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Abstract
The authors prove maximum modulus estimates for solutions of the stationary Stokes and Navier-
Stokes systems in bounded domains of polyhedral type.
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1 Introduction
The present paper is concerned with solutions of the boundary value problem
—vAv+ (v-V)v+Vp=0, V-v=0 inQ, vlgg=0¢ (1)

(v > 0), where Q is a domain of polyhedral type. This means that the boundary 9 is the union of
a finite number of nonintersecting faces (two-dimensional open manifolds of class C?), edges (open arcs
of class C?), and vertices (the endpoints of the edges). For every edge point or vertex w, there exist a
neighborhood U and a diffeomorphism x : U — R? of class C? mapping U N € onto the intersection of
the unit ball with a polyhedron. Note that the results of this paper are also valid for domains of the class
A? introduced in [3].

It is well-known that the solution of the boundary value problem

—Aw+Vg=0, V-w=0 inQ, wpg=7¢ (2)
for the linear Stokes system in a domain Q C R? with smooth boundary 9 satisfies the estimate

Wl @) < el o0 (3)

with a constant ¢ independent of ¢. This inequality was first established without proof by Odquist [6].
A proof of this inequality is given e.g. in the book by Ladyzhenskaya. We refer also to the papers of
Naumann [5] and Maremonti [2]. Using pointwise estimates of Green’s matrix, Mazya and Plamenevskil
[3] proved the inequality (3) for solutions of problem (2) in domains of polyhedral type.

For the nonlinear problem (1), Solonnikov [7] showed that the solution satisfies the estimate

v]lro @) < c(l9ln.o0) (4)

with a certain function ¢ if the boundary 9 is smooth. Mazya and Plamenevskii [3] proved for domains
of polyhedral type that the solution v of (1) with finite Dirichlet integral is continuous in Q if ¢ is
continuous on 9. However, [3] contains no estimates for the maximum modulus of v. The goal of the
present paper is to generalize Solonnikov’s result to solutions of problem (1) in domains of polyhedral
type. The function ¢ constructed here has the form

ct) = cot e/, (5)

where ¢y and ¢y are positive constants independent of v.



2 Estimates for solutions of the linear Stokes system

First, we consider problem (2). Throughout this paper, we assume that ¢ € L, (992) and

aﬂ(;5-71d<7=0. (6)

The following two lemmas were proved in [7] for domains with smooth boundaries. We give here other
proofs which do not require the smoothness of the boundary 0€2. In particular for the proof of Lemma
2, we will employ the estimates of Green’s matrix given in [3].

Lemma 1 Let Q be a domain of polyhedral type, and let (w,q) be the solution of problem (2) satisfying
the condition fQ q(x)dx = 0. Then there exists a constant ¢ independent of ¢ such that

lwllz. ) < clléllo. oo (7)

and
3

sup d(x) (3 |02, w(@)| + |a@)]) < 6z o0 (®)

€N =1
where d(z) = dist(z, 09Q).

P r o o f The inequality (7) was proved in [3, Cor.9.2]. Its proof is included here for readers’
convenience. Let G(x,€) = (G, ; (:c,{))jjzl denote the Green matrix for problem (2). This means that
the vectors éj = (G1,4,G2,,Gs, ;) and the function G4 ; are the uniquely determined solutions of the
problems

_Awéj<xa§)+va4,j(x7f) :6(‘1'_5) gjv Vxéj(xaf) =0 for l‘,fEQ, j:172a37
_Aré4('ra§) + va4,4(‘T7€) = 07 v:c : C_j4(ﬂ7,§) = 5(I - g) - (mes(Q))il fOI' I?E € Qv
Gi(x,6) =0 forz €dQ, £€Q, j=1,2,3,4,

satisfying the condition

/G4,j(x,£)dw =0foréeQ, j=1,2,34.
Q

Here €; denotes the vector (d1,;,92,;,93 ;). Then the components of the vector function w and g have the
representation

