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Abstract

The paper deals with a mixed boundary value problem for the Stokes system in a polyhedral cone.
Here different boundary conditions (in particular, Dirichlet, Neumann, free surface conditions) are
prescribed on the sides of the polyhedron. The authors obtain regularity results for weak solutions
in weighted L2 Sobolev spaces and prove point estimates of Green’s matrix.

1 Introduction
We consider here a mixed boundary value problem for the linear Stokes system
—Au+Vp=f, —V-.u=g (1.1)

in a polyhedral cone, where on each of the sides I'; one of the following boundary conditions is given:

(i) w

(i) ur =h, —p+2enn(u) =9,
(iil) un =h, enr(u) =0,
(iv)

Here n is the outward normal, u,, = u - n is the normal and u, = u — u,n the tangent component of the
velocity u. Furthermore, e(u) denotes the matrix with the components (8, u;j + 0z, u;), €n(u) is the
vector €(u)n, €,n = €p(u) - n its normal component and €, () its tangent component.

Conditions (i)—(iv) are frequently used in the study of steady-state flows of incompressible viscous
Newtonian fluids. For example, on solid walls there is the Dirichlet condition (i), a no-friction condition
(Neumann condition) 2e(u)n — pn = 0 may be useful on an artificial boundary such as the exit of a
canal or a free surface, the slip condition for uncovered fluid surfaces has the form (iii), and conditions
for in/out-stream surfaces can be written in the form (ii).

Our goal is to obtain estimates for Green’s matrix. For the case of the Dirichlet problem, such
estimates were obtained by Maz’ya and Plamenevskil [13]. As in [13] we obtain point estimates of
Green’s matrix by means of weighted Lo estimates of the solutions and their derivatives. Here, the
weights are powers of the distances to the edges and corners. However, while the problem with Dirichlet

—pn + 2e,(u) = ¢.



boundary conditions can be handled in weighted Sobolev spaces with so-called homogeneous norms, the
more general boundary value problem considered in the present paper requires the use of weighted Sobolev
spaces with inhomogeneous norms. This makes the consideration of the boundary value problem more
difficult.

We outline the main results of the paper. In Section 2 we deal with the boundary value problem for
the Stokes system in a dihedron D, where on both sides ', I'™ one of the boundary conditions (i)—(iv)
is given. We consider weak solutions (u,p) € H x La(D), where H is the closure of C$°(D)? (the set of

infinitely differential vector functions on D having compact support) with respect to the norm

3
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and obtain regularity assertions for the solutions. The smoothness of the solutions near the edge depends
on the smoothness of the data and on the eigenvalues of a certain operator pencil A(\) generated by the
corresponding problem in a two-dimensional angle. These eigenvalues can be calculated as the zeros of
certain transcendental functions. For example, in the cases of the Dirichlet and Neumann problems, the
spectrum of the pencil A(X) consists of the solutions of the equation

sin(A9) (A sin® @ — sin®(A\0)) = 0

(A = 0 for the Dirichlet problem), where 6 is the angle at the edge. One of our results is the following.
Let A1 be the eigenvalue of A(\) with smallest positiv real part, and let WE(D) be the closure of C§°(D)

with respect to the norm
1/2
oy = ([ 3 o iomut@)Paz) (12)
|

al<l

where r denotes the distance to the edge. We suppose that f € Wéfz(D)?’, g€ Wéfl(D), the boundary
data belong to corresponding trace spaces and satisfy a certain compatibility condition on the edge, and
max(l — 1 —Re\;,0) < § <1 —1. Then ¢(u,p) € WA(D)? x WL(D) for an arbitrary smooth function ¢
with compact support. If the spectrum of the pencil A(\) does not contain the value A = 0 (this is the
case, e.g., if the Dirichlet condition is given on at least one of the sides I't,T'™), then this result is also
true in the class of the weighted spaces V}(D) with the norm

1/2
ey = ([ 3 20410 (o) az) (13)
D

lef <l

Furthermore in some cases, when A; = 1 (e.g., in the case of the Dirichlet problem, 6 < 7), the eigenvalue
A1 in the Wg regularity result can be replaced by the second eigenvalue \s.

The a priori estimates of weak solutions are used in Section 3 for the proof of point estimates of
Green’s matrix (Gj ;(x,€))} j—;- For example in the case |z — & > min(|z’, |¢']), we obtain

|0805,00.08,Giy(2,€)| < cla — g1 0w tarlalTBle =
( |2'| )min(o,ﬂf\a|*5i,4*€)( 1€ )min(owflﬁlf&j,zre)
X
|z — ¢ |z — ¢

if the edge of D coincides with the zg-axis, where 2’ = (x1,232), ¢ = (£1,&), p = Re Ay, and ¢ is an
arbitrarily small positive number. If A = 0 is not an eigenvalue of A(\), then there is the sharper estimate

(1.4)

10207, 00.0F,Gij(w,6)] < cla — g1 0sarlal=lBlo=r
2| \n—lol—dia—e [€'] \#1Bl=b5a—¢
X(m_a> Qx—ﬂ)
Moreover, in some cases when \; = 1, this eigenvalue can be replaced in (1.4) by A2. This improves the
estimates given in [13, 14]. For the components G; 4 we obtain a representation of the form

3

GZ‘,4($,§) = _vf 731(1'75) + QZ(£7£)7 (15)



where the normal components of P;(xz,€) vanish if € lies on the boundary, and P;(z, £), Qi(x, ) satisfy
the estimates

1050 Pi(w, €)| < cayy |z — &7 004710110207 Qi €)| < oy fa! |72 00a N1 (1.6)

for |z — &| < min(]z'|,]£'|). The last result is of importance for the estimation of the integral

/D 9(6) Grala, €) de

in the representation of the solution of the boundary value problem to the Stokes system.

Section 4 is concerned with the boundary value problem in a polyhedral cone K with vertex at the
origin and edges My, ..., M,. The smoothness of solutions in a neighborhood of an edge point z¢ € My,
depends again on the eigenvalues of certain operator pencils A (A). These eigenvalues are, as in the case
of a dihedron, zeros of special transcendental functions. The smoothness of solutions in a neighborhood
of the vertex depends additionally on the eigenvalues of a certain operator pencil 2A(\). Here 2(()) is
the operator of a parameter-depending boundary value problem on the intersection of the cone K with
the unit sphere. Spectral properties of this operator pencil are given in papers by Dauge [3], Kozlov,
Maz’ya and Schwab [9] for the Dirichlet problem, by Kozlov and Maz’ya [6] for the Neumann problem
and in the book by Kozlov, Maz’ya and Rossmann [8] for boundary conditions (i)—(iii). We prove the
existence of uniquely determined weak solutions in W} ;(K)? x W§ o(K) if the line ReA = —3 — 1/2 is

free of eigenvalues of the pencil 2(()), where Wé,O(IC) is the closure of C§°(K\{0}) with respect to the

norm 1/2
ooy = (3 2P0 |2 u(a) 2 da)

o] <

lellwy,
Furthermore, we obtain regularity results for these solutions. The absence of eigenvalues of the pencil
2(X) on the line Re A = —f — 1/2 guarantees also the existence of a Green matrix (G; j(z,€)); =, of the
boundary value problem in the cone K such that the functions x — ((|z — £|/r(§)) Gi j(x, &) belong to
Wﬁl)o(IC) for every £ € K, i=1,2,3 and to Wg)O(IC) for i = 4. Here ( is an arbitrary smooth function on
[0, 00) equal to one in (1, 00) and to zero in (0, %) In the last subsection we derive point estimates of this
Green matrix. In the case |z]|/2 < |§| < 2|z| we obtain analogous estimates to the case of a dihedron,
while in the case |£| < |z|/2 the following estimate holds:

0700 Gij(w,€)] < claff-momamlalte g mA-TIm0am e

) ﬁ (rk(x))min(O,Mk*‘a|*5i,4*5) ﬁ (Tk(f))min(o#rhl*&j’re), (1.7)

LA L]

Here ri(x) denotes the distance to the edge My, A_ < ReA < A is the widest strip in the complex
plane containing the line Re A = —( — 1/2 which is free of eigenvalues of the pencil 2()\). Furthermore,
ur = Re /\gk), where /\gk) is the eigenvalue of the pencil Ag(A) with smallest positive real part.

Note again that the exponent min(0, i — |a| — §; 4 — €) in the above estimate can be replaced by
pr — |a) — d;4 —e if A = 0 is not an eigenvalue of the pencil Ax(A). Furthermore in some cases (when
)\gk) = 1), estimate (1.7) is valid with g, = Re /\gk), where /\gk) is the eigenvalue with smallest real part
greater than 1.

The estimates of Green’s matrix obtained in the present paper can be used to prove regularity results
for weak solutions of the mixed boundary value problem in (weighted and nonweighted) Sobolev and
Holder spaces. As an example, we consider the mixed problem with boundary conditions (i)—(iii). We
give some regularity results for weak solutions of this problem which are proved in [19]. Suppose the
Dirichlet condition is given on at least one of the adjoining sides of every edge M. We denote by I the
set of all k such that the Dirichlet condition is prescribed on both adjoining sides of M. Then (1.7) is
valid with A_ = —1 — 2¢ (see [8, Th.6.1.5]), ux = 5 + 2¢ for k € I, py = + + 2 for k ¢ I. This estimate
together with analogous estimates for the cases |§| > 2|z| and |z|/2 < |z — | < 2|z]| allows, for example,
to obtain the following regularity result for the weak solution (u,p) € W12(G) x La(G) of the mixed
problem with homogeneous boundary conditions (i)—(iii) in a bounded polyhedron G.



o If f e (W' (G)*)? and g € Ly(G), 2 < s <8/3, s’ =s/(s — 1), then (u,p) € WH5(G)3 x Ly(G).

Here W%*(G) denotes the Sobolev spaces of all functions u such that 9%u € Ly(G) for |a| < I. Under
additional assumptions on the polyhedron G, this result can be improved. If the angle 8 at the edge My,
is less than %71’ for k ¢ I, then uy > 1/3, and the above regularity result is true for 2 < s < 3. We assume
that the Dirichlet condition is given on all sides of a convex polyhedron G except the side I'y, where
condition (ii) is prescribed, and that 0 < 7/2 for k ¢ I. Then the following regularity result holds.

o If f € (WH2(G)*)3NLy(G) and g € Lo(G)NWL5(G), 1 < s <2 (in the case s = 2, g must satisfy a
compatibility condition on the edges), then the weak solution belongs to W?2:4(G)3 x Whs(G).

This result is based on the estimates pp > 1, A_ = —2 (see [8, Th.6.2.7)). If 6 < 3x for k € I and
O < %ﬂ' for k & I, then py > 4/3 and the last result holds even for 1 < s < 3.

The present paper is an extension of our preprint [18]. We added here estimates for the elements of the
last row of Green’s matrix (see (1.5), (1.6) and the analogous estimate for the problem in a polyhedral
cone) and sharper estimates for the case when A = 0 is not an eigenvalue of the pencil Axz(A). The
estimates in [18] so completed become sufficient to obtain various regularity results for solutions to the
Stokes system as mentioned above.

2 The problem in a dihedron (L»-theory)

In the following, let K be an infinite angle in the (x1,x2)-plane given in polar coordinates r, ¢ by the
inequalities 0 < r < 00, —0/2 < ¢ < §/2. Furthermore, let

D={x=(2,23): 2’ = (v1,22) € K, 73 € R}

be a dihedron. The sides {x : ¢ = +6/2} of D are denoted by I'*, the edge 't N T~ is denoted by M.

We consider a boundary value problem for the Stokes system, where on each of the sides I'* one of the

boundary conditions (i)-(iv) is given. Let n* = (nF, nE,0) be the exterior normal to T*, e£ (u) = e(u) n*

and et (u) = et (u)-n*. Furthermore, let d* € {0, 1,2, 3} be integer numbers characterizing the boundary

conditions on I'" and I'~, respectively. We put
o Stu=u ford* =0,
o STu=u— (u-nF)n*, N*(u,p)=—p+2et, (u) ford* =1,

o STu=wu-n*, NF(u,p)=ct(u)—el, (u)nt ford* =2
o N*(u,p) = —pn* + 2 (u) for d* =3
and consider the boundary value problem
—Au+Vp=f, —-V-u=g inD, (2.1)
Stu=h%, N*¥(u,p)=¢* onT=.

Here the condition N*(u,p) = ¢T is absent in the case d* = 0, while the condition S*u = h* is absent
in the case d* = 3. The boundary conditions (2.2) arise from the bilinear form

3
blu,v) =2 /D ‘Z eij(u) &5 (v) da (2.3)

4,j=1

(see formula (2.4) below).



2.1 Green’s formula for Stokes system

Let b(-,-) be the bilinear form (2.3). Partial integration yields
b(u,v) — / pV - vdr = / (=Au—VV - u+Vp)- -vdr+ Z/ (—pn™ + 2e(u)n™) - vde (2.4)
D D — Jr+

for arbitrary u,v € C§°(D)?, p € C5°(D). As a consequence of (2.4), the following Green formula holds
for u,v € C§°(D)3, p,q € C5°(D)

/(—Au—VV-u+Vp)-vdx—/(V-u)qdw+2/ (—pn* +2e(u)n®) -vda
D D i r+

=/u-(—Av—VV-v—!—Vq)dx—/pV~Uda:+Z/ u- (—gn* + 2e(v)n®) dz. (2.5)
D D — Jr=

2.2 Weighted Sobolev spaces

For arbitrary real § we denote by V(D) the closure of C§°(D\M) (the set of all infinitely differentiable
functions with compact support in D\M) with respect to the norm (1.3), where r = |z/| denotes the
distance to the edge. For real § > —1 let W}(D) be the closure of C§°(D) with respect to the norm (1.2).

Furthermore, let Vél —1/2 (T*) be the space of traces of functions from V(D) on T'*. The norm in this
space is
Jullys-s/ sy = nE{ollyspy : v € VD). v=uon T5).

Analogously, the norm in trace space Wéil/z(Fi) for W}(D) is defined. Note that the norm in V;fl/z(Fi)
is equivalent (see [11, Le.1.4]) to

25| 5l-1y, -1 o drsdys
ol = (105wt = 0 ) (2
_ _ 2 d?"ld’l"g
+/]R/i /i |r1(8f. Lu)(ry, z3) — (8,€ 1u)(r2,m3)| 7“1 . dxs
yE Sy
-1 ' 4 1/2
+/ Zrzw_lﬂ)ﬂ |8ﬁu(r7x3)|pdrdx3) ) (2.6)
r+ =
j=0

If § is not integer, —1 < § < [ — 1, then the trace of an arbitrary function u € W}(D) on the edge M
belongs to the Sobolev space W!=9~1(M) (see, e.g., [15, Le.1.1]). Furthermore, the following lemma holds
(see [15, Le.1.3)).

Lemma 2.1 1) The space WA(D) is continuously imbedded into Wi~1(D) if § > 0 and into V(D) if
d>1-1.

2) Let u € WL(D), where § is not integer, 6 > —1. Then for the inclusion u € V(D) it is necessary
and sufficient that 0%u|p =0 for |of <1 —0 — 1.

Analogously to V{(D) and W(D), we define the weighted Sobolev spaces V}(K) and W}(K) on the
two-dimensional angle K. Here in the definition of the norms one has only to replace D and x by K and
z', respectively. For the space Wg(K ) a result analogous to Lemma 2.1 holds. Furthermore, we will use
the following lemma.

Lemma 2.2 Letu € V(;l(K), Il > 2. Then there exists a constant ¢ independent of u such that

S—
sup [a |~ Ju(a")] < e lullye -
ek



Proof. Let Kog={z' € K:1/2 < |2'| <2}. By Sobolev’s lemma, we have
lv(z")| < cllvllwi(k,) for each v e WKy, |2'| = 1.

