a(2) [IRF =y (2.10)
with the sharp constant Cy ,(z, (%)), where

1 r
Co.p(2, @) = 77, Cop <E’ a) , (2.11)

and

cos(¢p — ) — ycosa
1 —2ycosp+ 2

p/p-1) )PP
dp (2.12)

co,pw,a):%{/_z

10



if 1 <p< oo, and

A(1 + 7] cos a])

00,1(7704) = 7T(]_ _72) )

(2.13)

SRS

i 1 — ~2 cos2 1/2
Co, wo(7, @) = {Sinalogrysma—i_( % cos® @)

1) + cos aarcsin (7y cos a)} . (2.14)

In particular,

Co. (7, a) = ﬁ (2.15)

If Af(z) € W(an, ) for z € Dg, then

A< max Cop(z@)lIRf — ull, (2.16)

with
Lmax Co 1(2z, ) = Cop, 1(2, 1), (2.17)
max Co, o2, ) = Cp, o (2, 02). (2.18)

Proof. We put ®(z) = 0 in Proposition 1. For p = 1, formula (2.11) with the factor
(2.13) follows directly from (1.4) and (1.22). For p = oo, representation (2.11) with the
factor (2.14) was derived in [11].

Now, suppose 1 < p < co. Combining (1.4) with (1.1) and (1.17) we have

. _ (r—1)/p
1 T+T ,yeza p/(p—1)
ol = —R{/ =)

which after the change of variable ¢ =t — 7 becomes

: — (r—1)/p

1 ™ ,yeza p/(p—1)

C(),p(Z,a) = W {/ %(elﬂo—’y) ng . (219)
Using the notation
- - (p—1)/p
1 ™ ,.yeza p/(p—1)
Copl700) =+ { [ R(ES)) ey (2.20)
we rewrite (2.19) as
1 r

COvP(’Z)a) = moo,p <E7a> ) (221)



which together with (1.23) proves (2.11) and (2.12) for 1 < p < oc.

Formula (2.11) with p = 2 and the factor (2.15) has been already derived (see (1.20)).
Now, we pass to the proof of (2.16)-(2.18). First, we show the equality Cy ,(z,—a) =
Co, p(z,a). For p = 1 and p = oo it follows directly from (2.13) and (2.14). Suppose

1 < p < o0. By (2.20),
™ —ia »/(p—1) (p=1)/p
_ c
C'O,p('%@)—ﬂ_{/_7r %(e—w—’y> d(p} :
p/p-1) ) PD/P
d¢} = Covp(’% —Oé).

Replacing here ¢ by — we obtain
This, together with (2.21), leads to Co, ,(z, —a) = Cy, ,(2, ). Hence, by (2.4)

Co,p(%&) = % {/ R (eiz_z_av>
|Af(2)] < Co, (2, arg Af(2))|[Rf — wl],. (2.22)

Let 0 < a < /2. By (2.20) and (2.21), Cy, (2,7 — ) = Cp, p(2, —). Combining this
with Co, (2, —a) = Cp, ,(2, @) we obtain

sup{Co, p(2,arg Af(2)) : Af(z) € W(aq,a2)} = max{Cp ,(z,) : a1 < a < as},

which together (2.22) implies (2.16).

Equality (2.17) follows from the last relation, (2.13) and the monotonicity of cosa on
0,7/2].

Now, we prove (2.18). In view of (2.11) and (2.14),

ysina + (1 — 2 cos? ) /2
(1—72)"?

where v = r/R. We study the function Cy, o (2, @) for 0 < a < 7/2. We have

4
Co, (2, ) = - {sin alog + cos avarcsin (y cos a)} :

1/2

T

) (1 —2)7 — sin av arcsin(7y cos a)) . (2.23)
“ -7

Using the equalities

ysina + (1 — 42 cos? a)/? vsina dt
cos a log N1z = cosa _—
(1—12) 0 V1I—~2+t2

7 cos o dt

0 V1—1¢2

sin avarcsin(y cos @) = sin«

and the estimates

ysma v sin a cos «

dt
> )
0 VI—2+22 /1—92+42sin’«

12

COSs v




: /WOSO‘ dt 7 sin & cos a 7 sin v cos a
sin « < = ;
0 V-2 /1—72cos2a +/1—72+~%sin’a
which follow from the mean value theorem for a € (0, 7/2), we obtain from (2.23)
0Co, oo (2, @)
O

Thus, Co, o (2, @) increases on [0, 7/2]. I

> 0.

