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ABsTrACT. In this book realizations and applications of a new concept of
approximation procedures are discussed. These procedures have the common
feature that they are accurate without being convergent as the mesh size tends
to zero.

The lack of convergence is compensated for by the flexibility in the choice
of approximating functions, by the simplicity of the multi-dimensional gener-
alization and by the possibility to obtain explicit formulas for values of various
integral and pseudodifferential operators applied to the approximating func-
tions.

This allows to design new classes of high order cubature formulas of in-
tegral and pseudodifferential operators and to develop new efficient numerical
and semi-analytic methods for solving boundary value problems of mathemat-
ical physics.
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Preface

e General idea and motivation. In this book, we discuss realizations and
applications of a new concept of approximation procedures, called approzimate ap-
proximations. Most of these procedures, which include approximate quasi-interpola-
tion, interpolation, least square approximation, cubature of integral operators, and
wavelet approximations, have one common feature. They are accurate without be-
ing convergent in a rigorous sense. In numerical mathematics, such a situation
is not exceptional. For instance, non-convergent algorithms are natural in solv-
ing overdetermined ill-posed problems. However, for the approximation processes
mentioned above, convergence is required.

Needless to say, the engineers and researchers who use numerical methods for
solving applied problems do not need the convergence of the method. In fact, they
need results, which are exact within a prescribed accuracy, determined mainly by
the tolerance of measurements and other physical parameters, and always by the
precision of the computing system. Their attitude, supported by common sense,
was a powerful motivation for the development of our theory.

The lack of convergence in approximate approximations is compensated for,
first of all, by the flexibility in the choice of basis functions and by the simplicity of
the multi-dimensional generalization. Another, and probably the most important,
advantage is the possibility of obtaining explicit formulas for values of various inte-
gral and pseudodifferential operators of mathematical physics applied to the basis
functions.

The concept of approximate approximations and first related results were pub-
lished by the first author in [62] [64]. Later on, various aspects of a general theory
of these approximations were systematically investigated in several joint papers by
the authors ([66] [70]). The present book is essentially based on the papers just
mentioned and on our recent unpublished results. We also report on computational
algorithms of the approximate approximations developed together with V. Karlin,
T. Ivanov, W. Wendland, F. Lanzara, A. B. Movchan, et al.

The theory under consideration is at the very beginning of its development and
we wrote this book with the hope of attracting new researchers to this area.

e Approximate quasi-interpolation. To give an impression of what we have
in mind, recall, for example, that a typical error estimate of spline interpolation
Mpu on a uniform grid with size h, for a function v € C"V, has the form

lu = Mypulle < ch™|lull o

with some integer N and a constant ¢ independent of v and h. Here C and CV
are the spaces of continuous and N-times continuously differentiable functions.

xi
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In contrast to this situation, we fix ¢ > 0 and construct an approzimate quasi-
interpolant Mj, ~u using the translates of a more or less arbitrary function 7, instead
of piecewise polynomials

My, cu(x) = Zu(hm)ng(x/h —m).

m

One can show that
lu — Mp cullc < cl(u)hN +co(u)e.

Thus, the error consists of a part converging with order N to zero as h — 0 and
a non-convergent part ca(u)e called the saturation error. Thus, the procedure
provides good approximations up to some prescribed error level, but it does not
converge as h — 0.

The approximate quasi-interpolation procedure can be extended to the appro-
ximation of functions on domains and manifolds with nonuniformly distributed
nodes.

e Cubature formulas. The numerical treatment of potentials and other in-
tegral operators with singular kernels arises as a computational task in different
fields. Since standard cubature methods are very time-consuming, there is ongo-
ing research to develop new effective algorithms like panel clustering, multipole
expansions or wavelet compression based on piecewise polynomial approximations
of the density. The effective treatment of integral operators is also one of the main
applications of approximate approximation.

The richness of the class of generating functions 7 makes it easier to find approx-
imations for which the action of a given pseudodifferential operator can be effec-
tively determined. For example, suppose one has to evaluate the convolution with
a singular radial kernel as in the case of many potentials in mathematical physics.
If the density is replaced by a quasi-interpolant with radial 7, then after pass-
ing to spherical coordinates, the convolution is approximated by one-dimensional
integrals. For many important integral operators K one can choose 1 even such
that KCn is analytically known, which results in semi-analytic cubature formulas for
these operators. The special structure of the quasi-interpolation error gives rise to
an interesting effect. Since the saturation error is a fast oscillating function and
converges weakly to zero, the cubature formulas for potentials converge even in the
rigorous sense, although there is no convergence for their densities.

e Approximate wavelets. Another example of approximate approximations
is the notion of approzimate wavelet decompositions for spaces generated by smooth
functions satisfying refinement equations with a small error. It appears that those
approzimate refinement equations are satisfied by a broad class of scaling functions.
This relation allows one to perform an approximate multi-resolution analysis of
spaces generated by those functions. Therefore a wavelet basis can be constructed
in which elements of fine scale spaces are representable within a given tolerance.
The approximate wavelets provide most of the properties utilized in wavelet-based
numerical methods and possess additionally simple analytic representations. There-
fore the sparse approximation of important integral operators in the new basis can
be computed using special functions or simple quadrature. One can give explicit
formulas for harmonic and diffraction potentials whose densities are approximate
wavelets.



PREFACE xiii

e Applications in mathematical physics. The capability of approximate
approximations to treat multi-dimensional integral operators enables one to develop
new efficient numerical and semi-analytic methods for solving various problems in
mathematical physics. First of all, this tool can be effectively used as an under-
lying approximation method in numerical algorithms for solving problems with
integro-differential equations. Another very important application of approximate
approximations is in the large field of integral equation methods for solving initial
and boundary value problems for partial differential equations.

e Structure of the book. We describe briefly the contents of the book. More
details are given in the introduction of each chapter. Most of the references to the
literature are collected in Notes at the end of Chapters 2 - 13.

In Chapters 1 and 2 we analyze the approximate quasi-interpolation on uni-
form lattices. We start with simplest examples of second- and higher-order quasi-
interpolants in both the one-dimensional and multi-dimensional cases. Then we
turn to pointwise and integral error estimates for quasi-interpolation of functions
given on the whole space. We formulate conditions on the generating functions n
of quasi-interpolation formulas which ensure the smallness of saturation errors and
the convergence with a given order up to the saturation bound.

A variety of basis functions and algorithms for their construction are the subject
of Chapter 3. We provide examples giving rise to new classes of simple multi-
variate quasi-interpolation formulas which behave in numerical computations like
high-order approximations.

Chapters 4 and 5 are dedicated to semi-analytic cubature formulas for numer-
ous integral and pseudodifferential operators of mathematical physics, in particular
for harmonic, elastic, and diffraction potentials. In Chapter 6 we obtain approxi-
mations of the inverse operator of the Cauchy problem for the heat, wave, and plate
equations. There we also give formulas for the value of integral operators applied
to more general basis functions.

The Gaussian functions possess remarkable approximation properties. Chap-
ter 7 is devoted to quasi-interpolation and interpolation with these basis functions.

In Chapter 8 we perform approximate multi-resolution analysis for spaces gen-
erated by functions of the Schwartz class and introduce approximate wavelets. For
the example of the Gaussian kernel we give simple analytic formulas of such wavelets
first in the one-dimensional case and then in the case of many dimensions. We ob-
tain quadratures of Newton and diffraction potentials acting on these wavelets.

in Chapter 9 the method of cubature of potentials is extended to the compu-
tation of these potentials over a bounded domain. Here we use mesh refinement
towards the boundary of the domain and construct special boundary layer approxi-
mations. Our algorithm relies heavily on approximate refinement equations which,
as was mentioned, play a crucial role in the construction of approximate wavelets
also.

The approximate quasi-interpolation is extended in Chapter 10 to the appro-
ximation of functions on non-cubic grids and on domains and manifolds with non-
uniformly distributed nodes.

In Chapter 11 we study approximate quasi-interpolation of scattered data. We
show that simple modifications of basis functions provide an approximate partition
of unity which allows the construction of high-order approximate quasi-interpolants
on scattered centers.
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Finally, in Chapters 12 and 13, we treat applications of approximate approxi-
mations to numerical algorithms of solving linear and non-linear pseudodifferential
equations of mathematical physics. To be more specific, in Chapter 12 we apply the
cubature methods developed in Chapter 4 to the solution of Lippmann-Schwinger
type equations of scattering theory. We describe the Boundary Point Method, the
application of approximate approximations to the solution of boundary integral
equations. The same chapter contains formulas for the harmonic single layer po-
tential acting on basis functions given on a surface. In Chapter 13, we describe
applications to non-linear evolution equations with local and non-local operators,
including the Navier-Stokes, Joseph, Benjamin-Ono, and Sivashinsky equations.

e Readership. The book is intended for graduate students and researchers in-
terested in applied approximation theory and numerical methods for solving prob-
lems of mathematical physics. No special knowledge is required to read this book,
except for conventional university courses on functional analysis and numerical
methods.

eAcknowledgments. The authors would like to thank F. Lanzara, V. Karlin,
and T. Ivanov for the help in obtaining some of the numerical results presented in
the book.

This research was made possible by support from DAAD and Svenska institutet
(grant 313/S-PPP 4/96) and INTAS (grant 97-30551). The first author was par-
tially supported by the NSF grant DMS 0500029. The second author was partially
supported within the DFG Priority Program 1095. Both authors want to thank
the Department of Mathematics of the University of Rome "La Sapienza" for the
warm hospitality, and the second author gratefully ackknowledges the hospitality
of the Department of Mathematical Sciences at the University of Liverpool.