Now let u € V}(K) and |2'| = p. We introduce the function v(z') = u(pz’) and obtain

B B B B . 5 1/2
P ] = o ol )] < e el = e (S [ (05 uter) )
laf <17 Ko
1/2
_ C( 3 / p2(5*l+|“|)|3§‘fU(:c’)|2d:c’)
lal<I K
p/2<|z’|<2p
This proves the lemma. O

2.3 Weak solutions of the boundary value problem

Let L(D) be the closure of the set C5°(D) with respect to the norm
3 1/2
[ullLypy = (/DZW%MQ d:r) (2.7)
j=1

The closure of the set C§°(D) with respect to this norm is denoted by zé (D).
Furthermore, let H = L}(D)? and V = {u € H : S*u = 0 on ['*}. In the case of the Dirichlet

problem (S*u = u), we have V :zé(D)3. Note that, by Hardy’s inequality,
/ || 72 |u|? de < 4 ||UH%%(D) for u € C§°(D).
D
Therefore, the norm (2.7) is equivalent to the norm

3 1/2
Jull = ([ (ol 2+ 3 o, ) (28)
=1

D

and H can be also defined as the closure of C§°(D)? with respect to the norm (2.8). Obviously, every
u € ‘H is quadratically summable on each compact subset of D. From Hardy’s inequality it follows that

[ull?,py < / (r?° + 7272 ju? dz < / % (Ju? + ¢|Vul?) dx
D D
for u € C°(D) and 0 < § < 1, where ¢ depends only on §. Consequently, there are the continuous
imbeddings W} (D) C L2(D) and WZ(D)? C Hif 0 < § < 1.
By (2.4), every solution (u,p) € WZ(D) x W§ (D) of problem (2.1), (2.2) satisfies the integral equality
b(u,v)—/pV~vdx:/(f+Vg)'vdx+Z ¢F - vda.
D D — Jr+

for all v € C$°(D)? (in the case STv = v, the function ¢* has to be replaced by the vector ¢*n*). By
a weak solution of problem (2.1), (2.2) we mean a pair (u,p) € H x Ly(D) satisfying

b(um)—/med:C:F(v) for all v €V, (2.9)
D
—V-u=g inD, S*Tu=h*T onI¥*, (2.10)
where
F(v):/(f+vg)-vdx+z oF vdz, (2.11)
D T JIr#

provided the functional (2.11) belongs to the dual space V* of V. For example, F' € V* if f € W2(D)3,
g€ WHD), ¢* € 1/1/6;1/2(1&)7 d < 1, and the supports of f, g and ¢ are compact.



2.4 A property of the operator div

The goal of this subsection is to prove that the operator div : L1(D)® — Lo(D) is surjective. For this
end, we show that its dual operator is injective and has closed range. We start with an assertion in the

two-dimensional angle K. Here W (K) denotes the closure of C§°(K) with respect to the norm

1/2
fulwriae = ([ (1l + 02,0 + 02,u?) dz)
K
and W~1(K) its dual space (with respect to the Ly scalar product in K).

Lemma 2.3 For arbitrary f € Lo(K) there is the estimate

10y < € (19, Slw—120) + 102 Fllw a0y + 1w 11 (2.12)

with a constant c independent of f.

P r oo f. For bounded Lipschitz domains the assertion of the lemma can be found e.g. in [4, Ch.2,§2].
Let U;, j =1,2,..., be pairwise disjoint congruent parallelograms such that K =4; UlUs U ---. Then

oo (oo}
1A 1T ey = DM Ty <€D (HazlfH%/Vfl(uj) 1100 Flli -1 ) + Hf||€vfl(uj))~ (2.13)
j=1 j=1

By Riesz’ representation theorem, there exist functions g EV([)/l(K )s 95 W (U;) such that
Ifllw—1x) = llgllw (k) /K fodr = (g,v)w1(x) forallv EVi)/l(K),
1w 1@,y = llgillwr @) /u fvdr = (gj,v)wrq, forallv ew'Uy), j=1,2,....
Let gj,0 be the extension of g; by zero. Then
19511351 @i,y = /u fgjde = /K fgj0dx = (g,9;0)wr(x) = (9, 95)wr ;)
Z

and, therefore
lgillwrw,) < llgllw@;)-

Consequently,

ST B0y = S 9B < S ol = l9l3m ey = 1131
j=1 j=1 j=1

The same inequality holds for 0., f. This together with (2.13) implies (2.12). O
Next we give equivalent norms in Lo (D) and in the dual space Ly (D) of ]%%(D)

Lemma 2.4 Let F(y,§) = f(|§|’1y,§), where f(:r’,g) denotes the Fourier transform of f(z',xz3) with
respect to the last variable. Then

1£12, o) = / E2F (O3, ey dEif f € La(D),

11y = [ € NPC syt i £ € L5 (D).



P roof. The first equality follows immediately from Parseval’s equality. We prove the second one. By

Riesz’ representation theorem, there exists a function u € 2;(2)) such that
500 = Iy, [ fode= [ VuVode for allv cL3(D). (214)

Furthermore, for arbitrary £ € R there exists a function W(, &) Wl (K) such that

1) w0 = W) lwa .
/K Fly, &) Vg, &) dy = /K (VW (. €) -V, V(0,8) + W(y.6) V(5,0) d,

where V(y,€) = 9(]¢| 71y, €) and © is the Fourier transform with respect to a3 of an arbitrary function

v e 25 (D). From the last equality it follows that
| f@T@ @ =2 [ V(a0 Vo + EW(ela’. ) 7 9) de'

Comparing this with (2.14), we conclude that W (|¢|z',€) = £2a(a’, £). Consequently,

/RHF(-,é)||€V;(K) d¢

The proof is complete. U

[ WO gde = [ [ (9wite' 0 + & it ) aa'

il yp) = 1712 2

Theorem 2.1 1) There exists a constant ¢ such that
3
||fHL2(D) <c Z ”azjf”L;l(D) for all f € La(D).
j=1
2) For arbitrary f € La(D) there exists a vector function u EZ%(D)?’ such that V -u = f and
lullLypys < cllfllr.(D)s

where the constant ¢ is independent of f.

Proof. Let f be an arbitrary function in Ly(D) and F(y,£) = f(|€|~ y, ), where f denotes the Fourier
transform of f with respect to 3. Then, by Lemmas 2.3, 2.4, we have

ey = [ €2 IFCORmds<e [ (Zua%F W-sca0 + Iy a0)

3
>3 ”amjf”igl(p)'

j=1
From this it follows, in particular, that the range of the mapping
Ly(D) > f — Vf € Ly (D)’

is closed. Moreover, the kernel of this operator is obviously trivial. Consequently, by the closed range

theorem, its dual operator v — —V -« maps E,%(D)?’ onto Ls(D). This proves the theorem. U



2.5 Existence and uniqueness of weak solutions

Lemma 2.5 There exists a positive constant ¢ such that b(u, @) > c||ul|3, for all u € H.

Proof. Wehave
b(u, @) + |[ull7,py > ellull?

for all u € C§°(D)3, u(x) = 0 for |z| > 1 (see, e.g., [4]). We consider the set of all u € C§°(D)? with
support in the ball |z| < e. For such v Hardy’s inequality implies

3
[ @B de<er [ 1af 3o, uP de < o2 full
D D =

and, therefore,
_ c 2
b(u,u) > 5 [l %
if € is sufficiently small. Applying the similarity transformation z = ay, we obtain the same inequality

for arbitrary u € C§°(D)?. The result follows. O

Theorem 2.2 Let F € V*, g € Ly(D), and let h™ be such that there erists a vector function w € H
satisfying the equalities Stw = h* on T*. Then there exists a unique solution (u,p) € H x Lo(D) of the
problem (2.9), (2.10). Furthermore, (u,p) satisfies the estimate

lullze + 191 2oy < ¢ (IFllv- + lglzacoy + llolle)

with a constant ¢ independent of F, g and w.

Proof. 1) We prove the existence of a solution. By our assumption on h* and by Theorem 2.1, we may
restrict ourselves to the case g = 0, h* = 0. Let Vo = {u € V: V-u = 0}, and let V- be the orthogonal
complement of V; in V. Then, by Lax-Milgram’s lemma, there exists a vector function v € Vj such that

b(u,v) = F(v) forallveVy, lullny <clFllv; <cllF|v-.

By Theorem 2.1, the operator B : v — —V - u is an isomorphism from VOJ- onto Lo(D). Hence, the
mapping
def -1 -1
Ly(D) 3 q—tq) = F(B™q) = b(u, B~ q)
defines a linear and continuous functional on Lo(D). By Riesz representation theorem, there exists a
function p € Ly(D)? satisfying

[ pade=t@) forallg € LaD). Ipllao) < ¢ (I1F1v- + lul).
If we set ¢ = —V - v, where v is an arbitrary element of V-, we obtain
—/ pV-vdx = F(v) — b(u,v) forall v e Vg-.
D

Since both sides of the last equality vanish for v € Vp, we get (2.9). Furthermore, —V - u = 0 and
Siuh'*i =0.

2) We prove the uniqueness. Suppose (u,p) € H x La(D) is a solution of problem (2.9), (2.10) with
F =0,g9=0, " =0. Then, in particular, u € V and b(u,u) = 0 what, by Lemma 2.5, implies v = 0.
Consequently,

/pV-vdsz forallv e V.
D

Since v can be chosen such that V - v = p, we obtain p = 0. The proof is complete. O



Remark 2.1 The assumption on h* in Theorem 2.2 is satisfied e.g. for h* € ‘/})1/2(Fi)3’di. Then, by
[11, Le.1.2], there exists a vector function w € V3 (D)? C H satisfying STw = h* on T'*. (Note that
h¥T is a vector-function if d* < 1 and a scalar function if d* = 2. In the case d* = 1 the vector ht is
tangential to I'*, therefore, the corresponding function space can be identified with VOI/ 2(Fi)z.)

Furthermore, for h* € Wg/ 2(Fﬂt)?”di, 0 < § < 1, satisfying a compatibility condition on M there
exists a vector function w € W2(D)? C ‘H such that S*Tw = h* on I'* (see Lemma 2.7) below.

2.6 Reduction to homogeneous boundary conditions

In the sequel, we will consider weak solutions of problem (2.1), (2.2) with data f € W} (D)3, g € W} (D),
hE e WI2(M$)3-4% and ¢+ € W}/2(M4) 0 <6 < 1.

Lemma 2.6 1) For arbitrary h* € ‘/51/2(I‘j:)3*di there exists a vector function u € V(D)3 such that
S*u = h* on TF and
+
lellva o < e 3 IA= e s os
£

with a constant ¢ independent of h* and h™.
2) For arbitrary h* € Vtsl_l/g(lﬁi)‘?”di and ¢* € ‘/51_3/2(Fi)di, [ > 2, there exists a vector function
u € VH(D)? satisfying the boundary conditions

S*u=h* N*w,0)=¢* onl* (2.15)
and the estimate

HUHVZ(D)3 <c ||h:t||vl*1/2 r£)3—dt + ||¢iHVl*3/2 r+)3—dt |- (216)
g 5 (%) 5 (=)
+

Moreover, if supp h* € T NU and supp ¢+ € TFNU, where U is an arbitrary domain in R3, then u can
be chosen such that suppu € U.

P r o o f. The first part of the lemma follows immediately from [11, Le.1.2]. For the proof of the second
part, we assume for simplicity that I'~ coincides with the half-plane ¢ = 0 (i.e., 1 > 0, 3 = 0) and '™
with the half-plane ¢ = 6. Then the boundary conditions

S~u=h", N~ (u,0)=¢* onl~ (2.17)
have the form v =h~ on I'” if d~ = 0,

up =hy, us="hy, 20,u=¢ onl~ ifd =1,
us =h", —Elﬁz(u) = (bf, —53’2(u> = ¢§ onI'™ ifd” =2,
—2gj2(u) =¢; onI" forj=1,2,3 ifd” =3.

In all these cases, the existence of a vector function u € V}(D)? satisfying (2.17) can be easily de-
duced from [11, Le.3.1]. Analogously, there exists a function v € VZ(D)? satisfying STv = h* and
NT(v,0)v = ¢T on I't. Let ¢ = {(¢) be a smooth function on [0, 6] equal to 1 for ¢ < §/2 and to zero
for ¢ > 36/4. Then the function w(z) = ((¢) u(x) + (1 — {(p)) v(x) satisfies (2.15). O

The analogous result in the space Wé holds only under additional assumptions on the boundary data.
If u € WHD)3, 6 <1 — 1, then there exists the trace u|y; € W!=1=%(M)3, and from the boundary condi-
tions (2.2) it follows that S*u|y; = h*|p. Here St and S~ are considered as operators on W1=%(M )3,
Consequently, the boundary data h™ and A~ must satisfy the compatibility condition

(" |ar,h™[ar) € R(T), (2.18)

where R(T) is the range of the operator T'= (ST, S7). For example, in the case of the Dirichlet problem
(d* =d~ =0), condition (2.18) is satisfied if and only if h*|y; = h™|as, while in the case d~ =0, dt =2
condition (2.18) is equivalent to h™ |5 - nT = hT |-
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Lemma 2.7 Let h* ¢ V[/*é_l/Q(Fi)S*di and ¢*F € Wé_3/2(Fi)di, 0<1-2<é<l—1, be functions
vanishing for r(z) > C. Suppose that h™ and h™ satisfy the compatibility condition (2.18) on M. Then
there exists a vector functionu € WE(D)?3 satisfying (2.15) and an estimate analogous to (2.16). Moreover,
if supp h* € T+ NU and supp ¢+ € T NU, where U is an arbitrary domain in R3, then u can be chosen
such that suppu € U.

P roof By (2.18), there exists a vector function ¢ € W' 1=%(M)3 such that S*¢ = h*|y;. Let
v E Wé (D)? be an extension of 1. Then the trace of h* —S*v|p+ on M is equal to zero and, consequently,

h* — S*olp+ € V;fl/z(lﬂt)g_di (cf. Lemma 2.1). Furthermore, ¢* — N*(v,0)|p+ € W;f?’/z(Fi)"li C
V;*?’/Z(Fi)di. Thus, according to Lemma 2.6, there exists a function w € V(D)3 such that S*w =
h* — S*vy and N*(w,0) = ¢& — N*(v,0) on T'*. Then u = v + w satisfies (2.15). O

2.7 A priori estimates for the solutions

The proofs of the following lemmas are essentially based on local estimates for solutions of elliptic bound-
ary value problems in smooth domains. In the sequel, VVllOC(D\M ) denotes the set of all functions u on
D such that (u belongs to the Sobolev space W!(D) for arbitrary ¢ € C§°(D\M).

Lemma 2.8 Let u € W} (D\M)> N V2 (D)? and p € W (D\M) N V' (D) satisfy
b(u,v) — / pV-vdx = F(v) forallve Cy*(D\M)?, (2.19)
D

~Vu =g inD and STu=h* on T*, where F € V;1(D)3, g € VY(D), h* € \/51/2(Fi)3_di, 0<d<1.
Then u € Vi{(D)?, p € VP(D), and

lullvipys + [IPlvopy < ¢ (HF||V;1(D)3 +llgllvo) + zi: ||hiHv;/2(ri) +llullve () + ”pHV{_ﬂ(D))'

P roof. Due to Lemma 2.6, we may assume without loss of generality that h* = 0 Let ;% be infinitely
differentiable functions such that

—+o0
supp G r C {z: k=1 < || < oFl i1 <2 Fey <+ 1}, Z Gk =1, |8§Cj7k(x)| < 27 kel
Jyk=—00

j+1 k+1
Furthermore, let n;, = Z Z Cii- Obviously, nj, = 1 on supp ;. We introduce the functions
i=j—1 I=k—1
Ea(@) = Ga(2Fa), k(@) = na(@5e), §2) = g(2%0), B(x) = p(2¥a), d(z) = 2 *u(2"), and b(z) =
27ky(2% ), where v is an arbitrary vector function from C§°(D\M)3. Then the support of (;  is contained
in the set {z: 1/2 <r(z) <2, j —1 < a3 <j+ 1} and the derivatives of (; are bounded by constants
independent of j and k. Furthermore, we have —V - % = §in D, ST@ =0 on I'*, and

b(i, D) —/Dﬁv-@da: = F(v),

where F(7) = 273%F(v). Using local estimates of weak solutions of elliptic boundary value problems in
smooth domains (see e.g. [1], [7, Sec.3.2]), we obtain

Gkl oy + 14810y < € (Wish I s s + 15400 + Wil oo + 54812 1 )
with a constant ¢ independent of j and k. This implies

160l oy + 100y < € (134 FI3 s + k30 oy + Il ops + sl )
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with the same constant c¢. It can be proved analogously to [7, Le.6.1.1] that the norm in V§(D) is

equivalent to
+oo

1/2
ll=( Y IGaulam) -

Jk=—o00

The same is true (cf. [7, Sec.6.1]) for the norm of the dual space V}(D). Using this and the last in-
equality, we conclude that u € Vi (D)3, p € V(D). Moreover, the desired estimate for u and p holds. OJ

Analogously, the following lemma can be proved (see [11, Th.4.1]).