Remark 3. Let a = /2. Since the integrand in (2.12) is an even function, we have

T : q 1/q
7y sin
2)=—<2 d 2.24
Co,p(7,7/2) 7T{ /0 (1—270054,04—72) 80} (224)

for the best constant in the inequality

[SAf()| < RTVPCo,, (r/ R /2) [|[Rf = wllp, (2.25)

where ¢ = p/(p —1),1 < p < co. Making the change of variable ¢ = cosy and setting
#(7) = (27)/(1 ++?), we find

Co (7. m/2) = 20 {2/1 wdt}uq (2.26)

2m UL [ )

which together with (2.25) leads to (0.7) and (0.8). The integral

1 (1 _ 42)(@-D)/2
zq(%):/ (Sl Rl

1 (L= s)d

is the sum of each of two series

s (00 [

and
mZ::O(—l)m ( qg ) /_1 (1- %t)zj(”; — t2)1/2dt’

the first of which turns into a finite sum for odd ¢ and the second one for even gq.
For odd ¢, the recurrence relation

2(2n — 2)N 1

(2n — D! 52(1 — »2)"

1
Izn+1(%) = - ;I2n71(%)
implies

n

T (5¢) = 2 Z(_1>n+k<2k_2>”( 22 ) +(_1)"10g1+%'

220 +2 p (2k — )N 1 — 52 a2ntl 1— 2
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Hence, putting s = (27)/(1 +~?) and taking into account the equality

and (2.26), we find
1 I e
Co 230 (1:7/2) = 5 { (-1 hog 1

21 4+7%) o= ()" @2k —2)1 [/ 2y |7
0l — (2k — )N 1—~2 '

For example,

1 (v(14+42) 1. 1447
00,3/2(%7T/2):;{(1(_—72>2>—§1gm :

For even ¢, by the recurrence relation

m(2n — D! 1 1
I2n+2<%) - (271)” %2(1 _ %2)(2n+1)/2 o ;IQn(%)’
we have
. B 1)k (2k — 1)1 EREDZ 2y (1= VI = 22)
an+2(% %2n+3 Z (2! 1— %2 %2"” V1=
Hence, using
7,() T (1 — V1 - %2)
») = ,
2 12y/1 — 32

with sc = (27)/(1 + 7?) as well as (2.26), we obtain
1 [(4(=1)"my?
2 1—12

_1
+7r(1+72) Do (=1)mRRE =) L2y \ T
v — (2k)!! 1—72 '

CO, EZ—ﬁ (77 7T/2) =

In particular,

Cosn =1 { 7B

Remark 4. Let a = 0. Since the integrand in (2.12) is even, it follows that

y T q 1/q
00729(770) = % {2/0 2 ng} )

cosp — 7y
1 —2vycosp+ 7

14



where ¢ = p/(p — 1),1 < p < 00. The change of variable ¢t = cos ¢ implies the equality

) [, [ [t = e
Cortr 0= 5242 [ = (227)

for the sharp constant in

[RAF(2)] < Co, p(r/RO)RPIIRf — | (2.28)

The integral in (2.27) can be evaluated for ¢ = 2n, that is for p = (2n)/(2n — 1). We

introduce the notation
! (t=7™
Tl = [ (=) (1 = 2)172

By the binomial formula,

1 & (=DR@n)I(1 = sey)k (1 dt
Tl = 2 ; kl(2n — k) / (1= set)k(1 —12)1/2°

Evaluating the last integral and using (2.27), we conclude

2n k—1 k+m(2n)' (1 2m> 1+ 2m—k+1Y) 2n
2 Jk—1 Y
Cy 2o (1,0) = (2m)'F {”sz e (1) .