V. Maz'ya and G. Schmidt



CHAPTER 1

Quasi-interpolation

1.1. Introduction

1.1.1. Exercise for a freshman. Suppose we are given the task of drawing
the graph of the function

oo

fo)= 3 et

m=—o0

obtained by summation of shifted Gaussians, which are depicted in Fig. 1.1.

MQMO

FiGuRrE 1.1

The function f(z) is, of course, bounded, positive, and smooth. Moreover,
f(x+1) = f(x), i.e., it is periodic with period 1. So we expect that the graph of f
should look like a nice periodic wavy curve. However, it is quite astonishing to find
out that this graph, which can be easily produced with standard plotting software
and which is depicted in Fig. 1.2, is a constant.

-4 2 2 4
FIGURE 1.2. Graph of f(x)

1



2 1. QUASI-INTERPOLATION

In fact, this superficial impression proves to be wrong. If the scale of the y-axis
is changed as in Fig. 1.3, then we see that f(x) is not constant; it oscillates between
2.50662826 and 2.50662829.

FIGURE 1.3. Zoomed graph of f(x)

One obtains the same picture if this procedure is repeated for the sum

oo

o) = 3 ot

m=—oo

with different values of the parameter D > 0. Figs. 1.4 and 1.5 show the graph of
fp for the parameters D = 0.5 and D = 4, respectively. The plot of the function

NN N AN
1.2
3,
2,
2 4 4 2 2 4
FIGURE  1.4. fi/5(x) FIaurre 1.5. fy(x) and
and individual terms individual terms

J1/2(x) shows the oscillating behavior, whereas f4 looks like a constant. In fact f4
is also oscillating between 3.54490770181103205 & 1.43 - 10~1°, which is very hard
to depict. One can conjecture, that the oscillating function fp tends to a constant
if D increases.



1.1. INTRODUCTION 3

To rigorously explain peculiarities of the graphs, let us consider the Fourier
series of the function

(1.1) 0(z,D) = \/_ Z (@=m)?*/D D>,

m=—0o0

Its coefficients can be computed as follows:
1
0
o0 o0

27,2
—m“Dv
1 7m2/D 7271'1'1/1 dr e

m ~ VaD .

m—+1

i o (a— m)?/D o —2mive g0 \/_ Z / —2°?/D o —2mivT

m=—0o0 m=—o0

i-
9

ef(m/\/EJriW\/ﬁv)z dx

9]
2.2 X
—n“Dv
e ™ .2 .2 2
ez/Dd(E efrDv
\/7TD
— 00

The order of summation and integration can be changed here because of the absolute
convergence of the infinite sum. Hence we obtain the Fourier series

(1.2) Oz, D)= Y e TP e2mive

This representation of the function 6 is a special case of the so-called Poisson
summation formula

o0

(13) Z !E + m Z .7:’[1, 27r11/;n

m=—0o0 V=—00

where Fu denotes the Fourier transform of the function u. The definition of the
Fourier transform will be given in Section 2.1, where we also discuss some properties
of this important formula.

From (1.2), we have

O(z,D)=1+2 Z e ™ P cos 2mva
i.e., our function 6(x, D) differs from 1 by the infinite series

(1.4) 2267‘”2DU2 COS 2TV .

The coefficients e_”2D”27 v =1,2,..., can be very small depending on D, as seen
from the relation e~™ = 0.000051723.... In particular, if D > 1, then for any
x the modulus of (1.4) is less than 1.04 - 107%P. Note that in the cases D = 2
and D = 4 the difference is comparable to the single and, respectively, double
precision in the arithmetics of most modern computers, i.e., in these cases where
the function 6(z, D) is numerically the constant function 1. Moreover, the difference
|0(x, D) — 1| can be made less than any prescribed positive tolerance € by choosing
D large enough. For this it suffices to take

D > 7 %(log |e| — log2).



4 1. QUASI-INTERPOLATION

REMARK 1.1. The function 6 is closely connected with Jacobi’s Theta function
93, which is defined as (see [1, 16.27])

oo

(1.5) I3(zlr) = Y el e2inz

by the relation 6(x, D) = 93(mzx|inD).

1.1.2. Simple approximation formula. We have seen that for “large” D
the integer shifts

L o—@-m)?/p }
(1.6) { N> e ,m €7
form an approximate partition of unity, i.e., the sum of these functions is approxi-
matively equal to the constant function 1. In addition, the functions in the family
(1.6) decay very rapidly if |x — m| — oco. Hence, in the sum (1.1), one has to take
into account only a small number of terms, if one wants to compute the value at
a given point x. This leads to the idea of introducing an approximation formula

using the usual scaling and translation operations with a “small” parameter h for
z2/D

the family of functions e™
Z u(mh) o —(@—mh)?/Dh*

m=—0o0

1
VD

Formulas of this type are known as quasi-interpolants and we are interested in their
behavior as h — 0.

Let us suppose that the function u is twice continuously differentiable with
bounded derivatives. The Taylor expansion of u at the point mh has the form

(mh — )2
2

for some x,, between z and mh. Putting this into (1.7), we derive

u\xr > 2 2
Mipua) = 5L 57 e/
VT

(1.7) My pu(z) =

u(mh) = u(x) +u'(z)(mh — z) + v (zm)

u'(x) ZOO —(z—mh)?/Dh?
7D =

1 b 2 2
+ u zm)(mh — 2 ef(zfmh) /Dh )
7D 2 W/En)(mh—2)

m=—oo

The sum of the first term on the right-hand side is the function 0(x/h, D), whereas
the sum in the second term can be expressed, for example, by the derivative

"z __ 2 - _ —(z—mh)?/Dh?
o(h,D)_\/ﬁ'Dhm; (mh az)e )

—0o0
which provides the relation

o0

1 o
— S (mh — ) e~ Emm/PE _ _orpp ; ve ™D gip 2m/% .

m=—0o0
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Therefore, by using (1.2), we can write the quasi-interpolant in the form
(1.9) My, pu(z) =u(z) + Cp p(x) + Ru(z)

with the function

2p . X
(1.10) Cpp(z Ze —m D cos27w——2u thZVe Dt 51n27wﬁ

and the remainder term

—(x—mh)?/Dh?
€ )

Rp(z) = )(mh — x)

2\/_ Z

m=—0o0

which obviously satisfies

|Rp ()] < max|u Z (mh — x) e~ (@=mh)?/Dh?
The Fourier series of the last sum can be calculated similarly to the case 6(z, D),
and it holds that

9 o0
\/— Z (mh — x)2 e~ (z=mh)?*/Dh* _ % Z (1 — 2m2Dy?) e~ D¥* g 2miva/h,

m=—o0 V=—00

which leads to the estimate

Dh
< "
| B ()] < max [u” ()| ——

2 o)
1 (1 +2 ; ‘(1 — 272Dv?) cos 27_”/%’ oDV ) '

Hence, the difference between u« and the quasi-interpolant M, pu can be estimated
for any x € R by

Dh? - 2py?
(111) |Mh1’Du($)—U(I)| S T(1+;|4772Dy2_2|677" Dv )I%leaﬂé(hb ( )|
+ ‘CDJL(:E)’ .

This inequality is valid for all values of the positive parameters D and h. Here we
find the special feature of approximate approximations, mentioned in the Preface.
The approximation error consists of a term of the order O(Dh?) and the term
|CD n(z | which is called the saturation error, because it does not converge to zero
as h — 0. However, we obtain from (1.10) that

|Cp(@)] < 20u(z)] Y e ™™ P +2rDhlu/ ()| Y ve ™ PV
v=1 =

Therefore, owing to the rapid decay of e ”’QD”27 v=1,2,..., for any € > 0 one can
fix D > 0 such that the saturation error satisfies

[Con(@)] < e (Ju(@)] + hlu'(2)]) -
Since the first term of the right-hand side of (1.11) with a fixed D converges to zero,

we see that M, pu approximates u with the order O(h?) as long as the saturation
bound & (Ju(z)| + hlu'(z)|) is reached. Hence, choosing the parameter D such that
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¢ is less than the precision of the computing system, formula M} pu behaves in
numerical computations as a usual second-order approximation.

Let us emphasize the structure of Cp j, which is the sum of u(z) and hu'(z)
multiplied by oscillating functions with period h. For sufficiently large D the main
term of C'p is given by

2u(z)e ™D os 2#% .

This is a fast oscillating simple harmonics modulated by the slowly varying value
of the approximated function.

In the following we show that formulas of type (1.7), where the Gaussian e~
is replaced by more general basis functions, can provide similar or even better
approximation properties. We give some one- and multi-dimensional examples of
those approximation formulas and define approximate quasi-interpolation on uni-

form grids in the next section.

1.2. Further examples

1.2.1. Errors of approximate quasi-interpolation. We illustrate here the
approximation properties of the quasi-interpolant Mp, pu defined in (1.7) for the
function u(xz) = sinz using different values of the parameters D and h. Figs. 1.6
and 1.7 show the particular form of the terms

) ef(zfmh)z/DhQ

(1.12) sin(mh

1
VD
and its sum

o0

(1.13) (My,psin)(z) = 711'D Z sin(mh])ef(zfmh)z/D]ﬂ

for h = 0.4 and two different values D = 1 and D = 2. Visually the sums are good
approximations of sinx for this rather large step h.

m=—o0

14 1
0.8‘ 08‘
0.6 0.61
0.4 0.41
0.21 0.21
/

1 2 1 2

— - 021

FiGure 1.6. D = 1, FiGure 1.7. D = 2,

h=04 h=04

Although the functions e~ (@=mh)?/Dh* 410 supported by the whole real axis,
one needs only a few terms in the sum (1.7) to compute the value of Mj, pu at a
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given point x within a given accuracy. For a fixed tolerance § > 0 one has to sum
only over the integers m for which

|m —a/h| < /—=Dlogé.

