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Point estimates for Green’s matrix to boundary value problems
for second order elliptic systems in a polyhedral cone

In this paper we are concerned with boundary value problems for general second order elliptic equations and
systems in a polyhedral cone. We obtain point estimates of Green’s matrix in different areas of the cone. The
proof of these estimates is essentially based on weighted Lo estimates for weak solutions and their derivatives.
As examples, we consider the Neumann problem to the Laplace equation and the Lamé system.
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1 Introduction

We deal with the Dirichlet, Neumann and mixed problems for elliptic systems of second order equations in a
polyhedral cone K. Our main goal is to obtain point estimates for Green’s matrix. In a forthcoming work we
will prove, by means of such estimates, solvability theorems and regularity assertions in weighted L, Sobolev and
Holder spaces.

As is well-known, the nonsmoothness of the boundary causes singularities of the solutions at the edges even
if the right-hand side of the differential equation and the boundary data are smooth. Therefore, Green’s matrix
G(z,€) is singular not only at the diagonal but also for x or ¢ near the vertex or an edge. For a cone without
edges these singularities were described by Maz'ya and Plamenevskil [12] in terms of eigenvalues, eigenfunctions
and generalized eigenfunctions of a certain operator pencil. The presence of edges on the boundary makes the
investigation of Green’s functions more difficult. In [10] Maz'ya and Plamenevskii obtained estimates for Green’s
functions of boundary value problems in a dihedral angle. The results in [10] are applicable, e.g., to the Dirichlet
problem for elliptic equations but not to the Neumann problem. Green’s functions for the Dirichlet problem in
polyhedral domains were studied in papers by Maz'ya and Plamenevskif [13] (Lamé and Stokes systems), Maz'ya
and Rofimann [15] (strongly elliptic 2m order equations). Concerning the Neumann problem for the Laplace
equation in domains with edges, we refer to the preprints of Solonnikov [22], Grachev and Maz'ya [5].

We outline the main results of our paper. Let K = {z € R®: w = z/|z| € Q} be a polyhedral cone with faces
I'y ={x: z/|z| € ;} and edges M;, j = 1,...,n. Here  is a curvilinear polygon on the unit sphere bounded
by the sides 71,...,v,. Suppose that K coincides with a dihedral angle D; in a neighborhood of an arbitrary edge
point z € M;. By S we denote the set M7 U ---U M, U{0}. We consider the boundary value problem

3
L(Ox)u=— Y Ai;j0p0pu=f ink, (1.1)
i,j=1
u=g; onI'; for j € Jy, (1.2)
3
B(0;)u = Z AijnjO0y,u=gy only for ke J. (1.3)
i,j=1
where A; ; are constant £ x ¢ matrices such that A; ; = A3, JoUJ1 = {1,...,n}, JonJy = 0, u, f, g are vector-valued

functions, and (n1,n2,n3) denotes the exterior normal to 9K\S.
Weak solutions of problem (1.1)—(1.3) can be defined by means of the sesquilinear form

3
bic(u,v) = / Z A jO0z,u - 0y, vd, (1.4)
Ki=1

where - is the scalar product in C* of the vectors u and v. We denote by H the closure of the set {u € C§°(K)* :
u=0onT; for j € Jy} with respect to the norm

3 1/2
l[ullr = (/’CZ |0l dx) . (1.5)
j=1
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Here C§°(K) is the set of all infinitely differentiable functions on K with compact supports.
From the above assumptions on the coefficients A, ; it follows that bx(u,v) = b (v, u) for u,v € H. Through-
out this paper, it will be assumed that the form by is H-coercive, i.e.,

bic(u,u) > cllull3, for all u € H. (1.6)
By Lax-Milgram’s lemma, this implies that the variational problem

bic(u,v) = (F,v) forallveH (1.7)

L

is uniquely solvable in H for arbitrary F' € H*. Here (-,-)x denotes the scalar product in Lo (K)* or its extension

to H* x H.

In Section 2 we consider the boundary value problem in a dihedron D = K x R, where K is an infinite angle
in the x1, zo-plane with opening €. The main goal of this section is the estimation of Green’s matrix. We give here
the estimates in the case of the Neumann problem to the Laplace equation, which was also considered in [22]. Let
a = (a1, ag,a3) and v = (y1,72,73) be arbitrary multi-indices. Then

‘I/‘ )min(O,ﬂ'/G—al—az—a) ( |£’| )min(0,7r/0—'yl—’y2—€)
|z — ¢ |z — ¢

for |z — &| > min(|2’|, |¢’]), where 2’ = (z1,22), £ = (£1,&2), and € is an arbitrarily small positive number. For
| — &] < min(|a’],]£'|) there is the estimate ’6;‘626?(30,5)‘ < clz — &7t 1el=l The same inequalities hold for
Green’s matrix of the Neumann problem to the Lamé system if § < 7, while in the case § > 7 the number 7/6 in
the exponent has to be replaced by £4(8)/6, where £ () is the smallest positive root of the equation

0200 G(w,€)| < ela— g7 =h

siné  sinf
— +——=0. 1.8
SRR (18)
For the proof of these inequalities, we use weighted Lo estimates for weak solutions and their derivatives.
Section 3 concerns the parameter-dependent boundary value problems

LANu=f inQ, u=g; onvy;, j€Jy, BANu=gr ony, ke (1.9)
generated by problem (1.1)—(1.3) on the intersection € of the cone K with the unit sphere S2. Here
LOVu= 2 L@) (Puw)),  B)u = o= B(3,) (o u(w)), (1.10)

p = |z|, and w = z/|z|. Let A(N) be the operator of problem (1.9). We prove that problem (1.9) is uniquely
solvable (in a certain class of weighted Sobolev spaces) for all A, except finitely many, in a double angle of the
complex plane containing the imaginary axis. Furthermore, we obtain an a priori estimate of the solution.

In Section 4, by means of these results, solvability theorems for the boundary value problem (1.1)—(1.3) in
weighted Sobolev spaces are obtained. In particular, we prove the existence of weak solutions u € Vﬁl (K)*, where
V;(K) is the weighted Sobolev space with the norm

1/2
||uHV51(,C) = (/}C \x|2ﬁ (|vu|2+ |33|—2|u‘2) d:c) ) (1.11)
Here, for example, by a weak solution of the Neumann problem we mean a vector function u € Vﬁl (K)* satisfying
bic(u,v) = (F,v) forallve V_lﬁ(lC)Z,

where F' is a given continuous functional on V_lﬁ(IC)Z. We prove that the absence of eigenvalues of the pencil
2 on the line ReA = —(3 — 1/2 ensures the unique existence of a weak solution u € Vﬁl(lC)é . Furthermore, we
prove regularity assertions for the solution. For example, we conclude from our results that the second derivatives
of the solution u € H of the Dirichlet and Neumann problems for the Laplace equation (and other second order
differential equations, including the Lamé system) are square summable if the angles at the edges are less than 7
and there are no eigenvalues of the pencil 2 with positive real part < 1/2. In particular, the W? regularity holds
for the Dirichlet problem to the Laplace equation and to the Lamé system if K is convex. This follows from the
monotonicity of real eigenvalues of the pencil 2 in the interval [0, 1] (see, e.g., the monograph by Kozlov, Maz'ya
and Rofimann [8, Ch.2,3]). For the Neumann problem to the Laplace equation the W? regularity was proved by
Dauge [3, 4].
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The absence of eigenvalues of the pencil 2 on the line ReA = —3 — 1/2 guarantees also the existence of a
unique solution G(z,§) of the problem

L(0:) G(x,§) =0(x — &) Lo, x,§ €K, (1.12)

G(z,§) =0, zely, (€K, je o, (1.13)

B(@L)G(x,g) =0, z¢€ Fj, Eek, jey (1.14)

(&)
for every fixed £ € K and for every smooth function ¢ on (0,00) equal to one in (1,00) and to zero in (0, 3). We
obtain point estimates for the derivatives of G(x,&) in different areas of I x K. For example, Green’s function of
the Neumann problem to the Laplace equation satisfies the following estimate for |z| < [£|/2:

I, denotes the ¢ x ¢ identity matrix) such that the function x — =t @ z, &) belongs to the space V3 (K)***
B

070 G(x,6)| < c|x|A*_|"‘+€H(M

)min(O,w/Oj—\M—e)
|z

X|£‘_1_A——|’Y|—5 H (riéf))min((),w/aj'ys)-

J
Here A_ < Re A < Ay is the widest strip in the complex plane containing the line Re A\ = —3 — 1/2 which is free of
eigenvalues of the pencil 2, §; is the angle at the edge M;, r; is the distance to M, and ¢ is an arbitrarily small
positive number. The same estimate holds for the Lamé system if ; < 7 for j = 1,...,n. If 6; > 7, then the
number 7 in the exponent has to be replaced by &4 (6;). In the case § = 0, when Ay = 0 and A_ = —1, these
estimates can be improved.

2 The boundary value problem in a dihedron

Let D be the dihedron {z = (2/,23) : ' = (z1,22) € K, z3 € R}, where K is the angle {2’ = (z1,22) : 0 <71 <
00, 0 < ¢ < 6}. Here r, ¢ are the polar coordinates in the (x1, z2)-plane. Furthermore, let T~ = {z: ¢ = 0} and
I't = {x: ¢ =60} be the sides of D, and let d* € {0,1}. We consider the boundary value problem

L@yu=f inD, dfu+(1-d*)B(d,)u=g" onT*. (2.1)

This means, for d* = d~ = 1 we are concerned with the Dirichlet problem, for d* = d~ = 0 with the Neumann
problem, and for d* # d~ with the mixed problem.

We denote by Hp the closure of the set {u € C§°(D)* : d*u = 0 on I'*} with respect to the norm (1.5),
where K is replaced by D, and by bp the sesquilinear form

3
bp (u,v) :/ Z A jO0z,u- 0y ;0 dx. (2.2)
D

i,5=1

Suppose again that
bp(u,u) > c / |Vu|g, dz  for all u € Hp. (2.3)
D

Then the variational problem
bp(u,v) = (F,v)p forall v e Hp (2.4)

has a unique solution v € Hp for arbitrary F' € H},.

A large part of this section deals with the regularity of weak solutions. For the Dirichlet and mixed problems,
which are handled at the end of the section, we give only the formulation of a theorem which follows from results
of Maz'ya and Plamenevskii [9], Nazarov and Plamenevskil [18]. The more complicated case of the Neumann
problem is studied in Sections 2.2-2.5. The results here were partially obtained by Zajaczkowski and Solonnikov
[23], Nazarov [16, 17], Rofimann [20], Nazarov and Plamenevskif [18].

The proof of point estimates for Green’s matrix in this section is essentially based on weighted L, estimates
for weak solutions and their derivatives. As examples, we consider the Neumann problem for the Laplace equation
and the Lamé system.
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2.1 'Weighted Sobolev spaces in a dihedron and in an angle

Let § > —1. Then L¥(D) denotes the closure of C§°(D) with respect to the norm

1/2
||“HL§(D) :/D Z r? |8§U|2d$) )

la|=k

where r = |2/| = (22 + 23)/2. Furthermore, we set

(D).

S

k
Wy(D) = (L
j=0
For arbitrary real § let V(D) be the closure of C§°(D\M) with respect to the norm

B o o 1/2
lulvpcoy = [ 3 v ogupar) (25)

lal<k
Analogously, we define the spaces L¥(K), VF(K) and WF(K) for a plane angle K with vertex in the origin (then

in the above norms D has to be replaced by K).
By Hardy’s inequality, every function u € C§°(D) satisfies the inequality

/ P20 |y|? do < c/ 72 |Vul? dzx (2.6)
D D

for > 0 with a constant ¢ depending only on § . Consequently, the space L’g(D) is continuously imbedded into
LE"X(D) if § > 0. If § > k — 1, then L¥(D) = V(D). Furthermore, from Hardy’s inequality it follows that

[ o= a0l 2 uta) do < [ Vulf (2.7

for every u € Hp and for an arbitrary point xy on the edge M of D. This means that any vector function u € Hp
is square integrable on every bounded subset of D. From (2.6) and (2.7) we conclude that

[ o do < I Vulf (28)

for 6 > —1 if u € Hp and ¢ is a function in C'(D) with compact support.