Remark 5. The well known inequalities (see, for instance, [8])

RAF()| < ~arcsin (1) [ lle, [SAf()] < Zlog 7’

1Rl

are particular cases of inequalities in Proposition 1. They follow from (2.10) and (2.11) with
p=o00,w=0,aa=0, and a« = 7/2, combined with (2.14). The inequality

R—+r

2
IASG)] < Zlog Rl
(see [11]) follows from (2.18), where p = co,w =0, s = 7/2 and (2.14), (2.16).
The class of inequalities we are studying in this section embraces the following three
sharp estimates

RAS(:)] € 5o max RAF(C), (2.29)
SAS()] < 1 max RASC), (2:30)

15



2r
AFE)] < s max RAS(C) (231)

(see [3, 14, 15] and the bibliography in [3]).
Sometimes, (2.31) is called Hadamard-Borel-Carathéodory inequality (see, e.g., [3]). For
the first time, the inequality

[f(z)] < max R f(C) (2.32)

R —r =R

was obtained by Hadamard (real part theorem) with C' = 4 in 1892 [7] and used in the

theory of entire functions. Here f is an analytic function on the disc Dp, continuous on Dp

and vanishing at z = 0. Different proofs of (2.32) with C' = 2 are given in [1, 2, 5, 13, 16, 17].
Inequalities(2.29)-(2.31) follow from Corollary 1 with p =1, w = A;(R), that is they are

particular cases of the estimate

2r(R +r|cos al) max RAF(C)

REeAf ()} < I ma

for « = 0,0 = /2, and o« = — arg A f(z), respectively.
Corollary 1 implies one more inequality. Putting p = 1 and w = A¢(R) in (2.16) and
taking into account (2.11), (2.13), and (2.17), we arrive at the estimate

2r(R + r| cos aq])
B2 ‘Igaﬁ RAL(Q), (2.33)

[Af(2)] <

valid for functions f such that Af(z) € W(aq,az) with z € Dg. In particular, setting here
a; = 0 we arrive at (2.31). I

Concluding this section, we make an observation concerning Proposition 1 with p = 2.
Remark 6. Let m be a positive integer and let {P,,} be the sequence of functions on
the circle |¢| = R defined by

n
—R> et (2:34)
k=1
where ¢q,¢9,...,¢, € C, 1 <n < m. Let f be an analytic function on Dg with continuous

real part on Dp and let a(2) be a real valued function, |z| < R. Suppose that

RF(Q)Pa(QdC] = 0 (2.35)

ICI=R

for all P, € {Pm} We show that for any fixed z with |z| = r < R, there holds inequality

RN} € 2K () Ba(RS) (2.36)

R1/2
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with the sharp constant
Km(y) = = (2.37)

where Ey(Rf) = [|[RAf||2 is the best approximation of f by a constant in the norm of
Ly(0DR). '

Introducing the notation &, = Rey., nx = Scg, ¢ = Re™ we write (2.34) as the trigonometric
polynomial

Pn(C) = ff’n(Re”) =R {i(fk + ink)R_ke_ikt} = i (ay, cos kt + by sin kt) , (2.38)

k=1 k=1

with a; = £kR_k, b, = T]kR_k
Let K,,(z, ) denote the sharp constant in

[R{“DAf ()} < Kz, Q)RS = w2, (2.39)

where w is an arbitrary real constant. Taking into account that the mean value of function
(2.38) on the circle || = R is zero, we obtain from Proposition 1

1 1

Kp(z,a) = — min min||G.o — AP,|ls = — min [|G.o — Bl
TR pe(Pm} AR 7 TR pePny
1 m . . 92 V2
- — min {R / [Gz,a(Re”)—Pn(Re”)} dt} . (2.40)
TR p,e{Pn} -

Let z = re'™ and, as above ¢ = Re' v = r/R. We have

— eiaZC_l _ o - z ‘ _ - k ilat+k(T—t)]
G..(¢) = %(1_—%1) _é)fe{e ;(E> }—%{;7 cilot

= Z ¥ cos(kt —a —k7) =Y ~F(cosktcos By, +sinktsinB,),  (2.41)
k=1 k=1
where (B, = a+ k7. Hence and by (2.40)
) 1/2