Hence the number of terms, necessary to compute M, pu(z) for fixed h, increases
proportionally to v/D.

On the other hand, if D is fixed, then this number does not depend on h. For
example, if § = 1079, then one has to sum up 7 and 11 terms in (1.7) if D = 1 and
D = 2, respectively.

The differences between sinz and the quasi-interpolants (1.13) are plotted in
Figs. 1.8 and 1.9 for the values D = 1,2 and h = 0.4,0.2, respectively. The graphs
confirm the second-order convergence from estimate (1.11). However, the case of

0.811 0.02 1
1 2 3 L 2 $
0 0
h=02 h= 02
-0.011 -0.02 1
—-0.02 —0.04 -
—0.03 1 —0.06 1
h= 04 h=04
—-0.04 -
FIGURE 1.8. (My1 — I)sinx FIGURE 1.9. (M2 —I)sinz

smaller step h already gives different pictures. Figs. 1.10 1.15 depict the quasi-
interpolation error of sinz with smaller A and for D =1 and 2.

The plotted errors confirms the second-order convergence, but the error for
D = 1 oscillates very fast, with frequency depending of A. In Figs. 1.10 and 1.12
the saturation error is already visible.

It can be seen from Fig. 1.14, that for D = 1 the quasi-interpolation error has
reached its saturation bound, since it does not decrease if h becomes smaller. On
the other hand, Fig. 1.15 shows that the approximation with My o for the same
values of h is of the second order, that the saturation is not reached, yet.

The behavior of the quasi-interpolants M, p, predicted by the estimate (1.11),
is confirmed also in Table 1.1, where the quasi-interpolation error in the maximum
norm for different h and D and the convergence rate calculated as

[lu — Map pul| L
? Jlu— My pul L~

(1.14) log

are given.
Recall that the main term of the saturation error is 1.04-1074P |u(z)|. If D = 1,
then we have the second-order approximation only for relative large h. In the cases
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/ S/

h=0.05

F
N
oo

h=0.05

—0.001 1 -0.002

—0.002 h=0.1 ~0.004

F1GURE 1.10. (Mp 1 —I)sinz FIGURE 1.11. (Mp o —I)sinx

0.000X

—0.0002 1
—0.0004 1

—0.0006 A

—0.0008 -

FIGURE 1.12. (M} — I)sinz FIGURE 1.13. (M) 2 — I)sinz

D =2 and D = 4 the saturation error is still negligible compared to the first term
of estimate (1.11).

1.2.2. A simple application of the approximation formula (1.7). Con-
sider the initial value problem for the heat equation
(1.15) ur(z,t) — ugy(z,t) =0, ¢>0, wu(z,0)=px), zeR.
Its solution is given by the Poisson integral

u(@,t) = Pipla “WHA o(y) dy .

>:=¢%R/e-<w
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0.0001 1 h =0.005
5e—05 A 1 2 $Z
1 2 s h =0.005
0
—2e—05 1
—5e—05 -
—4e-05 A
~0.0001 1 € h=0.01
h=0.01
FIGURE 1.14. (Mp 1 —I)sinz FIGURE 1.15. (My o —I)sinz
h D=1 rate D=2 rate D=4 rate
0.4 3.91-1072 7.69-1072 1.48-107!
0.2 1.00-1072 | 1.96 | 1.98-1072 | 1.96 | 3.92-1072 | 1.91
0.1 2.60-107311.95|4.99-1072|1.99|9.95-10"3 | 1.98

0.05 7.20-107% [ 1.84 | 1.25-1073 | 2.00 | 2.50- 1073 | 1.99
0.025 2.60-107%[1.49 | 3.12-107* | 2.00 | 6.25-107* | 2.00
0.0125 | 1.42-107%]0.87 | 7.81-107° | 2.00 | 1.56-10~% | 2.00
0.00625 | 1.11-10~* | 0.36 | 1.95-1075 | 2.00 | 3.91-10~° | 2.00

TABLE 1.1. Approximation error for the function u(x) = sinx
using the quasi-interpolant (1.7)

This integral cannot be taken in a closed form, in general, but this is possible for
some functions ¢, for example, for the Gaussian function. In particular,

(1.16) /4t o —v?/DR® gy, 7\/5h o —@?/(Dh*+4t)
V4 VDh? + 4t

Hence, if we replace the initial value ¢ by the quasi-interpolant M, py defined by
(1.7), then we obtain the exact solution

Z (z—hm)?/(Dh?44t)

/7(Dh? + 4t) Dh2+4t =

(117) Py Mpupy)(z) =
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of the heat equation (1.15) with the modified initial condition u(z,0) = M, pp(z).
Since

1 )
P — Py (M, <s - M, —/e*@*y)/‘“d
|Pip(z) — Pe(Mnpep)()| _ygglw(y) noe()| Vi J y

= sup |(y) — Mu.pe(y)]

y€ER
the estimate (1.11) shows that the function uy(z,t) = Py (M, pe)(x) approximates
the solution u(z,t) of the original problem (1.15) with the error

Dh?
lu(z,t) — up(z,t)| < ——(1+4Dr? e‘”zD) max |¢” ()]
(1.18) 4 yer ) .
+ 2max (lp(y)| + |/ (v)|[7Dh) e™™ P +O0(e*7P).
y

This very simple example is in many ways typical of the application of approx-
imate approximations to the solution of partial differential equations; one replaces
some function in the original problem by an approximant such that the solution of
the equation can be performed very efficiently, either analytically or by some other
numerical method.

Let us mention that (1.18) is only a rough error estimate for the approximate
solution of the heat equation. This can be seen from Table 1.2 which contains
numerical results for the heat equation (1.15) with the initial value ¢(z) = ¢ 2"
It provides the maximum error

max |u(z,t) — up(x,t)], t=10,

for different values of D and h.

h D=1 rate D=2 rate D=4 rate
0.4 3.04-107¢ 6.06 - 104 1.20-1073
0.2 7.61-1075(2.00| 1.52-10~* | 2.00 | 3.04-10"* | 1.99
0.1 1.90-107% | 2.00 | 3.81-107° | 2.00 | 7.61-1072 | 2.00

0.05 4.76 1075 | 2.00 | 9.52-1075 | 2.00 | 1.90- 1075 | 2.00
0.025 1.19-107% | 2.00 | 2.38-107% | 2.00 | 4.76 - 1076 | 2.00
0.0125 | 2.98-1077|2.00 | 5.95-10=7 | 2.00 | 1.19-107% | 2.00
0.00625 | 7.44-107% | 2.00 | 1.49-10~7 | 2.00 | 2.98-10~7 | 2.00

TABLE 1.2. Numerical error for the initial value problem (1.15)
with ¢(z) = ¢ =" and ¢ = 10 using the approximate solution (1.17)

In contrast to the quasi-interpolation results, given in Table 1.1, a saturation
error cannot be seen. We will show in Subsection 6.2.1 that due to the properties
of the Poisson integral and the structure of the saturation error the approximate
solution up(z,t) converges to u(z,t).

1.2.3. Other basis functions. The simplicity of formulas of the form

o0

(1.19) Opu(x) := Z u(mh)n(% — m)

m=—0o0
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makes them very attractive for approximation processes. Suppose, for example,
that n is a Lagrangian function, which means that 7 is subject to

n(0)=1 and n(m)=0 forallmeZ\0.

Then the sum (1.19) satisfies Qpu(mh) = u(mh), m € Z, i.e., Qpu interpolates u.
As two representative examples, we mention here the piecewise linear hat function
and the sinc function

sin Tx

sincx =
T

et aest T3 ST A N

FIGURE 1.16. Hat function FIGURE 1.17. sinc function

If n is the hat function as shown in Fig. 1.16, then the resulting sum is the
polygonal line connecting the points (hm,u(hm)). This piecewise linear function
approximates u with the order O(h?). To find the approximant at a given point
x, one has to sum up only two terms of (1.19). But it is visually not very nice to
approximate a smooth curve by some piecewise linear function.

On the other hand, the sinc function (depicted in Fig. 1.17) generates an inter-
polant which is smooth and even provides an exponential order of convergence (see
[91]). However, since the generating function decreases very slowly, it is practically
impossible to compute the approximant (1.19) if the function u is not compactly
supported.

Let us mention that in Chapter 7 we introduce another Lagrangian function

sinmx

T
7D sinh —

D
depending on the parameter D > 0. This function is a small perturbation of the
Lagrangian function from the family of shifted Gaussians (1.6). The corresponding
interpolant approximates smooth functions with exponential order, but similar to

\IJD(JJ) =

the approximation formula (1.7) only up to a saturation error of the order O(e~™ D).
Therefore Up can be considered as approximate sinc function, providing similar
approximation properties but decaying exponentially for |z| — oo.