The spaces of the traces of functions from L¥(D), V¥(D) and WE(D), k > 1, on the sides T'F = 4= x R of D

are denoted by L§_1/2 ('), Vék_l/z(Fi) and Wf_l/Q(Fi), respectively. The norm in L§_1/2(Fi) is defined as

||UHL§71/2(F1) = inf{||UHL§(D) RS Lg(D)v Vlps = U}

Analogously, the norms in V(;k*l/2 (I'*) and Wffl/Z (I'*) are defined. An equivalent norm in Vfﬁl/z(l"i) is given
by (see [9, Le.1.4])

25 | gk—1 k-1 2 dwsdys
- 05 Lu(r, 23) — O (r ) |2 223
= ([ ] 10 ) - 0 2 ar

+ / / / 1P (05 10) (11, 3) — (05 0) (g, )| 22 g,
R 'Yi 'Yi

[r1 —raf?

k—1 , ] 1/2
+/ S 2R 3, ) P drdmg) . (2.9)
I RE=
7=0

For 6 > k — 1 this is also an equivalent norm in L§_1/2 (T'*).
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2.2 The operator pencil corresponding to the boundary value problem

Let H(o,p) = {u € W(0,0)" : d~u(0) = dTu(#) = 0}, where W denotes the usual Sobolev space and d* are the
numbers introduced in the beginning of this section. Furthermore, let

2
1 _
ar (u,v; ) = @ E A j0,,U - amdeac',
i,j=1
1<|i(/\<2 ’

where U = r*u(p), V = r~u(p), u,v € Ho,0), A € C. The form ax(-,-;\) generates a continuous operator
A()\) : H((),O) — HEKO,Q) by

(ANu,v) = ag(u,v;N), w,v € Hg).

Here (-, -) denotes the scalar product in Ly((0,0))¢. As is known, the spectrum of the pencil A consists of isolated
points, the eigenvalues. The line Re A = 0 contains no eigenvalues if d* # d— or d* = d~ = 1. In the case
dT = d~ = 0 (the case of the Neumann problem), the line Re A = 0 contains the single eigenvalue A = 0. The
eigenvectors corresponding to this eigenvalue are constant vectors. Every of these eigenvectors has exactly one
generalized eigenvector (see [8, Ch.12]). We set

L(02,0) = = > A j0s, 0u,, B(0w,0) = Z Ay Oy,

1,0=1 1,9=1

and denote by v* be sides of K.

.1
Remark 2.1. The vector function u = r*° Z o (logr)* vs—(p) is a solution of the problem
k=0 """
L(0y,0)u=0in K, d¥u+ (1—d*)B(0,,0)u=0on~*
if and only if Ay is an eigenvalue of the pencil A(\) and vg,v1,...,vs is a Jordan chain corresponding to this

eigenvalue (see [8, Le.12.1.1]).
We denote by A; the eigenvalue of the pencil A(A) with smallest positive real part and by py its real part.

2.3 Regularity results for the solution of the Neumann problem
Let dt = d~ = 0. We assume that F is a functional on Hp which has the form

(F,U)D:/foﬁda?JrZ/ gt -vdoy, veHp, (2.10)
D = Jr+

where f € LY(D)¢, g* € L§/2(Fi)e, 0 < § < 1. Then the solution of (2.4) belongs to the Sobolev space W7,_.(D)
and satisfies the equations

L(dy)u=f inD, B(9,)u=g* onT* (2.11)

Note that the right-hand side of (2.10) always defines a functional on Hp if f € LY(D)¢, gF € L};/Q (I'*), and the
supports of f and g% are compact. For the first term on the right of (2.10), this can be easily proved by means of

(2.8). Furthermore, we have L /2(Fi) V;/Q(Fi) for § > 0 and, due to the equivalence of the norm in Vk 1/2 (')
0 (2.9),

20—1) 4|2 +12
[ Vo

This implies (for arbitrary ng ¢ =1 on supp g%)

’/ Udai c/ 7’2671|gi|2d0i~/ =2 gw|? doy
r+ r+ r=

+ H2
The following lemma can be found in [9, Le.3.1].

IN

< ellgF I us gy 19012073 e < g 12172 gy 9015
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+
Lemma 2.1. Let g% € V;er 73/2(Fi)€, where |l > 1 if d™ =d~ =1, 1 > 2 else. Then there exists a vector
function u € VH(D)* such that d*u + (1 — d*) Bu = g* on Tt and

+
L L

with a constant ¢ independent of g7 and g~ .

Since V;/Z(Fi) = L§/2(Fi) for § > 0 and VZ(D) C L2(D), we conclude that for all g* € Lé/Q(Fi)f there
exists a vector function v € L2(D)* such that B(0,)v = g* on I'*.
For the proof of the following lemma we refer to [23] and [20] (for general elliptic problems see also [17, 18]).

Lemma 2.2. Let ¢, 1 be infinitely differentiable functions on D with compact supports such that ¢ = 1
in a neighborhood of supp ¢. If u € Hp is a solution of (2.4) and F is a functional of the form (2.10), where

of € LUD)E and vg* € Ly*(TF)!, max(1 — p1,0) < & < 1, then ¢u € LA(D) and

lullzoye < e (0 lgye + D N0gl sy + Iulles ) (2.12)
+

Corollary 2.1. Let max(1 — p1,0) < § < 1. Then for every u € L2(D)* the estimate
el igcor < (1L lageoy + 3 15Ol o)

1s valid. Here the constant c is independent of u.

Proof: Due to Lemma 2.1, we may assume, without loss of generality, that B(9,)u = 0. If the support of u
is contained in the ball |x| < 1, then by Lemma 2.2, we have

lullzzoye < e (1@ ullzgeye + el ycoye ). (213)

Let supp u be contained in the ball || < N. Then the support of the function v(z) = u(Nz) is contained in the
unit ball |z| < 1. Furthermore, B(d;)v = 0 on T'F. Therefore, v satisfies (2.13). From this inequality, by means of
the coordinate change x = y/N, one obtains

lullzz oy < e (1Ll gy + N7 ull gy )
with the same constant ¢ as in (2.13). The result follows. m

The following theorem generalizes Lemma 2.2.

Theorem 2.1. Let ¢, ¢ be the same functions as in Lemma 2.2. If u € Hp is a solution of (2.4) and the
functional F has the form (2.10), where $di_ f € LY(D)" and I g* € Lé/z(Fi)e forj=0,... k, max(1—p;,0) <
0 <1, then ¢3§;3u € L4D)! for j=0,...,k and

k k k
> 60 ull 2y < e (Z 190, ooy + Y. ||¢5isgi||L§/2(pi)e + ||1/1u||Lg(D)f) (2.14)
j=0 j=0

j=0 =+
with a constant ¢ independent of u.

Proof: We prove the theorem by induction in k. For k = 0 the assertion follows from Lemma 2.2 and from the
unique solvability of problem (2.4) in Hp. Suppose the theorem is proved for k — 1. Then, under our assumptions
on F, we have x8 u € L2(D)" for j =0,...,k — 1. Let v = 8% 'u. Then ¢v € LZ(D)*. We consider the vector
function

op(z) = h™" (v(2', 25 + h) —v(2’, x3)),

where h is a sufficiently small real number. Obviously, vy is a solution of the problem Lv, = ®;, in D, By, = \I/f
on I't, where ® = 9571 f, % = 9k ~1g%. Consequently,

||¢Uh||L§(D)4 <c (”X(I)hHLg(D)“ + Z ||X\II%||L§/2(Fi)Z + HXUh”L}S(D)) (2.15)
T
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with a constant ¢ independent of h. Here x®, = (x®)n — xn® and, for sufficiently small |A|,

0@y = [ 12 @) a0+ ) — (@) (o' z2) d
D
1 2
/7‘25‘/ Ox®) (', z3 + th) dt‘ dscg/ r25|8x3(x(a:)<1>(a:)|2da:
D o Oz D

< e (Iw05 Fllig oy + 1605, £ 3oy )
00k 3oy

A

IN

||Xh‘1>H%g(D)f

Analogously,

4+ —
||X\I/h ||L(13/2(Fi)“ S & (”1/}8;];5 1gi‘|i§/2(ri)£ + ||w8§39i”ii/2(ri)l>

For the proof of the last inequality one can use the equivalence of the norm in L(ls/ ?(I'+) with the norm (2.9).

Furthermore,

Ixvrllzipy < ¢ (||773§;1U||L§(D)f + ||778§3UHL§(D)2>, (2.16)

where 7 is a smooth function such that n = 1 in a neighborhood of supp x and ¢ = 1 in a neighborhood of supp 7.
Since the theorem was assumed to be true for k — 1, the right-hand side of (2.16) is majorized by the right-hand
side of (2.14). Consequently, the limit (as h — 0) of the left-hand side of (2.15) is majorized by the right-hand side
of (2.14). This proves the theorem. m

Lemma 2.3. Let u be a solution of problem (2.11) such that Yu € WL(D)*, o f € Wéi’,:_2(D)e and gt €
Wéii_gm(Fi)e, 1>1,0>—1. Here ¢, 1) are the same functions as in Lemma 2.2. Then ¢u € Wéiﬁ(D)e and

||¢u||wgi’;(p)é <c (|Wf”wgi’;*2(p)e + Z ”’l/)giHW;i:—W?(Fi)é + HwU”W(g(D)@)- (2.17)
+

Proof: By [21, Cor.2,Rem.2], the vector function ¢u € Wg (D)* admits the representation ¢u = v + w, where
v e VHD)! and w € WIT(D) . Let first k = 1. Then Lv = ¢f + [L, pJu — Lw € W}, (D) NV} *(D)* C V4,1 (D)*
(here [L,¢] = L¢ — ¢L denotes the commutator of L and ¢) and, analogously, Bv = ¢g* + [B,¢Ju — Bw €
Vi /2 (D%). Using [9, Th.10.2], we obtain v € Vi T1(D)! and, therefore, pu € WiH(D)’. This proves the lemma
for k = 1. Repeating this argument, we obtain the assertion for k > 2. m

2.4 Higher regularity of the solution to the Neumann problem

We improve the results of the previous subsection for the case p; > 1. Let us consider first the Neumann problem
in the plane angle K.

Lemma 2.4. Let the integer k > 0 be not an eigenvalue of the pencil A(X). Then for arbitrary homogeneous
polynomaials pr—s, q,il of degrees k — 2 and k — 1, respectively (pr—2 = 0 if k = 1) there exists a homogeneous
polynomial py of degree k such that

L(Dy,0) pr = pr—2 in K, B(0y,0)pr = qi | on y~. (2.18)

Proof: Let px_o = Zf;g b, :c{ m§_2_j and q,il‘,yi = ¢t rF-1 with b, ¢t € C be given. Inserting

k
pr= ajaizs (2.19)
§=0

into (2.18) and comparing the coefficients of x{m];*%j and 7571, respectively, we get a linear system of k + 1
equations with k + 1 unknowns ag,as,...,a;. Since k is not an eigenvalue of the pencil A(A), the corresponding
homogeneous system has only the trivial solution (see Remark 2.1). Therefore, there exists a unique polynomial
(2.19) satisfying (2.18). m
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Lemma 2.5. Let u € Wi '(K) be a solution of the problem
L(0p,0)u=fin K, B(0y,0)u=g% on~* (2.20)

with f € Wé_Q(K)e, gt € Wé_3/2(’yi)f, 1>2,0<6<1—1, 6 not integer. Suppose that the strip | —2 — § <
Re\ <1 —1—§ does not contain eigenvalues of the pencil A(X). Then u € WHK)* and

lallywr iy < e (|\u||Wé71(K)z + 1wy + g ||gi||W;73/2(7i)g)

with a constant ¢ independent of u.

Proof: Let k = (I — 1 — 0) be the greatest integer less than | — 1 — d. The vector function u has continuous
derivatives up to order k — 1 at the point = 0 (see [7, Le.7.1.3]). We denote by pi_; the Taylor polynomial of
degree k — 1 of v and by ¢ a smooth cut-off function equal to one near the origin and to zero outside the unit ball.
Then v = u — (px_1 belongs to Vi1 (K)* (see [7, Th.7.1.1]). Consequently,

L(9,,0)v = f — L(0,0) (Cpr—1) € Wi 2(K) nVI3(K)Y,
1-3/2 1-5/2
B(0yr,0) 0| x = g% = B(0,0) (Cpr1)| 2 € Wy 2(K) vy (k)"

By [7, Th.7.1.1], there are the representations
L(9,0)v=Cpy_o+ F in K, B(3y,0)v=_q | +GF onnt,

where pj_,, q,:f_l are homogeneous polynomials of degrees kK — 2 and k — 1, respectively, F' € V;SZ_Q(K ¥, Gt €

‘/;73/2(’%:)[. By Lemma 2.4, there exists a homogeneous polynomial p§, of degree k such that L(9,/,0)p} = p§_5 in
K and B(9,, 0)pf, = gy on v, Thenv—(p} € Vi1 (K)", L(821,0) (v=¢p}) € V5 2(K)", B(82r,0) (v—Cp})| + €

V; (7). Applying [7, Th.6.1.4], we obtain v — (p} € V}(K)" and, therefore, u € W(K)". Furthermore, the
desired estimate holds. m

We prove an analogous result for the problem in the dihedron D.