Kn(z,a) = b /7r Go(Re™) — zm:vk(cos kt cos Oy + sinktsin By) | dt . (2.42)
W\/E -7 ' k=1
By (2.41), (2.42) and the Parseval equality,

| ~ 1/2 . 1/2
Ky (z,a) = T 2k cos? By + ¥ sin? = = 2k 7
(2 @) m/ﬁ{ k_ZM(v By, + ™ sin” By T[—sz_gm;i-l,y

17



that is

,ym—l—l
Kn(z,a) = —/—————.
VTR(1 =)
Using (2.37) we find the representation of the sharp constant K,,(z,a) = R™Y/2K,,(r/R) in
(2.39) which by Remark 2 implies (2.36) with the sharp constant (2.37). I

3 Estimate for [R{¢“VAf(2)}| by ||Rf — (Rf, ©)/(1, )],

if the mean value of ¢ is not zero
Suppose fKI:R ®(()|d¢| # 0 and replace f with f—w in Lemma 1, where w is a real constant.
By (1.2)

| 0 - el =o,
ICI=R

that is w = (Rf,®)/(1,®). Hence, by Lemma 1 we arrive at another type of estimates for
[R{e“DAf(2)}].

Proposition 2. Let f be analytic on Dy with continuous real part on D, 1 < p < 0o, and
let a(z) be a real valued function, |z| < R. Further, let ® be a real continuous function on
IC| = R, for which the inequality

[ e 0 (3.1)
ICI=R
holds.
Then for any fized point z,|z| = r < R, there holds
(R{“EAS(2)}] < Co,p (2,0(2)) [|RS = (RS, ®)/(1, D), (3.2)

with the sharp constant Co, (2, a(2)) given by (1.4).
In particular, for any fixed point z,|z| = r < R, the inequality is valid
[Af(2)] < Co,p(z, —arg Af(2))[|Rf — (RS, ®)/(1, )] (3.3)
The following assertion is a particular case of Proposition 2 for & = 1.

Corollary 2. Let f be analytic on Dp with continuous real part on Dg, 1 < p < oo.
Further, let a(z) be a real valued function, |z| < R. Then for any fized point z,|z| = r < R,
there holds

[R{ A ()} < Cop (2,a(2)) [IRAF, (3-4)

with the sharp constant C,(z, a(z)), where

1 r
Cl,p('za O[) = WC’LP <§7 O[> y (35)
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and

x o p/p-1) )@/
Ch, (v, ) = 7 in / cos(p —a) = yeosa A dp (3.6)
’ AR | J .| 1—2ycosp+ 2
if 1 <p< oo, and
C1a(7,0) = ——— (3.7)
17 1 '77 7_(_(1 _ 72) Y N

2ysina + /(1 —2)2 + 492sin® o
1 —~2

2
Cl oo(7,0) = - {sinalog

2
+ cos arcsin ( gf;g) } NET

In particular,

Ch,2(7, ) = ﬁ (3.9)

Proof. We set ®(z) =1 in Proposition 2. Then (3.2) takes the form (3.4).

The equality (3.5) with
ia p/(p—1) (p=1)/p
ve
- - A d 1
%<yw_7) w} , (3.10)

1 . "
Ch,p(7, ) = T OeR {/

where 1 < p < oo, can be derived from (1.4) in the same way as (2.21) with the constant
(2.20) was obtained in Corollary 1. Formula (3.6) follows directly from (3.10) and (1.23).

1. The case p =1. By (1.4),

Coi(z0) = —— minmax |Gaa(C) — Al (3.11)

TR )eR |¢|=R

Since A is subject to one of the three alternatives

A< 1 Gzcx ) I Gza <A< ana 7)\2 ana 9
< min G-a(C), min G.a(C) max Giz.a(C) max Giz.o(C)

it follows that the minimum with respect to A in (3.11) is attained at

1 )
A=3 {rglnr}%Gz,a(C) + IgaﬁGZ,a(C)} ,

which by Lemma 2 implies



Putting the value of A into (3.11) and using (1.22) we obtain

1 rR

Gl =T

which proves (3.5) with p = 1 and the factor (3.7).
2. The case p = 2. From

G. o (2)dC] = R Y }:a%{ _fetz }:o,
/|< (2] {/<|=RC—Z| o /m:Rz(c—z)c ‘

and (1.21) with ®(¢) = 1 we see that (3.5) holds with p = 2 and the factor (3.9).