There exists, of course, a variety of other basis functions 7 for interpolation
formulas (1.19). However, the Lagrangian functions for those bases have, in general,
large supports. For example, the Lagrangian function for the class of smooth cubic
splines, which are cubic polynomials on the intervals (m,m + 1), m € Z, and two-
times continuously differentiable, is supported on the whole real line.
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It turns out, that good approximations can be obtained also by replacing the
Lagrangian function in (1.19) by some simpler function of the same class. In the
case of smooth cubic splines one can choose 7 as the cubic B-spline

(1.20) b(x) (Jo 42> = 4|z + 11> + 6]z> — 4|z — 1]* + |z — 2°)

1
S 12
depicted in Fig. 1.18, which gives a C2-approximant of the order O(h?).

) 0 2
F1GURE 1.18. Cubic B-spline

But clearly the resulting approximant does not interpolate; therefore approxi-
mation formulas (1.19) with non-Lagrangian functions 7 are called quasi-interpolants.

Thus, My, p in (1.7) represents a quasi-interpolant with

e —22/D

n(x) =
N
We have seen in (1.11) that for a fixed D the sum M), pu is a smooth approximation
to u of order O(h?) until the saturation error is reached, which can be neglected in
numerical computations if D is sufficiently large.

It is important that for a quite general class of basis functions the quasi-

interpolants have similar properties as in the case of the Gaussian. Take, for
example, the function

1
hr = .
ST T osha
Putting the Taylor expansion of w into
(1.21) Mpu(z) = ! i u(mh) sechLmh
' " /D, —_ VDh
we obtain as in (1.8)
u(z) x—mh u(x) x —mh
Mpu(z) = sech + mh — x) sech ———
=D, 2 N Ty, 2 e

—mh

1 = " 2 <
+—— ' (T )(mh — x)° sech ———
2w/ D Z (@m)( ) vDh

m=—0o0
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The infinite sums in the first and second term on the right-hand side can be trans-
formed by using Poisson’s summation formula (1.3) and the Fourier transform of
sech z,

(Fsech)(\) = wsech w2\,
Then we obtain the relations

1 = T—m =
Iy :=—— sech —— =142 sech(m%vVDr cos 2w,
B 2 D ey

1 o0

L Z I—mseChI—m
/D vD VD

= Z sech(m2v/Dv) tanh(n?vDv) sin 2nvz

v=1

which shows that

Il =

m=—0o0

|[Ip — 1| < 2¢(D) and |I;| < we(D),

where we use the notation
e(D) = Z sech(n?VDv).
v=1

Moreover,

1 =, (mh — x)? x —mh
— u" (o, sech <
2mv/D 2. Wem) Dh? VDh

m=—0o0

so that
(1.22)  |u(z) — Mpu(z)| < Z’Dh2 max | +e(D) (2 |u(z)] + 7VDh|u'(z)]) .

As in the example with the Gaussian function the quasi-interpolant (1.21) does not
converge to u(x), but the number £(D) is an upper bound for the saturation error
and can be made arbitrarily small by choosing D large enough. For example, if
D =4, then (D) = 0.000000005351.

Again, the inequality (1.22) shows that the quasi-interpolant Mpu approxi-
mates any C?-function v like a second-order approximant above the tolerance

e(D) (2 |u(z)| + 7 Dh [u'(2)])

and that any prescribed accuracy can be reached if D is chosen sufficiently large.
In Table 1.3 we give the L*-error of the quasi-interpolation of sinx with formula
(1.22) for different h and D and the convergence rate obtained using (1.14).

1.2.4. Examples of higher-order quasi-interpolants. There exist approx-
imants with approximation orders larger than 2 up to some prescribed accuracy
which have the same simple form as second-order approximate quasi-interpolants.
Consider, for example, the quasi-interpolant

oo

(1.23) up(x) =D Y u(mh)n(

m=—o0

r —mh
7o)
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h D=1 rate D=2 rate D=4 rate
0.4 1.69-101 2.96-10"! 4.73-1071
0.2 475-1072(1.83(9.12-1072 | 1.70 | 1.69-10~1 | 1.48
0.1 1.24-1072 | 1.93 | 2.42-1072 | 1.92 | 4.74-1072 | 1.84

0.05 3.32-1073 1191 | 6.14-1073 | 1.98 | 1.22-1072 | 1.96
0.025 1.01-1073 | 1.71 | 1.54-1073 | 1.99 | 3.08-1072 | 1.99
0.0125 |4.37-107%(1.22|3.89-107%|1.99 | 7.71-107* | 2.00
0.00625 | 2.18-10* | 1.01 | 9.98-10~° | 1.96 | 1.93-10~* | 2.00

TABLE 1.3. Error of approximating u(z) = sinz with formula (1.21)

with one of the two generating functions

(1.24) m(z) = (3/2 - 2?) e:/; or  ma(z) = \/% e~ cos 2z,

shown in Figs. 1.19 and 1.20.

0.87 0.87

0.6

0.21

1 3 4 4 3= 10T N3

FIGURE 1.19. 1 (2/v/2) FIGURE 1.20. n2(x/v/2)

Figs. 1.21 1.26 repeat the error plots of Subsection 1.2.1 for the approximation
of the function sinx with

oo

1/2
(1.25) Nup(x) = (%) / Z u(mh) cos (\/2/D(z/h —m)) e~ (@=mh)*/Dh*
where now the values D = 1.5 and D = 2.5 are used.

The absolute errors given in Figs. 1.21 and 1.22 are much smaller than those
plotted in Figs. 1.8 and 1.9. Moreover, the graphs indicate approximation with the
order 4.

The visible oscillations of the errors in Fig. 1.21 (the case D = 1.5 for quite
large steps h) are caused by the relatively large saturation error. The error plots in

Figs. 1.23 and 1.25 show clearly that N 115 has reached the saturation and that
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0.001+

—0.001 1
—0.0005 -

—0.002 -
—0.001 1

—0.003 A

FIGURE 1.21. (Mp15 — I)sinz FIGURE 1.22. (M 25 — I)sinx
h=005
5e—05 | I 1‘” [ §
| I
G
A
—5e—05 1
|
~0.0001 - h=01
FIGURE 1.23. (NMp,15 — [)sinz FIGURE 1.24. (N}, 25 — I)sinx

any h smaller than 0.1 does not give more accurate results for the quasi-interpolant
N5

The situation is much better for Nh)2_57 as indicated in Figs. 1.24 and 1.26.
The approximation is much more accurate for small h; the approximation error is
dominated by the saturation only if h < 0.01.

The approximation errors of the function sinx with the basis functions (1.24)
are given in the Tables 1.4 and 1.5 which confirm an approximation with the order
4 up to some saturation error.
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h=0.01
i 1e-07 1
h=0.01
5e—05 A . 1 2 ‘
'|‘| l"' l Iy /!
! ! —1e-07 1
5 :
l.l'M"n, 1 2 sy
R A 2e07
se05{ h=004
) g —3e-07 1
h= 004
FIGURE 1.25. (Mp15 — I)sinz FIGURE 1.26. (N 25— I)sinz
h D=2 ord D=3 ord D=4 ord
04 3.03-1073 6.65-1073 1.15- 1072

0.2 1.97-107% | 3.85 | 4.41-10* | 3.76 | 7.79-10~* | 3.70
0.1 1.26-107° | 3.92 | 2.80-107° | 3.94 | 4.97-1075 | 3.92
0.05 896-10"7 | 3.51|1.75-107%|3.99 | 3.12-107% | 3.98
0.025 | 1.60-10"7|1.39|1.09-10"7 | 4.00 | 1.95-10~7 | 4.00
0.0125 | 9.72-1078 | 0.41 | 7.63-1079 | 3.98 | 1.24-10"% | 4.03

2 _ 2
TABLE 1.4. Error of approximating u(z) = sinz with n(z) = 3/17/; —a
T
h D=2 ord D=3 ord D=4 ord
0.4 2.04-1073 4.50-1073 7.84-1073

0.2 1.34-10% | 3.81]2.95-10"* | 3.81 | 5.22-10~* | 3.75
0.1 9.94-107%|3.37 | 1.87-1075|3.95| 3.32-107° | 3.94
0.05 2.00-107%|1.24|1.17-107% | 3.99 | 2.08-10-° | 3.98
0.025 |1.48-107%]0.34|7.43-1078|3.97|1.30-107 | 4.00
0.0125 1 1.33-107% | 0.28 | 5.38-1079 | 3.65 | 8.42-107° | 4.07

1/2—2?
TABLE 1.5. Error of approximating u(z) = sinz with n(z) = GT cos V2
T

We see in Section 3.3, Example 3.2, that

315 105 63 3 1
1.9 _ o —1/2 —a® (219 U9 o D9 4 9 6, - 8
(1.26) mo(z) =7 "e 128 16 T1et T3t tag”
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generates a quasi-interpolant which approximates smooth functions with the or-
der N = 10 up to some small saturation. This theoretical result is confirmed in
Table 1.6.

h D=3 ord | D=5 ord | D=6

0.8 | 1.41-10~* 1.41-1073 3.08-1073
0.7 | 417-107°]9.11 | 4.33-10~* | 8.85|9.74-10~* | 8.62
0.6 | 1.00-1075]9.24 | 1.06-10~* [9.13|2.45-10~* | 8.96
0.5 | 1.87-107%19.221.92-1075 [9.38|4.53-107% | 9.25
0.4 |3.03-1077|8.16|2.26-10"% |9.58 | 5.44-10~6 | 9.50
0.3 |6.68-1078|5.26|1.37-10~7 |9.75|3.34-10"7 |9.70
0.2 |2.67-1078|2.26|2.57-10~2 |9.80|6.20-10~° |9.83
0.1 |1.39-1078]0.94 | 7.52-10" | 5.10 | 2.07-10"'* | 8.29
0.05(1.12-1078|0.31 | 7.12-107' | 0.07 | 8.52-10712 | 1.34

TABLE 1.6. Error of approximating u(z) = sinz with the basis
function (1.26)

1.2.5. Examples of multi-dimensional quasi-interpolants. One impor-
tant feature of approximate quasi-interpolation is the simplicity of its multi-dimen-
sional generalization. In the next chapters, we shall see that sufficiently smooth
and rapidly decaying functions with non-vanishing mean value can be taken as gen-
erating functions for quasi-interpolants on uniform grids in R™. So we have access
to a large class of appropriate functions, which generate high-order approximants
with simple analytic representations. This is, for example, in contrast to the case
of spline functions, where n-dimensional generalizations have quite complicated
analytic expressions.