Lemma 2.9 Let (u,p) be a solution of problem (2.1), (2.2), u € W2.(D\M)> n Vi-}(D)?,
p € WL.(D\M)NV{"2(D) 1 > 2. Suppose that f € Vi~2(D)?, g € V{71 (D), and the components of
h* and ¢F are from V;fl/z(l"i) and Vélfg/z(l"i), respectively. Then u € VH(D)? and p € Vi~ H(D).
Furthermore, there is the following result (cf. [16, Le.2.3]).

Lemma 2.10 Let (u,p) be a solution of problem (2.1), (2.2), and let ¢,n be infinitely differentiable
Junctions on D with compact supports such that n =1 in a neighborhood of supp (. Suppose that nu €
W2.(D\M)* N W;Z (D)3, np € W (D\M)NWiZ}(D) 1 > 2, nf € Wi (D)3, ng € Wi (D), and the
components of nh* and n¢* are from Wéfl/Q(Fi) and W;73/2(Fi), respectively. Then (u € WX(D)3
and (p € WL (D).

2.8 Smoothness of x3-derivatives

Our goal is to show that the solution (u,p) of problem (2.1), (2.2) belongs to WZ(D)? x Wi (D) if
feWHD)3, g e WHD), h* € V[/'(?m(lﬂi)‘g*di and gbin’/Q(Fi)di, 0 < ¢ < 1. For this end, we show in
this subsection that 9,,u € Vi (D)3 and 9,,p € V(D) under the above assumptions on the data. Due to
Lemma 2.7, we may restrict ourselves to homogeneous boundary conditions (h* = 0, ¢* = 0).

Lemma 2.11 Let (u,p) € H x Ly(D) be a solution of problem (2.9), (2.10). Suppose that g € Vi{(D),
0<d <1, h* =0, and the functional F has the form

F(v):/pf-vdx,

where f € VO(D)3. We assume further that f and g have compact support. Then Oy,u € VY (D)3,
Ouyp € Vs 5 (D) and

10ustllve oy + 1020l ) < € (1 lvaoy + gl o )-

P r oo f First note that F € H* C V* and g € Ly(D) under the assumptions of the lemma. For
arbitrary real h let uy(x) = h™*(u(a’, x3 + h) — u(2’, z3)). Obviously,

b(uh,v)—/phV~vdx:b(u,v_h)f/pV~v_hdx:F(v_h):/fh-vdx
D D D

forallv € V, =V -uj, = gp in D, and S*u;, = 0 on I't. Consequently, by Theorem 2.2, there exists a
constant ¢ independent of u, p and h such that

lunle + IpnliEa o) < € (Il + llgnlEaco))- (2.20)

We prove that
L (Ul + onl ) b < (1 oy + Nl o). (2.21)
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Indeed, let g(a',&) be the Fourier transform of g(z’, z3) with respect to the variable x3. Then

/ h2571||gh||2L?(p)dh:/ // h2573 |€i£h*1‘2‘§($/,§)‘2d$/dfdh

0 0 RJK

—c [ [1er Pt o arde< [ [ 2 g OF e de < clall
RJK RJK

Furthermore, if  is a smooth function, 0 < y <1, x =1forr > h, x =0 for r < h/2, [Vx| < ch™?!, and
€ is an arbitrary positive number, then

‘/th-vdxlz‘/pfm_hdm‘

< xS llzay lo-nllzo(oye + Ir =R Fllo(oie 1757 A 21 = X)v-nll oDy,

where Dy, = {z € D: r(z) < h}. Here

1 2
ot oo = [ | [ Onsota’soa = eh) it do < 0,01, o < el

Using Hardy’s inequality, we further obtain

/0 ol e < ¢ [ 022000 = ool de < e [ (oo 4100 do < el

D D
r<h

Consequently, for 0 < € < 1 — § we obtain

/ B2 )
0

27 oo
S/D|f(x)\2(/ h25—1dh+r2—28/ h25—3+26dh) dz < c||f|I3o(pys-

0 T

2 < / (e ooy + PR 12, o, s )

This proves (2.21). Next we prove that

l=lBo oy + IP:115, 1 ) < € /O B2 (Jlunll + Ipn 0 ) db (2.22)

It can be easily shown (see [22, Le.3]) that

Jocsully oy = [ / 272 | fae!, €) P o de

<o [ [t (e |2+Z|a%u O da de
- / / / R0 12 an) (1€ it |2+Z|a%u O17) da de = 7 P25 un By
0

Furthermore, since

’/&Espvdx _// ‘§|26‘ )|2d:13'd§ /R/I(|5|2_25 ‘ﬁ(xl,f)|2dx/d§
S/]R/}(r_26(1+r2|£‘2) |’l~}(l‘/,§)|2dl‘/d§ /]R/K‘ﬂz_% |15(33l,§)‘2d:1j/d§

<llollvy o) /R /K 12720 B(a’, &) da’ dé
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and

|§|2—26 |ﬁ(1‘l,§)|2 dz’ ¢ = ¢ h26—3|€i§h _ 1‘2 |ﬁ($/,f)|2 dz’ d¢ dh
!l [

o [ 1l

o

we obtain -
0rsbll oy < [ [ 1P e P ol de < ¢ [0l

This proves (2.22). Now the assertion of the lemma follows immediately from (2.20)—(2.22). O

Corollary 2.1 Let the assumptions of Lemma 2.11 be satisfied. Then dy,u € Vi (D)3, d,,p € V(D)
and

10sstllv oy + 10sapllveo) < € (Iflvoeys + lgllv o) )
with a constant ¢ independent of u and p.

Proof From Lemma 2.11 and well-known local regularity results for solutions of elliptic boundary
value problems (see e.g. [1],[7, Sect.3.2]) we conclude that d,,u € WL _(D\M)* NV (D)3 and d,,p €
L2 10e(D\M) N V;~% (D). Obviously,

b(0p,u, v) —/ OzspV -vdr = / Ops f-vdx  for all v € C3°(D\M)?,
D D

where 0, f € V5 1(D)?), =V - Opyu = 9,9 € VP(D), and S*9,,u = 0 on IT'*. Applying Lemma 2.8, we
obtain ,,u € V5H(D)3, dy,p € V(D) and the desired inequality. O

2.9 Auxiliary problems in the angle K, operator pencils

Suppose (u, p) is a solution of the Stokes system (2.1) with homogeneous boundary conditions (2.2) which
is independent of x3. Then w3 is a solution of the problem

8’11,3
ont

where A,/ denotes the Laplace operator in the coordinates ' = (x1,x3), whereas the vector (u/,p) =
(u1,usz,p) is a solution of the two-dimensional Stokes system

—Apus=f3 in K, ug= h?f on I't for d* <1, ¢3 on I't for d* > 2, (2.23)

—Apt' +Vpp=f, —Vg-u' =g inkK, (2.24)
with the corresponding boundary conditions
SEu = h’i, N*/,p) = qs’i on 7. (2.25)
Here
Sty = ifdt =0, ST =u -7t ifdt=1, St =4 -nt ifd*t=2,
NE@W!,p) = —p+2(e()n®) -nt ifd* =1, N*@',p)= (e(u)nF) 7% if d¥ =2
NEW/,p) = —pn® + 2e(u/)nt if d* =3
by e(u’) we denote the matrix with the components €; ;(u), i, j = 1,2, and 7F is the unit vector on y*.
Setting u = r*U(¢p), p = r* 1 P(y) we obtain a boundary value problem for the vector function (U, P)

on the interval (—6/2, +60/2) quadratically depending on the parameter A € C. The operator A(\) of this
problem is a continuous mapping

W2(=8, +8) x WH(=4,+8) — Lo(—&,+8) x Wi(-4,+&) x C?

2’ 27
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for arbitrary A. As is known, the spectrum of this pencil A(X) consists only of eigenvalues with finite
geometric and algebraic multiplicities. We give here a description of the spectrum for different d~ and
d™. Without loss of generality, we may assume that d~ < d+.

1. In the case of the Dirichlet problem (d~ = d* = 0), the spectrum of the pencil A()) consists of the
numbers ZF, where j is an arbitrary nonzero integer, and of the nonzero solutions of the equation

Asin @ + sin(A\9) = 0. (2.26)

2. d~ =0, dT = 1: Then the spectrum consists of the numbers %, where j = +1,42, ..., and of the
nonzero solutions of the equation

Asin(26) + sin(2A0) = 0. (2.27)

3. d~ =0, dt = 2: Then the spectrum consists of the numbers g—g, j==+1,£2,... and of the nonzero
solutions of the equation
Asin(260) — sin(2X00) = 0. (2.28)

4. d= =0, d* = 3: Then additionally to the numbers é—g, j==41,42, ..., the solutions of the equation
Asin @ + cos(A0) =0 (2.29)

are eigenvalues of the pencil A()).
5. d~ = d* = 1: Then the spectrum consists of the numbers %T, and %’T + 1, where j, k are arbitrary
integers, j # 0.
g

55, and ’;—g + 1, where j is an arbitrary

6. d~ =1, dt = 2: Then the spectrum consists of the numbers
integer and k is an arbitrary odd integer.

7. d~ =1, d* = 3: Then the numbers 47, j = 0,41, +2, .., and all solutions of (2.28) belong to the

26
spectrum.
8. d= = d* = 2: Then the spectrum consists of the numbers %T, and %’T + 1, where j, k are arbitrary
integers.

9. d~ =2, d* = 3: Then additionally to the numbers 47, j = 0,=£1,.. ., the solutions of (2.27) belong
to the spectrum.

10. In the case of the Neumann problem (d~ = d* = 3) the spectrum of the pencil A()) consists of the
numbers %, where j is an arbitrary integer, and of all solutions of (2.26).

We refer to [5, 21] and for the cases 1 and 3 also to [8, 14].
Note that the line Re A = 0 may contain only the eigenvalue A = 0 and that A = 0 is an eigenvalue
only if one of the following conditions is satisfied:

1.dt=3and d” >1(ord- =3 and d™ > 1),
2.1<dt=d <2and¥@ € {r,2r},
3.d"=1,d =2(ord =1,d"=2)and § € {F,3}.

The eigenvectors corresponding to the eigenvalue A = 0 are of the form (U, P) = (C,0), where C is
constant, and have rank 2 (i.e., have a generalized eigenvector).

Lemma 2.12 Let (u,p) € WH(K)? x Ly(K) be a solution of problem (2.23)—(2.25) vanishing outside
the unit ball. Suppose that f € W(K)?, g € WHK), 0 < § < 1, h* =0, ¢F = 0, and that the strip
0 <ReX <1—6 does not contain eigenvalues of the pencil A(X). Then u € WZ(K)?, p € W (K), and

lllwa e + Ipllws e < e (I lwagos + gl )-
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P roo f. Since the support of (u,p) is compact, we have (u,p) € V2(K)3 x VO(K) with arbitrary e > 0.

Consequently, u admits the representation u = ¢+ d logr + v with constant vectors ¢,d and v € V52 (K)3.

Furthermore, p € Vi (K) and

lollvzaer + Ipllvac < e (1 lvacos -+ llgllvaae)
(see, e.g., [7, Th.8.2.2]). Since u € Wi (K)3, we conclude that d = 0. The result follows. O
For the proof of higher order regularity results, we need the following lemma.

Lemma 2.13 Let [ be a integer, | > 1. Furthermore, let f be a homogenous vector polynomial of degree

l -2, f= O ifl=1,9a homogeneous polynomial of degree | — 1, h* = c¢trt, and ¢+ = drri=t, where

c C3-d* , and djE cC¥ . We suppose that A =1 is not an ezgenva,lue of the pencil A(X). Then there
e:mst unique homogeneous polynomials

u = Z cijTh a3, p= Z di ;o ), (2.30)
i+j=l itj=l—1
where ¢; j € C3, d; j € C, such that (u,p) is a solution of (2.23)-(2.25).

P r o o f. Inserting (2.30) into (2.23)—(2.25), we obtain a linear system of 4/ + 3 equations for 41 + 3
unknowns ¢; ;,d; ;. Since A =1 is not an eigenvalue of A(X), the corresponding homogenous system has
only the trivial solution. Therefore, the inhomogeneous system is uniquely solvable. This proves the
lemma. 0

Lemma 2.14 1) Let (u,p) € Vi *(K)? x V{72(K) be a solution of (2.23)-(2.25). Suppose that

+

FeVITAK), ge VITHK), hE e V]2 (y2)3=0" ) gF e VI3 (4 E)dT

[ > 3, and that the stripl — 2 — 6 < ReX <1 —1— 0 does not contain eigenvalues of the pencil A(N).
Then (u,p) € VA(K)? x Vi~ (K).
2) Let (u,p) € WiH(K)? x Wi 2(K) be a solution of (2.23)(2.25). Suppose that

+

FEeEWIA(K)®, ge WITHK), bt e Wi 2 (y2)3-4" | g% ¢ wim3/2(y%)d"

1 >3,0<6 <1, 6 is not integer, and that the strip | —2 — 6 < ReA <1 —1— 46 does not contain
eigenvalues of the pencil A(\). Then u € WHK)? and p € WiH(K).

P r o o f. For the first assertion we refer to [7, Th.8.2.2]. We prove the second one. Let ¢ be a smooth
cut-off function in R? equal to one for |2’| < 1 and to zero for |2’| > 2. Furthermore let u(*) be the Taylor
polynomial of degree | — 3 of u, and p*) the Taylor polynomial of degree | — 4 of p, pV) = 0 if | = 3.
Then there are the representations

w=u® 4, p=p© 4 cp®,
where u(®) € Vi~ (K)? and p® € Vi~?(K) (see [7, Th.7.1.1]). From (2.23)-(2.25) it follows that
A (W SN 4V = F V- (W) =@, A0l = By in K,

where F = (F', F3) € Vi 3(K)* n W} 3(K)?, G € V{"*(K) N W} (K). Furthermore,

gi(u(O) ugo)m(o)) eVl 3/2( )le 1/2( )
and 0) (0 1-5/2 1-3/2
NE@® 0, p @) = o € V2 (4E) n w2 (1),
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An analogous inclusion holds for the traces of ugo) and 5‘u§0)/ on®, respectively. By [7, Th.7.1.1,7.1.3],
there are the representations

F=cC Z Fi’jxﬁmg—i—ﬁ, G=¢( Z Gi,jxix%—i—é,
itj=l—4 itj=1-3
H* = ¢t rl=2 4 H* and &% = (d* ¢34+ &% where F € V] 2(K)3, G € VN (K), HE € V2 (4%),
ot ¢ V;_l/g (7F). Now the desired result can be easily deduced from assertion 1) and Lemma 2.13. O

2.10 Regularity assertions for weak solutions

Lemma 2.15 Let (u,p) € H x La(D) be a solution of (2.9), (2.10). We assume that the support of (u,p)
is compact, the functional F has the form (2.11), where

+
feWl(D)?, geWHD), ¢few,2rHT,

0 <§ <1, and that h* € VV;N(I‘i)?’*di satisfy the compatibility condition (2.18). If there are no
eigenvalues of the pencil A(X) in the strip 0 < Re X <1 -4, then (u,p) € WZ(D)3 x W(D) and

||u||W§(D)3 + Hp||wg(D)

<c (”f”VV(?(D)d + ”g”Wol(D) + Z ”hi”W?’?/Q(pi)zfdi + Z ||¢i||W;/2(1"i)3—di)) (231)
+ +

where the constant c is independent of f, g, h*, and ¢F.

P roof Due to Lemma 2.7, we may assume without loss of generality that h* = 0 and ¢* = 0. By our
assumptions on u and p, we have u(-,r3) € W¢(K)3 and p(-,x3) € La(K) for almost all z3. Furthermore,
by Corollary 2.1, (,,u) (-, x3) € WH(K)? and (9,,p)(-, z3) € W(K). Consequently, for almost all z3, the
function ug (-, z3) is a solution of problem (2.23) with f5 + 82, us — 8,,p € WP (K) on the right-hand side
of the differential equation, while «'(-, z3) = (u1 (-, 3), ua(-, 3)) is a solution of problem (2.24), where f’
und ¢ have to be replaced by f’ + aisu’ and g + Oy, us, respectively. Applying Lemma 2.12, we obtain
u(-,z3) € WE(K)3, p(,z3) € WH(K), and

lul 23) T2y + 1C 23) [y e
<c (Hf('ax?))”%/V(;o(K)?' + ||9(',$3)H%/V51(K) + ‘|(8I3U)('7333)||%/V61(K)3 + ||(8a:3p)('>$3)”%v§(1<))

with a constant ¢ independent of x3. Integrating this inequality with respect to x3 und using Corollary
2.1, we obtain the assertion of the lemma. O

The following lemma can be proved in the same way using Lemma 2.14.