3. The case p = co. Let the function « and z with |z| = r < R be fixed. It is well known
(see, for example, [10]), that A gives the minimum in (3.10) with p = oo if and only if

™ . 6ia
/ﬂ&gn{ﬁ)‘ﬁ <e’¢—7) —)\} dy = 0. (3.12)

We show that this equality holds for A = —y(1 + %) cosa with v € [0,1).
We rewrite the left-hand side of the equation

eia ol B
éR(ei‘P—v) + 52 cosa =0 (3.13)

as

R .6 + 7 cosa = R 'e —1—76
el — v 1+ ~2 e —y  14+~2

—§R< (1 + ~ve#)e' > 1 (1 —~?*)cospcosa+ (14 ~2)singsina (3.14)
(e =1+ T2 1 —2ycosp+ 72 ' '
We introduce the angle ¥ by the equalities
1 — 2 1 2
cos ) = (1=7 )cosa, sing = (147 )sina, (3.15)
(e, 7) (@, 7)

where
k(o, ) = [(1 = ~¥*)?cos?a + (1 +2)?sin? ]2 = [(1 + ~?)? — 442 cos® a] /2. (3.16)

From (3.14)-(3.15) we obtain

i k -9
R(—< +—7 cosa= () cosle = V) : (3.17)
el — 1+ ~2 1+~2 1—2vycosep+ 72

Thus, the equation (3.13) with unknown ¢ is reduced to cos(p — ) = 0. Let ¥ be the
solution of system (3.15) in (—m, 7.
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The distance between two successive roots @, =9 —7/2+7mn, n=0,£1,£2 ..., of the
equation cos(¢ —9) = 0 is equal to m. We put (y = €0, (; = e with g =19 —7/2, p; =
Y + /2. Then

eia /7 eia ’7
R + cosozzéR( >+ cosa = 0.
<C0—7> 1+97 G—=7v/) 147

Thus, for fixed v € [0,1) and «, the points (5 and (; divide the circle |(| = 1 into two
half-circles such that on one of them the left-hand side of (3.13) is positive and on another
is negative. Hence (3.12) holds with A = —v(1 + 7?)~! cosa and, therefore, by (3.5) and
(3.10),

”
C1, 0(2,0) = O, oo (}—{,oz) : (3.18)

where ﬂ ,

B 1 el v
Ch,0(7, ) = 7T/—7r i <€<p _7> + 52 cosa |dep.
This and (3.17) imply
k() /’T | cos(p — V)]

Ch,oo(7, @) = de, 3.19
1 eo(7,0) 7(1+72) J_, 1 —2ycosp+ 72 (3.19)

where k(a, ) is defined by (3.16) and ¢ is the solution of (3.15) in (—m, 7.
Equality (3.19) can be written as

k(a, T2 cos(p — 0 U2 cos(p — ¥
Clﬁoo(%a):v( 20, {/ﬂ (o =) dgp_/ﬁ (o =) dp

(14 ~?) —rja 1 —=2ycosp+ 2 tnj2 1 —2ycosp+y

In the first integral we make the change of variable ©» = —p and in the second integral we
put n =1 — ¢. Then

m/2—9 /29
CLOO(%Q):M{/ cos(tp + 1) dw+/ cos(n + ) dn},

f0+7) Jompo T=270050 422 Ty T 29c0sm+ 72

which implies

Cl, 00(/77 Oé) -

2vk(a,7) /”/” cos(t) + ¥)
= VRS (e e

that is

(3.20)