One possibility is, for example, to use the radial counterparts of one-dimensional
generating functions. So the n-dimensional analogue of (1.7) is the formula

1

- - —|x—hm|?/Dh?
(1.27) My pu(x) = CITE mgnu(hm) e ,

whereas (1.21) can be extended to the approximation formula
1 |x — hm|
oDl Z u(hm) sech ~7ph Cn = /sech|x| dx .

meznr Rn

Here and in what follows we make the notational convention that finite-dimensional
vectors are denoted by bold face symbols, ie., x = (x1,...,2,) € R*, m =
(mi,...,my), m; € Z. The scalar product of two vectors x = (z1,...,2,) and
v = (y1,--.,yn) in the Euclidean space R™ is denoted by

n
xy) = ;-
j=1
For the Euclidean norm of x € R", we use the notation

x| = [x]2 = V{x,x).
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We shall see in the next chapter that both formulas approximate with order

O(h?) up to some saturation bound.
A fourth-order approximation up to some small saturation is given by the

formula

1 n+2  |x-mh*\ e
(rD)"/2 D “(mh)< 2 Di? ) ¢
mezZn
whereas the sixth-order can be obtained with the generating function

et (n+2)
(3

n(x) — (n+ 42 + xI*).

- 27.[-11/2

FIGURE 1.27. Sixth-order generating function in R?

Furthermore, in some applications, we use generating functions of the form

n(x) = ¢({(Ax,x)),

where A is an n X n matrix.



CHAPTER 2

Error estimates for quasi-interpolation

This chapter is devoted to the theoretical foundation of approximate quasi-
interpolation. In Section 2.1, we introduce notation and mention basic results,
which will be used throughout the book. Error estimations of general approximate
quasi-interpolants in uniform and integral norms are obtained in Sections 2.2 —
2.4. We formulate conditions on the generating functions, which ensure high-order
approximations up to a prescribed precision.

2.1. Auxiliary results
Here we introduce notation and mention some classical facts, which can be

found in textbooks on functional analysis and which will be used in the following.

2.1.1. Function spaces. The space L,(R"™), where 1 < p < oo, consists of
measurable complex-valued functions u(x), x € R", for which

1/p
llullr, = (/ |u(x) P dx) < 00.
RTL

As is common in approximation theory, we suppose that L.,(R™) is the space of
bounded continuous functions equipped with the norm

[ullz. = sup |u(x)|.
x€eR™

Henceforth, we reserve the symbol L, to denote the space L,(R™). For the L,-
spaces of functions defined on a measurable set @ C R™ we will use the notation
L,().

By ¢,(Z™), 1 < p < 00, we denote the space of sequences {am }mez» with

1/
{am?}e, = ( S Jaml?) " < 0.
mezn

Throughout the book we use multi-index notation: A multi-index « is a vector
with non-negative integer components, a = (aq,...,a,) € Zgo, its length is

[a] =14+ +ay.

We write o < B for two multi-indices if o; < §; for all j =1,...,n. Furthermore,
we denote
al=ol.. oy, x¥=2a" a0
and
5o ol
u(X) = ————— u(x) .
(x) Ozt -+ - Oxp (x)

19



20 2. ERROR ESTIMATES FOR QUASI-INTERPOLATION

In the following, Vju denotes the vector of partial derivatives {0%u}[q)—t. Using
multi-indices, many multi-variate formulas have the form of the one-dimensional
analogues. For example,

al s

=2 g

B<a

yP.

As usual, the Sobolev space Wlfv, N € N, consists of L,-functions whose generalized
derivatives up to the order N also belong to L,. The norm in Wlfv is defined by

||u||W1§V(Q) = Z [0%ullL, (@) -
[a]<N

If the derivatives of order N of a function w are integrable, then its Taylor expansion
has the form

- -x° (y —x)*
(2.1) uy) = Z ol O%u(x) + Z ol Ua(x,y) ,
[a]=0 [a]=N
where the remainder terms are given by
1
(2.2) Un(x,y) = N/SN_lao‘u(sx +(1-s)y)ds.
0

If the derivatives of order N of u are continuous, then by the mean value theorem,
the remainder can also be given as

(2.3) Ua(x,y) = 0%u(sx+ (1 — 9)y)

for some s € [0, 1].
By S(R™) we denote the Schwartz space of smooth and rapidly decaying func-
tions, i.e.,

ueSR™) ifandonly if sup sup (1+|x|)"[0%u(x)| < oo
[a]<N xeR™

for N =0,1,....

2.1.2. Fourier transform. The Fourier transform of an absolutely integrable
function u € L1(R™) is defined as

(2.4) Fu(A) =a(A) = / u(x) e 2N gy

Here
n
xy)=> =y
j=1

denotes the usual scalar product of the vectors x = (z1,...,2n), ¥y = (Y1,.--,Yn) €
R™. The Euclidean norm of x € R™ is denoted by

x| = [xl2 == V{x,%) .

For v € L1(R™) the Fourier transform Fu is continuous and Fu(A) — 0 as |A| — oo.
The inverse Fourier transform of u € L1(R™) is defined as

Fru(X) = /u(x) e A gx

R
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If u € S(R™), then also Fu € S(R™) and the inverse Fourier transform gives
(2.5) u(x) = /fu()\) e ZmiteA) g
R’Vl

The Fourier transforms F and F~! can be extended to operators on the space of
tempered distributions §’(R™) dual to S(R™), by

(u, F¥lo) = (F*lu, ), forall we SR"),p e S'(R™)

and to isometries on the space La(R™).

2.1.3. Convolutions. For two functions f(x) and g(x), x € R"™, such that
the integral in (2.6) is convergent, the continuous convolution f * g is defined as the
function

(2.6) £ g(x) = / F) g(x - y)dy .
R’n

For two vectors u = (um) and v = (vm ), m € Z", such that the summation in
(2.7) is convergent, the discrete convolution u * v is defined as the vector

(2.7 VkeZ" (u*xv)= Z U Vk—m -
mezZ™

For a vector u = (um) and a function g such that the summation in (2.8) is
convergent, we denote by w %5 g the hybrid convolution with step h of u and g as
the function

(2.8) wxp g(x) = > umg(x/h—m).

mezm

The semi-discrete convolution with step h of the functions f and g is defined
by the equality

(2.9) frng(x)= Y f(hm)g(x/h—m).

mezZm

It is the hybrid convolution with the vector given by the values of the function f,
Um = f(hm).

The Fourier transform of a continuous convolution is the product of the Fourier
transform of its parts:

(2.10) F(fxg)=FfFg.

Continuous and discrete convolutions can be estimated by Young’s inequality, which
has the following form for continuous convolutions:

(2.11) 1+ glla < 17l llgllp

where 1 < p,q,r <ooand ¢ ! =p~ ' +r~!1 —1 (see e.g., [90, A.2]).
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2.1.4. Radial functions. We will often deal with functions of x € R™ which
depend only on the Euclidean norm |x|, f(x) = fo(r), » = |x|. The Fourier trans-
form Ff is also a radial function, F f(X) = Fy(t) for ¢t = |A| with

2 T
(212) Folt) = pops [ o) st /2,
0

where J,, are the Bessel functions of the first kind (see [90, Thm. IV.3.3]). Formula
(2.12) follows from the integral representation

(2.13) Ju(z) = e?2cos05in? 9 dp

z
2T (v + $)/7 0/
for z € C and Rev > 0 (|96, 3.3(6)]), which implies in particular

. ’ 2
(2.14) / e?mHL g = Zaya=1Ins2-1(272)
57171

where S,,_1 denotes the unit sphere in R™ and w € S,,_1.

To simplify notation, we will denote a radial function f(x) by the same symbol
f(jx]) if considered as univariate function depending on |x|. The convolution of
two radial functions

Qxflx /Q x 1) f(lyl) dy = /m ) FI) 270 gy
is also radial and can be expressed by the one-dimensional integral
2 o0
(2.15) Qxfx) = W% /fQ(T) Ff(r) Jnjo rr|x|) /2 dr.
0

Since for integer £ > 0

2 1 d\Fsinz
_(_1\k k+1/2
(2.16) Jisaja(z) = (-1) ﬁ (-) ==,

zdz z

(cf. [1, 10.1.25]), the convolution of two radial functions is expressed as one-
dimensional integral of elementary functions when the space dimension is an odd
number. In many cases this integral can be taken analytically. But also the case
of even space dimensions can be handled successfully as well, since the integral in
question is a Bessel transform and a variety of tables of the Bessel transform are
available (cf. for example [7]).

2.1.5. Multi-dimensional Poisson summation formula. Throughout the
book we will make use of Poisson’s summation formula (see [90, Thm. VII.2.4)):

(2.17) Z u(x + m) Z Fu(m) e2mitm)
mezn" mezmn

We formulate two sufficient conditions on u ensuring this equality for all x € R™.
(1) The function u and its Fourier transform Fu satisfy

(218)  |u(x)| <AL +|x[)™"° and [Fu(A)| < AL+ |A)?

for some 0 > 0, which implies continuity for both functions.
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(2) The continuous function u satisfies for some § > 0

(2.19) lu(x)] < A1 +[x))™ % and {Fu(m)} € (,(Z").