Lemma 2.16 1) Let (u,p) be a solution of (2.9), (2.10) such that 85, (u,p) € Wi (D) x Wi (D) for
7 =0 and j = 1. Suppose that

f < Wél_Z(D)S’ g€ Wé_l(D)’ h:t € W(é_l/z(ri)gidi7 QS:t S W§_3/2(Fi)dia
1 >3,0<6d <1, 6 is not integer, and that the strip l —2 —§ < ReX <[ —1— 0 does not contain

eigenvalues of the pencil A(N). Then u € WH(D)? and p € WL (D).
2) The same result is true in the class of the spaces V(;l.

Theorem 2.3 Let ¢, n be smooth cut-off functions with support in the unit ball such that m =1 in a
neighborhood of supp ¢, and let (u,p) € H x La(D) be a solution of (2.9), (2.10), where F is a functional
on V which has the form (2.11) with

0l f € WD), ndl,ge WHD), ndlo* e Wy*(TH)™ for j=0,1,... k.
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We assume further that 7)8%3 h* € W;’/Q (Fi)S*di forj=0,1,...,k, h* satisfy the compatibility condition
(2.18), 0 < 6 < 1, and the strip 0 < Re A < 1 — 9§ does not contain eigenvalues of the pencil A(X\). Then
COk (u,p) € WE(D)? x W} (D) and there is the estimate

k

||<6§3u”W§(D)3 + ||Caf-3p||wg(1>) <c (Z (||778£3f||W§(D)3 + Hnaiﬂnwg(o)
=0

+zi: Hnaishiuwgﬂ(ri)a—di + zi: ||naig¢i‘|wg/2(ri)3—di) + ||WHW51(D)3 + ||77p||wg(z>))- (2.32)

P roof. 1) First we prove the theorem for £ = 0. From (2.9), (2.10) it follows that (Cu, (p) satisfies the
equations

b((u,v)—/(pv'vdz:/fv—FZ/ gudx forallveV,
D D — Jr=

—V - (Cu)=Cg—(V¢)-u inD, SF((u)=(h™ on T,

where
foo= i 23 (00,02 () = 3 B, (i, uy02.) = P C € WY(D)
j=1 j=1
g = Cgi+ g% Ui + Uy, 05,C € W;m(ri)'

Applying Lemma 2.15, we obtain the assertion of the theorem for k& = 0.

2) Let the conditions of the theorem on F, g and h* with k& = 1 be satisfied. Moreover, we suppose that
778%3 ht e ‘/63/2(I‘i)3*di for j =0 and j = 1. By x and x; we denote smooth function such that x = 1 in
a neighborhood of supp ¢, x1 = 1 in a neighborhood of supp x, and n = 1 in a neighborhood of supp x;.
Furthermore, for an arbitrary function v on D or I'* we set vy, (2, x3) = h™*(v(z/, 25 + h) — v(2/, x3)).
Obviously, (up,pn) € H x La(D) for arbitrary real h. Consequently, by Theorem 2.3, we have

[Cunllwz(pys + I<Pallwypy < ¢ (||th||wg(1>)3 + Ixgnllw oy + Z Hxh}f||v(;3/2(pj:)3—di
n
+
+Z IXPh 272 e ya-ax + [Ixnllwzpys + ||Xph||W§(D)) (2.33)
I

with a constant ¢ independent of h, where x is a smooth function, y = 1 in a neighborhood of supp ,
7 =1 in a neighborhood of supp x. Here x fr = (xf)rn — xnf and, for sufficiently small |h| we have

1 (9 2
Mg = [ ] [ ) (414 ey ] < 100 ) gy

HthH%/Vé)(’D)ii < CH77f||W§(D)3-

Analogous estimates hold for the norms of xgy, th and Xqﬁf, XUun, and ypp on the right-hand side of

(2.33). Here one can use the equivalence of the norm in Vél_l/ ?(I'+) with (2.6). Hence the right-hand
side and, therefore, also the limit (as h — 0) of the left-hand of (2.33) are majorized by

1
e (102, Flwg oy + 1903, gllwy oy + S N0 HE v payoas
§j=0 +

+Z ||778£3¢i”v51/2([‘j:)3—di + Hxlag;gu”W(;l(’DP + ”Xlai;ngWf(D))-
+

By the first part of the proof, the norm of X109, (u,p) in W§(D)? x W2 is majorized by the right-hand
side of (2.32) with k = 0. This implies (2.32) for k = 1.
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Suppose now that ndJ h* € V[/(?/Q(Fi)“s*di for j = 0,1 and the compatibility condition (2.18)
is satisfied. Then there exists a vector function 1 € WH*+1=9(M)3 such that STy = (nh*)|p. Let
v € WFT2(D)? be an extension of . Then X034, (ht — S%v)[p = 0 for j = 0,...,k and, consequently,
Xag;g (h* — STo|pz) € %S/Z(Fi)?’_di. Now we can apply the result proved above to the vector function
(u — v, p) and obtain (0, (u — v,p) € WZ(D)? x W(D).

3) For k > 1 the theorem can be easily proved by induction. 0

Moreover, the following generalization of Theorem 2.3 holds.

Theorem 2.4 Let {, n be the same cut-off functions as in Theorem 2.3, and let (u,p) € H x La(D) be
a solutions of (2.9), (2.10). Suppose that F is a functional on V which has the form (2.11) with

. _ . _ . _ j: .
ndl f e WD), ndl g e WD), ndl ¢t e Wy (T for j=0,1,... k.

Furthermore, we assume that n@%shi € I/Vé_lp(I‘i)?’*di forj=0,1,..., k, h* satisfy the compatibility
condition (2.18), 0 < & <1 —1, § is not integer, and that the strip 0 < ReX <1 —1— 4 does not contain
eigenvalues of the pencil A(X). Then ¢80, (u,p) € WE(D)? x WD) for j =0,1,... k.

Proof. 1) We consider first the case k = 0, 0 < 6 < 1 and prove the theorem for this case by induction in
l. For | = 2 we can refer to Theorem 2.3. Suppose the assertion is proved for a certain integer [ = s > 2 and
the conditions of the theorem are satisfied for [ = s+ 1. We denote by x and x; the same cut-off functions
as in the proof of theorem 2.3. Then, by the induction hypothesis, we have x1 (u, p) € W§(D)? x Wi ~(D)
and X109, (u,p) € W 1(D)? x W;~2(D). If s > 3, then this implies that x10.,(u,p) € H x La(D) and,
by the induction hypothesis, we obtain x0y, (u,p) € W§(D)? x W' (D). For s = 2 the last inclusion
follows from Theorem 2.3. Consequently, we have x84, (u,p) € W§(D)? x Wi (D) for j =0 and j = 1.
Using this result and Lemma 2.16, we obtain ((u,p) € Wit (D)3 x W (D).

2) Now let k =0 and 0 < § < 0 + 1, where o is an integer, 1 <o <1 —2. Since0 < J—0 < 1,
nf € WZ972(D)3, ng € WiZ~1(D), nh* € W72 %)3-4% and ne¢t e W0 ¥2(1%)4 it follows
from the first part of the proof that y(u,p) € Wi=9(D)? x Wi=7~ (D). Using Lemma 2.10, we obtain
the assertion of the theorem for k£ = 0.

3) We prove the assertion for k > 0, ] —2 < § < I — 1. Then, according to Theorem 2.3, we have
x8%, (u,p) € Wi, 5(D)* x Wi_, ,(D) for j = 0,1,...,k. Using Lemma 2.10, we obtain xd7, (u,p) €
WHD)? x W (D) for j =0,1,... k.

4) In the case k > 0, 0 < d <! — 2 we prove the assertion by induction in k. Suppose the theorem is
proved for k — 1. From parts 1) and 2) of the proof we conclude that x(u,p) € WA(D)? x Wi (D) and
XOus (u, p) € WEH(D)? x WE2(D). The last inclusion implies 0y, (u,p) € H x La(D). Consequently, by
the induction hypothesis, we obtain C@%SQJS (u,p) € WL(D)? x Wé_l(D) for j =0,...,k — 1. The proof
of the theorem is complete. O

2.11 The case when A = 0 is not an eigenvalue of A(\)
The number A = 0 does not belong to the spectrum of the pencil A(\) if either d* - d~ =0 or
dt,d~ €{1,2} and 9%{%,%—1—7@», (2.34)
where k = 1if dt =d~, k=2 if d* # d~. In these cases, we have
ulpy =0 ifue WED)3, 0<6<1, STulpr =0, S~ ulpy = 0.
Using this fact, we can easily deduce the following result from Theorem 2.3.

Lemma 2.17 Let {, n be the same cut-off functions as in Theorem 2.3, and let (u,p) € H X Lo(D) be a
solution of (2.9), (2.10). We suppose that

X . . _at , +
ndl, f € VYD), ndl,ge VD), ndl bt e WiAIEP=1 pail o* € WA(rE)T,
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for j =0,1,....k, where 0 < 6 < 1, and that the functional F on V has the form (2.11). We assume
further that the strip 0 < Re A < 1—¢ does not contain eigenvalues of the pencil A(X\). Then C8§3 (u,p) €
V(D)3 x V{(D) and there is an estimate analogous to (2.32).

P ro o f From Theorem 2.3 it follows that (0%, (u,p) € WZ(D)® x V4 (D). Furthermore, we have
SECOF ulpr = CO% h* |y = 0 and, therefore, (9% u[pr = 0. From this and from Lemma 2.1 we conclude
that (0¥ u € VZ(D)?. This proves the lemma. O

Furthermore, the following generalization holds. Using the second part of Lemma 2.16, it can be
proved analogously to Theorem 2.4.

Theorem 2.5 Let {, n be the same cut-off functions as in Theorem 2.3, and let (u,p) € H x La(D) be
a solution of (2.9), (2.10). Suppose that

ndl [ € ViA(D)®, ndl g e ViTN(D), nal hE e ViITVATE)IE ol ¢F e v rE)T

forj=0,1,... k, and that the functional F on V' has the form (2.11). If 0 < <1 —1, § is not integer,
and the strip 0 < ReX < 1 —1— 4 does not contain eigenvalues of the pencil A(X), then (87, (u,p) €
VHD)? x Vi~Y(D) for j =0,1,...,k.

2.12 The case when A = 1 is the smallest positive eigenvalue of A(\)

The number A = 1 belongs to the spectrum of the pencil A(\) for all angles 6 if d™ + d~ is even. Here,
A =1 is the eigenvalue with smallest positive real part if

dt +d~ is even and0<£, where m=1ifd" =d~, m=2ifd" #d". (2.35)
m

Then the eigenvalue A = 1 has geometric and algebraic multiplicity 1. For even d* and d~ there is the
eigenvector (U, P) = (0,1), for odd d* and d~ the eigenvector (U, P) = (sin ¢, — cos ¢,0,0). Under the
above restrictions on 6, generalized eigenvectors corresponding to the eigenvalue A = 1 do not exist.

In the case (2.35), the result of Theorem 2.4 can be improved. However, then the boundary data and
the function g must satisfy additional compatibility conditions on the edges. We restrict ourselves in the
proof to the Dirichlet problem

—~Au+Vp=f —V-u=ginD, wu=h*onl". (2.36)

Suppose that (u,p) € W2(D)? x WZ(D) is a solution of problem (2.36), 0 < § < 1. Then the traces of
Oz;u, j =1,2,3 on M exist. From the equations =V -u = g and u|p+ = hT it follows that

—Opyut|pr — Onyua|nr = gl + Ouyhd |0 - (2.37)

Furthermore, the equations u = h* on I'* imply that
P +sin o =0,h|y forj=1,2 2
cos 5 e U | M sin o oUjlv = Orh v for j=1,2,3. (2.38)

The algebraic system (2.37), (2.38) with the unknowns 0, u;j|ar and Og,uj|ar, j = 1,2, 3 is solvable if and
only if
no - (9rh+|M +nt. 67-h7|M = (g\M + 8£3h§_|M) sin 6. (2.39)

Theorem 2.6 Let (u,p) be a solution of problem (2.36), and let (,n be the same cut-off functions as in
Theorem 2.3. Suppose that n(u,p) € M x La(D), nf € Wi=3(D)?, ng € Wi (D), nh* = n(hi, by, hi) €
W;_l/Q(l"i)3, 1>3,0<9d<1—2,90 is not integer, < m, A = 1 is the only eigenvalue of the pencil
A(N) in the strip 0 < Re XA <1 —1—4 and that the compatibility conditions h*|yr = h™|ar and (2.39) are
satisfied. Then Cu € WE(D)? and (p € WiH(D).
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P r o o f. We prove the theorem first for [ = 3. Let x, x1 be smooth functions on D such that y = 1 in
a neighborhood of supp (, x1 = 1 in a neighborhood of supp x, and n = 1 in a neighborhood of supp x;.
Then, by Theorem 2.3, we have x10,,u € W2(D) and x10.,p € W) (D). Let c(x3), d(z3) be vectors
satisfying

0 .0
—c1(23) — da(x3) = g(0,23) + (O, h3 ) (0, 3), cos 5 c(x3) £ sin B d(x3) = (0.h%)(0, x3)
for x3 € M Nsupp ¢ and the estimate
()] + ()] < C (1900, 20)| + |00y )(0,22)] + 3 (0,4)(0,3)])
+
with a constant independent of z3. Furthermore, let
v(z',x3) = u(a’,x3) — h(0,23) — c(x3)xy — d(w3)20.
Since x1(-, x3)u(-,x3) € WZ(K)? and v(0,23) = 0, it follows that x1(-, x3)u(-,x3) € VZ(K)> (see [7,
Th.7.1.1]). With the notation v’ = (v1,v2), f' = (f1, f2) we have
_AI/'UI(',SI/B) + v:b'p(vxd) = FI('vxfi)v _vm’ : 'U/(‘,xg) = G('7x3)7 _AI/UB('a ‘Tg) = FB('vxfﬁ) in K
and v(-,23) = H*(-,23) on 4=, where

F/(‘r) = fl(m) + aigul(‘r)7 F3(l‘) = fg(l') + a{?gu - 3@3]?7

G(z',z3) = g(2', 23) — 9(0, 23) + O, (us(2’, 23) — us(0,23)),

H*(r,x3) = h*(r,z3) — h*(0,23) — (0,h™)(0,23) r
Obviously, x(-,z3) F(-,z3) € W}H(K)? C V5 (K)? for almost all z3 € M Nsuppy. Furthermore, since
G(0,23) = 0and H*(0,23) = (9, H*)(0, z3) = 0, we have x(-, x3) G(-, x3) € Vi (K) and x(-, x3) HE (-, 23) €

‘/:55/2(1"i)3. Since in the strip 0 < Re A < 2 —§ there is only the eigenvalues A = 1 of the pencil A(\) with
the corresponding eigenvector (U, P) = (0,1) and without generalized eigenvectors, we conclude that

(- ws) (v(,23),p(, w3) — p(0, m3)) € Vi (K)? x V3 (K)

(see, e.g., [7, Th.8.2.2]). From this we conclude that ((-,z3)u(-,z3) € W(K)? and ((-,z3) p(-,x3) €
W2(K). Analogously to the proof of Lemma 2.15, it follows that ¢ (u,p) € W2(D)? x WZ(D). Thus, the
theorem is proved for [ = 3. For [ > 3 the result holds analogously to Theorem 2.4 by means of Lemma
2.14. O

Furthermore, the following assertion holds (see the third part of the proof of Theorem 2.4).

Corollary 2.2 Let (u,p) be a solution of problem (2.36), and let ,n be the same cut-off functions as
in Theorem 2.3. Suppose that n(u,p) € H x Ly(D), ndl, f € Wi (D)2, 0ol g € Wi (D), ndl h* €
Wé_l/z(l"i)3 for 5 =0,1,...0k, wherel > 3, 0 < 6 <1 —2,§ is not integer, and 0 < w. Suppose
further that A = 1 is the only eigenvalue of the pencil A(\) in the strip 0 < ReA <1 —1—¢ and that the
compatibility conditions h*|a = h™|ar and (2.39) are satisfied. Then (03 (u,p) € WE(D)* x Wi (D)
forj=0,1,... k.