27k (a, ™20 cosh cos ¥ — siny sin ¥
Cr wlria) = Tk 7)/ ¥ Y

m —rjp—y (L4722 —dyPcos?yp

Substituting the integrals

w/2—9 1 2 9
/ 22(3081/)2 5 d;b:izarctan( 70052 ),
—rja—g (1+72)2 = dy2 cos? ¢ (1 —~2) 1—v
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/”/219 sin ) ) 1 | 1+ 72+ 2vysind
=— 0
_rj2—o (1 +7%)? — 4% cos? 1) 29(1+77) B1472—2ysind

into (3.20) we obtain

2 cos v 27y cos sin ¢ 1+~2+2sin?
Cl,oo(’yaao = ;]{?(O[,”}/) { } .

t
T2 T s T8 T 42— 2ysm

Taking into account (3.15), (3.16), as well as the identity arctan[z(1 — 2?)~/?] = arcsinz,
we rewrite the last representation as

2 . [ 2vcosa
Cl, ooy, ) = p cOoS (v arcsin 1

+ sin a log

(1 =92 +49%sin’ o] /2 + 24 sina} . (3.21)

1—~2
By (3.21) and (3.18) we arrive at (3.5) with p = oo with the right-hand side given by (3.8).
1

Remark 7. Comparing the formulas (2.13), (3.7) and (2.14), (3.8) we conclude that in
general Co, (7, @) # C1, (7, o). However, for certain values of p and « the equality may hold.
This is, clearly, the case for p = 2 in view of (2.15) and (3.9).

Let us show now that Cy ,(v,7/2) = C1,,(7,7/2), 1 < p < 00, i.e. that sharp constants
in

[SAf(2)] < Cop(v, 7/2)|IRS = wllp, (3.22)

[SAS(2)] < Cop(v, 7/ 2)[IRAS ], (3.23)

coincide. In view of (2.11), (3.5), it suffices to prove that Cy ,(v,7/2) = Cy ,(v,7/2). The
equalities

Co.1(0:7/2) = Cual7/2) = T,

I+~
-7~

2
607 OO<’77 7T/2) = Cl, 00(77 7T/2) = ; lOg

follow directly from (2.13), (3.7) and (2.14), (3.8).
For 1 < p < o0, by (3.6)

O (. 7/2) = L min {/ﬂ

maer | )

: q 1/q
i d dpb . (3.24)

—A
1 —2ycosyp+ 72

It is well-known (see, for instance, [10]), that A gives the minimum in (3.24) if and only if

0 q—1 .
/ sign ( ik — A ) dp=0.

sin ¢

—A

1 —2ycosp+ 72 1 — 2vcosp + 72
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Clearly, the equality holds for A = 0. Putting A = 0 in (3.24) and using (2.12), we conclude
that C4 ,(v,7/2) = Co, p(7,7/2) for 1 < p < co. Thus, Remark 3 relating Cy ,(v,7/2) is
also valid for Cy, ,(,7/2) and inequality (0.14) holds with the sharp constant (0.8).

We shall write the sharp constant (0.8) in (0.7) and (0.14) in a different form. Using the
equality (see, for example, [6])

T i 4 11 2
/ ( o 2) dSOZB(—qJF ,—>F(q,g;—qu ;72),
o0 \1—2ycosp+7 2 2 27 2

where F(a, b; c; z) is the hypergeometric Gauss function, and the relation

b=+ 1—ba—b+1;

+1 a 4x
F bra—b 1: — (1= 1-2b 1 2b7a71F a o
(CL, ;a + 7‘7:) ( $> ( —|—I‘) 2 2 (1—|—.T)2 )

we conclude by (2.24) that

Co, p(7,7/2) = % {2 [1—52(y)]" "B <ﬁ 1) I (1 et %2(7)> }Uq _

2 9 2’ 2

00 (r-1)/p
() {2 [1 B %2(7)}1/(272;?) Z B (Qp —1 2n+ 1) %Qn(V)} 7 (3.25)

o 2p—2" 2

where 5(v) = (27)/(1+~+?%). Combining (3.25) with (3.23), (3.5) and the equality Cy_,(v,7/2) =
Co, (7, m/2) we arrive at (0.15). I

The next assertion contains an estimate of [Af(z)| for a class of analytic functions in
Dp with the real part continuous in Dy and such that Af(z) € W(ay, as), z € Dg, where
W (o, az) is defined by (2.9).