In particular, (2.17) implies

(2.20) Z u(m) = Z Fu(m)

mezZ” mezZ”
and
(221) > u(x+m) e OFMA = N Fy(m - A) e2mimx)
mez” mez"

If A= ||ajk||?7k:1 : R™ — R" is a non-singular real matrix, then

(2.22) Y ux+A'm)=detA Y Fu(A'm) e2mHAmX)
mezZm mezZm

where A! denotes the transposed matrix

A = |lbjil} ey with by = ag; .

2.2. Some properties of quasi-interpolants

In this section we consider some properties of general quasi-interpolation for-
mulas of the form

(2.23) M, pu(x) = D/? Z u(hm) 17(

mezm

X — hm
VDh

Here and in the following, it is always assumed that the generating function 7 is
continuous. Using the notation (2.9), the quasi-interpolant M), pu represents the

3

), x € R™.

semi-discrete convolution
My, pu = u*p Np
with the function np = n(-/D) and step h.

2.2.1. Young’s inequality for semi-discrete convolutions. Let us define
the norm

(3" |u(hm)|p)1/p, 1<p< oo,

(2.24) lullpp = ez
sup |u(hm)], p=00.
mezm
LEMMA 2.1.
n(l/r— 1 n . —m\ |7 |1/m—1/q
[Mupl, < (VDRI S0 ()] el
mez" °°

for1<p,qr<oowithqg '=p t4+rt—-1.

PRrROOF. Note that p = oo implies ¢ = oo and r = 1, so that the assertion follows
immediately. Similarly, if ¢ = oo, then 1/p+1/r = 1, and Hélder’s inequality yields
the result.
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Let p,q,7 < oo. Then the numbers A\, u,v given by A = ¢, 1/r — 1/\ = 1/p,
1/p—1/x= 1/1/ are positive and satisfy A™1 + 7! + 71 = 1. We write

|u(hm)]

/A r(1/r—1/X)

’ ( \/_h >’
=|n (X‘hm) |u(hm)|p//\.‘n(x\;l_)h;n)

and we apply Holder’s inequality with the exponents A, u, . Then

o) <2 5 ) )

( Z ’ (X_hm) WT_W))W( 3 |u(hm)|pu<1/p71/x>)l/”7

mezm

|u(him)|[PC/P=1/2)

and therefore

vl <05 T (5)

(Z |uhm|p a1/~ UM/Z‘

mezZn Rn mezn

7") q(1/r—1/X)

)‘ |u(hm)|P dx .

The last integral equals

Z|uhm /’

= (VDh)" Z|uhm /|77 )" dx,

mezn meznr
so that
q/p
|Mupully, <D= 2(VDRY [z, (Y fu(hm)p)
mezZm
X —m\ |7\ /71
(3 BCF))
x mezZm™ \/5
which gives the desired inequality. (I

COROLLARY 2.2. Let 1 < p < oo and let the function u be such that ||ullpn < C
with a constant C independent of h > 0. Then the quasi-interpolants My pu are
bounded in L, uniformly in h if the continuous generating function n € L1(R™) and
if it satisfies additionally

(2.25) HDWm%Z:n }n(%) ’HLW < 0.

Then
|MipullL, < Cpllullpn with Cp=|nll}/?||D

— 1-1/p
LAV ICv 1 M
REMARK 2.3. From the definition of the Riemann mtegral it follows immedi-
ately that the norms ||u||, , are uniformly bounded with respect to h > 0 if the
function |u(x)|P, 1 < p < o0, is Riemann integrable. If p = co, then

[ulloc,n = sup [u(hm)]
mezZm

is obviously bounded for a bounded function w.
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The relation (2.25) is satisfied under the following decay condition on the gen-
erating function 7, which is assumed throughout the book: There exist constants
A >0 and K > n such that

(2.26) In(x)] < A(1+|x|)~* for all x € R" .

The decay of n ensures that for given D > 0 and any § > 0, there exists a finite
subset Z5 C Z™ such that

Dfn/Q ’ X—m ’ < 57
2,2, 0w

where @@ denotes the cube [— %, % ]n Then for bounded functions u, the value
of the quasi-interpolant My, pu(x) is, within the precision ¢||u||r_,, determined by

the finite sum
— hm
D—n/? Z u(hm) n(L) ,
mek+75 \/Z_)h

where the integer vector k € Z" is chosen such that x/h —k € Q.

2.2.2. An auxiliary function. Let us introduce the function

(2.27) gxn(y) =D " u(y) n()i/_l—);’)

for given x € R™, h and D.
LEMMA 2.4. Suppose that 1 is subjected to (2.26) and the function u satisfies
(2.28) lu(x)| < B(1+ [x|)*, x € R,

for some positive L < K —n. Then for fived parameters D and h and any x € R”,
the series

—hm —z
(2.29) gx.p(hm + z) = D™/?2 u(hm + z)
m%" h m%" ( ﬁh )

converges absolutely for all z to a bounded h-periodic function Gx(z) with the
Fourier series

(2.30) e%<zv’/>(\/5h)*n u(y)n( =Y YY) gy

PRrOOF. Note first that in view of (2.26) and (2.28)

3" lgen(hm + ) = D72 N ?u<hm+z)n(w)\

Rn

mezm mezm ﬁh
_ —-K
<ABD™? 3" (14 |hm + 2]) (1+} \;Linh ZD

mezZm

—hm —z]\ K
< ABD™* 3" (Ix—hm —2|+ 1+ [x|) 1+} } .
mezm ( \/_h )



26 2. ERROR ESTIMATES FOR QUASI-INTERPOLATION

Since

(|x—hm—z|—|—1—|—|x|) = (VDh)* (1—|—} —hm +

1+ x[ 1)
VDh

i 1+|x| \/_h)LJ(1+‘ ;inh

y

we obtain

S Jgun(hm + 2)|

mezZm

L .
< ABD—"/2JZ:; % (1+ x| = vDR) T (14| ;inh_ =)y "
Let us define the function
(2.31) Gu(s) :=sups " Z (1+]s"'m—-x|)""", up>0,

R mezn"
which depends continuously on s € (0,00). Note that

e g 212 T()D ()
s)—>/(1+|x|) dX_F(n/2) T(n + ) as §— 00,

which shows that ¢, (s) is bounded if s > 59 > 0.
With the help of ¢, we estimate

Z|gxhhm+z|<ABZ 1—\/_h+|x|)L]¢an(\/5)7

mezZm

which shows that the sum on the left-hand side is bounded by a constant not
depending on z for fixed D, h, and x. Therefore the sum (2.29) converges absolutely
to the bounded h-periodic function Gx(z), which has the Fourier coefficients

) = [ 3 gunlim+ e
hQ mezn

2mi
- <Z,l/>dz7

where () is the cube [— %, % ]n Due to the absolute convergence, we can change

the integration and summation and obtain

) = (W Y [ un(SD) e T S gy

mGZ h(m4Q)

= (\/Y_Dh)*"/U(Y)n(\/—%Z) e V) gy, O

Since the generating function 7 is supposed to be continuous, the continuity of
u implies that Gx(z) is continuous. If, moreover, the Fourier series (2.30) converges
absolutely, then we have the equality

Gu() = (VD) 3 e T =) [ty ) e F 0 ay.

ven Rn

Rn

For the general case, the following summation formula holds.
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LEMMA 2.5. Let p(x) be a continuous function with

o) < e(L+x))7"°, /w(X)dX =1, [FeN) <c+ AN, 6>0.
R’Vl
Then the equality

Gula) = (VD) " Iy 3 Fotew) b ) [utyn(ZL) e TV ay

vezn Rn h

holds for any z belonging to the Lebesgue set of the function Gx(z).

PRrROOF. The assertion follows from [90, Thm. VII.2.11], where the convergence
of general summation formulas for Fourier series of L;-functions is proved. (|

2.2.3. Representations of the quasi-interpolant M, p. If we set

u) = (35r) s 0<lel <L,

in the definition (2.27) of the function gx p, then the Fourier coefficients in (2.30)
can be expressed by the Fourier transform of the generating function 7

o | ()R

2me

= e_T<x7 V> /ya n(y) e27"i<§’v\/5”> dy

Rn

Rn

- (i) e ) gr (D),

where we use the relation
—271 { [a]
/y" n(y) e YN dy = (%) 0*Fn(X).
R’n

The choice of u(y) gives rise to some infinite sums which will occur at different
places. We introduce the notation

(2.32) Oa(x,n,D) :=D"/? Z (x\;@m)an(x\;ﬁm> ,

mezZm™
2.33 x,71,D) i= D"/? }(x_m)a (X_m)‘,
for positive D and multi-index o = (o, ...,an) € ZZ%,. In view of the decay

condition (2.26) with K > L + n, the sums converge absolutely if [a] < L. Hence,
both functions o4 and po are continuous and periodic in each space direction with
period 1.