Remark 2.2 The results of Theorem 2.6 and Corollary 2.2 can be extended to other boundary conditions
in the case (2.35). Then the traces of h™, 9,h*, ¢* and g on M must be such that the system

Siu\M = hi|M, Si(cosg (O, w)| M ising (8$2u)|M) = 8Thi\M, Ni(u,p)|M = (bi\M,
(azlul)|M + (8oc2U2)\M + 5:z3u3|M = 9|M

(with the unknowns ups, (9z,u)|a, (Op,u)|ar, and plas) is solvable. For example, in the case of the
Neumann problem (d¥ = d~ = 3) the boundary data ¢ must satisfy the condition

nt-¢” =n"-¢" on M,
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while in the case d= = 0, d* = 2, the data h™, h™, ¢ and g must satisfy the compatibility conditions
h™-nT =hT and

1
Orht cos20 — (2nT cos® +n")9.h + 2sin? 0 (¢ cos0/2 + ¢ sin6/2) + 5(9 + Oy, h3 ) sin20 =0

on the edge M.

3 Green’s matrix of the problems in half-space and dihedron

In this section, we study Green’s matrices of boundary value problems to Stokes system in the half-space
Ri = {z = (z1,22,73) € R3: 23 > 0} and in the dihedron D. For the problems in Ri, we find explicit
representations of Green’s matrix G(z, §).

3.1 Green’s matrix in the half-space

We consider the Stokes system
—Au+Vp=f —-V-u=yg (3.1)

in the half-space R‘i with one of the following boundary conditions
(i) u(z) = 0 (Dirichlet condition),
(i) u1(z) = ua(z) = —p + 20,,us(z) =0,
(iil) us(z) = Opzur (x) = O ua(x) = 0 (free surface condition),
(iv) Oz, us(x) 4 Ozyur (x) = Opyus(x) + Opyua(x) = —p + 20,,us(x) = 0 (Neumann condition)

on the plane x3 = 0. By Green’s matrix of this problem we mean a matrix G*(z,£) = (g+ (z, {))” L

such that the vector g* (91 L 92 L g, J) and the function gj’j satisfy the equations

—Azgq;-r(fﬂvf) + Va;gzj(%@ =6(x — &) (615,02, 537j)t, -V - gq;-r(l“vf) = 0450(z — &) (3.2)

for z,& € Ri, j = 1,2,3,4, and the corresponding boundary condition for z3 = 0, £ € Ri. Here
d;,; denotes the Kronecker symbol and (a1, az,as3)’ the column vector with the components aq, az, as.

Furthermore, the vectors H; = (Ql 1> g, 5:0i3)" and the function Q;f 4 satisfy the equations

*Afﬁj(ﬂﬁaf) + Vgg;;;(x,f) =d(z —§) (5i,175i,275i,3)ta -V 'ﬁ;r(%f) = 51:,45($ =& (3.3)

for ,£ € Ry3, ¢ = 1,2,3,4, and the corresponding boundary condition for {3 = 0. From (3.3) and
Green’s formula in the half-space (cf. (2.5)) it follows that the solution (u,p) of the boundary value
problem is given by

wle) = [ €+ Veol©) @) de+ [ 0l 67w e

+

pa) = —ow)+ [ (FQ)+ Vesle) i+ [ 000 de

R}

Note that in the case of boundary conditions (i) and (iii), there are the simpler formulas

wz) = / F(6) - HF (2.€) de + / 9(€) Gy (2, €) d,
RS

plz) = / F(6) - F (2,€) de + / 9(6) G 4 (2, €) de.
R3
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We denote by G(z,&) = (G; ;(x, f))jjzl Green’s matrix of Stokes system in R3, i.e., the matrix satisfying
(3.2) for x,£ € R®, j =1,2,3,4. The components of G(x,&) are (see [10, 14])

0 (i — &)@ — &) C
gz](z 5) 87'('(‘1‘ _Jé-‘ + |,’13 — §]|3 . ) for ) = 1a2537 (34)
g4,j(x7§) = _gj,4(x7§) = ! Tk gk for .7 = 1a2737 g4 4(:1; g) (l‘ - E) (35)

dr |z — &P

Note that G, ;(x,€) = G, (€, x) for i,j = 1,2,3,4. In [14] also the Green matrices for the problems in the
half-space with boundary conditions (i) and (iii) are given. We calculate here the Green matrices for the
problems with boundary conditions (ii) and (iv).

Lemma 3.1 The components of Green’s matriz for the problem in R3. with boundary condition (ii) are
G i(,8) = Gij(2,€) = (=1)%2G, (2, &%) fori+j <7, Gfy(x,8)=—-d(z—¢),
where £ = (&1, €9, —€3), and G ; is defined by (3.4), (3.5).
Proof. Let F(&) = f(&) + Veg(€). Furthermore, we define F(£) and §(€) as
F(€) = F(&), §(&) = g(&) for & >0,  F(&) = —(=1)"2F;(£"), §(€) = —g(&7) for & < 0.

Then the functions

o) =3 | @00+ [ 5060
= j i (2,8) — (=1)%2G; j(x, £ ia(2,8) — Gia(w, & ;
;/Riﬂ(s)(gld( = (0505w de + [ 06 Gra(w.€) = Gualan ) e
3 ~
pla) = —2a(a) + JRIGIZNENSE

— 2y +Z/F (Gag(w,€) = (~1)%2Gy j(,£7)) dé

satisfy (3.1) for x3 > 0. Furthermore, since G, ;(2',0,£) = (=1)%:3G; ;(2/,0,£*) for i = 1,2, we have
ui(2’,0) = ugz(2’,0) = 0. We show that ®(x) = —p(x) + 20,,us(x) vanishes for x5 = 0. Using (3.4),

(3.5), we get
3 1 0 0 1 1
B(a) = 29(2) ~ V(@) ~ 55 / 9055 (g + gr) %
where
— &)z — &) (zj — &) (w3 + &)°
Z/ e eer )%
Jj= 1R3
(z3 —&)° | (w3 +&)°
*/FB(G( et emeF)
R

Integrating by parts, we obtain

_ 3 Lo e 11
2 = 2w - @ g L (e )

19 1 )
o / 980 o %
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Here ¥(x) — 0 as z3 — 0,

9 39(5)( 1 1 )df:i/R 39(5)(%—53 z3 +&3

s dé — 0
Ows Jus 08 \e— ¢ Jo— €] ot (o—ep Tlaep)

3
+

as 3 — 0, and from the equality

1 3 / /°° pdp
o7 e e @ OF © T, (Pt a2
it follows that
10 / ’ 1 / 1/ / T3 /
=2 0) —————de = —— 0)— B g
e LR vy v K L P v T

_ l (9(1'/»0) - 9(5/70))1'3 - Cﬂl
= L 20

_ L[ 0ol a0
Tl (TIZPPR

dz' —2g(2',0) — —2g(2’,0) as z3 — 0.

Consequently, ®(z',0) = 0. This means, the vector function (u,p) introduced above is a solution of
system (3.1) with boundary condition (ii). The result follows. O

Lemma 3.2 The components of Green’s matrixz for the Neumann problem to the Stokes system in the
half-space Ri are given by

1P a8
47 (’hzagj |£L’ — f*|7

gi]($>£) :gi,j(xaf)—i_gi,j(xaf*)—i_ Za.]: 152a

1 0
Gislar8) = Gial@:8) = Gualw. € - Ea?i(b: f3§*| - xsgi(x3£:s§3))y i=1,2,
+ * 1 82 I3
G, &) = Gia(w, &) + Giala, &) + 57 .08, [T =1,2,
1 1 2 2
Gg'3(w,€) = G33(2,€) = Ga(,7) + E(m = (Efj fjé + x3§|?;(i35+*|§3) )
1 0 1
Gia(2,€) = Gaa(x, &) + Gaalx, &) — 21 D3 ( |z — & xTaEx—g z*f;)),

1 92 1

N o B Lo L
9474(33,5) =0z =&+ 7 Qx30&s |x — &|*’

G(2,8) = G (& w) fori,j=1,234,
P r oo f. We define the functions F, F and § by F(&) = f(&) + Veg(6),
F(§) = F(8), §() = 9(§) for & >0, F5(§) = (=) F;(€"), §(€) = 9(&") for & < 0.

Then the functions

3
REEDY R CENCLESY RICENED
3
= ‘ /RS Fg(g) (gi,j(fb,f) + (_1)6j’3gi,j($7f*)) d€ + /]RS g(&) (gi74($,§) + gi,4($,f*)) de,

Fj(€) Ga j(x,€) de

3

=
&
|
|
[\
p=§
&
+
M=
T

3
— @)+ / F(€) (Gag(2,€) + (~1)55Ga (2, €7)) d
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satisfy (3.1) for x3 > 0 and the boundary conditions 9, us(x) + 9z, ui(x)
the plane z3 = 0. We consider the function

x) = Op,us(x) + Opyua(z) = 0 on

2 e )2 e, 2
)+ 20n0) = -3 [ p (B EE oSSl 4
j=17RY
3 (v3 —&)°  (x3+&)°
‘47r/Rz PO (e~ o) %20
1 0 0 1 1
‘wxg/mg@ o6 (r—g )%
The restriction to the plane x3 = 0 is
5 )&3 £
() Z/Rs e o /R B o) =g “
+2¢(2',0) + 1 89(5) €3

de.
7 Jes 08 T@o)—ep ™
The vector (v, q) with the potentials

1 (.7}1 _yi>m3 ! / .
() = —— S(y)dy, 1=
v (fL’) 47T R2 |:C7y/|3 (y) y ?
1

—1,2,
1 x3

— @ /d/

w5 = [ (g ) 2

19 1 .

(here, for the sake of brevity, we wrote y’ instead of (y’, 0)) satisfies the equations —Av+Vqg =0, V.o =0
Furthermore, from the equalities

3
/ (i = yo)ai dy' =0 fori=1,2, 3 / L A
r2 |z =y 2 Jre |z —y'P?
(see [14, Appendix 1]) it follows that
Ovs 3 3 ®(y') 3 23 (®(y) — ()
g2 L3P0 ) gy d dyf
i Oz 21 Jge |z — /P y =2k )+27T/ |z — /|5 Y
3 (2’ + x32’) — (a'))
— 4 / !
= 2@+ %/R o ppe o) as s —0
and

i P (P(2 N — @2’
Ovi  Ovs 3 [ (a yt)fsg W) dy' = C 3 [ #(P@ +a3d) — () 4 — 0
81’3 8% 27T R2 |IL‘ — y/|‘) 27T R2 (1 + |Z/|2)5/2
as 3 — 0, ¢ = 1,2. Consequently, the vector function (u — v,p — ¢) is a solution of the system (3.1)
satisfying the Neumann condition (iv). It remains to represent v and ¢ in terms of F' and g. For i = 1,2
we have

vi(r) = ) Z/Rg 8x 35; / rild

dy' d
ez — o]y — &Y <

1 ) 2x3€3 9 w3€3 /
+— | F —/ -2 dy' d
8 /Ri ) o Ra(ll’*y’\ly’fflf” 03 Ixfy’lly’ff\?’) v
1 (@i —yi)ws 1

2m

383

!
e —ylly W%

99(8) 3/
N IV d + —
R |z —y'? 9 4r? R3 93 Oz
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Using the equality

/ z3dy’ . 2m
R 2=y Ply =€ |z —&F

! 0 z3 z3&3(xs + &3)
wle) = o RaF:”“)m(m—s*ﬁ FEYE

1 82 I3§3 1 82 I3
—M;/Ri FAS) o s df—%/ﬂﬁg(f) S T €
for i = 1,2. Analogously,
25% 0 x3£§ /
= s 2 T8 )\ qy'd
wz/ a@/m(u—yww'—ew axgwx—yfuy/—a:%) v
1 2 0 a3 23 o &
-— | F - - = dy' d
52 /Ri O [ (i ) (o~ aa )

1 1 x3 ,
- dy’
o Jo (g + ) 90

(see [14, Appendix 1]), we obtain

)

7$ ® 635) / <Ix - y’lffy’ —€p 8%; o — y'ﬁgy/ - §|> dy’ dg
4177:1/ , 85; (\x fgm i ngi(fgg;fg)) &

& /Ri Bz £*| (lgfj 5i3|)32 xgﬁi(af’ £t§3)2> de

*or / € g, (i —15 R L

_ o8
a(x) = 47r228x3/ 5’@/}1@ Tyl &P Y %

1 9 2¢3 0 £3
- = F - — d
"2 B, /Rz’; () /R2(Ifc—y’||y’—£3 23! \w—y’l\y’—fl3> ¢

L Ny &

m 0xs Jp2 |x — ¥/ 212 Ox3 R 0&3 2 lx =y |y — &P

oo Jz—:l/Ri 5 Ox308; |v — &¥| “+ 27 /Ri fl@ 0z (|33 — & * |z —&*[3 )df

1 H? 1
7T/R3+ 90 5 e

Now the assertion of the lemma follows directly from the above obtained representation of the solution
(u —U,p— q) O

dy' d¢

As a consequence of the last two lemmas and the analogous results for the boundary conditions (i)
and (iii), we obtain the following theorem.

Theorem 3.1 1) g;fj(x,g) = g;:i(ﬁ,a:) fori,j=1,2,34.
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2) The components of Green’s matriz G(x,&) satisfy the estimate

102076, (2,6)| < car

T — ‘—1—51,4—51,4—@—\%7

where the constants cq .~ are independent of x and .
3) There exist vector functions ﬁj(z,f) = (P1;(z,€), P (x,8),Ps,(x,8)), j = 1,...,4, such that
gZJ(%f) =—Vy- Pj($7£)7 P3,j(x’€)|363=0 =0, and

10207 Pj(2,€)| < cay o — €| 7100 lal=h1, (3.6)

P roof Assertions 1) and 2) are obvious. The functions gij, j = 1,2, are of the form 0, Pj(x,§) with
a function P; satisfying (3.6). The function QZ 3 can be written in the form

RS BN !
Gis(z,§) = A7 O (|$_§| + |x—§*|)

122:8( (z; — &) (w3 — &) (%‘—fj)(x?)—f?»)) 190 (($3—€3)2 x%‘fg)

T on N - &P mom\ [r—€P o

in the case of boundary condition (ii) and in the form

_ 1 9 1 1 f3($3+€3)
G0 = T om (pmg T et )
1 0 (@ —&)as+8) 10 1 1 xg(ws+ &)
_QW;()% ’ |x]f§*|3 47r8x3(|:£f§| |x — &% 2 |z — &3 )

in the case of Neumann condition (iv). For the function g4 4 there are the representations

1 1 1
Gla(@,§) =0z —¢) = ﬂﬁf(m—a " |w—5*|)

1 292 1 1 1 0 fx3—& x3+&3
‘EZ (\x—f\ |x—s*|>*5673(|w—£|3+|x—£*|>

in case (ii) and

2 2
10 1 1 (1 1|) 10 1

+ _ _ - - _ - -
g474(33,§)— oz §)+7r8x§|:177§*|_47r |z — €| 3|:L'—§* 7 0x3 |x — £

1 2. 92 1 3 1 0 (x3—8  x3+&3
_EZ (\xff\ |xf§*|)‘5873<|x75|3+|xf£*|3)

in case (iv). Similar representations hold for boundary conditions (i) and (iii). This proves assertion 3).
O

3.2 Estimates of Green’s matrix in the dihedron
Let G(z,¢) = (Gij(z, f))” , be Green’s matrix for problem (2.1), (2.2), i.e. the vector functions
G; = (G1,j, G2k, Gs,) and the function G4 ; are solutions of the problem

—0,Gj(x,6) + Vo Gy j(x,6) = 6(x — €) (815,824, 03 )",

—Vy- éj(x,f) =0(x —§)ds; forx €D,

SEGj(2,€) =0, N*(0,) (Gj(2,€),Gaj(2,6) =0 forzel* ¢eD
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More precisely, if G(x, ¢) denotes Green’s matrix for Stokes system in R? (see (3.4), (3.5)) , then we define
Green’s matrix G(z,¢) = (G, (x,f));{j:l of problem (2.1), (2.2) by the formula

G(z,8) =v(2,8) G(x,§) + R(x,§). (3.7)
Here 9(x,&) is a smooth function of x and & equal to 1 for small |x — &| and to zero for large |x — |
is large and for x near the edge M, and the vector function (ﬁj,R47j) = (R17j7R27j,R3,j,R4J‘) is the
uniquely determined weak solution of the problem
Dy Rj(1,8) + ViR j(2,8) = 6(x =€) (515,05, 0 5)
+ A (U(2,6)Gj(2,)) = Vo (¥(2,€)Gu,(2,6)),
Ve R’ (2,6) = 04,0(x = &) + Va(¥(2,6)G;(2,€)) forz €D, j=1,2,34,
Rj(w,&) = =S (¥(2, )7 (,¢)),
(é (2,6), R j(2.€)) = =Nj" (¥(x,)G;(2,), ¥ (2, )Ga (2,€))  for z € T*,

7 =1,2,3,4. Since the right-hand sides of the above equations are smooth, have compact supports and
vanish near the edge, this problem has a unique weak solution (Rj(-,ﬁ),R4,j(-,§)) for arbitrary £ € D.