Lemma 2.6. Let u be a solution of problem (2.11), and let ¢, be smooth functions on D with compact sup-
ports such that i = ¢. Suppose that u € Wi (D)¢, Ydp,u € Wi (D), o f € WE2(D)!, 1hg* € Wé73/2(1"i)£,
0<d<l—1, 46 is not integer, and the strip l —2 —§ < ReA <1 —1— 06 does not contain eigenvalues of the pencil
A(N). Then ¢u € WLD)* and

1
Iullwyoye < e (32 1602, ullyims pye + 1S lwi-2ye + D g E lyi-ssa sy, ) (2.21)

jf
Here the constant ¢ depends only on the C' norm of C.
Proof: From the equation L(0,, 04, )u = f it follows that
L(0yr,0) (pu) = F, where F = ¢f + ¢pL10gz,u + [L(0y,0), ¢] u.

Here [L(0y,0), ¢] = L(0y,0) ¢ — ¢L(9y,0) is the commutator of L(d,,0) and ¢, and Ly is a first order differential
operator with constant coefficients, L10,,u = (L(04/,0) — L(8,r,05,))u. An analogous representation holds for
G* = B(0,,0) ((bu)’ri' For almost all z3 we have ¢(-,23) u(-,x3) € Wi *(K)*. Furthermore, by the conditions

of the lemma, F(,x3) € W; *(K)" and G*(-,z3) € Wéis/Q(Vi)? Consequently, by Lemma 2.5, we obtain
o(-, z3) u(-, x3) € WE(K)* and
2 ) )
/R||¢("5”3)U(',$3)|\W§(K)e drs < c /R (”(b(ym)u(-,w3)||wgﬂ(K)e HIEC @) [y e
D NGE @)l s o ) s
£

Here the right-hand side of the last inequality can be estimated by the right-hand side of (2.21). This together
with the assumption that 0,,u € Wé_l(D)e implies the assertion of the lemma. m
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Theorem 2.2. Let u € Hp be a solution of problem (2.11), and let ¢,1) be smooth functions on D with com-

pact supports such that 1) = 1 in a neighborhood of supp ¢. We suppose that ¢ f € Wé_Q(D)é, Yot € W§_3/2(Fi),
1> 2, § is not integer, and max(l — 1 — py,0) <8 <1 —1. Then pu € Wi(D)".

Proof: We prove the theorem by induction in (I — 1 — §). Here (s) denotes the greatest integer less than s.

1) If (I—1-68) = 0, then max(1—pu1,0) < 6—14+2 < 1,9f € WY, (D), pg* € W32,
according to Theorem 2.1, we have yu € Wf_ 4o (D)*, where x is a smooth function equal to one near supp ¢ such
that ¥ = 1 near supp x. Applying Lemma 2.3, we obtain ¢u € Wg (D)*.

2) Let ({ —1—6) = 1. Then max(2 — p1,0) < 6 — 1+ 3 < 1 < 1 and, by means of Theorem 2.1, we obtain
X0, ue Wi, (D)t for j =0, 1. Consequently, it follows from Lemmas 2.6 and 2.3 that ¢u € W(D)*.

3) Let k <l —90—1< k+1, where k is an integer, k > 2. We assume that the theorem is proved for
| -3 —1 < k. Then, by the induction hypothesis, yu € Wi (D), I > 4, and x9,,u € WL *(D)* C Hp. Since
YOp [ € Wi 3(D) and 10,,9% € W§75/2(Fi)é, we obtain, by the induction hypothesis, that xd,,u € Wi~ (D).
By the assumptions of the lemma, there are no eigenvalues of the pencil A(A) in the strip 0 < ReA <1 —4§ — 1.
Thus, Lemma 2.6 implies ¢u € W(D)*. The proof is complete. m

Corollary 2.2. Let w € Hp be a solution of problem (2.11), where z/;a;3f € Wéfz('D)e and 1/)8%3gi €
W;_?’/Q(I‘i)e Jor j=0,...,k, d is not integer, max(l — 1 — y11,0) < 6 <1 —1. Then ¢$di,u € WLD)" and

(I'*)*. Consequently,

k k k
Z ||€758£3u||vvg(p)fZ <c (Z ||¢ai3f||wg—2(p)e + Z Z ||¢3i39i\|w(573/2(pi)e + |\¢U|\Lg(v)£>-
J=0 j=0 j=0 =+
Proof: Let first [ —1—3 < 1. Then max(1 —;,0) <6 —1+2 < 1, W,3(K) C Wy, ,5(K) and Wéf?’/z(f‘i) C
W;K?JFQ(Fi). Consequently, by Theorem 2.1, we have x8J, u € WZ_, ,(K)*, where x is a smooth function such
that x = 1 in a neighborhood of supp ¢ and ¥ = 1 in a neighborhood of supp x. Applying Lemma 2.3, we get
¢3%3u e WHK)! for j=0,..., k.
Now let I —1— & > 1. Then [ > 3 and, by Theorem 2.2, we obtain yu € WE(K)¢, x0pyu € Wi (K)* C Hp.
Since 10y, f € WLi2(D)* and 1d,,g* € WéiB/Q(Fi)g, we conclude again from Theorem 2.2 that ¢d,,u € W(K)*.
Repeating this argument, we get ¢dJ u € WLK)! for j=2,... k. m

Example. We consider the Neumann problem

ou
v
Here the eigenvalues of the corresponding operator pencil A(\) are the numbers \; = jn/6, j = 0,£1,£2,....
Consequently, the assertion of Theorem 2.2 with p; = 7/ holds.

—Au=f inD, = g% onT¥. (2.22)

2.5 The Neumann problem to the Lamé system

We consider a special case, where A = 1 is an eigenvalue of the pencil A and the eigenfunctions corresponding to
this eigenvalue are restrictions of linear functions to the unit circle. A necessary and sufficient condition for this
case is given in the following lemma.

Lemma 2.7. Let 0 # w, 0 # 2w. Then the homogeneous boundary value problem
L(0y,0)u=0 in K, B(dy,00u=0 on~*

has a solution of the form u = cxy + dx, c,d € C', if and only if the 2¢ x 20 matriz

A= ()

is not invertible.

Proof: The linear function u = cx1 + d x5 satisfies the homogeneous boundary conditions B(9,/,0) u = 0 on
vt if and only if

)
(1) (g 2y (5) =0
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Here the first matrix is invertible for 6 # 7, € # 2m. This proves the lemma. m

Let r’ denote the rank of the matrix A’. From the proof of the last lemma, it follows that there are 2¢ — r’
linearly independent eigenvectors of the form ccos ¢ + dsin ¢ corresponding to the eigenvalue A = 1. Furthermore,
the inhomogeneous boundary conditions B(d,s,0)u = g¥ on 4* can be satisfied for a vector function u € W(K)*
only if g7 and g~ satisfy 2¢ — v’ compatibility conditions at z = 0.

Such compatibility conditions must be also satisfied, in general, for the boundary data of the Neumann
problem in the dihedron D. If u € WZ(D)%, 0 < § < 1, then the restriction of B(9,)u to the edge M belongs to
the space Wy % (M)* (see, e.g., [14], [21]), and we obtain

(Arani + A1ony ) Oguln + (A21ni + A2any) Onyulns + (Asini + Asony) Ouyulnr = g% |ur.
The last system can be written in the form

8$1u|M

nf nJ A1 As1 Asza _ (9" |m
nT ng Ary Age A Ouzttlar | =gy, )
1 2 1,2 2,2 3,2 Byt a1

From this it follows that 2¢ — r"" compatibility conditions must be satisfied for g* and g~ on the edge M, where
r" is the rank of the matrix

A A A
o 1 Az Aszay
( A2 Asp Asp )

This means, there exist 2¢ — " constant vectors ¢*) such that
c(k)-(g+\M,g_|M):0 fork=1,...,20 —r". (2.23)

We suppose that ' = r”. Then there are the same compatibility conditions for the Neumann problem (2.11) in
the dihedron and the corresponding Neumann problem (2.20) in the angle K. This condition is satisfied, e.g.,
for the Neumann problem in isotropic and anisotropic elasticity. Furthermore, we assume that the geometric and
algebraic multiplicity of the eigenvalue A = 1 is equal to 2¢ —r’. This means that all eigenvectors corresponding to
this eigenvalue have the form ccos ¢ + dsin ¢ and that there are no generalized eigenvectors corresponding to this
eigenvalue.

Lemma 2.8. Suppose that there are no eigenvalues of the pencil A(\) in the strip 0 < ReX < 1 and the
line Re A = 1 contains the single eigenvalue A = 1 having geometric and algebraic multiplicity 20 — v’ = 20 — r”.
Denote by Ao the eigenvalue with smallest real part greater than 1 and by ps its real part. Furthermore, let ¢, ¥
be the same functions as in Theorem 2.1 and let u € Hp be a solution of problem (2.11), where f € W(D)*,

Pt € Wg/z(Fi)e, max(2 — p9,0) < 6 < 1, and g and g~ satisfy the compatibility condition (2.23). Then
du € W3(D)* and

”(Z)UHW(;”’(D)“ <c (H"l}f”W(}(D)“ + Z ||¢9||W§/2(pi)/z + HwUHL}S(D)f) (2.24)
T

with a constant ¢ independent of u.

Proof: Let x be a smooth function on D such that y¢ = ¢ and i = x. From Theorem 2.1 it follows that
xu € Wéz(D)é and x0y,u € W(;Q(D)e . Consequently, for almost all x3 we have

L(aa:’vo) u("x?)) = f(-,l’g) - (L(a’v”awe,) - L<a£v’a0)) u(-,l’g) = F(~,$3),

2
B(0ur, 0)ul-w3) = g% (- w3) = Y Agyn duyul-,w3) = GF (- a3),

j=1
where X (-, 23)F(-,z3) € WH(K)’, x(-,23)G (-, 23) € Wf/z(’yi)e. Since r’ = r” and g*, g~ satisfy the compatibility
condition (2.23), there exist vectors c(x3), d(x3) € C* such that

"T ”; Ay Asn Asg c(ws) _ g7 (0,3)
nr ny )\ AL, Ass A d(ws) g
1 2 1,2 2,2 3,2 (81:31/4)(0,1'3)
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for all z3. From this it follows that p(z) = ¢(x3) x1 + d(x3) xo satisfies
B(8,,,0)w(:,x3) = G*(0,3) on ™
for all x3. Therefore, for v = u — p we obtain
L(9y,0)v(-,23) = F(-,x3) in K, B(9y,0)v(-,z3) = GF(-, x3) — GE(0,23) on 7~.
Here, according to [7, Th.7.1.1], x(-, z3) (G*(-,z3) — G*(0,23)) € V3/2(4%). By the assumptions of the theorem,
A = 1 is the only eigenvalues of the pencil A in the strip 0 < Re A < 2 — §, all eigenfunctions are restrictions of

linear functions to the unit circle, and generalized eigenfunctions corresponding to the eigenvalue A = 1 do not
exist. Thus, by [6, Th.1.2] (see also [7, Th.6.1.4]), ¢v admits the representation

d(x)v(x) = 0 (x3) + c(l)(xg) z1 +c? (x3) T2 + w(2),

where w(-,z3) € V3(K)* and

N

loC,as)Faye < e (I60,a8) Feoaalid e + D0 160,28 G (sa0) 20,
+

I ws) s 8) B e

IA

¢ (I m8) £Co3) 3 eye + ; NCEN PR OES] [P

)l w) Bz ey + I 8) Dagul ) Bz ey )

with a constant ¢ independent of z3. Since 9% (¢u) = 0% w + 0% (¢p) for |a] = 3, the last estimate implies
o shul ) s < e (28 7o) B ye + D2 I 23) o 2s) o
+

+||X(7 x3) U(', ‘7:3)”%4/'52(}()z + ||X(7 .’11‘3) aﬂv?,u('v 1'3) H%/Vf(K)Z) .
Integrating this inequality with respect to 3 and using (2.14), we obtain (2.24). The lemma is proved. m

Now, analogously to Theorem 2.2, the following statement holds.

Theorem 2.3. Suppose that there are no eigenvalues of the pencil A(N) in the strip 0 < Re A < 1 and the
line Re\ = 1 contains the single eigenvalue A = 1 having geometric and algebraic multiplicity 20 — ' = 20 — ",
Furthermore, we assume that u € Hp is a solution of problem (2.11), where ¢ f € WéiQ(D)Z, Pyt e Wé73/2(1‘i)£,
1> 2,6 is not integer, and max(l — 1 — p2,0) < 6 <1 —1. In the case § < | — 2 we assume additionally that g%,
g~ satisfy the compatibility condition (2.23). Then ¢u € WH(D)* and

||¢u||Wg(D)/~’ <c (”d’f”wé*?(l))é + Z ||¢9HL5;3/2(Fi)Z + szuHL%(D)@) (2.25)
+

with a constant ¢ independent of u.

Proof: If 0 <1 — 9 — 1 < 1, then the result follows directly from Theorem 2.2.

Suppose that 1 <{—9§—1 < 2. Then max(2—p2,0) < 6—1+3 < 1, and Lemma 2.8 implies yu € Wg’_l+3(D)Z,
where x is a smooth function such that y = 1 in a neighborhood of supp ¢ and ¥ = 1 in a neighborhood of supp ¥.
Applying Lemma 2.3, we obtain ¢u € W}(D)*.