LEMMA 2.6. For any Dy > 0 and ¢, 0 < [a] < L, there exist constants cq
such that for all D > Dy

Haa(-777,’l))||Lm < Hpa(' 7777D)||L°° < Ca -
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Proor. The functions aa(x, 7, D) and pu(x,n, D) are majorized by

(2.34) —n/2 Z ( |)[a]_K < bx—n[a(VD),

mezZm

where the function ¢, is defined by (2.31). There we have shown that ¢,(s), u > 0,
is bounded if s > s¢ > 0. [l

Suppose now that the function u € WZX(R"). Taking the Taylor expansion
(2.1) for each node hm, i.e.,

L-1

(hm —x)* __, (hm — x)*
[a]=0 [a]=L
we write the quasi-interpolant Mj, pu in the form
= (hm — x)* /x— hm
./\/lh Du n/2 Z Z ( )8°‘u(x)
mezZ” [a]=0 : @h

4 D/ Z Z (hmo;x) (X\/—h]];n) (. hm)

meZn" [a]=L

Because of the absolute convergence of the sums (2.32) and (2.33) and the bound-
edness of

1
Ua(x,y)| = L’ /sL_lao‘u(sx +(1-s)y)ds
(2.35) )
<Llovulr. [ s* s = 0%l
0

the order of summation can be changed. Hence we obtain, by using the definition
(2.32) of 04,

L—1

My pu(x) = Z (—VDh)e] Ua(hﬂ?,'D) 0*u(x)

o!

1=0

2

(2.36)

+ (—\/Eh) [; n/2m§n(x hm) (x\/iz}r:l) Ua(z,!hm)'

Now, (2.35) together with (2.33) implies
n x—hm x—hmy\ Uqy(x, hm)
| Yoty Cm) Cn) = ar |

0%l —(x
R

[a]=L

(2.37)

and so we have proved
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LEMMA 2.7. Suppose that n is subjected to (2.26) and let v € WL(R™) for
some positive L < K —n. Then

}./\/lh pu(x i \/_h [o‘]aa(z , D) 0%ulx)

o!

< (vVDn)t Y Mpa(5 n.D).

o! h’
[a]=L

2.2.4. Relations to continuous convolutions. Let us consider the continu-
ous counterpart of the semi-discrete convolution M, pu, the continuous convolution
operator

(2.38) Csu(x) :=46" /n(x ; y) u(y)dy, 6§ > 0.

Rn

The close connection of the operators Mj, p and C\/—h can be seen if we write

Chppn) = (WD S [ ulyyn(S=E)ay.

mezZm h(m+Q)

where @ denotes the cube [ — 3, 3 ] Comparing this with the definition (2.23) of
M, pu, we see that the quasi-interpolant My, pu(x) is, for a fixed x, the simple

midpoint cubature formula of the integral C 5, u(x), where the integrals

/ U(y)n(%f}:)dy

h(m+Q)

for all m € Z™ are replaced by
—h

However, standard estimates for cubature methods do not give useful bounds for
the difference between the semi-discrete and continuous convolutions. For example,
the midpoint rule is of second order (cf., e.g., [23]). Hence, we obtain

(M ppulx) = € gyu()] < ch® sup Z % (vom(5)

yERn

and the second derivatives yield the factor (Dh2)*1
The results of the previous subsection help us to obtain better estimations of
this difference. From Lemma 2.5, we derive

COROLLARY 2.8. Let ¢ be a function as in Lemma 2.5. If u is subjected to the
growth condition (2.28) and n satisfies the decay condition (2.26) with K > L +n,
then

My p u(x) —C\/ﬁhu(x)
:( nhm Z Fo(ev / (y )77(1(/_5}}:)6_%<y,1/>dy_

uEZ"\{O} Rn
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ProoF. From the definition of the function Gx in Lemma 2.4, we see that
M, pu(x) = Gx(0) and therefore by Lemma 2.5

M, pu(x) = (VDh) ™" lim Z Folev) / U(Y)n():/_l—);’) W Vay. O

R

In the next theorem, we derive a series expansion into powers of +Dh of the
difference between the semi-discrete and continuous convolutions for sufficiently
smooth functions u. To this end, we introduce the functions

(2.39) ea(%,7, D) = 0a(x,7,D) - / yen(y) dy
Rn

THEOREM 2.9. Suppose that n satisfies (2.26) with K > L+ n, L € N. Then
for any function u € WL (R™)

L-1

M pu(x)—Cppu(x)| < D (VDR |lea(-,n,D)| L., 7'6(1;,(}()'
[a]=0 ’
B . o [0%u|| Lo
(VD S (loalom D)l + [ ly=n(y)|dy) 15t
[o]=L R '

PROOF. From (2.36), we know that for u € WZ (R")

./\/lh_’D’UJ(X) Z 9 Z( )( \/_h)[a]ga(h,n,p)

[a]=0
Z p-n/2 Z (x hm) (x\;_;;n) U,,L(>;,!hm)7

mezn

and similarly, the Taylor expansion (2.1) leads to the representation

Csulx i Rulx) (_gyte / y*n(y) dy
(2.40) 1=0 X R»
+ (—5)L > a/y"‘n(y) Ua(x,x — 0y) dy
i

[a]=L

Setting § = v/Dh in (2.40), we obtain

Mioulo) =€) = 3 L2 iyl (%,.0) — [yt ay)

[a]: R™
+ (—vVDh)* —n/2 XZhmy e (XThmy )
[]Z > )Gy
~(VPWE Y o [y ) Ualxx - VDhy)dy
[el=L ~gn

Now the assertion follows from (2.35). O
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We see that the quasi-interpolants My, pu, for a fixed D and any u € WL (R"),
approximate the continuous convolutions C, 5, u with the order O(h*) if and only
if eq(x,n,D) = 0 for all [a] < L. On the other hand, a good approximation can
be obtained for all x, if the norms |leq (-, n, D)| L., are small for all [a] < L.

We see from Corollary 2.8 that for all x and any function ¢ mentioned in
Lemma 2.5

(241)  ca(x,7,D) = (21)[&]

™

lim Z Fo(ev) 0% Fn(VDu) e 2w

e—0

vezn\{0}

Thus we derive

LEMMA 2.10. Suppose that the continuous function n satisfies the decay condi-
tion (2.26) and let 0 < [a] < K —n. If {0°Fn(v'D -)} € £4(Z"), then

lalsn. D)l = || oatsnD) = [yenway |,

]Rn
<@m P N orFn(VDy)|.
veZ™\{0}
The integral
(2.42) /xo‘ n(x)dx, «a€Z%,a multi-index,

R™

is called the a-th moment of 7.

2.2.5. Poisson’s summation formula for o,. Formula (2.41) represents a
weak form of Poisson’s summation formula (2.17) applied to the function oq:

w19 00 5 (SB) () < (1) 5 B e
mezZm v

[SVAL

The next lemma gives a sufficient condition on 1 ensuring (2.43).

LEMMA 2.11. Let u = [n/2] + 1. Suppose that the derivatives 0Pn, (8] < u,
exist and satisfy the decay condition

|0Pn(x)| < A1+ |x|)~E for allx € R®

with constants A > 0 and K > n. Then for all a, [a] < K —n, and all D > 0, the
sequence of Fourier coefficients {0*Fn(v/Dv)} € £1(Z™). Moreover, for any ¢ > 0
there exists Dy > 0 such that for all D > Dy

(2.44) Z |0 Fn(vVDv)| <e.

vezZn\{0}

ProoF. Fix a multi-index o and consider the partial derivative %o, with

(8] =, ie.,

020a(x,n, D) = DH208D2 3" (y = ) (v - %)

meZm
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Since the decay of n and its derivatives ensures the absolute convergence of all
series, we can write

Boa(x,n,D)
— p—h/2p—n/2 ( i)a 5ﬂ*~/n(y _ 2) .
5 S b))
It is clear that 0Jy* = 0 if v £ a. We know from Lemma 2.6 that the functions

p—n/2 Z (x\;ﬁm) 0*7857777 (x\;ﬁm)

mezZm

are uniformly bounded for all D > Dy > 0. Consequently
10%0a (- D)l < gD/ for all [8] = u

with some constants cg not depending on D. On the other hand, the Fourier
coefficients of 9Po,, are (27ri1/)5]-"77(\/51/)' hence Parseval’s equality gives

Z Z (27v)*P [0 Fn(V'D Z 10%0a (-0, D) 72(01pmy < D,
[Bl=prvezr
where the constant ¢ > 0 depends only on 1, n, and p. Now, we note that
S @m) =
Bl=p
with some constant c;, depending only on n and p, which leads to

1/2 |y —#
Yo jrFn(Dr) < Y |8°‘}'n(\/51/)|( Z(2w)2ﬁ) %
vezm\{0} vezm\{0} [B1=n !
1 1/2 o172
sc—( S e FED)P Y (2m)*) S )
' Y vezn\{oy [Bl=n vezm\{0}
/2 p—u/2 o\ 1/2
< (X w) O
1 vEZ™\ {0}

Since we are interested in generating functions subject to the inequality (2.44),
we introduce the following extension of the decay condition:

CoNDITION 2.12. Let p = [n/2] + 1 be the smallest integer greater than n/2.
Suppose that 95, 0 < [B] < p, are continuous and satisfy the decay condition:
There exist constants A > 0 and K > n such that

(2.45) |0Pn(x)] < A1+ [x|)7X for all x € R".

COROLLARY 2.13. Assume Condition 2.12. Then for any multi-index o with
[l <K —n

(2.46) ga(x, n’D) — (i) [e] Z aa]:n(\/i_)’/) o 2mi{x,p) :

2T
veZ™\{0}
and for any € > 0 there exists Dy > 0 such that for all D > D,

Haa(-77’]7D)||Lm <e.
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COROLLARY 2.14. If the generating function n fulfills Condition 2.12, then for
any € > 0, there exists D > 0 such that

0%u(x)]
| My, pu(x) — C\/ﬁhu(xﬂ <e Z (\/Eh)[a] o

[a]=0

+ (VD" Y (Iaton Do + [ vty ay) LEE=
J

ol
[a]=L

for all u € WE(R™).