According to Theorem 2.4, we have have even ((ﬁj(~, €),Ru;(-,€)) € WYD)? x W (D) with a certain
0 <1 —1 for an arbitrary smooth function ¢ with compact support.

Theorem 3.2 1) Fori,j = 1,2,3,4 there are the equalities
G j(tz,t&) = g1 0ia 05 Gij(x, &)  for arbitrary t > 0, x,§ € D (3.8)

and
Gij(r,8) =Gji(€ ) (3.9)

2) Every solution (u,p) € C§°(D)* of equation (2.1) satisfying the homogeneous boundary condition
(2.2) is given by the formulas

wilz) = /D (F(€) + Veg(€)) - Hilw,€) de + /D 9(6) Giale, €)de, i=12.3,  (3.10)
p@) = —glo)+ / (F(6) + Vegl©)) - Ha(r,€) de + / 9(€) Gaa(,€) d, (3.11)
D D

where H; denotes the vector function (G;1,Gi2,G;3)t. B
3) The functions G; j(x,&) are infinitely differentiable with respect to x,& € D\M, x # &. For
|z — &| < min(|2’], |¢’]) there are the estimates

|020F G 3 (2,€)| < o — g 710t lel=IAl (3.12)

For j =1,...,4 there is the representation Gy ;(z,€) = =V, - P;(x,€) + Q;(z,£), where P;(x,€)-n* =0
forxz €T+, £ €D, and P;, Q; satisfy the estimates

10507 Py (,€)| < Cay o — &7 7000710701 10207Q; (2, €)| < oy €721 (3.13)
for & — & < min([z'], [¢']).

Proof 1) (3.8) follows immediately from the definition of G(z,£). We show that Green’s formula
(2.5) is valid for u(z) = G;(z,y), plz) = Gia(z,y), v(z) = éj(a:,z), q(z) = G4(z,2), where y and
z are arbitrary points in D. Let ¢ be a smooth function on the interval (0,00), ((¢) = 1 for t < 1/2,
¢(t) =0for t > 1, and let ¢ be a sufficiently small positive number. By Theorem 2.4, the vector functions
n(éj(-,f),G4,j(~,§)) belong to WA(D)? x W.™H(D) with a certain § < [ — 1 for an arbitrary smooth
function n with compact support equal to zero in a neighborhood of . Consequently (2.5) is valid for
the following vector functions (u,p) and (v, q).
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w;y) G4,i(‘ray)7 ’U(z) = (1 - C(wgz)) éj(l‘,Z),

q(x) = (1 - ¢(22)) Gaj(x, 2
(i) u(@) = (1 —¢(2Y)) Gilz,y), p(a) = (1 — ((22)) Gail@,y), v(z) = ((252) Gj(z, 2),
q(z) = ((*7%) Gu j(z, 2),
(iil) u(z) = (1 - ¢(*2Y)) éz‘(%y} p(x) = (1= ¢(*Y)) Gai(x,
—((22)) Gy(x, 2), q(x) = (C(rRZ) —C(me )) Ga,j(7,2),

where R is an arbitrary positive number. From the last statement it follows that (2.5) is also valid for

(iv) u(z) = (1= C(52Y) Gilw,y), p(x) = (1 = ((F2)) Gaal,y), v(w) = (1 - ((252)) Gj(x, 2),
p(@) = (1 -¢(*32)) G43(aj z)

To see this , one has to show that all integrals in (2.5) tend to zero as R — oo if

u(@) = (1= (=) Gilzy). pl@) = (1= (=) Cuala.y), (3.14)
v(z) = (1-¢(E ; )G, 2), qlz) = (1—¢(= ]; %)) Gaj(x, 2). (3.15)

For the integral
/(7AU*VV"UJ+VP) ‘vdz
D

this is evident. It vanishes for large R, since (u,p) and v have disjoint supports. Furthermore, for these
(u,p) and (v, q) and sufficiently large R we have

)/u-(—Av—VVw—i—Vq)dxr
D

o[ 16w (RG] + RVG,2)] + R Gislo2)]) do)

Dr(z)
<c / 2| 7?|Gi(, y) | da: / (121 721G;(w, 2)* + V|G (x, 2)|* + |Ga (2, 2)[?) d,
Dr(z) Dr(z)

where Dr(z) = {x : R/2 < |x — 2| < R}. The right-hand side of the last inequality tends to zero
as R — oo, since G(z,€) can be written in the form (3.7) and the norm in H is equivalent to (2.8).
Analogously, it can be shown that the other integrals in (2.5) tend to zero as R — oo if u, v, p, ¢ are given
by (3.14), (3.15).

Finally, all integrals in (2.5) vanish if

(v) w(@) = C(524) Gi(w,y), p(x) = C(352) Gaalz,y), v(z) = ((222) Gj(x, 2), q(x) = ((£52) Ga,4(x, 2),

and ¢ is sufficiently small. Then the supports of (u,p) and (v, q) are disjoint. From the validity of (2.5)
for (i), (i), (iv), (v) it follows that this formula is applicable to u(z) = G;(z,y), p(x) = Ga.i(z,y),
v(z) = éj (z,2), and q(z) = G4 j(z, z). This implies G; ;(y,z) = G;.:(2,y).

2) follows immediately from (2.5) and (3.9).

3) Let Dy be the set of all z € D such that dist(z,T'") < 2dist(x, '), and let ¢y denote the distance
of the set {x € D4 : |2'| = 1} to I'". Furthermore, let ¢ be a smooth function on (0,00), ¢(t) = 1 for
t < t0/2, C(t) =0 for t > tg.

Suppose that & € Dy. Then the function z — ((lﬁg,f
G(z,&) in the form

|) vanishes on I'". We write the Green matrix

[z = ¢
€'l

G(z,6) = ¢( )G (2,8) + R (x,8), (3.16)
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where G (z, £) is the Green matrix of the problem in the half-space with the boundary conditions S*u =
0, N*(u,p) = 0 on the plane containing I'*. Then the vector functions 9/ (ﬁj(',f), RL(-,{)) are the
unique solutions in H x La(D) of the problem

NI R (,6) + Vo R (2,€) = B(2,6), -V G (2,€) =V;(x,€) forz €D,
S+8gRj+(x,£) =0, N+82(R;r(x, ),RL( §) = fj for z € I'F,
S_agRj(x,g) =0, N‘@g(R;(m, €), R} (x,§)) =0 forz eI,

where &; = —Amag(Gj—g(%)gj)+vmag(a4,j—g( 220G ), Wy = = 0,07 (G — (222G ). The
functions ®;, ¥; and Y ; are infinitely differentiable with 1 respect to x and vanish for |a: & < tpl¢’|/2 and
|z — €] > tol€’|. For € € Dy, €| =1 all derivatives 2P i(x,€), 09¥;(x,§) and 09 ;(x, &) are bounded

by constants independent of x and £. Consequently, there exist constants ¢, , such that
0207 R (2,8)] < cany for €Dy, €] <1, 1/2 <[] < 2.

Since the functions R?:j (x,€) (as well as G, ;(x,€) and g;f ;(x,€)) are positively homogeneous of degree
—1— ;4 — 95,4, we conclude that

0807 R j(w,6)| < cay [€/]71 0070007 0=PT for ¢ € D, |¢]/2 < 2] < 21¢). (3.17)

Analogously, this estimates holds for £ € D_ = {x € D : dist(z, ") < 2dist(x,T1)}, |¢']/2 < |2'| < 2|¢].
This proves (3.12).

By Theorem 3.1, there exists a vector function Pj+ satisfying (3.6) such that fvz.Pj (z,€) = g;fj (z,8)
and P;-Jr(x,ﬁ) -nt =0 for # € I'". Thus, one can write (3.16) in the form

|z = ¢
€'l

for £ € D, where RZ ; satisfies (3.17). Analogously, we obtain the representation

G4,j($,§) = _C( ) V- ﬁj+(x7€) + sz(xag)

P - ]

for £ € D_, where f’j_, R ; satisfy the estimates (3.6) and (3.17), respectively, and 15;-_ (z,€)-n~ =0 for
x € I'™. Let n™(£) be a function depending only on ¢'/|¢’|, infinitely differentiable for £ # 0 such that
nt(€)=1for €€ D\D,, nT (&) =0 for £ € D\D,.. Furthermore, let n~(£) =1 —n*(¢). Then

Gaj(x,€) = |£_, 5' Zn ) Ve PE(x,8) + ;ni@) Ry (2,8) = =V - Py(@,8) + Q;(x, ),
where

Py(x,6) = gni@ﬁﬂx,& Qi(,6) = gni(ﬁ)((l —¢( '””;f' )) Vo PE(@,€) + R (,€))
Obviously P; and Q; satisfy (3.13). The proof is complete. O

Next we prove estimates of Green’s matrix in the case |z —¢&| > min(|2’],|£|). Let A; be the eigenvalue
of the pencil A(\) with smallest positive real part, and let Ay be the eigenvalue with smallest real part
greater than 1. We define

. + — + — 3 >
M—{ ReA; ifd"+d isodd or dT +d~ iseven and § > m/m, (3.18)

ReXy ifdT +d~ iseven and 0 < w/m,

where m =1ifdt =d~, m=2ifd" £ d".
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Lemma 3.3 Let B be a ball with radius 1 and center at xq, dist(xo, M) < 4. Furthermore, let ,n be
smooth functions with support in B such that n = 1 in a neighborhood of supp . If n(u,p) € H x La(D),
~Au+Vp=0,V-u=0inDNB and STu =0, N*(u,p) =0 on Tt N B, then

sup (|40 ()00 ()| + [0 et o () )
< ¢ (|lnullw + [1npl .0))

where € is an arbitrary positive constant.

Proof. Lete besuchthat y—e € (k,k+1). Thend =k +1—pu+e € (0,1). Furthermore, let x
be a function from C§°(B) such that {x = ¢ and nx = x. Since the strip 0 < ReA < k+1—-d=p—¢
does not contain eigenvalues of the pencil A(A), it follows from Theorem 2.4 and Corollary 2.2 (see also
Remark 2.2) that 92 (xyu) € WE?(D)3, 01 (xp) € WY (D) for j = 0,1,.... Using Lemma 2.10, we

even get 87, (xu) € Wf_:f“(D)e, d1.(xp) € Wf:;’“(D)Z, for v=0,1,... and

108, ()l e + 108, Ol ye < € (il + 19l 2a(0)). (3.19)

In particular, for 0 < |a| <k —1 we have 838, (xp) € W§ (D). Since Wi (K) is continuously imbedded
into C(K), we conclude that

sup 0507, (xp)(x',23)| < ¢ sup 10507, (xp) (- w3) w2 x)
z’'eK,x3eR z3€R

Furthermore, using the continuity of the imbedding W3 (M) C C(M), we obtain

sup 10502, 060) -+ 25) lwz ey < € (10502, () lwi oy + 10808 0wz )
T3

This implies ‘
sup 10207, (xp)(@)| < c(llnullx + ol o))

If o] > k, then we conclude from (3.19) that 0287, (xp) € W62—k+1+|a\(D) c V&
Lemma 2.2, the continuity of the imbedding W3 (M) C C(M) and (3.19), we obtain

kt14]al (D). Using

sup [a'|" el 02,03, (xp) (' 5)| < ¢ sup 10800, 00) ¢ ws)lva )

z'eK,x3€R xr3€ER
<c (10208, 00z , oy + 10205 Cadllva o omy) < e (lmullee + [npl o)

for |a] > k. Consequently,

sup ! [rex Ol =149 ¢ ()02 01, p(w)| < e (null + [npll o)) -
fAS

Analogously, it can be shown (cf. [16, Le.2.9]) that

sup ! [PexOlel=1+ 9 ()03, 03, u(x)| < e (Ilnullse + [0 Loc))-
TE

The proof is complete. 0

If A =0 is not an eigenvalue of the pencil A(\) (i.e., if d*-d~ = 0 or condition (2.34) is satisfied),
then the estimate in the last lemma can be improved for |a| < Re A;.

Lemma 3.4 Let B,({,n be as in Lemma 3.3, and let n(u,p) € H x La(D) be such that —Au + Vp =0,

V-u=0inDNB and S*u =0, N*(u,p) =0 on TT N B. If A = 0 is not an eigenvalue of the pencil
A(N), then

sup o218 (| (@)904, u(e) | + o] <) 020, p(@)]) < e (Il + ol s co):
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Proof Let d =1—ReA; +¢, and let x be a function from C§°(B) such that {x = ¢ and nx = x. By
Lemma 2.9 and Theorem 2.5, we have

107, Ccllvesz iy + 102, (xp) vy < € (Imullae + [Pl o)) -

for arbitrary integer k. Using this inequality, Lemma 2.2 and the continuity of the imbedding W4 (M) C
C (M), we obtain

sup |27 0%,0], (xu) (@', x5)| < ¢ sup (18502, (xu) (-, w3) |2
(a:’,:rg)ED z3€ER el

< c (10308, v, oy + 108055 ez, oye) < e (Imullze + ol o).

(D)?

Analogously,

W D|~”lf/|6+‘a| 10507, (xp) (@' 23)| < e (Inulls + 02l o)) -
z/,13)€E

The result follows. O

Theorem 3.3 For |z — &| > min(|2/|, |¢']) there is the estimate

i

Ha G o

where T =146, 4+ 0;.4, € is an arbitrarily small positive number, and o; o = min(0, p — |a| — d;4 —€).
In the case when A = 0 is not an eigenvalue of the pencil A(N), then estimate (3.20) holds even with
O, = ReX; — ‘Oé| — 61,4 — ¢ for |Oz| < Re\ — (5,’74.

0507,08,08, G5 (,6)] < el — g T Iol=Iol=or

Proof Due to (3.8), it suffices to prove the estimate for |x — &| = 2. Then, under the assumption
min(|z’|, |¢']) < |z —§], we have max(|2’|, |¢'|) < 4. Let B, B¢ be balls with centers = and &, respectively,
and radius 1. Furthermore, let { and 7 be infinitely differentiable functions with supports in B, and Bg
equal to one in neighborhoods of = and &, respectively. By Lemmas 3.3 and 3.4, we have

4 3
Sl 0202, 008, Gig (. €)| < e 30 In()0202, G e+ 1005 02,Ga( Mooy (3:21)
j=1 j=1

for i =1,2,3,4. Let F and g be smooth functions, and let

wly) = /D 0(=) F(2) - Fily,2) dz + /D 0(2) 9(2) Gialy. 2) dz, i =1,2,3,
p) = —nw)el)+ /D n(2) F(2) - Haly, 2)dz + /D 0(2) 9(2) Gaa(y, 2) d.

By (2.4) and (2.5), the vector (u,p) is a solution of the problem
b(u,v) —/ pV -vdx :/ n(y) F(y) -v(y)dy forallveV, —V-u=mng inD, STu=0 onTI*.
D D

Since nF" vanishes in B,, we conclude from Lemma 3.3 that

2|77 |02 07 ) | + || 774 02,07, p(x)| < e (ICulln + 6Pl acmy) < e (IF]

ve + l9ll.)),

where ¢ is independent of 2 and £. Consequently, the functionals mapping (F, g) to

3
2|72 0% T ui(x) = |a!| e /Dn(z) (ZE(z) 0:07.Gy j(x,2) + g(2) 6;1,8;3Gi,4(x,z)) dz,
j=1
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i=1,2,3, and
‘LE|_U4“ aaa ( ) |x/|_0'4,a/ (ZF 31/8:63G4J(£U z)+g( )8 3 G44(x Z)) dz

can be extended to linear and continuous functionals on V* x La(D). The norms of these functionals are
bounded by constants independent of x. Therefore,

Ci,a

3
D 1n()0207, G (@, lw + In(-)0505, G, )| ooy < e’
j=1

for i = 1,2,3,4. From this and from (3.21) we obtain the assertion of the theorem. O

4 The boundary value problem in a polyhedral cone

For every j = 1,...,n let d; be one of the natural numbers 0,1,2,3. We consider the boundary value
problem

—Au+Vp=f, —-V-u=g ink, (4.1)
Sjuzhj, Nj(u,p):¢j onFj,jzl,...,n

Here S; is defined as
Sju=uifd; =0, Sju=u,=u-nifd; =2, Sju=u,=u—uynifd; =1
The operators IN; are defined as
Nj(u,p) = —p+ 2epn(u) if dj =1, Nj(u,p) =en(u) if dj = 2,
Nj(u,p) = —pn + 2e,(u) if d; = 3.