Corollary 3. Let f be analytic on Dy with continuous real part on Dg,1 < p < 0o, and let
Af(z) € W(aq,az) for z € Dg. Then the inequality holds

[Af(Z)l < max €y p(z, ) |[[RAS|],, (3.26)

a;<a<as

where Cy, ,(z, «) is given by (3.5) — (3.8).
In particular,

max Ci (2, a) =C1, (2, a2), (3.27)

aj<a<as

with Cy_ (2, «) defined by (3.5), (3.8).
Proof. Putting ®(¢) =1 in (3.3) we obtain
[Af(2)] < Cu,p(z, —arg Af(2))[[RA S]], (3.28)

We show that C;, (2, —a) = Cy, (2, ). For p =1 and p = oo, this follows directly from
(3.5), (3.7), and (3.8).
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Let 1 < p < co. By (3.10),

y 2m e—ta
Chp(7,0) = —min /0 " (m) —A

which after the change of variable ¢ = 27 — 1) becomes

y 2w e—ia p/(p—1) (r—1)/p
Cl,p(77a) - ;I){lel]lg /0 §R<e“ﬁ _7) - A d@b :Cl,p(fy; —a).

This together with (3.5) implies C;, (2, —a) = C1, ,(2, ). Hence, (3.28) can be written as

p/p-1) ) PH/P
dy )

[Af(2)] < Cy,p(z,arg Af(2))[[RASf]],. (3.29)

Let 0 < a < 7/2. By (3.5) and (3.10) we have Cy ,(z,7 — a) = Cy ,(z,—«). This and
Cy p(z,—a) = Cy, p(2, ) imply

sup{C1, ,(z,arg Af(z)) : Af(z) € W(au,a2)} = max{C ,(z,a) : g < a < as},

which together with (3.29) leads to (3.26).
Now, we prove (3.27). Owing (3.5) and (3.8),

C oo(Za Oé) = — Sinalog ’}/Slna + \/ s ’Y sin” a + cos o arcsin yceosa 7
, T 1_7 72

where v = r/R.

Let us consider C; (2, «) for 0 < a < 7/2. We have
0C1, o (2, @) 2 { 2ysina + /(1 —2)2 + 442 sin’ a
———F = —<cosalog

Oa 1—~?

2
sin v aresin [ oo X ) L (3.30)
1+ 92

Note that the relations

2y sin o + \/ 1 —~2)2 + 492sin’ « 2ysina dt
cos alog = cos« ,
1—7 0 (1 —~2)2 +¢2
‘ ‘ (27 COS CY) ' /2chosoz(1+»y2)1 dt
sin v arcsin = sin« e
112 ) Vi e
and the mean value theorem imply
2ysina dt 27 cos a:sin «
COS (v
0 (1—~ +t2 )2 + 442 sin® o] 1/2’
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. /27 cosa(l+9”)71 gy _ 27 cos asin a
SN & )
0 VI=2 (1 —72)2+ 442sin® a]l/?
where v € (0,7/2). Therefore, it follows from (3.30) that

0Cy (2, )

> 0.
oo

Thus, C;, »(2, @) increases on the interval [0, 7/2]. I

Remark 8. The class of inequalities considered in this section include the following three
inequalities

4
[RAF(2)] < — arctan (%) IRAL] oo (3.31)
2 R+r
SAS(:)] < = log 2 IRAS (332)
2 R+r
Af)] < Zlog L IRAf]]s (3:33)

(see [3, 4, 9, 15] and the bibliography in [3, 9]).

Inequalities (3.31), (3.32) follow from (3.4), (3.5) with p = oo combined with (3.8) with
a = 0 and o = 7/2, respectively. Inequality (3.33) follows from Corollary 3. In fact, by
(3.8),

2 2 4
Cl, oo(’y, 0) = ; arcsin (ﬁ) = ; arctan v,

1+~
1—7’

2
CL 00(77 7T/2) = ; log

which together with Corollary 3 leads to

2 1+~
0;22?/2 C’17 00(77 a) C’1, oo(fya 7T/ ) - 0g 1 —
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