3
wi@) = [ (=30 I 0,(0) + Guate € 0(6) nc) de. = 1,23

50 j=1
3
ax) = / (-% 6G4an(:’f) 05(6) + Gaa(w, €) 9(6) - e ) de.
89 i=1

For the proof of (8), we employ the estimates of the functions G; ; given in [3]. Suppose that z lies in a
neighborhood U of the vertex z(!). We denote by p;(x) the distance of 2 from the vertex z(¥), by ry(z)
the distance from the edge My, by r(z) = ming ri(z) the distance from the set of all edge points, and
introduce the following subsets of U N (ON\S):

2 p1(€) > 2p(2)},
2 p1(§) < pi(w)/2},
2 p1(@)/2 < p1(€) < 2p1(x), |z — & > min(r(x),7(£))},
sopr(x)/2 < pr(€) < 2p1(2), |z — & < min(r(z),r(£))}

By ={€cUn (NS

By = {€cUN(ONS

Bs = {€cUn@NS
(

)
)
)
Ey={£€UN(00\S)



Let K(x,€) be one of the functions

0 0 8G1‘,4($,€) 0

Ba; ong Co@ 8 T Cas(@ 0, Caale,8),

i, =1,2,3. Then the following estimates are valid for x € U, £ € U N (ON\S):

K@8)| < em@m© 2 ] (rk(x))url 1 (rk(f))ukﬂ for £ ¢ B,
ke

pi(x) ney, \P1(E)
—A-2 -1 T () et rR(§) et
‘K(m7§)| < Cpl(m) A pl(&)A kleIJl (pli(.'ﬂ)) kgl <pi(£)) for f € E27
Lo () () Y
[K@o] < cle—¢ 3(|zf§|> (\xff\) for & & Es,

‘K(w,§)| < c|ac—§|*3 for £ € Ey,

where A > 0, pp > 1/2, > 1/2. Here J; is the set of all indices k such that z® € M. Note that

~

ri(z
pi(x

eir(z) < pi(x) []

keJy

<cor(x) forxzel,

~

where ¢y and co are positive constants. We consider the integral
I@)= [ K@gu©d
annu

for x € U, 1 € Lo (0N2) and write this integral as a sum I(z) = I1 + Iy + I3 + I, where I}, is the integral
of K(x,&)w(&) over the set Ey, k =1,2,3,4. Then

_ ri(z)\re—1 A r(€)\re—1
nos en@ ™ TG 1ellaon oo IT (28)" e
cJi keJy
r—1
< em@ IT (255)" 1leaion < er@) ™ Iolion
keJy

Analogously, the inequality
I < er(@) Yl w0

holds. Suppose without loss of generality that M; is the nearest edge to . We denote by Eél) the set of
all £ € E3 such that r(§) < r1(£). Furthermore, let Iél) be the integral of K(z,£)¥(§) over the set Eél).
If¢e E:gl), then there exists a positive constant ¢ such that |z —&| > c¢p;i(x). Hence

1Y < ey (@) ey (2P ] 00 /E (&P de.

™
3
Since Eél) CH{¢: p1(x)/2 < p1(§) < 2p1(x)} and ri(x) < p1(x), we obtain
17 < epu(@) () Y] zaon < en@) T Wl on

Let € € Eg\Eél) and let 2/, ¢ denote the nearest points on the edge M; to x and &, respectively. Then
there exists a positive constant ¢ independent of xz and £ such that

|z =&l > e (r(z) + () + 2" = ¢')).



Consequently,

p—1
=i < ey Whnon | G g
E\E{V
00 pn—1
< er@) Yl o0 /o /R T T(;) T ¢’ dr = Cr(x) " 1Y) L o9) -

Finally using the estimate for K(z,€) in E4, we obtain

I < elblliaon [ Jo-€70d¢ < Cdw) ¥l on).
Ey
Thus we have shown that
I(z) < ccl(:zc)*1 VllL. o0 forzeQniU.