In the case d; = 0 the condition N;(u,p) = ¢; does not appear in (4.2), whereas the condition S;u = h;
does not appear if d; = 3.

4.1 Weighted Sobolev spaces

For an arbitrary point « € K let p(z) = |z| be the distance to the vertex of the cone, r;(x) the distance
to the edge M, and r(z) the distance to the set S = {0} UM; U---U M, of all singular boundary points.
Obviously, there exist positive constants ¢y, co such that

3

for all z € D.

c1p(z z) <cap(z

u{js

Let [ be a nonnegative integer, 8 € R, 6 = (d1,...,0,) € R", By Véyé(lC) we denote the set of all functions
with finite norm

n

N 1/2
Hu”Vé / Zp2(5 I+]al) H Tk 2(8k—l+|al) 10%u |2dx> )

|| <1 k=1
The norm in the weighted Sobolev space Wé,é(lC), where 0 > —1 for k =1,...,n, is defined as
g = ([ 32 g0t H (B ozl ar)”
|| <1

Furthermore, we introduce the following notation. If d is real number, then W[l,le(lC) denotes the above
introduced spaces with 6 = (d,...,d). If § = (61,...,0,) and d is a real number, then we define
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Wé’j;er(IC) = Wé’;, (K), where & = (61 +d, ..., 6, +d). The trace space for V} 5(K) and W} 5(K) on the
side I'; of K are denoted by Vé:sl/Z(I‘j) and Wé;sl/Q(I‘j), respectively.

Note that Wéill,é, (K) is continuously imbedded into Wj 5(K) if &5 < §; + 1 for j = 1,...,n (see
[16, Le.4.1]). Obviously, Vﬁlﬁ(lC) C Wéﬁ(lC). If 6 > 1 —1for k =1,...,n, then Vﬁlﬁ(lC) = Wé,é(lC).
Moreover, if u € W};,(;(IC), 0 > —1, &5 not integer for k = 1,...,n, then for the inclusion u € Vﬂl’(;(IC) it
is necessary and sufficient that

(0%u)|p, =0 for |a] <1 -6 — 1.
(cf. Lemma 2.1). Using Lemma 2.7, one can prove the following assertion analogously to [16, Le.4.2].
Lemma 4.1 Let hj € W§{52(Fj)3_dj and ¢; € Wg(52(Fj)df, Jj=1,...,n, be given, where §; > 0 for all

j. Foreveryj=1,...,nletl'; andT';_ be the sides of KC adjacent to the edge M;. We suppose that the
functions h; satisfy the compatibility conditions

(hj+ |Mj hj_ ‘Mj) € R(Tj)7 (4.3)

where R(T;) is the range of the operator T; = (S;,,S;_) (cf. condition (2.18)). Then there exists a vector

function u € T/VE,(;(IC)3 such that Sju = h;, Nj(u,0) =¢; onT;, j=1,...,n and

n
lullwz (xc)e < ¢ z; (\lhjllwggéz(pj)dej + ||¢j||W/;(62(rj)dj)
J:

with a constant c independent of h; and ¢;.

4.2 Operator pencils generated by the boundary value problem

We introduce the following operator pencils 2 and A;.
1. Let I';. be the sides of K adjacent to the edge My, and let 0, be the angle at the edge M;.

By Ar()\) we denote the operator pencil introduced in Section 2.9, where S* = Sk, and N+t = Np, .

Furthermore, let )\gk) denote the eigenvalue with smallest positive real part of this pencil, while /\gk) is

the eigenvalue with smallest real part greater than 1. Finally, we define

k). . .
e = { ReAg if dp, +d_isodd or dy, +dj_ is even and ) > 7/my, (4.4)

Re )\ék) if dy, + dj_ is even and 6, < w/my,
where mg = 1 1fdk+ = dk_, mg = 2 lf dk+ ;é dk_~

2. Let p=z], w=a/|z|, Vo ={ue W'Q)?: S;ju=0o0n~; for j=1,...,n}, and

() (D)) =1t | (23 cop0) - c0s(V)— PV -V - (V- 0)Q)

ij=1

K
1<|z|<2

where U = pru(w), V = p1=20(w), P = p1p(w), @ = p22q(w), u,v € Vay, p,q € La(Q), and A € C,
The bilinear form a(-, -; A) generates the linear and continuous operator

Ql(A) : VQ X L2(Q> — VS; X LQ(Q)

/QQI()\)< Z ) . ( Z )dw:a(( Z ),( 2 );)\), u,v € Vo, p,q € La(2).

As is known, the spectrum of the pencil 2()) consists of isolated points, the eigenvalues of this pencil.
Detailed information on the spectrum can be found in [8, Sec.5,6].

by
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Let VY(Q) and W}(Q) be the weighted Sobolev spaces with the norms

= 200, -+« a 1/2
vy = ([ X T ot as)

o lel<ti=t
1<|z|<2

g = ([ 3 T172% oute ar)”

K la|<Tj=1
1<|z|<2

/2

where the function v is extended by u(x) = u(z/|z|) to K. The corresponding trace spaces on the side

~; are denoted by Vl 1/2(7j) and Wé_lﬂ(vj), respectively. We consider the restriction of the operator
2A()) to the space Wé ()% x W}(Q). By 2s()), we denote the operator

WE(Q)? x Wg(Q) 3 (wp) —  (f.g9.{hs}.{;})

e W(Q)® x WHQ xHW,;’/Qj JxHW;“%)

j=1

where f(w) = p> " M(—AU + VP), g(w) = —p'=*V - U, h; = Sju, ¢p; = p!"*N;(U, P), and U, P are as
above. It can be proved that the spectra of the pencils 24(\) and 5(X) coincide if max(0,1—py) < d < 1
for k =1,...,n. Furthermore, there exist positive constants N and e such that for all A in the set {\ € C :
Al > N, |ReA| < e[ImA} the operator 25()\) is an isomorphism onto the subset of all (f,g,{h;},{¢;})
satisfying the compatibility conditions (h; +,h ) € R(T}) on the corners M; N S? of Q. For every A in

this set und every solution (u,p) € WZ(Q)? x W} () of the equation As()\) (v, p) = (f, 9, {h;},{¢;}) the
estimate

U el e +Z|A|1 Iplhws oy < e (I lwgays L3 ol o

Jj=0 7=0
n

3 (Wsllygra -ty + NP2 gllpoyyyo-as + N8slgrrage i + N2 Idsllwaiys ) (45)
j=1

holds with a constant ¢ independent of (u,p) and A. For the proof we refer to [16, Th.3.2].

4.3 Solvability of the boundary value problem
The following theorem can be proved in a standard way (see, e.g., [7, Ch.6]) using the estimate (4.5).

Theorem 4.1 1) Suppose that there are no eigenvalues of the pencil 2 on the line ReA = =3 + 1/2
and that the components of § satisfy the inequalities max(1 — ug,0) < 0 < 1. Then the boundary value
problem (4.1), (4.2) is uniquely solvable in W3 5(K)* x Wj 5(K) for arbitrary f € W§ 5(K)?, g € W§ 5(K),
h; € Wg/;( )37% satisfying (4.3), and ¢; € Wg/;( )%

2) Let (u,p) € W5 5(K)? x W 5(K) be a solution of the boundary value problem (4.1), (4.2), where
FeWy (K, ge W) 5(K) hy € Wg/?;/( [;)37% and ¢; € Wl,/?;/( ['x)%. Suppose that the components
of § and &' satisfy the inequalzty max(1 — p,0) <6, < < 1. If there are no eigenvalues of the pencil
A on the lines ReA = -0+ 1/2 and ReA = —p' + 1/2, then

N I, kuj—1 s
1 j,s—0 — v,j,8s—0
(u,p) = s Y — (logp)” (P ul*= (W), pr Tp T (W) + (w,q),  (4.6)
0"
v=1j=1 s=0 o=0 "~

where (w, q) € Wg,75, (K)? x Wé,)(;, (K) is a solution of problem (4.1)-(4.2), A, are the eigenvalues of the
pencil A between the lines ReA = —0+1/2 and Re A = —' +1/2 and (u(”’j7‘9),p(”’j’s)) are eigenvectors
and generalized eigenvectors corresponding to the eigenvalue A, .
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Furthermore, analogously to [16, Le.4.3], the following assertion holds.

Lemma 4.2 Let (u,p) € Wj ;(K)? x W5 5(K) be a solution of problem (4.1), (4.2). We assume that
(00,)"f € WO5(K), (p0,)"g € Wh5(K), (pdp)*h; € WiZ(T;)> %, and (pd,)é; € WP (L)) for v =
0,...,05, j=1,....,n. Ifmax(l — pg,0) <6 <1 for j=1,...,n and the line ReA = =+ 1/2 is free of
eigenvalues of the pencil A(N), then (pd,)" (u,p) € W3 5(K)* x W} 5(K) forv=0,...,1.

4.4 Existence of weak solutions

Let Vs = {u € Wj,(K)*: Sju=0onT;forj=1,...,n}, and let the operator As be defined as the
mapping
Vi x Wi o(K) 3 (u,p) — (F.g) € V5 x W§,(K),

where

F(v) =b(u,v) — / pV-vdz forallve Vi and g=-V - u.
K
Lemma 4.3 For arbitrary u € Vg, p € VJ(K), (F,g) = Ap(u,p) there is the estimate

”uHW[;O(ICV + ||P|\Wg,0(1<) <c (||F||Vjﬂ + HPHWg,O(;c) + H“”ngl’o(lC)S + ”pHngl,o(’C))

with a constant ¢ independent of uw and p. Here Wﬁ__llyo(lC) denotes the dual space of Wllfﬁ)o(lC).

The proof of this lemma proceeds analogously to [16, Le.4.4].

Theorem 4.2 The operator Ag is an isomorphism if there are no eigenvalues of the pencil A(X) on the
line ReA=—-0—1/2.

P roof. We show first that
el oy + pllws o) < e (1F v, + lgllws o)) (4.7)

for all u € Vs, p € WJ,(K), (F,9) = Ag(u,p). Let u € Vs C WJ_, . (K)*, p € WJ(K), w €
Wlo_ﬁyl_s(/C)?’7 and ¢ € Wll—ﬁ,l—e(lc) with sufficiently small positive e. By Theorem 4.1, there exists a
solution (v,q) € Wf_@l_E(IC)?’ X Wll_@l_E(IC) of the problem

—Av—-VV.-v+Vg=w, V- v=9 inK, Sjv=0, Nj(v,q9) =0 onTy, j=1,...,n

satisfying the estimate

lollws

o2+ Ipllwy_, oo < e (lwllwe_, oo+ 1¥lwy_,,_a0))-
B1_c 8,

1 1-8,1—¢

From Green’s formula it follows that

/}Cu~wdx+/lcpz/1dx:b(u,v)—/ICmedac—/K(V-u)qu:F(v)—i—/lcqux.

Hence,

| [ wdet [ pvds] < LAstun)lvs g 0 (1ol g+ lalhwe, )

< ¢ Ap(u, p)|

VE X WY o (K) (||v||wl273,175(1C)3 + ||QHW10%17£(/<))>

< cllAp( D)y g o0 (Iellwy oo+ 1lwa o))

Setting w = B~V ] (r;/p)? ¢ Vu and ¢ = 0, we obtain

lllZve e < €Al p)llv- s oy el e
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and, therefore,

lullwe | jocre < cllullwe | o2 < cllAs(up)llv- xwe  oc)-

Analogously, for w = 0 and arbitrary 1 € W} 5.0(K) we get

) < cllAs(w,p)llve xwo ooy 18llwy o)

—B,1—¢

| [ pda] < clAsup)lve s i 191wy
what implies the inequality
||p|\W[;_1170(,C) <c ||A5(u’p)“\/j[,><wg7o(7€)

Using Lemma 4.3, we arrive at (4.7).

From (4.7) it follows that Ag is injective and its range is closed. By Theorem 4.1, the range of Ag
contains the set WB—1,5—1(’C)3 X Wﬂl_lvg_l(lC) which is dense in V* 5 x W5070(IC). This proves the theorem.
([

Let F' € V¥4, g € Wgo(lC), and let h; € W;{OZ(FJ-) be such that there exists a vector function
w € W} o (K)? satisfying the boundary condition Sjw = h; on Tj. By a weak solution (u,p) € W} ;(K) x
WJ 4(K) of problem (4.1), (4.2) we mean a pair (u,p) satisfying
b(u,v) — / pV-vdr =F(v) forallveV_g (4.8)
K
—-V.u=g inK, Sju=h; only, j=1,... n (4.9)

Ifge Wé+17§(IC) with d; <1, 7 =1,...,n, and the functional F' has the form
F(v):/(f+Vg)vdx+Z/ ¢j - vdx, (4.10)
K — Jr,
Jg=1""3

with f € Wg, 5(K), ¢; € Wﬁlﬁ)é(Fj), then (u,p) is a strong solution of problem (4.1), (4.2). Theorem
4.2 ensures the existence and uniqueness of weak solutions provided the line Re A = —( — 1/2 does not
contain eigenvalues of the pencil A(\).

4.5 Regularity of weak solutions

Analogously to [16, Th.4.4], the following result holds. The proof is essentially based on Theorem 2.4.

Theorem 4.3 Let (u,p) € Wji_;,, o(K)?> x W§_,,, ((K) be a solution of problem (4.8), (4.9). Suppose
that the functional F' € V>3, | has the form (4.10), where

FeWERAK)?, geWiK), ¢, e W, 2T,

[ > 2, 0 is not integer, max(l — 1 — Re )\gk), 0) < &, <l —1. Suppose further that the vector functions
hj € Wé}l/z(f‘j)df satisfy the compatibility condition (4.3) on the edges Mj;. Then u € W} 5(K)* and
pE Wé}l(lC)

Corollary 4.1 Let the assumptions of Theorem 4.3 be wvalid. Additionally, we assume that (p0,)"f €
_ y - y - 4, v - A
WER(K)2, (00,)7g € WESK), (p0,) by € Wi 3 /2(T;)3%, (p0,)"¢; € Wh2(T))% forv=1,...,N
and j=1,...,n. Then (pd,)"u € Wé’(;(lC)?’ and (p0,)"'p € Wé}l(lC) forv=1,...,N.
Proof: 1t suffices to prove the assertion for N = 1. For V > 1 it can proved by induction. Let first
dr > 1 — 2 and, therefore, max(1 — Re )\gk), 0) <dp—1l+2<1fork=1,...,n. Then from Theorem 4.3

and Lemma 4.2 it follows that pd,u € W3 ;55 1, o(K)* and pdpp € Wji_;. 55 1, 5(K). Using Theorem
4.3, the equations

—A(pdyu) + V(pd,p) = (pB, +2)f = Vp € W5 2(K)?, =V - (pdyu) = (pd, +1) g € W1 (K) (4.11)
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and analogous equations for S;(pd,u) and N;(pd,u, pd,p), we obtain pdyu € Wj 5(K)* and pd,p €
Wi H(K).

Now let ép <1 —2 for k =1,...,n. By Theorem 4.3, we have (u,p) € Wé)é(IC)?’ X Wé:sl(lC) and,
consequently, pd,(u,p) € Wé:ll,é(lC)“?’ X Wéjzl’[s(lC). Using again Theorem 4.3 and (4.11), we obtain
p0,(u,p) € WZM(IC)?’ X Wé}l (K). B

Finally, let §; < I — 2 for some, but not all, k. Then let ¥1,...,%, be smooth functions on €2 such
that ¢; > 0, ¢»; = 1 near M; NS? and > 1p; = 1. We extend 1; to K by the equality v;(z) = ¢;(z/|z|).
Then 0%¢;(z) < ¢ |z|~1*l. Consequently, the assumptions of the corollary are satisfied for (ju,v;p), and

from what has been shown above it follows that pd,(¢;u,¥;p) € Wé75(IC)3 X Wé;sl(lC) forj=1,...,n.
This completes the proof. m

Remark 4.1 If dy, + dj_ is even and, moreover, 0 < 7 for di, = di_, 0 < 7/2 for dy, # dj_, then

the number Re )\:(Lk) in the condition on d; of Theorem 4.3 and Corollary 4.1 is equal to 1 and can be
replaced by p. However, if §;, < I —2, then hy, , ¢, and g must satisfy certain additional compatibility
condition on the edge M}, (cf. Theorem 2.6 and Remark 2.2).