The proof for the case k <1 — 9 —1 < k+ 1, where k is an integer, k > 2, proceeds analogously to the third
step in the proof of Theorem 2.2. m

Moreover, the assertion of Corollary 2.2 with pe instead of py is valid.

Example. We consider the Neumann problem for the Lamé system

1

) VV-u=f inD, o(u)n=g*" onI*. (2.26)
—2v

Au +
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Here o(u) = {0;,j(u)} is the stress tensor connected with the strain tensor

feust) = {2 @+ o)

by the Hooke law

oij(u) =2p ( (€11 +e22+e33) 00 + 6@;‘)

1-2v
(u is the shear modulus, v is the Poisson ratio, v < 1/2, and ¢; ; denotes the Kronecker symbol).
The corresponding problem (2.20) in the angle K is:

Ao )4 v (M) = (), Bw-p w

U2 1-2v U2 f2
— (") Gus _ +
O'(U;],'UQ) n ( g2 ) on gs on -y .
If the opening 6 of the angle K is greater than m, then the eigenvalue with smallest positive real part of the pencil
A(N) is £4.(0)/0, where £,.(0) is the smallest positive root of the equation (1.8). This is shown, e.g., in [8, Sect.4.2].
Note that £,.(8) < 7 for # < 8 < 2x. If § < 7, then the eigenvalues with smallest positive real parts are A\; = 1
and Ao = 7/6. The eigenvalue \; is simple, the corresponding eigenvector is (sin ¢, — cos ).
Let n* be the exterior normal to I'*. If u € WH(D)!, § < I — 2, then it follows from the Neumann boundary
conditions that

o(u) ni|M = gi|M

and consequently, n~ 'UTL+|M =n"-g"|, andnt-on" ’M =nt.g~ |M . Here a - b denotes the scalar product in

T .on~. Consequently, g7 and g~ must satisfy the compatibility

M
R3. Since o is symmetric, we have n™ -ont =n

condition

n~-gt=n"-g" on M.

Applying Theorem 2.3, we get the following result:

1) Let u € Hp be a solution of problem (2.26), where 1 f € W(D)3, vg* € W;/2(Fi)3, 0<d<1ford<m,
1—-&4(0)/0 <8 <1 for @ >m. Then ¢pu € WZ(D)3.
2) Let 0 < w and let w € Hp be a solution of problem (2.26), where f € Wé_Q(D)S, 1 > 3, gt €

W§_3/2(Fi)3, d is not integer, and max(l —1 —7/60,0) < d <1 —1. In the case § <l — 2 we assume additionally
that n= - g*|p =nt - g7 |m. Then ¢pu € WL(D)3.

In particular, ¢u belongs to the Sobolev space W2(D)? if 0 < m, f € WH(D)3, g* € W;/Q(I‘i)3, J <1,
n” gt =0T g7 m

2.6 Estimates for Green’s matrix to the Neumann problem

From the unique solvability of the Neumann problem in Hp and from classical results on fundamental solutions of
elliptic boundary value problems in a half-space we obtain the following assertions (for the Laplace equation see
[22]).

Theorem 2.4. 1) There exists a unique solution G(x,£) of the boundary value problem
L(0y) G(x,§) = 0(x — &) Iy for x,§ € D, (2.27)
B(0;) G(z,£§) =0 forxz € dD\M, £€D (2.28)
such the function x — ((|€'|71|2']) G(z,€) belongs to HY for arbitrary fived & = (&',&3) € D. Here Iy is the £ x £
identity matriz and ¢ is a smooth function on (0,00) equal to zero in the interval (3/4,3/2) and to one outside the
interval (1/2,2).

2) The function G(x,€) is infinitely differentiable with respect to x,6 € D\M, x # . For |v — ¢| <
min(|2’|,|¢’|) there is the estimate

10207 G(2,€)| < c |z — g7 lel=1Al,
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where ¢ is independent of x and &.
3) The function G(z,£) is also the unique solution of the problem

L(9¢)G(x, &) = 0(x = &) I, for x,§ €D,
B(9¢) G(z,£) =0 forx e D, £ € 0D\M
such that the function & — ((|&'| 7t a'|) G(x, &) belongs to HY, for arbitrary fived x € D.

We establish now an estimate for the derivatives of Green’s function G(z, ) in the case |z —¢&| > min(|2], |£']).
For this we need the following lemma analogous to Lemma 2.2 in [10].

Lemma 2.9. Let B be a ball with radius 1 and center xg such that dist(zq, M) < 4. Furthermore, let ¢, ¥
be infinitely differentiable functions with supports in B such that ¥ =1 on supp¢. If yu € Hp, Lu=0m DNB
and Bu =0 on (0D\M) N B, then

sup | [Pt €0 6(2) 0207, u(@)| < ¢ [[$ulln, , (2:29)
z€D

where € is an arbitrarily small positive number. The constant ¢ in (2.29) is independent of u and xg.

Proof: Let e be such that uy —e € (k,k+1). Then 6 = k+1—pu1+¢ € (0,1). Furthermore, let x be a function
from C§°(B) such that ¢px = ¢ and x3) = x. From Theorems 2.1 and 2.2 it follows that 87, (xu) € WET2(D)* for
7=0,1,... and

X2,y v2ye < €l
Hence we have 92,09 _(xu) € WE(D)* for |a| < k. Since WE(K) is continuously imbedded into C(K), we have

sup 9507, (xu)| < ¢ sup [|9587, (xu) (-, 23)|lwz i) -
z’ €K, z3€R r3€ER

Using the continuity of the imbedding W3 (M) C C(M), we obtain

IN

sup (19303, () ws)llwacrre < e (1080, (cllwa oy + 195051 0wz oy )

z3€ER

N

< clldullyg -

. i |a]+2 ¢
This proves (2.29) for |a| < k. Now let |a| > k4 1. By Theorems 2.1 and 2.2, we have 0} (xu) € W5_k+‘a|(D)

and, therefore, 8% 97, (yu) € W§2—k+\a|(D)l C Vf_kﬂa‘(’D)g. Using Sobolev’s lemma, it can be easily shown that

sjtépj){ |2/ |P~F 1 Ju(a!)] < ¢ [vllvs sy~ for arbitrary v e VE(K), k>2 (2.30)

with a constant ¢ independent of v and z’. Applying this inequality to 8% ,(xu), we obtain

sup  [o/|PFHTH 09,0 (xu)| < e Sue%II3§/313(XU)(~7I3)HWZ ()t
3

€K, z3€R S—k+|af
Using again the continuity of the imbedding Wi (M) C C(M), we arrive at (2.29). m
Theorem 2.5. For |z —¢&| > min(|2’|, [¢'|) there is the estimate

|02.07,0%, 08, G (,€)|

, (2.31)

/ min —|a|— / min —|8|—
§C|x,§|*1*|a|*\ﬁ\*j*k( || ) (0,u1—lc 8)( 1€’ ) (0,u1—1B]—¢)

|z — ¢ |z —¢]
where € is an arbitrarily small positive number.

Proof: Since G(Tz,T¢) = T~ G(x,£), we may assume, without loss of generality, that |z — &| = 2. Then
max(|2’|, |¢']) < 4. Let B, and Bg be balls with centers = and &, respectively, and radius 1. Furthermore, let 1 and
¥ be infinitely differentiable functions with supports in B, and B, respectively.

Applying Lemma 2.9 to the function 9% 8£3G(x, -), we obtain

¢ praxB1=ra 400 | 5%, 8] 06,08, G (w, )| < ¢ |[ib(-)0503, G () |34 - (2.32)
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We consider the solution
uz) = (V) F(), Glz,)p

of problem (2.4), where F' € H},. Since ¢ F vanishes in the ball B,, we conclude from Lemma 2.9 that
! rextiel=mt=0 192,03 u(z)| < ¢|lnullwg -

Consequently, the mapping

S F — |x/|max(|a|*ﬂ«1+£,0) 9 3%#(35) _ |x/|max|a|*/1«1+€,0) (F(~) , 1/,(.)3?, 39{3@(% .))D cC

represents a linear and continuous functional on Hj, for arbitrary € D. The norm of this functional is bounded
by a constant independent of x. This implies

ja’[rextel=mte0) |1 (-) 82 02, Gz, Iy < €

what together with (2.32) yields the desired estimate. m

Using Theorem 2.3 instead of Theorem 2.2 in the proof of Lemma 2.9, we obtain the following result.

Theorem 2.6. Suppose that there are no eigenvalues of the pencil A(N) in the strip 0 < Re A < 1 and the
line Re A = 1 contains the single eigenvalue A = 1 having geometric and algebraic multiplicity 20 — ' = 20 — " ('
and r" were defined in Section 2.5). Then G(x,§) satisfies (2.31) with pg instead of p = 1.

Examples. 1) Green’s matrix of the Neumann problem (2.22) for the Laplace equation satisfies (2.31) with
H1 = 71'/0

2) For 6 > 7 Green matrix of the Neumann problem (2.26) for the Lamé system satisfies (2.31) with u; =
£4+(0)/0. In the case 6 < 7, the number p1 has to be replaced by /6.

2.7 Estimates for Green’s matrices to the Dirichlet and mixed problems

We consider problem (2.1) for the case when the Dirichlet condition is given on at least one of the sides 'V, '™,
i.e., not both numbers d*, d~ equal zero. Then Hp C V! (D)!. From Lax-Milgram’s lemma and Lemma 2.1 it
follows that the problem

bp(u,v) = (F,v)p forallv € Hp, u=g" onT* ford* =1 (2.33)

has a unique solution u € Vit (D) for arbitrary F € H, g* € Vol/2 (DH)-.
For the following theorem we refer to [9, Th.4.1,7.2] and [18, Ch.11,Prop.1.4].

Theorem 2.7. Let u € ViH(D)¢ be a solution of problem (2.33), where the functional F has the form

(Fov)p = (fio)p+ Y _(1—d*) (g%, v) s
+

. . +
with 0] f € V(;Z_Q(D)Z and wﬁiagi S VéH_d _3/2(1“*)2 forg=0,1,....k, l—1—p; <d<l—1. Here ¢ and
are the same cut-off functions as in Theorem 2.2. Then ¢pd) u € VH(D)* and

k k k
Z ||€258§C37v4||vg(D)1Z <c (Z ||1/18§33f||V;72(D)2 + Z Z ||1/18§;39i||‘/;+6173/2(ﬁ)g + ||1/)u||v01(D)é)-
j=0 j=0

j=0 +
Analogously to Theorem 2.4, there exists a unique solution G(z,§) of the problem
L(aaf) G(x7§) = 5(1’ - 6) I for Ivg € D7
d*G(z, &) + (1 — d*) B(9,) G(x,&) =0 for x € T, £ € D
such that the function x — ((|¢'|7|2'])G(x, £) belongs to HY, for arbitrary ¢ € D and for an arbitrary smooth
function ¢ on (0,00) equal to zero in the interval (3/4,3/2) and to one outside the interval (1/2,2). We call the

matrix-valued function G(x,&) Green’s matrix of problem (2.11). Using Theorem 2.7, one can prove the following
estimates.
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Theorem 2.8. The matriz G(x,§) satisfies the estimates
0200 G(x,8)] < cla — g7 1eI=1A]

for |z — &| < min(|2'], |€']) and

o ai 9B gk el=1—|al—|8|—j—k || \pm—lal=e (& \m—lbl—e
](930/850385,8§3G(m,§)]§c|m ¢l ’ (‘x,g\) (|:17*§|)

for |z —&| > min(|2'|, |€']), where € is an arbitrarily small positive number.

3 The parameter-dependent problem on a domain of the sphere

In this section we study the parameter-dependent boundary value problem (1.9). We prove that this problem is
uniquely solvable in a certain class of weighted Sobolev spaces for all A, except finitely many, in a double angle of
the complex plane containing the imaginary axis. This result is essentially known. For a smooth domain €2 on the
sphere (and Sobolev spaces without weight) it was proved by Agranovich, M. S. and Vishik, M. I. [1].

3.1 The parameter dependent Neumann problem in an angle

Let again D be the dihedron K x R, where K is the angle {2’ = (z1,22) : ¢ € (0,0)}, and let bp be the sesquilinear
form (2.2). We denote by @ and o the Fourier transforms with respect to x3 of the vector-functions u and v. Then,
by Parseval’s equality, we have

b (u, v) = / bic (@, n), (-, n); m) dn,

where
2 2
br (u,v;n) = / ( Z A; j0z,u- Og v+ i Z (Agviu < Og, v — A; 30,0 - 6) + 772A373u . 6) da'.
K N5 ;
3,j=1 =1
We consider the variational problem
bi (u,v;n) = (F,v)g  for all v € Wy (K)", (3.1

which corresponds to the parameter-depending Neumann problem

2 2
L(Owrim)u=— Y Aij02,0n,u—in Y (Aiz+ As;)Osu+n’Assu=f in K, (3.2)
ij=1 i=1
2 2
B0y ,in)u = Z A; jOz,un; + inZAg,ju n; =g+ onn~%, (3.3)
ij=1 j=1

where v+ are the sides of K.