Now, we consider the integral

/ K (2,€) $(€) da (9)

oQNy
for x € QNU, where V is a neighborhood of the vertex ("), [ # 1. Using the estimate

)kal H (Tk-(f))ﬂkil forxel, £V,

G0l < et o 1T (2465

P e, i€
we obtain
r—1
[ K@ou©d] < en@ TT (A5)" Wliwom < o) 1l on -
0Ny keJy

The same estimate holds for the integral (9) in the case when V is a neighborhood of an arbitrary other
boundary point. This proves (8). Analogously, (7) holds by means of the estimates

A —A—2 T (@) \ #e i (§) \ 1t

K@ < ep@)p(e) kgl(m@)) kgl(m(@) for ¢ € By,
—A-1 A—1 Tk () \ P 75 (€) \ et

K@ < ep@) ™ p(e) kgl(pﬂx)) kgl(m(ﬁ)) for ¢ € By,
(@) @) e

Kol < clo-d7(2g) (Gog)  foreehs

K(@.)| < cd@)a—¢™ for¢e Ly,

for the functions K (z,§) = 0G; j(z,£)/0ne and K(z,§) = G, 4(x,€), 1,5 = 1,2, 3 (see [3, Th.9.1]). O

We denote by W'P(Q) the Sobolev space with the norm
. » 1/p
[ullwre ) = ( A Z |02 u(z)| dm) )
ler| <1

Here [ is a nonnegative integer and 1 < p < 0.

Lemma 2 Let (w,q) be a solution of problem (2), where Q is a domain of polyhedral type. Then there
exists a vector function b € WH6(Q)3 such that w = rotb and

[bllwre ) < clldllz. o)

with a constant ¢ independent of ¢.



Proof. Let B, be a ball with radius p centered at the origin and such that Q C B,. Furthermore,
let (w™), 5) be a solution of the problem

—Aw(l) + Vs = O, V- w(l) =0in Bp\ﬁ, w(l)|aQ = ¢7 ’U}(l)‘aBP =0.

Obviously, the vector function
(z) = w(x) for z € Q,
U= wW(2) forx e B,\Q

satisfies the equality V - u = 0 in the sense of distributions in B,. Due to Lemma 1, the Lo, norms of w
and w®) can be estimated by the Lo norm of ¢. Hence,

lullLes,) < cll@llL. o0,

where ¢ is a constant independent of ¢. Suppose that there exists a vector function U € 1/1/2’6(3,))3
satisfying the equations
—AU=u inB,, V-U=0 ondB, (10)
and the inequality
[Ullwzs(s,)2 < cllullem,): - (11)
Since A(V-U) =V -u=01in B, it follows that V- U = 0 in B,. Consequently for the vector function

b =rot U, we obtain
rotb =rotrot U = —AU 4 graddivU =u in B,

and

ollwrem,)z < e l|Ullwess,)z < cerllullpgs,)s < c2l|éllL.@0) -
It remains to show that problem (10) has a solution U subject to (11). To this end, we consider the
boundary value problem

ou,
or

2
—AU =u in B,, +2 U-=Uy=U, =0 ondB,, (12)

where U,., Uy, U, are the spherical components of the vector function U, i.e.

U, sinf cosyp sinf sing  cosf Uy
Ug | = | cosBcose cosfsing —sinf U,
U, —sing cos ¢ 0 Us

On the set of all U satisfying the boundary conditions in (12), we have
> 2 ou

—/ AU-de:Z/ |0, U dz— p~* —Udo

B, =/Bs oB, or

- ou, 3
L e [ % e s ot
j=1"Bp aB, Or j=1"Bo OB

P

Since the quadratic form on the right-hand side is coercive, problem (12) is uniquely solvable in W2 (Bp)3 .
By a well-known regularity result for solutions of elliptic boundary value problems, the solution belongs
to W*°%(B,)? and satisfies (11) if u € Lg(B,)*. From (12) and from the equality

ou, 2 10Uy cotf 1 90U
V.-U= -U,+—— £
or +r +r 00 + r 0+rsin9 dy
it follows that V- U = 0 on 0B,. The proof of the lemma is complete. O

Next, we consider the solution (W, Q) of the problem

AW AHVQ=f, V-W=0inQ, Wy =0. (13)



Suppose that (D, ..., 2(4 are the vertices and Mj, ..., M,, the edges of Q. As in the proof of Lemma 1,
we use the notation p;(z) = dist(z, 2\9)), rx(z) = dist(z, My), p(z) = min; p;(x), and r(x) = miny, ry(z).