In the case when A = 0 is not an eigenvalue of the pencils Ax(\), we obtain a regularity result
analogous to Corollary 4.1 in the class of the weighted spaces Vé’ s+ In the following corollary, let (x, ni be

smooth cut-off functions on Q equal to one near the corner QN M}, such that 1, = 1 in a neighborhood
of supp ¢; and 7, = 0 in a neighborhood of the corners ) N M;, j # k. We extend ¢ and 7, by

Ce(x) = Gelz/lz]),  ni(z) = me(z/|z])

to functions on .

Corollary 4.2 Let (u,p) € Wj_; 1 o(K)> x WJ_,,, o(K) be a solution of problem (4.8), (4.9), where
122, F eV, has the form (4.10), ni(pd,)" f € V52(K)?, ni(pd,)"g € VESHK), mi(pdp) hy €
Vﬁl:;l/z(I‘j)?’*dj7 ne(p0,)" ¢ € VBZ;SB/Q(Fj)df, forv =1,...,N. Suppose that 8 is positive and not

integer and that the strip 0 < ReA <1 —1— 6y does not contain eigenvalues of the pencil Ax(\). Then
Ck(p0,) u € Vi 5(K)? and Gr(pd,)'p € Vi (K) forv=1,...,N.

P r oo f From Corollary 4.1 it follows that (;(pd,)"u € Wé’é(le’ and (x(p0,)"p € Wé;sl(lC) for

v=1,...,N. Moreover, due to Lemma 2.17, we have x(x(p0,)"u € Vé’(;(IC)g and x(x(pd,)"p € Vé:sl(lC)
for v =1,..., N and for every smooth function x with compact support vanishing near the vertex of the
cone. Therefore,

09 Ck(p0,)"u =0 on My, for |of <l —1—061, 05Ck(pd,)"p =0 on M, for |a| <1—2—46.
This implies (,(p0,)"u € Vﬁlﬁ(lC)‘(3 and (x(pd,)"p € Vé;;l (K) forv=1,...,N. O

The following theorem can be proved analogously to [16, Cor.4.3] by means of the the second part of
Theorem 4.1.

Theorem 4.4 Let (u,p) € W ((K)? x W3 4(K) be solution of problem (4.8), (4.9), where g € W§ (k) N
W§, o(K), hj € Wg;)l/Q(l"j) N ngolp(lﬂj), and F € VXN V5. If there are no eigenvalues of the pencil
A(N) on the lines ReA = — — 1/2 and Re A = =3 — 1/2, then (u,p) admits the decomposition (4.6),
where w € Wé/’o (K)3, q € I/Vg,#0 (K), and X\, are the eigenvalues of A(N) between the lines Re A = —3—1/2
and ReA = -3 —1/2.
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4.6 Estimates of Green’s matrix

A matrix G(z,€) = (G, (ac,{))?j is called Green’s matrix for problem (4.1), (4.2) if

=1

—A,G(,6) + ViGaj(2,6) = 6z — ) (81,5,02,83,5)" for 2, €K, (4.12)

-~V -éj(x7§) =04;0(x—¢) fora, ek, (4.13)

SkGy(2,6) =0, Ni(0,) (Gj(2.€),Guy(,€)) =0 forz €Ty, €K, (4.14)
k=1,...,n. Here (_jj denotes the vector with the components G ;, G2 ;,Gs ;.

Theorem 4.5 1) Suppose that the line Re A = —F3 — 1/2 is free of eigenvalues of the pencil 2A(\). Then
there exists a unique Green matriz G(x,§) such that the function © — ((Jx — £|/7(€)) Gij(x,§) belongs
to Wﬁlyo(lC) fori=1,2,3 and to WB7O(IC) for i = 4, where ( is an arbitrary smooth function on (0,00)
equal to one in (1,00) and to zero in (0, 3).

2) There are the equalities

G j(tx,t8) = t_TGi’j(am{) forx, £ €K, t>0, (4.15)

where T =14 0; 4 + 9 4. B
3) The functions G; ;(x,§) are infinitely differentiable with respect to x,§ € K\S, x # &, and satisfy
the following estimates for |z|/2 < |§] < 2|x|.

0007 Gy j (2, )| < el — &~ |2 — &) < min(r(x),r(9)),

0i,a(z) r 7j,~(§)
0207 G j(2,8)| < cla — g|7FeI=h (|()£|) (|x (_f)ﬂ) ;o =&l > min(r(z), 7(£)),

where 0; o(x) = min(0, py — || — 854 — €), pe = P(z), and k(x) is the smallest integer k such that
r(x) = re(x). In the case when X = 0 is not an eigenvalue of the pencil Ay (N), one can even put
0ia(x) =Re )\gk(w)) — ;4 — |a| — € for |a] < Re )\gk(x)) — i

Furthermore, for j =1,...,4 there is the representation Gy ;(x,§) = =V, - ﬁ](x,f) +Q;(z,§), where
ﬁj(x,f) -n forzely, k=1,...,n, £ € D, and the inequalities

0907 Py (2,)] < cayy o — &7 70071 10007Q; (2, €)] < iy r(€) 72001 (4.16)
are satisfied for |x — & < min(r(z),r(£)).

4) The functions & — ((Jz — 5\/7“(95)) Gy j(x,€) belong to W5 (K) for j =1,2,3 and to W° 5 (K)
for 7 = 4. The vector functions H (Gin1,Gi2,Gi3)t and the functions G4, i =1,2,3,4, are solutions
of the problems

—AcH;(2,€) + VeGia(2,€) = (x — €) (51,012, 6i3)"  for 2, €K,
—Ve - Hi(x,€) = 0i4d(x —f) foraz,§ € K,
Skﬁz(x7£):03 Nk(a’f)( ( g) 14(.%,5)) =0 fOT:EGIC, ggl—‘ka ]f:l,...,’fl

This means that every solution (u,p) € C§°(K)* of equation (4.1) satisfying the homogeneous boundary
condition (4.2) is given by the formulas

U; (IL‘)

/ (F(€) + Veg(€)) - Hilw,€) de + / (&) Cra(w.€)de, i=1,2,3,  (417)
K K

p(x) —g(fﬂ)+/lc(f(§)+vgg(£)) 'ﬁ4(fﬂ7§)d£+/}69(€) Gaa(z,€)dE. (4.18)

P roof. 1) We define Green’s matrix by the formula

[z ¢

G(x,8) = (1-¢( @)

) G(x,€) + R(x, ),
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where G(z,£) is Green’s matrix of Stokes system in R3. The existence of a matrix R(z,&), where
Ri;(-,€) € W5o(K), i = 1,2,3, and Ry (-, &) € WJ,(K) are such that G(z,¢) satisfies (4.12)-(4.14)
follows from Theorem 4.2.

2) Eq. (4.15) follows directly from the definition of G(«;, §).

3) The smoothness of G(z,¢) for x # ¢, z,£ € K\S follows from the manner of its construction. The
estimates of Green’s matrix and the representation for the components G4 ; can be proved analogously
to the third part of Theorem 3.2 using the estimates for Green’s matrix in a dihedron.

4) The last assertion can be proved analogously to [12, Th.2.1]. O

As a consequence of items 3) and 4) of the last theorem, the following assertion holds.

Corollary 4.3 For i =1,...,4 there is the representation G;4(x,§) = —V¢ 'ﬁi(x,ﬁ) + Qi(x, &), where
73@(33,5) -n forE €y, €D, and P; and Q; satisfy the estimates

|3§3g751($7§)| < CaplT— €|_1_5"”4_|a‘_‘7‘, |8§‘82Qi(x,§)| < Cany T(f)—Q—SM—IaI—Ivl

for |z — &| < min(r(x),r(£)).

Finally, we estimate Green’s matrix and its derivatives in the cases |z| > 2|¢| and |§| > 2|z|. For this
we need the following lemma.

Lemma 4.4 1) Ifu € Vé’d(/C), pO,u € Vﬁl’é(lC), [ > 2, then there exists a constant c¢ independent of u
and x such that

max(d;—1+1,0)

o 14+3/2 H (7’]>

2) Ifu e Wé,(;(lC), pO,u € Wé,(;(lC), 1>2,0,#1—1 for k=1,...,n, then there is the estimate

5 1+3/2 H (Tk)

P roof. 1) Applying the estimate

Ju(@)] < ¢ (lullwy o) + oDl ) (4.19)

max(d; —1+1,0)
fu(@)| < ¢ (Iullw, , oc) + 108l e )- (4.20)

s o) < [ Z () + 1)) 22

0<p<oo p

(which follows immediately from Sobolev’s lemma) to the function p?~!*+3/2y(p,w), we obtain

_ 2 ° _
swp 200 ulp ) < [T O (o) 4 90,ulp)?) dp (421)

0<p<oo

Furthermore, by Lemma 2.2, we have

sug H (W) 7 pd,u(p,w)| < c||pdyulp, - Hvl(Q (4.22)
we

Since the norm in V} 5(K) is equivalent to

oo ! 1/2
Jull = ( / PO N (00, o, N[ an oy )
k=0

The last inequality together with (4.21) implies (4.19).
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2) If 6 > 1 —1 for all k, then W} 5(K) = V} 5(K) and (4.20) follows from (4.19). If 6 <1 —1 for a

certain k, then any function v € Wg (€2) is continuous at the corner M NQ and the supremum of v in a
neighborhood of this corner can be estimated by the Wg norm of v. Therefore, instead of (4.22), we have

Slelg H rk max(5k—l+1,0) |papu( ’ <c ||p3 u p’ HW’(Q)
This together with (4.21) implies (4.19). O

Theorem 4.6 Let G(x,£) be Green’s matrix introduced in Theorem 4.5. Furthermore, let A_ < Re A <
Ay be the widest strip in the complex plane which is free of eigenvalues of the pencil A(\) and which
contains the line Re A = —3 — 1/2. Then for |z| > 2|¢| there is the estimate

—0i,4—|a|+e —A_—1-8;4—|v|—¢ . LR Thsdoy
0200G (2, )] < el ~Buamlele fg|-A-1-bambie [T (20 = 2y 13( ¥ )

k=1

where € is an arbitrarily small positive number and ok ;o = min(0, uy — || — d;4 — €). In the case
when A = 0 is not an eigenvalue of the pencil Ax(\) and |a| < Re )\gk) — 0i,4, we can even put Og ;o =
Re )\gk) — |a| — 0;4 — €. Analogously,

n

|6;‘62Gi,j($,§)’ < C‘$|A+76i,4f|a\75 |£‘7A+7176]‘,47\'y\+5 H (Tk(CC))Uk,i,a ﬁ (M)G’k,iﬁ

A H {7

for |&| > 2|x|.

P r o o f. Suppose that |z| = 1. We denote by ¢ and 1 smooth functions on K such that ¢((¢) = 1 for
|€] < 1/2, n =1 in a neighborhood of supp ¢, and n(¢) = 0 for || > 3/4. Furthermore, let [ be an integer,
I > maxpu, + 1, 1 > 3. By Theorem 4.5, we have

(€)( — DDy Hi(,6) + Vedy Gia(2,€)) =0, n(€) Ve~ Hi(2,6) =0 for £ €K,
n(&)SkOy Hi(x,é“) =0, n(&)Nk(0e) ( (x €),05G; a(x, f)) =0 foréely, k=1,...,n

for i = 1,2,3,4. Since 5(-)0%H; € W!;o(K)? and n(-)09Gia(x,-) € W2 (K), we conclude from
Corollary 4.1 (see also Remark 4.1) and Theorem 4.4 that

CC) (€101 020 Hi(, ) € Wh 1oy 51 (K2, () (€01 0702 Gial, ) € Wi 1y 1.541 (K)

for j =0,1,..., where 3’ =1+ A_+e—-1/2,0, =1—1—pp+e. If A =0 is not an eigenvalue of the
pencil A;(N), then by Corollary 4.2, we have also ¢(-) (x(+) (|§|8‘5‘)38V8"H (x,-) € Vé,+|,y|’5/+h|(/C)3 and

¢() G (|§|8‘5‘)98g8§,‘G2—’4( )€ V 5 +1],5'+ || (), where 6, =1—1—Re )\gk + ¢ (here (j, is the cut-off
function introduced before Corollary 4.2). Using Lemma 4.4, we obtain

€l

<c (IIn()aﬁﬁz(ﬂc, ')”W}B’O(ICP + In(-)05 Gia(z, ')||W9670(rc)) (4.23)

st T (87 9o gpc, s a,)
k=1

for i,5 =1,2,3,4, and |£] < 1/2, where ¢ is independent of z and §. By Theorem 4.2, the problem

b(u,v)f/’CpV~v:/K77(y)F(y)~v(y)dy for all v € V_g

—V-u=ng in L, Sxu=0 on I
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has a unique solution (u,p) € Vg x Wg’O(IC) which van be written in the form

—

p(y) = —n(y) 9y) + /}C 0(2) (F(=) - Ha(y, 2) + 9(2) Gaaly. ) d=.

Let x1 and x2 be smooth cut-off function, x2 = 1 in a neighborhood of z, x; = 1 in a neighborhood of
X2, x1(y) =0 for |z — y| > 1/4. Since x1 and 7 have disjunct supports, we have

Xl(_Au + vp) = 07 le U= 07 XlSku = 07 XlNk(uvp) =0.
Consequently, from Corollary 4.1 (see also Remark 4.1) and Theorem 4.4 it follows that
Xa(p0, Y 050 € Whir 5o (0%, Xa(p0,)02p € Wi ()

for arbitrary integer j and for arbitrary 8”. In the case when A = 0 is not an eigenvalue of the pencil
Ag(N), then by Corollary 4.2,

X2Gk(pd,)’ Ofu € Vﬁl/',6'+|a\(K)37 X2Ck(pD,) 95 € Vé/_/;/HM(K)g-

Thus, by Lemma 4.4,

n n
H ri(x) TR0 |0%u(x)| + H r (@)~ kA |0 p(x)| < ¢ (||F| ve, t+ ”gHWE,O(K))-
k=1 k=1

This means that the functionals

n

Vi x W254(K) > (Fg) — H ()70 0w ()
k=1
= [ rela)ree / n(2) (F(z) - 02 Fy(z, 2) + g(2) 82Gia(x, 2)) dz,
k=1 K
1=1,2,3, and

r(x) "k /}Cn(z) (F(z) ~8§‘ﬁ4($, z) + g(2) 05Gaa(z, z)) dz,

are continuous and their norms are bounded by constants independent of x. Consequently,
n
In(-)0g Hi(w, v, + In()05 Giala, Nwo, oy < ¢ [T rala)se
k=1
for i,1,2,3 and

In()05 Ha(w, Y lvey + In(-)05 Gaala,)lwo , ooy < e [] rala) s,
k=1

Combining the last two inequalities with (4.23), we obtain the assertion of the theorem for |z| = 1,
|€] < 1/2. Since G; ;(z, ) is positively homogeneous of degree —1 —§; 4 — §; 4, the estimate holds also for
arbitrary x, &, || < |z|/2. The proof for the case |{| > 2|z| proceeds analogously. O
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Remark 4.2 The estimates in Theorems 4.5, 4.6 can be improved by means of Theorem 3.3 and Corollary
4.1 if the direction of the derivative is tangential to the edges. In particular, we have

T R e

if |x]/2 < |¢] < 2|z, |z — &| > min(r(z), r(£)),

)min(O,um—éiA—a) < 7"(5) )min(O,ug—éjA—e)
|z = ¢

|0,Gij(,€)| < cla|t 7170t g 7A-T1m0ame T (L(I))MU (rk(é))gk’jyo
k=1
if |x| > 2|¢] and

D 1 o)

poi s 19l

7 (7EE)
1 (%

)Uk,j,ﬂ

k

if €] > 2|z|, where oy, ;0 = min(0, px — d; 4 — €).
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