Theorem 3.1. The boundary value problem (3.2), (3.3) is uniquely solvable in WE(K)¢ for arbitrary f €
W(K)E, gF € W;/Q(’yi)e, max(l —p1,0) <d <1, n€R, n#0. The solution satisfies the inequality

2
S P Nl ygaere < € (1 + D2 10% 12y + 172 D0 10 0% Ny ) (3.4)
+

Jj=0 +

with a constant ¢ independent of f, g% and 7.

Proof: Let the functional F' be given by

(F,U)K:/f.@dx’+z/ gt -vdr, ve W} (K),
K + ’yi
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where f € LY(K)*, g* € W;/Q(’yi)e, 0 < 0 < 1. It can be easily seen that this functional belongs to (W (K)*).
We set u(x) = N~1/2e73 ¢(x3/N)v(x'), where v € W3 (K)*, and ¢ € C§°(R) is a real-valued function such that
[T ¢(t)dt = 1. Then

3
/Z|8zju|2dx2/ (|Vz/v|2 |77| |v| —cN~™ /|U|2d$
D K

where c¢ is independent of v and N. Analogously,
bp(u,u) < by (v,v;m) + ¢ N2 /K [v|? da’.
Consequently, (2.3) yields
b (v,v;m) > ¢ /K (|VI/U|2 +n? |v|2) dz’

Thus, by Lax-Milgram’s lemma, for all real n # 0 there exists a unique solution u € Wi (K )¢ of problem (3.1)
which is also a solution of problem (3.2), (3.3).

We show that u € L% (K)‘. Let x be an arbitrary smooth cut-off function with compact support equal to
one near the vertex of K. Then yu € V2(K)* with an arbitrary positive ¢ and, therefore, also yu € V12+E(K)‘g
(see, e.g. [7, Le.6.3.1]). Furthermore, L(9,,in)(xu) € V(K)¢, B(0y,in)(xu) € ‘/51/2(71)2. Hence, according to
[7, Th.6.4.1] and [8, Th.12.3.3], the vector-function yu has the asymptotics

xu = c+dlogr +w, wherec,dc C we VZK)".

Since u € W} (K)*, the vector d is equal to zero. This implies yu € L3(K)‘. We consider the vector-function
(1—x)u. Obviously, (1—x)u € W2 ,(K)t, L(Dy,in) (1—x)u) € W(K)", while B(d,,in) (1—x)u) € V;/>(v¥)!N
W;/z('yi)f. Consequently, by [9, Th.4.1"], we obtain (1 — x)u € VZ(K)* N W2(K)*. Thus, we have shown that
u € LE(K).

Estimate (3.4) holds by applying the inequality of Corollary 2.1 to v(x) = N~1/2e"%s¢(N~'a3) u(z’), where
¢ € C§°(R) and N is a large number. m

An analogous result holds for the parameter-dependent Dirichlet and mixed problems in the angle K. Here
the spaces L} can be replaced by V.

3.2 Solvability of problem (1.9)

Let Ho = {u € WH(Q)*: uw=0on~, for j € Jo}. We introduce the parameter-dependent sesquilinear form

ZAJQCLU 0,V da,

where U(x) = p*w), V(z) = p~1 7 v(w), and define the operator 2A(\) : Hq — H{ by

(Ql()\)u,v) =a(u,v;\), wu,v€ Hq.

Q

The pencil 2 has following properties (see [8, Ch.10,12]).

(i) The spectrum of the pencil 2 consists of isolated points, the eigenvalues of this pencil. All eigenvalues have
finite algebraic multiplicity.

(ii) If X is an eigenvalue of the pencil 2, then —1 — X is also an eigenvalue with the same geometric and algebraic
multiplicity.
S

1
(iii) The vector function u = r° Z o (log r)* us_i(w) satisfies the equality by (u,v) = 0 for all v € H equal

to zero in a neighborhood of the origin and infinity if and only if )¢ is an eigenvalue of the pencil 2 and
w© ... u® is a Jordan chain corresponding to this eigenvalue.
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We denote by J the set all j € {1,2,...,n} such that the Dirichlet condition in problem (1.1)-(1.3) is given
on at least one side adjacent to the edge M;, i.e. M; C T, for at least one k € Jy. Let 6 = (01,...,0,) € R™,
d; > —1for j ¢ J. Then we define the norm in the weighted Sobolev space Wé(Q; J) by

2(8;~1+]) 25, | na 1/2
||UHW(1§(Q;j) / Z H ( ) HT 8 ‘Qd:ﬁ> ,

la|<l jeJj JEJ
1<\a:\<2

where u is extended by the equality u(z) = u(x/|x|) to the cone K and r;(z) = dist (z, M;). Furthermore, we set
VSI(Q) = Wé(Q; {1,...,n}) and Wé(Q) = é(Q (). From Hardy’s inequality it follows that Wg(Q; J) = Vgl(Q) if
§; >1—1for j ¢ J. Furthermore, Hq C WG(Q;J) . The trace spaces for Vl( ), Wﬁ( ) and WL (Qj) [>1,on

the arc y; are denoted by 1= 1/2(%-), 571/2(%) and Wgﬁlﬂ(vj, J) respectively. In particular, Wl 1/2(’yj; j) =

s
gl 1/2(%) for j € Jy.
Let D; be the dihedron which coincides with K near the point M; N S2. The boundary value problem for the
system (1.1) in D; is connected with a pencil 4;()) on an interval (0,6;), where 6; is the interior angle at the edge

M; (see the definition of the pencil A(X) in Section 2). We denote by )\gj ) the eigenvalue with smallest positive
real part and set ;1; = Re /\§J ). Furthermore, let the operator 2A¢(\) be defined as

W2 )" 3 u— (LN u, {u|w}j€Jo7 {B(A )um}jeh)
€W~ tx HW3/2 (v55J £ x 1_[1/\/1/2 %, ¢

Jj€Jo JjeJ1
where £ and B are given by (1.10).
Theorem 3.2. Let 1 —pu; <d6; <1 forje J and max(l —p;,0) < §; <1 forj ¢ J.

1) Then the spectra of the pencils 2 and 2z coincide.
2) There exist positive real constants N and e such that for all X in the set

{AeC: [A[ >N, |[ReA| < e[ImA[} (3.5)

the operator Ag(X) is an isomorphism. Furthermore, every solution u € W;(Q)é of problem (1.9) with X in the set
(3.5) satisfies the inequality

2
ZO A7 lullwsye < € (”fHVO(Q e+ Z; lgllyorz s, + P2 lgllve sy )e)
J Jj€Jo

1/2
+ 3 Ulglyarayye + N lglvoss o)) (3.6)
JjE€J1
where ¢ is independent of w and .
Proof: 1) We consider the differential operators £()\) and B(\) in a neighborhood of M; N S2. Without loss

of generality, we may assume that M; coincides with the x3-axis and D; is the dihedron K x R. By wy = z1/p,
we = xa/p we denote local coordinates on the unit sphere near the north pole N = M; N S52. Since

Doy = wn 0+ - p‘*’l Oy — 20, Oy = wad, — 1209, + 1-ws Dy
Oay = (1—wf —wd)/? (9, - L0y, — 2 0,,),
p p
the operator £(\) has the form
2 2
= = 400,00, — A= 1) (Ais+ As) o, — M A11 + Aza) = AA—1) Ag3
i,j=1 i=1

+X2Po(w) + APL(w, 0yy) + Pa(w, Do),

where P; are differential operators of order j with coefficients vanishing at the point (w1,w2) = 0. Analogously,

2 2
= Z Ai iy Ou, + A ZA:a,jnj + A Qo(w) + Q1(w, )

ij=1 j=1
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near N, where Q; are differential operators of order j with coefficients vanishing at (w1, w2) = 0. Furthermore Q
coincides with the wedge K in the coordinate system wi,ws near M; N S2. Hence we conclude, analogously to the
proof of Theorem 3.1, that every weak solution u € W4 ()¢ of problem (1.9) with support near N belongs to the

space W;(Q; Dtif f e V}J(Q)é, gj € ‘/53/2(%)5 for j € Jy and g; € V;/Q(vj)e for j € J;. By means of a partition of
unity on €2, we obtain this result for arbitrary weak solutions. This implies, in particular, that every eigenfunction
of the pencil 2 is an eigenfunction of s corresponding to the same eigenvalue. The same is true for generalized
eigenfunctions.

2) We prove the second assertion first for purely imaginary A = in. Let (o, (1, ..., (, be a partition of unity on
Q) such that ¢; = 1 near M; N S? and supp (; is sufficiently small for j = 1,...,n. We consider the vector-function
¢1u and assume, as above, that the edge M; coincides with the x3-axis. The difference of the operator £(\) (in the
coordinates wy, wo introduced above) and the operator (3.2) is small for large |A| and small w? + w3. This means,
there is the inequality

2
[(£) = L0, 0 V) (@)l (e < = D2 PTGl g

Jj=0

where ¢ is small if supp ¢; is small and |A| is large. The same is true for the difference of the operators B(\) and
(3.3). Hence in the case of the Neumann problem it follows from Theorem 3.1 that

2—j

> N 1Grulggaye < e (I uhwgiore + X2 (1Bl e + N2 1Bz )
<

Jj= | =

for sufficiently large |A|. The same inequality is true for the vector-functions (;u, j = 1,...,n. The validity of this
inequality for {yu follows from a result of Agranovich and Vishik [1] (see also [7, Th.3.6.1]). An analogous estimate
holds for the Dirichlet and mixed problems. This implies (3.6) for purely imaginary A, |[A\| > N. For X in the set
(3.5) this estimate can be proved in the same way as in [1, 7]. m

4 The boundary value problem in a polyhedral cone

In the last section we consider problem (1.1)—(1.3) in the cone K. We prove the existence of strong and weak
solutions, obtain regularity assertions for the solutions and point estimates for Green’s matrices. As in Section 2
we concentrate on the case of the Neumann problem. Analogous assertions for the Dirichlet and mixed problem
are formulated at the end of the section and can by obtained by obvious modifications in the proofs. For the
Dirichlet problem we refer also to the papers by Maz'ya and Plamenevskii [13] (Lamé and Stokes systems), Maz'ya
and Rofimann [15] (scalar 2m order elliptic equations) which include solvability theorems in weighted Sobolev and
Holder spaces and estimates for Green’s functions. The solvability of the Neumann problem for diagonalizable
second order equations in Sobolev spaces without weight was studied by Dauge [3, 4].

4.1 Weighted Sobolev spaces in K

For an arbitrary point « € K let p(x) = |z| be the distance to the vertex of the cone and r;(z) the distance to the
edge M;. Furthermore, we denote by r(z) the regularized distance to S, i.e., an infinitely differentiable function in
K which coincides with dist(x,S) in a neighborhood of S.

Let [ be a nonnegative integer, J the same subset of {1,2,...,n} as in Section 3, 3 € R, §=(61,..., on) € R™,
§;>—1forj¢.J. By W;}vg(lC; J) we denote the weighted Sobolev space with the norm

; ltla o5 1/2
IIu\\W;_S(K;j> = (/’C $ pHO-tlal H(%)z@ I+]al) H(%)% |agu|2da:) _

la|<I jeJ jeJ

Furthermore, we define Vﬂl 5(K) = Wé 5(Ki{1,...,n}) and Wé ;(K) = Wé 5(K;0). Passing to spherical coordinates

p,w, one obtains the following equivalent norm in Wlﬁ g(/C; J ):

oo l 1/2
Jull = ( / PO ST 00, . ) s .5, )

k=0
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Lemma 4.1. Let § = (01,5 0n), § = (615--++0y,) be such that 05 —d0; <1 for j =1,...,n and §; > —1,

6y > —1 forj & J. Then W,l;:l 5 (K; J) is continuously imbedded into Wé (K J).

Proof: Tt suffices to note that, by Hardy’s inequality, the space ng"l_k(Q; J ) is continuously imbedded into
Wé._k(Q;j), k=0,...,l.m

Obviously, Vﬂl 5
l .7 ’
Wﬁ’g(lC,J).

! ! ! 7 ‘ 1-1/2 1=1/2
We denote the trace spaces for Vﬁ’g(lC)7 Wﬁ}g(lC) and Wﬁ’g(lC,J), 1 >1,onl; by Vﬁ,ﬁ (ry), WBE (ry)

(K) C Wé S(K;j)' If §; > 1—1 for all j € J, then, according to Lemma 4.1, Vé S(IC) =

and W;_gl /2 (Ts J ), respectively. Using Lemma 2.1, we obtain the following assertion.

Lemma 4.2. Let g; € Vé}l/Q(I‘j)z forj € Jy and g; € Vﬁl}?’/Q(I‘j)’Z forj e Ji. Herel > 2 if J. # 0 and
[ > 1 else. Then there exists a vector function u € Vé g(IC)f such that w = g; on I'; for j € Jo, Bu = g; onIl'; for
J € J1, and 7

lallvs ey < e (S Maslly-srage e+ 3 Millyr-srse, ) (4.1)
. j€Jo £:0 jET £:0
with a constant c independent of g;, 7 =1,...,n.