Then Vﬂlig () is defined as the weighted Sobolev space with the norm

d L 50k s
fully e @) = (/Q ¥ r(x)sua—m)j]:[lpjﬁa IT (%)™ jozuta o)

| < k=1

1/s

Here, [ is a nonnegative integer, s € (1,00), 3 = (81,...,84) € R?, and § = (61,...,6,,) € R™. The
space Vﬁ_,(;l’s(Q) is the set of all distributions of the form u = uy + V - u"), where ug € V;fl’gﬂ(Q)

and u) € V;”;(Q)?’. By Theorem [3, Th.6.1] (for a more general boundary value problem see also [4]),
problem (13) is uniquely solvable (up to vector functions of the form (0,¢), where ¢ is a constant) in
Vs ()% x Vi3 (Q) for arbitrary f € V 1°(Q)% if

1B —3/2+3/s| <e;j+1/2 and |0y —1+2/s| <e)+1/2.
Here ¢; and ¢, are positive numbers depending on €. In particular, problem (13) has a unique (up to
constant Q) solution (W, Q) € VO{’OS(Q)3 X VO%S(Q) satisfying the estimate

HWHVO{;)S(Q) sc Hf”vnl_;f(n) (14)

for arbitrary f € VOTOLS(Q)?’ if 1 < s < 3+ ¢ with a certain € > 0. The components of the vector function
W admit the representation

3
Wia) = /Q S Gl €) £5(6) de, (15)
j=1

where G j(z,§) are the elements of Green’s matrix introduced in the proof of Lemma 1. From (14), we
obtain the following estimates.

Lemma 3 Suppose that f = 0,,g, where j € {1,2,3}. If g € Ls(Q)3, s> 3, then

Ly(Q) - (16)

WL (@) < cllgl

If g € L3(Q)3, then
Wi

L. < cllgllis @ (17)

for arbitrary s, 1 < s < 0.

Proof. Let g € Ly(Q), s > 3, and let € be a sufficiently small positive number, ¢ < s — 3. Then it
follows from (14) and from the continuity of the imbeddings Vol’bd+6 () C WL3TE(Q) C Loo(Q) that

IWllzwi) < erlWllwrsre @) < c2 [Wllyasre @) < esllgllLs,e@) < callglii.o -
Analogously, we obtain
W, < eslWllwisia) < 6 [IWllyis ) < erllgllae) -

The lemma is proved. O

3 An estimate of the maximum modulus of the solution to the
Navier-Stokes system

Now we prove the main result of this paper.

Theorem 1 Let (v,q) be a solution of problem (1), where Q is a domain of polyhedral type. Then v
satisfies the estimate (4) with a function ¢ of the form (5).



P roof. Suppose first that v = 1. Let (w,q) be the solution of problem (2), [, ¢(x)dz = 0. Then
the vector function (v — w,p — q) satisfies the equations

“Alv—w)+Vp—-—q¢)=—-(w-V)v, V-(v—w)=0

in Q and the boundary condition v —w = 0 on 9. Hence by (15), we have v = w + W, where W is the
vector function with the components

3 3
Wi(x) = —/Q;Gi,j(x,f) (v(&) - V) v;(§) dg = —/Q;Gi,j(%f)v’ (vi () v(&)) dt,

1 =1,2,3. Using (16), we obtain

3
Wlew@ < lwlleo@ + Wi @ < lwlloo@+e D lviv]
ig—1

1. (18)

A

Ls/2(Q)