Proof: Let (j be smooth functions depending only on p = |z| such that

+oo
supp Ge © (287,280, N Ge=1, [(09,)¢k(p)] < ¢ (4.2)

k=—o00

with constants ¢; independent of k and p. We set hy, j(z) = (,(28z) g;(2F2) for j € Jo, by () = 2% (. (2F2) g;(2%2)

for j € Ji. These functions vanish for |z| < % and |z| > 2. Consequently, by Lemma 2.1, there exist vector

functions vy, € Vé E(IC)L] such that v, = hy ; on I'; for j € Jo, Buy = hy j on I'; for j € Jy,

Iosllvs e < e (20 Whisllyroray + 2 Ihesllytsrsr, o). (43)

Jj€Jo VISDA

and vg(z) = 0 for |z| < } and |z| > 4. Hence for the functions uy(z) = v,(27*z) we obtain uj, = (yg; on I'; for
j € Jo, Buy = (xgj on T for j € Jy, ug(z) = 0 for |z| < 2¥72 and |z| > 2¥+2. Furthermore, uy, satisfies (4.3) with
Crg; instead of hy ; and a constant ¢ independent of k and g;. Consequently, for u = > u we have u = g; on I';
for j € Jy and Bu = g; on I'; for j € Ji. Inequality (4.1) follows from the equivalence of the norms in Vﬁl S(K) and

Vlil/Q(Fj) with the norms

8,5
I 1/2 I 1/2
_ 2 O — 12
||u(k§j IGhullfy o)) and ||g]||(k§: 166051 2rne,)) (4.4)

respectively (cf. [7, Sect.6.1]). m

4.2 Solvability of the boundary value problem

The following results can be proved in a standard way (cf. [6], [7, Th.6.1.1,6.1.4]) by means of Theorem 3.2.

Theorem 4.1. Suppose that there are no eigenvalues of the pencil 2 on the line Re A = —3+1/2 and that the
components of & satisfy the inequalities 1 — p; < 8; < 1 for j € J and max(1 — p;,0) < 6; < 1 for j & J. Then the
boundary value problem (1.1)—(1.3) is uniquely solvable in W; 5K Nt for arbitrary f € V;S(IC)Z, g; € V;?(Fj)z,

je o, gr € V;{;(rk), kel
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Theorem 4.2. Let u € Wé 5K D)t be a solution of the boundary value problem (1.1)~(1.3), where f €
Vé)/ 5 (K)¢, g; € V;/;/ (T;)* forj € Jo, gr € Vﬁl@, (Tp)! for k € Jy. Suppose that the components of § and &' satisfy
the inequalities 1 — pj < 6; < 6; < 1 for j € J and max(1 — p;,0) < 0 <65 <1 forj¢ J. If there are no
eigenvalues of the pencil A on the lines Re A = -0+ 1/2 and Re A = =3 + 1/2, then

N Ky, j—1 s
- 7 1 o v,j,s—0
w=3"3" 3 e Y (logp) ut I (w) o, (4.5)
v=1j=1 s=0 o=0

where w € W;, 5
Rel = —3+1/2 and Re A = =3 + 1/2 and uV7*) are eigenvectors and generalized eigenvectors corresponding to
the eigenvalue A, .

(K j)z is a solution of problem (1.1)—(1.3), A, are the eigenvalues of the pencil A between the lines

Proof: In the case 5 = & the theorem can be proved in the same way as for smooth Q (cf. [6, Th.1.2], [7,
Th.6.1.4]), since the spectra of the pencils 2 and 2 coincide.

2, 1-1/2 1-1/2 . .
Let § # ¢'. Since Vﬂol’g,(lC) C VBO,’S(IC) and Vﬁ,7g,~/ () c Vg/,g/ (I'y) for 0% < 4;, we obtain (4.5) with
w € W;/ S(IC)Z. We have to show that w € Wg,, 5 (IC; J)Y. Let (i be as in the proof of Lemma 4.2 and 7, =
Cro—1 + Cr + Cey1. Furthermore, we set (i (x) = Cu(2%x), 7k (x) = ni(252), and v(x) = w(2¥z). The support of (;
is contained in {z : 1/2 < |z| < 2}. Therefore, due to Theorem 2.1 and the analogous result for the Dirichlet and

mixed problems, we have (yv € Wé, 5 (K, J )¢ and

52 = 2 S 2
||<kU||W;/15/(,C;j)z < ¢ <||77kLUHV§/75‘/(}C)Z + Z H’?kUHVS/;(Fj)z

jedo B,

~ 2 ~ 2
S Iy e+ V0l )
JeJd1 '

with a constant ¢ independent of k. Multiplying this inequality by 22#(%'~2+3% and substituting 2"z = y, we obtain
the same estimate with (y, 7 instead of (g, 7y for w. Now the assertion follows from the equivalence of the norm
in Wé 5(K; J) with the norm

too ) 1/2
= (32 loely o)

k=—o00

and the analogous result for the trace spaces. m

The following statement is an analogon to Theorem 2.1.

Lemma 4.3. Let u € Wé 5(K;j)e be a solution of problem (1.1)-(1.3) with (pd,)"f € V;g(IC)e forv =
0,1,...,k, (p0,)"g; € V;%Q(I‘j)z forjedyandv=0,...,k, (p9,)"g; € Vﬁlg(l"j)e forjeJ andv=0,1,... k.

Suppose that the components Ofg satisfy the inequalities 1 — p; < §; < 1 for j € J, max(l — p;,0) < d; <1 for
J & J and that the line ReA = —3 4+ 1/2 is free of eigenvalues of the pencil A. Then (pd,)"u € Wé g(IC; J)t for
v=1,...,k and ,

k k
S 100 ulbwe e < e S (160 Sy o + 30 100,55y
v=0 ’ v=0 : jedo >
+ 3 100 g5l )
: 8,87
jeJ1
u(z) — u(tz) . . .
Proof: We set u(x) = — 1 where ¢ is an arbitrary real number 1/2 < ¢t < 1. It can be easily

verified that

Luy(z) = fi(x) + (1 +1¢)f(tx) in K,
ui(z) = (gj)¢(xz) on T for j € Jy, Bu(x) = (gj)i(x)+ g;(tx) onT; for j € Ji.
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Furthermore, u:(z) — 2321 10, u(r) = pdyu(r) as t — 1. By Theorem 4.1, we have

lerllwe gz < e (Ifllve e + @+ 8 1FE)va, s 2 sl
J&Jdo

2 M@l vy D0 M50l v (4.6)

JjeJ1 VISDA

Using the equality
= 'S 0, + dr = ' 0 + d
= E (0. t —t = t —t ,
fe(2) /0 jZIxj( Jf)(( T T):c) T /0 (p pf)(( T T)JS) T

it can be easily shown that
||ft||vg7g(m)f <c Hﬁapfﬂvgvg(m)@
with ¢ independent of ¢. Analogously,

e [ vy

For the proof of the last inequality one can use the equivalence of the norm in Vﬁl 1/2 (T';) with the second norm
in (4.4) and an expression analogous to (2.9) for the norm of (rg;. Consequently, from (4.6) it follows that
poyu € W2 (IC J)!. Repeating this procedure, we obtain (pd,)"u € W; g(lC, J)! for v =2,... k together with the
desired estlmate [ ,

4.3 Existence of weak solutions to the Neumann problem

In this and in the following two subsections we restrict ourselves to the Neumann problem, i.e., Jy = 0.
Let Vg (K) = ng ;(K) be the space with the norm (1.11). From Hardy’s inequality it follows that V(' (K)*

coincides with H. By V__ﬁ1 (K) we denote the dual space of V3 (KC) with respect to the scalar product in Ly(K). Let
¢ be smooth functions depending only on p = |z| satisfying (4.2). It can be easily shown (see [7, Sect.6.1]) that
the norm in Vﬁil(lC) is equivalent to

—+oo

1/2
IIuH=( > ”Cku”%/ﬁil(lc)) : (4.7)

k=—o0

We consider weak solutions u € Vy (K)* of problem (1.1), (1.3). Obviously, the sesquilinear form bk (-, ) is continuous
on Vg (K)* x V2 ﬁ(IC)e. Consequently, it generates a linear and continuous operator Ag : V[}(K)e — Vﬁ_l(lC)2 by
the equality

(Agu,v)lC = bic(u,v), u € Vﬁl(lC)g7 v e VEB(IC)Z.

Lemma 4.4. For every u € Vﬁl (K)* the inequality

lullvaoeye < e (Ipully ooy + lullv. oo ) (4.8)
18 satisfied.
Proof: Let (; = (x(p) be smooth functions satisfying (4.2), and let ny = Cx—1 + (i + Cx+1. We show that

IGkullT s e < eliChApully s oy + € llmeulliy ey + CE) Ineullve ey (4.9)

where ¢, € and C(e) depend only on the constants cg, ¢1,c2 in (4.2) and € can be chosen arbitrarily small.
Let first £ = 0. Integrating by parts, we get

b (Cou, v) = (CoApu, v) - + c1(u,v) — ca(u,v),
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where
3 3
c1(u,v) :/K Z A j (02,C0) u - O, dx, co(u,v) :/]C Z A, j(0g;60) Op,u - Uda.
ij=1 ij=1

Since problem (1.7) is uniquely solvable in H = Vi (K)¢ for arbitrary F € Vy *(K)*, we obtain

Ioullvaoey < e (ICoAsullyreye +  supler(usv) = eau,v)]).

HUHVUI(}C)E:]-
Here
ler(u, )| < ellnoullyoye 10llva eye
and

3 3
CQ('LL, ’U) = —/ Z Ai,]—u 8% (ﬁaxj C()) dx + / Z Ai’j (31]40) n; u-vdo.
K 13]

ij=1 KAS =1

The last equality implies

lea(u,v)| < ‘3(||770UHL2(K)'Z ||U||V01(1c)f + H770U||L2(BK\5)'Z ||U||L2(aic\5)f)

A\

< e (Imoullzauer + Inotllwoss ey ) 1ol oy

IN

(e Imoullvg oeye + Ce) Inowllzaoye ) Iollvg ey

Therefore,

sup  [ea(u,0)] < & [moullva ey + C ) 0wl e
H'UHVOI(;C)Z:I

which implies (4.9) for k = 0. By means of the transformation z = 2¥y, we obtain (4.9) with the same constants c,
e and C(e) for k # 0. Summing up in (4.9) and using the equivalence of the norms in Vﬁil(IC) to (4.7), we obtain
(4.8). m

Theorem 4.3. Suppose that there are no eigenvalues of the pencil A on the line Re A = —3—1/2. Then the
operator Ag is an isomorphism.

Proof: Let u be an arbitrary vector-function from Vﬁ1 (K)¢. Since VBI(IC) c wo (K), where ¢ is an

B-1,(e-1I
arbitrarily small positive number (see Lemma 4.1) and 1 = (1,...,1), the vector function
def 2(8-1) Tj\2(e—1)
w = p | I u
( P )

J
belongs to W10_5 (1—5)T(IC)Z' From the absence of eigenvalues of the pencil 2 on the line Re A = —3 —1/2 it follows
that the line Re\ = 8 — 1/2 is also free of eigenvalues. Consequently, by Theorem 4.1, there exists a solution

ve W12—ﬁ7(1_€)f(lc)z of the problem

Lv=w in K, Bv =0 on dK\S

which satisfies the inequality

/
llwz | ooe Sellwllwe - goe < llullwe oy (4.10)
with a constant ¢ independent of u. This implies
) B _
= . d = . L d = b =
HUHWSA,(FUI(’C)E /’C u-wdr /}Cu vdr = b (u,v) = (Agu, ),
< CHAB“HV;(KV ||U||Vjﬁ(l<:)f < CHABUHVB’I(K)Z ||UHW1{B’(175)I(1<)2
< CHABUHVB’I(K)E ||u||ngl‘(57m(;C)f-
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From the last inequality we conclude that

lullve |y < cllullwo () < CHABUHV LKyt

B—1,(e—1)T

This estimate together with Lemma 4.4 yields
lullvg ooy < e lAgully -1 gy (4.11)

Therefore, the kernel of Ag is trivial and its image is closed.
We prove that for every F' € Vﬂfl(lC)Z there exists a solution of the equation Agu = F. Let {fx}r>0 C

Cs°(K)* be a sequence which converges to F in Vﬁfl(lC)e. By Theorem 4.1, for every k there exists a solution
uy € VV2+1 (1 )T(IC)e C V4 (K)* of the problem Luy = fi in K, Buy, = 0 on OK\S. Since, according to (4.11),
lur —willvioeye < ellfi = fillv 1pey

with a constant ¢ independent of k and [, the functions uj form a Cauchy sequence in V/Gl(IC)Z . Its limit w is the
solution of the equation Agu = F. The proof is complete. m

4.4 Regularity of weak solutions to the Neumann problem

Using Theorem 2.2, we can prove the following theorem.

Theorem 4.4. Let u € Vﬁ17l+1(lC)£ be a solution of the equation Ag_j 1u = F, where the functional F €
Vﬁ__ll_‘_l(/C)‘Z has the form

(F,U)K:/f-merZ/ gj-vdo,  veVIK), (4.12)
K j=17Ti

with f € Wé_;(IC) ;€ Wl 3/2( ;)% 8; is not integer, and max(l —1—p;,0) < &; <l—1 forj=1,...,n. Then
u € Wé,g(lC)e and

lulhws, ye < e (1l ;W+Z||gj||wl ar2qoyye el 000 )
j_

Proof: Under our assumptions on F, the vector function u is a solution of problem (1.1), (1.3). We define by
Cks Mk» Cr» M the same functions as in the proof of Theorem 4.2 and set v(x) = u(2¥x). Then, by Theorem 2.2, the
vector functions (ju and (v belong to Wé S(IC)Z for k = 0,41, .... Furthermore,

1860l g < @ (LU 120y +Z||nk8v|| gy Il
Jj=1

Due to (4.2), the constant ¢ is independent of k. Multiplying the last estimate by 22k(B=D+3k and substituting
2%y = ¢, we arrive at the inequality

n
2 2 2 2
”CkuHWéj(IC)f <c (anLuHW;}Q(’C)[ + ; HUkBUHW;T;/?(FJ)e + HUWHVBl_HlUC)f)

Using the equivalence of the norms in W (IC) and Wl 1/ %(r I';) with norms analogous to (4.4), we obtain the

B,6
assertion of the theorem. m

The following statement is an immediate consequence of Theorems 4.3 and 4.4.

Corollary 4.1. Suppose that ¢; is not integer, max(l —1 — p;,0) < d; <l —1 for j=1,...,n and that the
line Re\ =1 — 3 — 3/2 does not contain eigenvalues of the pencil A. Then the Neumann problem (1.1), (1.3) is

uniquely solvable in Wé g(IC)Z for arbitrary f € W;;;(IC)‘Z and g; € Wl 3/2( ;)% 5=1,.
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Furthermore, we get the following generalization of Lemma 4.3.
Corollary 4.2. Letu € Vﬂl_H_l(lC)é be a solution of problem (1.1),(1.3) with (pap)”fEWé;;?(lC)Z, (p0,)" g €

WZ;;/Q (Fj)é forv=0,1,...,k, j=1,...,n, where the components ofg are not integer and satisfy the inequalities
max(l —1—p;,0) < d; <l—1. Suppose that there are no eigenvalues of the pencil A on the line Re A =1—[(—3/2.

Then (pd,)"u € W' g(IC)E forv=0,1,... k and

k

> lltpy) u||W_<,cy<cZ(H 00 Pl + 3 103 “Gillwi-sr2eyye)

v=0 v=0 Jj=1

Proof: Let first | — 1 — 6; < 1 and, therefore, max(1 — p;,0) < §; —1+2 < 1for j =1,...,n. Then, by

Lemma 4.3, (pd,)"u € W; 25 (1 2)I(IC)Z C V/}_Z_H(IC)Z for v =1,...,k. Using Theorem 4.4 and the equalities

Lpo,u = (p0, +2)Lu, Bpoyu = (pd, + 1)Bu
we obtain (pd,)"u € Wé g(IC)E forv=1,...,k.

Now let {—1—¢; > 1forj =1,...,n. By Theorem 4.4, u € Wé E(IC) and, consequently, pd,u € Wg 11 6(/C)e C

VB{HI(IC)E. Since L pdyu = pd,f +2f € W;{;(IC)Z and B pd,ulr; = pd,g; +g; € Wl 3/2( I;)*, it follows from
Theorem 4.4 that pd,u € W;}E(IC)E. Analogously, we obtain (pd,)"u € W;},g(lC)é for v = 2 k.

Finally, let I —1 —§; > 1 for some, but not all, j. Then let 91, ...,%, be smooth functions on Q such that
Y; >0, ¢; = 1 near M; N S? and > t¢; = 1. We extend 1; to K by the equality 1;(z) = ;(z/|z]). Then
0%y;i(z) <c |z|~1el. Consequently, the assumptions of the corollary are satisfied for ¥ju, and from what has been
shown above it follows that (pd,)"v¥;u € Wé S(IC)Z for j =1,...,n. This completes the proof. m

Corollary 4.3. Let u € Vj (K0)* be a solution of the equation Agu = F, where F € Vﬁ_l(lC)l N VB_,I(IC)E, If
there are no eigenvalues of the pencil A on the lines ReA = —3 — 1/2 and Re A = =3’ — 1/2, then u admits the
decomposition (4.5) with w € V3, (K)".

Proof: By Theorem 4.3, there exists a solution w € Vﬁl/ (K)? of the equation Agw = F. Let x be a smooth
cut off function equal to one near the vertex of K. We assume, without loss of generality, that 8’ < (. Then
x(u—w) € Vﬁl(lC)E. Integrating by parts, we obtain

b (= w).0) = be(w—woo) + [ fovdat [ gvdo
K oK\S

for arbitrary v € V_1 (K)¥, where

3
Z Aij ((02,X) O+ 0y (D X)u), 9= D Aij (Da,x) nju
1,7=1 7,7=1

Obviously, f € WO (IC) and g|r; € W /2( I';)* with arbitrary 7,8, max(1 — pi,0) < 6; < 1forj=1,...,n.
Since xv € Vy (/C) N V_lﬂ/ (K)*, we have bic(u — w,xv) = 0. Consequently, from Theorem 4.4 it follows that
x(u—w) € W2+ L g(lC) Applying Theorem 4.2, we obtain the decomposition (4.5) for (v — w) with a remainder
w e W2 (K) C Vgl, (K)*. Furthermore, since 3 < (3, the function (1 — x)u belongs to Vﬁl, (K)¢. The result

B'+1,8
follows. m

Remark 4.1. Let for the Neumann problem in the dihedron D; (i.e., in the dihedron which coincides with
the cone K in a neighborhood of the edge point z(/) = M; N 5?) the assumptions of Theorem 2.3 be valid. Then in

the condition on §; in Theorem 4.4 and Corollaries 4.1-4.3 the number p; = 1 can be replaced by the real part u( )
of the first elgenvalue of the pencil A;j(\) on the right of the line Re A = 1. To show this, one has to use Theorem
2.3 instead of Theorem 2.2 in the proof of Theorem 4.4.

Examples. Let us consider, for example, the solution u € H = Vj (KC)* of problem (1.7), where F has the
form (4.12) with f € Wé%z(K), g; € W;_;/Z(I‘j), l—p >1,4; is not integer, max(0,! — 1 — p;) < 6; <1 —1.
Suppose that, additionally to (1.6), the inequality

3 3

Y (Aigfis fi)ee Ze X IfIP (4.13)

i,j=1 i=1
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is satisfied for all fi, fo, f3 € C*. Then the strip 0 < Re A\ < 1/2 contains only the eigenvalues A = 0 of the pencil
2. The corresponding eigenvectors are constants, while generalized eigenvectors do not exist (see [8, Ch.12]). The
same is true, for example, for the Neumann problem to the Lamé system (see [8, Ch.4]). Consequently, there exists
a constant vector ¢ such that u—c € Wé E(IC)Z if |— 3 —3/2 < Re Ay, where As is the eigenvalue of 2 with smallest
positive real part, and J; are nonintegerhumbers such that max(0,l — 1 —p;) <d; <l —1.

For the Neumann problem to the Laplace equation, we obtain u € Wé g(IC) if —1/2<1—-p5—-3/2< Ay and

max(0,l—1—7/0;) < §; < -1, where 0; is the angle at the edge M;. If K is convex, then Ay > (v/5—1)/2 (see [4]),

and we can choose | = 3, § =1, §; = 1 — ¢ with sufficiently small positive . Thus, u—c € W13(1 (IC) C W026(IC)
. 1 3/2
if fe W1,(175)T(’C) j €W, - E)l(F ).

In the case of the Lamé system, we make the following assumptions: —1/2 <1 — 8 — 3/2 < A3, max(0,] —
1-m/0;) <d; <l—1ifh; <, and max(0,l —1—£4(0;)/6;) < d; <l—11if §; > 7w, where £, () is the smallest
positive root of (1.8). Furthermore, we assume that the boundary data g; satisfy the compatibility conditions

M5 95- |Mj ="Nj_9gj¢ |Mj if 5]' <l-2,

where I';_ and T';, are the sides adjacent to the edge M;. Under these conditions, we get u € Wé g(lC)?’.

4.5 Estimates for Green’s matrix to the Neumann problem

We consider the Neumann problem (1.1), (1.3) with J; = {1,...,n}. Suppose that the line ReA = -3 — 1/2
(and, consequently, also the line Re A = 8 — 1/2) does not contain eigenvalues of the pencil 2. Then the following
theorem holds analogously to [12, Th.2.1].

Theorem 4.5. 1) There exists a unique solution G(x,§) of the boundary value problem (1.12), (1.14) such

that the function © — C(‘f(gl) G(z,&) belongs to the space Vﬁ1 (K) for every fizred &€ € K and for every smooth

function ¢ on (0,00) equal to one in (1,00) and to zero in (0, 3).
2) The function G is infinitely differentiable with respect to x,& € K\S, = # &.

3) The function G(z,-) is the unique solution of the problem

L(0) (x ) =0(x—&1I, forz, &€k, B(0¢) G(z,£) =0 forxz € OK\S, € € K,

such that the function & — C(‘f(f)‘) G(z,&) belongs to the space VEB(IC)ZXE for every fized x € K.

Theorem 4.6. Green’s function G introduced in Theorem 4.5 satisfies the following estimates for |x|/2 <
l§] < 2[z|:

020G, 6)] < cla =€ jo — €] < min(r(2), r(€)),

n

a gy 1—|a]—|y drex ij
020G, )] < cle—g7 “H(ma) E(xs)
if |# — € > min(r(z),r(£)).

Here 0 o = min(0, u; — |a| — €) with an arbitrarily small positive €.

Proof: Since G(Txz,T¢) = T~ G(x,€£), we may assume, without loss of generality that |z — &| = 1. Then
3min(|z],|&]) > |z| + |§] > |x — & = 1. Therefore, we can apply Theorems 2.4 and 2.5 and obtain the desired
estimates. m

For the proof of point estimates for G(x,&) in the cases 2 |z| < |¢] and |z| > 2] we need the following
lemma.

Lemma 4.5. Ifu € Wé 5(IC), pOyu € Wé 5(IC), 1>2,6;#1—1 forj=1,...,n, then there is the estimate

T‘ max(5 —1+1,0)
pP-1H3/2 H /j lu(z)] < c (“U”Wé ST ||P8PUHW}, guc))
Jj=1 | |

with a constant ¢ independent of u and x.
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Proof: 1) Applying the estimate

sw_ o) <c [ (0P + o (o)) 2

0<p<o
(which is an immediate consequence of Sobolev’s lemma) to the function p®~!*+3/2y(p, w), one obtains
o0
pPO0F fu(p,w)? < C/ PP (ulp, ) + [pdyulp,w) ) dp. (4.14)
0
Let 11, ..., %, be smooth functions on Q such that ¢; = 1 near M; N S?, ¢; >0, and > 1; = 1. Furthermore, let

v be an arbitrary function from Wﬂ( ). If §; <1 —1, then ;v is contlnuous on ©, and the supremum of ;v can
be estimated by its norm in W;(Q) If §; > 1 — 1, then 9;v belongs to Vgl(Q) (see, e.g., [7, Th.7.1.1]). Therefore,

(D™ (@)l < e lselwae
(cf. (2.30)). This implies

i

The last inequality together with (4.14) implies

T @) < el

_ - Ti\2max(5—1+1,0
pQ(ﬁ H+3 H (;]) ax( )‘u(p’w)|2

j=1
< ~ 2(8—1+1) 312 ) 12 d
sc ; P [[u(p, )HW}(Q) + [lp0pulp, )ng(g) -
The result follows. m

Let again 8 be a fixed number such that no eigenvalues of the pencil 2 lie on the line ReA = —§ — 1/2.
Furthermore let

A_<Red< Ay

be the widest strip in the complex plane which is free of eigenvalues and contains the line ReA = -3 — 1/2.