IN

[l o) + ¢ lv]

for arbitrary s > 6. From (17) it follows that

3
L@ ¢ Y vl

[l < llwlle.@ + Wik < vl
ij=1
< allwlpg@ + e vl - (19)
Combining (3), (18) and (19), we obtain
V]| Lo (@) < €3 <H¢||Loo(aa) + ||¢H2Loo(aﬂ) + ||”Hi6(sz))~ (20)

with a certain constant cs independent of ¢.
The norm of v in Lg(£2) can be estimated in the same way as in [7]. We only sketch this part of the
proof. By Lemma 2, the vector function w admits the representation w = rot b, where

lbllwre) < cllollL. o0 -

Let 6(z) be the regularized distance of z from the boundary 9Q (see [8, Ch.6,§2]), i.e. § is an infinitely
differentiable function on 2 satisfying the inequalities

a1 d(z) <d(x) < exd(x), ‘82‘6(3:)‘ < cq d(x)l_lo“

with certain positive constants c1, co, ¢,. Furthermore, let p and s be positive numbers, and let x be an
infinitely differentiable function such that 0 < y < 1, x(t) = 0 for t < 0, and x(t) = 1 for t > 1. We
define the cut-off function ¢ on 2 by

(@) = x(x log pr))

This function has the following properties.

(i) 0 <¢(x) <1, ¢(x) =0 for 6(x) > p, ((x) =1 for §(z) < ep, where € = e~ /%,
(i) [V¢(2)| < W 100,02, ¢ ()| < €

"~ fori,j=1,2,3.

d(x)
We put
v=V +u, where V =rot(¢(b)=Cw+ V{ xb.

Then u satisfies the equations

—Au+ ((V+u) V)ut+(u-V)V=AV —(V-V)V -Vp, V-u=0



in Q and the boundary condition u|sg = 0. From this it follows that u satisfies the integral identity

3 3

Ju
S0~ 3 [ sV g do = L, 1)
j=1 j=17% J

where

&=
£
[

3
ou
/Q(AV—(VV)V—vp).ud;u—jZ/Q — YV, Vu 4V V- 8x])dx

3
/Q(w~uAC+2w~(VC~V)u+qu-VC)dm;/QV(Vbe)j~Vujdz

3 ou
+ ) ijv.a—dx
,:1 7

(here (V({ x b),; denotes the jth component of the vector V({ x b). Using Lemmas 1-2, the inequality

_92 2 2
/Qd(ac) |u(z)| dmﬁc/ﬂ|Vu(m)| dz,

(see [1, Sec.8.8]), and the fact that d(x) > ep for = € supp V(, we obtain

)| < Cr (g 19lziom + (14 2)\|¢||L o) VUl (22)

where (' is a constant independent of p and . Furthermore,

’Z/u;v T%dx‘ = 'g/ﬂuj(Cervgxb).aa;jdx‘
3

Co (p+ ) 1Ml o) Y IV 0 -
j=1

IA

The numbers p and x can be chosen such that

Ca (p+5) [0l o0) < 1/2.
Then it follows from (21) and (22) that

3 2
K K
> IV sy <261 (g [9lwiom + (4 5 g) 161 om) )
j=1
By the continuity of the imbedding W12(Q) C Lg(2), the same estimate (with another constant Cy)
holds for the norm of u in Lg(Q)3. Since |V(| < cx/(ep), we further have

Vllzee) < ICwliLoo) +1IVE X bllLg(o) < Cs (1+ &/(ep)) 6]l L 00 (23)
(see Lemmas 1 and 2) and consequently

R

KR I€2
Iollzac@) < IV ot + el < s (14 2+ g [9lciom + (4 Zg) 161 om) )
If we put
1 —1/k

k=p=-—7—— and e=e

_ 6—4C2H¢\|Lw(am ,
4C2 |9l .. (002)

we obtain
[v]lLe(0) < Cs <||¢||Loo(0ﬂ) et @l 1167 o0 6802”¢”L°°(8”’>~

This together with (20) implies (4) for v = 1. If v # 1, then we consider the vector function (v~ 'v, v~ ?p)
instead of (v, p). O
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