Theorem 4.7. Let G(z,&) be Green’s function introduced in Theorem 4.5. If |x| < |£|/2, then

lagagG(x,fﬂ < C|x|A+*|a‘*€ |£‘717A+*"Y‘+€j1;[ ( ‘xl ) 1:[ ( |§| ) )

where 0 o = min(0, p; — |&| —€) and € is an arbitrarily small positive number. Analogously, for |z| > 2|¢| there is
the estimate

19200 G, €)] < el 1o+ m_l_z\,—w—aH( " ) 1;[( r ) .

=1

Proof: Suppose that |z| = 1. We denote by ¢, ¢ smooth functions on K such that ¢(n) = 1 for |n| < 1/2,
1 =1 in a neighborhood of supp ¢, and ¥ (n) = 0 for || > 3/4. Furthermore, let [ be an integer, [ > max p; + 1.
The vector function 02G(z,-) is a solution of the problem

L(0¢) 93 G(w,6) = 058(z — &) I, in K, B(0) 83G(w,6) =0 on 9K\S

such that the function £ — C(Iw £‘) 02G(x, &) belongs to Vjﬁ(IC)ZXZ. Here, as in Theorem 4.5, ¢ is an arbitrary

r(x)
smooth function on (0,00) equal to one in (1,00) and to zero in (0, 3). In particular, 1(-)02G(z,-) € Vjﬂ(IC)K,
Y(-)L(0¢)0gG(x,-) = 0 and ¥(-)B(0¢)05 G(x,-)|ax\s = 0. Thus, we conclude from Corollaries 4.2 and 4.3 that

the functions ¢(-) 9/ 95 G(x, ) and [£|0)¢)6(-) 0 95 G(z,-) belong to Wl K)*, where 3/ < —A_ —1/2

1"+, 5+|7|1<
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and J; are noninteger numbers, [ —1 — p; < 6; < —1for j = 1,...,n. The norms of ¢(-) agaga(x, -) and
€101 6(+) 7 93 G(w, -) can be estimated by the norm of ¥(-)9gG(x, ) in V_IB(IC)Z. Hence, by means of Lemma 4.5,
we obtain

, n . max(8;+|v|—I+1,0)
pley i T ()™ fargcite. o) < elw) 026w s e (4.15)
j=1

for |€| < 1/2, where c is independent of x and &.
According to Theorem 4.3, the problem

bic(u,v) = (WF,v)c, veVi(K),
has a unique solution u € VBI(IC)E for arbitrary F € V[;l(IC)e. This solution can be written as

uly) = (WO F(), Gy, )

Let x1, x2 be a smooth cut-off function, xo = 1 near x, x; = 1 in a neighborhood of supp x2, x1(y) = 0 for
|z —y| > 1/4. Since supp Nsupp x1 = @, we have x;Lu = 0 and x1Bulsx\s = 0. Hence, by Corollaries 4.2 and

4.3, we obtain x205u € Wﬁ,, Fila ll(g)f and x2p0,05u € Wﬂ” Fila |1(g)f with arbitrary 8”. Consequently, Lemma
4.5 yields

" max(5 +|a|—1+1,0) | qa

I1 (s 02u(@)] < elaulvyer < NPy g

j=1

Thus, the mapping

V[;l(lc)é SF — H Tj($>nlax(6j+\a|—l+l,0) a;yu(x)

— (TL sty Hiei=19) g2Gia, ) 0(.), F)

j=1 *

represents a linear and continuous functional on Vﬁ_l with norm bounded by a constant independent of . Therefore,
the function

n— [ rjla)mexCHlel =10 4 (n) 62 G(x, )
has a norm less than a constant independent of z in V! 5(K)*. This together with (4.15) yields

£ - min(l—1—-6,;— |« ’_ — - T 5 min(17176j7|’7|ﬁ0)
0207 G (2,6)| < ¢ Hrj(x) (1=1=0;—]al,0)|¢|'~|71-1/2 H ( J((E))) .
j=0 i=o ~P

Setting 0; =1 —1—p; +ecand 8’ = —A_ —1/2 — ¢, we arrive at the desired estimate for || =1, |{| < 1/2. Using
the equality G(Tx,T¢) = T1G(x,£), we obtain this estimate for arbitrary = and [£| < |x|/2. The proof for the
case |z| < |£|/2 proceeds analogously. m

Remark 4.2. The estimates in Theorems 4.6 and 4.7 for the derivatives of Green’s function can be improved
if the direction of the derivatives is tangential to edges. In particular, we have
|0,G(2,€))| cle —€7* if |z]/2 < €] < 2Jz],
|0,G(2,€))| cla|M T g T 2] < I€]/2,
0,G(2,6)| < elafA 71 g7 AT 2] > 20¢).

IAIA

The first estimate follows immediately from Theorems 2.4 and 2.5, while the last two estimates can be proved
analogously to Theorem 4.7.
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Finally, we consider Green’s matrix for the case § = 0. This means that G(x,&) is a solution of problem

(1.12), (1.14) such that the function z — C( ‘f(_é‘) G(z,¢) belongs to H = Vi (K)*. If condition (4.13) is satisfied,

then the strip —1/2 < Re A < 0 contains only the eigenvalue Ay = 0 (see [8, Th.12.3.2,12.3.3]). The eigenvectors
corresponding to this eigenvalue are the constant vectors in C!, while generalized eigenvectors do not exist. By
[8, Th.4.3.1], the same is true for the Neumann problem to the Lamé system. In this case, we denote by As the
eigenvalue with smallest positive real part. Using the following lemma, we can improve the estimates in Theorem
4.7.

Lemma 4.6. Let ¢, ¢ be smooth functions on IC with compact supports such that ¢ = 1 in a neighborhood
of the origin and 1 =1 in a neighborhood of supp ¢. Furthermore, let Yu € Vi (), ¥Lu =0 and YBulsi\s = 0.
Suppose that the strip —1/2 < Re A < 0 contains only the eigenvalue A1 = 0, the eigenvectors corresponding to this
eigenvalue are the constant vectors in C¢ and generalized eigenvectors for Ay do not exist. Then ¢u = co+v, where
co 18 a constant vector, v € Wé,g(lC)e, 0<l—p—-3/2<Rely, max(l—1—p;,0) <d; <l—1, d; not integer, and

|co| + ||U||Wéyg(lc)[ < cllYullva e -

Proof: Let x be a smooth function such that y = 1 in a neighborhood of supp ¢ and ¥ = 1 in a neighborhood
of supp x. Since the derivatives of y vanish in a neighborhood of the origin and of infinity, we have L(xu) =

L, x]u € VVgiHQ,a(IC)‘e (here [L,x] = Lx — xL is the commutator of L and x) and B(xu)lr; € ngﬁ’@(l“j)e.
Thus, it follows from Theorems 4.2 and 4.4 that yu = cg + w, where w € W2 (K),0<1—p3-3/2<ReA,,

B—142,8
max(0,1 — p;) < d; <1,
ol + ||'U||W;15(IC)’5 < cllvullv e -

K)* and B(¢u) = [B, ¢] (w — co) € w2 (T';)*. Using again

B—143,5
Theorems 4.2 and 4.4, we obtain ¢u = ¢o + v, where v € Wg_l+3 5 (K)f, max(0,2 — ;) < d% < 2. Repeating this

argument, we get the same representation with v € Wé g(IC)e, max(l —1—p;,0) < <l—1.m

e _ 1
This implies L(¢u) = [L, 9] (w — cg) € Wﬁ—l-ﬁ-s,g(

Using the last lemma, we can prove the following statement analogously to Theorem 4.7.

Theorem 4.8. Let G(x,€) be Green’s matriz introduced in Theorem 4.5 for = 0. Suppose that the strip
—1/2 < ReX < 0 contains only the eigenvalue Ay = 0, the eigenvectors corresponding to this eigenvalue are the
constant vectors in C* and generalized eigenvectors for Ay do not ewist. If |x| < |£]/2, then

100G (2,9)| < clé ] (7“3'2'5))51,7’
J=1

o eNo—|al—e —1-ReAz— € - T‘(.’L‘) 80 1 T(&) %59
yazaga(x,fﬂ < c|g|Retelal=e |¢|-1-ReAa—lnl+ ]1:[1( J|x| ) H( J|£‘ )

for|a| # 0, where 6 o = min(0, u; —|a|—¢) and € is an arbitrarily small positive number. Analogously for |z| > 2|¢|
there are the estimates

026w, ©)] < efaf =11 T (22)

j=1

||

n

|8§82G($,§)| < C|x|—1—RcA2—|—y|+s |€|RCA2—\O¢|—5 H ('f'j<$)>5j,a H (7’]|é£)
j=1

)61',“{
L

for Iyl £ 0.

Remark 4.3. If for the Neumann problem in the dihedron D; the assumptions of Theorem 2.3 are valid
(i.e., in particular, p; = 1 is the eigenvalue of A;(\) with smallest positive real part), then G(x,&) satisfies the
estimates in Theorems 4.6-4.8 with d; , = min(0, u§-2) — |a] — €), where u§-2)

of the pencil A;(A) on the right of the line Re A =1 (cf. Remark 4.1).

is the real part of the first eigenvalue

Examples. Let G(z,¢) be Green’s function for the Neumann problem (1.1), (1.3) such that the function

T — C( If(g‘) G(z,€) belongs to the space H = V' (K)* for every fixed £ € K and for every smooth function ¢ on

(0,00) equal to one in (1,00) and to zero in (0, 1).
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1) If L = —A, then G(z, §) satisfies the estimates in Theorems 4.6 and 4.8 with J, o = min(0,7/6; — |a| —¢€),
where §; is the angle at the edge M; and ¢ is an arbitrarily small positive number. Here A, is the smallest positive
eigenvalue of the pencil 2. Note that the eigenvalues of the pencil 2 are given by Ay; = —1/2+ /N, + 1/4, where
N are the eigenvalues of the Beltrami operator on {2 with Neumann boundary conditions.

2) Green’s matrix for the Neumann problem to the Lamé system satisfies the estimates in Theorems 4.6 and
4.8, where §; , = min(0,7/60; — |a| —¢) for §; < 7 and §;,, = min(0,&4(0;)/0; — |a| —¢) for §; > w. Here £4(0) is
the smallest positive root of (1.8).

4.6 Estimates for Green’s matrix of the Dirichlet and mixed problems

Let
= U I'; and X;E(IC;FO) ={ue Vﬁl(IC) cu=0o0nTI°}.
Jj€Jo

Analogously to Theorem 4.3, it can be proved that the problem
bic(u,v) = (F,v) for all v 6{31_5(IC;FO)Z, u=g;onl; for jeJy

has a unique solution u € V[}(IC)Z for arbitrary F € (X;k(lC;FO)*)Z and g; € Vﬁl/2(I‘j)é, Jj € Jo, if the line
ReX = —f — 1/2 is free of eigenvalues of the pencil 2A(\). We call this solution weak solution of problem (1.1)-
(1.3).

For weak solutions of the Dirichlet and mixed problems we can prove analogous regularity assertions as for
weak solutions of the Neumann problem. In particular, the following statement holds (cf. Corollary 4.2).

Theorem 4.9. Let u € Vj_ 141 (K)* be a weak solution of problem (1.1)~(1.3) with (pd,)" f € WZ_E(IC; J)t
for v =0,1,...,k, (p0,)"g; € Vl 1/2( L) forj e Jo, v =0,1,....k, (pd,)"g; € Wl 3/2(F D) for j e Ju,

v=0,...,k. Suppose that the components ofg satisfy the inequalities | — 1 — p; < §; < l —1forj=1,....,n and
that &; is positive and not integer for j & J. Furthermore, suppose that there are no eigenvalues of the pencil A on
the line ReA =1—( —3/2. Then (p0,)"u € Wl ﬂ(/C; Dt forv=0,1,...,k and

k k
> 1600wl gy < Z(H PO0)" Fllwi -2y + 2 1000)" illyi-vra e
=0 v=0 Jj€Jo

LD (AL NETEE

JjE€J1

Suppose that there are no eigenvalues of the pencil 2 on the line ReA = —3 — 1/2. We denote by A_ <
Re X < A, the widest strip in the complex plane which is free of eigenvalues of the pencil 2(\) and contains the
line Re A = —3 —1/2. Furthermore, let G(z, £) be the unique solution of the boundary value problem (1.12)—(1.14)

such that the function z — ¢( |f(;§|) G(x,€) belongs to Vi (K)**“. The following estimates follow immediately from
Theorem 2.8.

0507G(2,6)] < cla—€7 TN [2)/2 < J¢] < 2fa], o — €] < min(r(2), r(E)),

clz — g|7tlel=hl ]ﬁl (M)“Jﬁl (;j(«fé)%

if |2|/2 < [€] < 2|z|, |z — &| > min(r(x),r(£)).

Here ;.o = pj —|a| —e for j € J, 8,0 = min(0, u; — || —¢) for j & J, and ¢ is an arbitrarily small positive number.
Estimates for Green’s function in the cases |z| < [¢]/2 and |z| > 2|¢| can be proved analogously to Theorem 4.7 by
means of Theorem 4.9. In the case |z| < |¢]/2 we obtain

IN

|070¢ G(x,¢)]

n

o 9| < el g T () T ()™

j=1 i=1

<.

while for |z| > 2|¢| there is the estimate

n n

0207 G(x,€)| < efaf-lol+e \€|_1_A‘_M_EH< 2] ) H( €] ) '

Jj=1 =1

<.
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