2.3. Pointwise error estimates for quasi-interpolation

2.3.1. Using the moments of 7. Let us introduce another important con-
dition for the generating function 7.

CONDITION 2.15. We say that 7 satisfies the moment condition of order N € N

if
(2.47) /n(x)dx=1, /XaT](X)dXZO, Va,1<[a] <N.
]Rn R’Vl
Let us remark that the moment Condition 2.15 is equivalent to
(2.48) 0%Fn(0) = dpla), Va,0<[a] <N,

where d;;, denotes the Kronecker sign

5‘ _ 1 ) ] = ka
A T
Thus a function 7 satisfies the moment Condition 2.15 if the function Fn(X) — 1

has a zero of order N at the origin.

LEMMA 2.16. If n satisfies the decay condition (2.45) with K > N +n and the
moment Condition 2.15 of order N, then for any u € WX (R")

sup | Csu(x) — u(x)| §5N 10%ullLo “HLoo /| “(y)| dy .
© [a] N

PrROOF. The representation (2.40) with L replaced by N gives

= 9vu(x
Crui) = Y LU (gyted / yeu(y) dy

al
[a]=0
MDD / yon(y) Ua(x,x — dy) dy ,
o=y
and the first term on the right-hand side is equal to u(x) in view of (2.47). O

Lemma 2.16 together with Corollary 2.14 implies the main feature of the ap-
proximate quasi-interpolation:
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THEOREM 2.17. Suppose that n satisfies the decay and moment Conditions 2.12
and 2.15 with K > N 4+n. Then for any € > 0 there exists D > 0 such that for any
u € WL(R™) the approzimation error of the quasi-interpolation can be estimated
pointwise by

M—-1
(2.49)  u(x) = My,pu(x)| < ¢y (VDM |Varullro + € Y (VDR Viu(x)],
k=0

where M = min(L, N) and the constant c,, does not depend on u, h, and D.

Let us comment on the estimate (2.49). Representation (2.36) and relation
(2.46) show that the quasi-interpolant My, pu for u € WX (R™) can be expanded
under the conditions of Theorem 2.17 in the form

aa
My pux) =u(x)+ Y (—VDh)le] 7:;(") ga(%,n,p)
(2.50)

i Z (—v/Dh) 802()() Ua(%,mp) + Rp n(x),

[a]l=N

where M = min(N, L) and the remainder Ry, j, is of the form

(2.51) Rpn(x) = (—\/'Z_)h)L Z D-1/2 Z (X—hm>°‘n(x—hm) Ua(x, hm)
[a]=L

VDh VDh al

(compare with (2.37)). If L < N, then the second sum in the expansion (2.50) is
absent, of course. Since

mezZn

X 1\ [ 2mi
= — ( [ (x,v)
Ea(h,n,D)_(%T) Z I*Fn(VDv)e )
veZm\{0}
the quasi-interpolant M}, pu differs from u by the sum of M — 1 fast oscillating
functions and a remainder of order O((v/Dh)M).
In view of Corollary 2.13, the maximum norms of the oscillating functions

2mi
Z O“Fn(vVDr) e n &¥  0<[a] <N,
veZn\0
can be made arbitrarily small if D is large enough. This implies that for fixed
D > 0 and h — 0 the sum M), pu does not converge to the function u. However, it

approximates u with the order O((v/Dh)M) as long as the difference M, pu(x) —
u(x) attains the saturation error, which has the representation

M-1 . ; .
ivDh\i 0%u(x) o 2mi o 1)
(2.52) Z ( — ) Z} —= > o Fn(VDv) e .
j=0 [a]=j vezZn\0
Since this error can be made smaller than any prescribed accuracy, for example,
the accuracy of the computing system, the absence of convergence is not important

in practical applications.

REMARK 2.18. Due to the terms (vDh)F in the estimate of (2.49) the step
h must be chosen such that VDh < 1. Hence, for the practical application of
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approximate quasi-interpolation it is necessary, especially for the multi-dimensional
case, to use generating functions subject to

27
> 0 Fn(VDy) e XM | <1
vezZn\0
even for relatively small D, at least if [a] = 0.

2.3.2. Truncation of summation. Since, in general, the support of the gen-
erating function n of the quasi-interpolant My, pu is the whole space, one has to
truncate the summation in (2.23). Here we consider the proper truncation of the
quasi-interpolant (2.23) such that the error estimates remain valid.

To be more specific, denoting the closed ball of radius x centered at x by
B(x,k) ={y € R": |y — x| < &}, we consider the truncated quasi-interpolant

(H) 7n/2 x—hm
(2.53) M{hu(x) =D hm;(x jmm)n(—@h )

The difference to M}, pu can be estimated as follows:

X — hm
IMELu(x) = My pu(x)| < sup  Ju(hm)| D2 3 ]n( - )|
(254) hm¢ B(x,k) hm¢ B(x,k) Dh

< go(r/hn) lullz..

where the non-negative function gp(t,n) is defined by

(2.55) go(t,n) = sup D"/ Z ’ ( )’

x€eR™

For functions n satisfying the decay condition (2.26) we have

gp(t,n) < A sup D~/ Z (1+ IX\;Z_)m|)_

xeRn =
(2.56) o R
< ADE=M/2 gup Ix —m| K < B(—)
xeR® |x—§|>t \/5

with a constant B depending on n and the space dimension n. Hence by (2.54),
the truncation error is bounded by

(2.57) M hu(x) — My pu(x)| < B

VDh
(20 .
Thus Theorem 2.17 leads immediately to the next corollary.

COROLLARY 2.19. Suppose that n satisfies the decay and moment Conditions
2.12 and 2.15 with K > N 4+ n. For any € > 0, there exists D > 0 such that for
fizred k > 0 and any u € WL (R™)

(I = M p)u(x)] < ey VDRYM ([ Varul . + Ilull..)

M—-1
+e > (VDh)*|Viu(x)],

k=0

(2.58)

where M = min(L, N) and ¢, depends on 1 and k.
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Another consequence of (2.54) can be obtained for the case that the parameter
K is proportional to h. Let k = ht, ¢t > 0. Then

(2.59) M%u(x):p—"/? Z u(hm)n(

|[x—hm|<ht

X — hm
VDh )

i.e., the summation is restricted to a small number of terms not depending on h.
We have

(MG Du(x) = Mapu()| < go(t,n) ullr..
and by choosing t sufficiently large, the error caused by the truncation of the sum-
mation is comparable with the saturation error of Mj, pu. For example, if

gp(t,n) < lleo(-,n, D)L,
then
h
(T = MPD)u(x)] < (T = Mip)u)| + ol D)l o [lull e
and we obtain

COROLLARY 2.20. Suppose that 7 satisfies the decay and moment Conditions
2.12 and 2.15. For any € > 0, there exist positive D and t such that for any
u€ WEL(R")

(I = My B)u(x)| < ey (VD)™ [ Vs
(2.60) M-1
+e(luloe + 3 (VDR Viu(x)]),

k=1

where M = min(L, N) and ¢, depends only on 7.

REMARK 2.21. It follows from Corollary 2.20 that the computation of M, pu(x)
requires taking only the terms in (2.23) for which |x/h —m| < t. Thus the number
of summands is proportional to t" and does not depend on the mesh size h.

The function gp can be used to characterize the behavior of M}, pu outside
the support of the function w.

LEMMA 2.22. For any bounded function u vanishing outside some domain <)
and for x € R™\ Q we have

|IMppu(x)| < gp(h™* dist(x,Q),7) Slslzp lul .

2.3.3. Local estimate of the quasi-interpolation. We have seen that M, p
and its properly truncated version Mg)p provide similar approximation properties,
i.e., the error estimate depends on the supremum of Vj;u on the whole space.
However, since Mgty)pu(x) depends only on the values u(hm) with |hm — x| < ht,
this local procedure should enjoy a local error estimate.

Those estimates can be established if the truncation radius is slightly enlarged.
For the generating function 7 satisfying the usual decay and moment conditions of
order N, we introduce another monotone function:

2.61 ro(t,n) := sup D "/? x—mNﬁl‘ x—m ‘
(2.61) p(t,) i= sup > beemP (5 =)

|[x—m|>t

Obviously, rp(t,n) = OV T 17K) as t — oo.
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Suppose that u € WX (B(x, ht)) and use the Taylor expansion (2.1) of u in
B(x, ht) to represent the truncated sum

(2.62)
= (x—hm)a (x—hm)
M pu(x) = (—vDh)led DRy U
[a]=0 hme B(x,ht) \/,5h ﬁh
D—n/2 x — hm X — hm
fvonr Yy 2 o, ).
!
[a]=N o hmeB(x,ht)( vDh ) ( vDh )
By (2.39) and (2.47) we can estimate
X —hm\e /x— hm
(\/1_>h)[a]‘D*"/2 > U —50[«1]’
hmeB(x,ht)( vDh ) ( v'Dh )
—hmjlel] /x—hm
< (VDR |ea(x,7,D)| + hl@ID=7/2 ‘X ’ ’ ’
< (VDR ea(x,n, D)| + > = )

Ix—ml>t
< (VD) lea (-1, D) Lo + WA Nrp (1),
Now we define the truncation radius « > 0 satisfying
(2.63) RN pp (k) < DI eq (-0, D)L,
The existence of a bounded & follows from t[+1=Npp(t ) = O(tld+n=K) _
for all [a] < N. Since, obviously,
(2.64) go(k,n) < [leo(-,n, D)L,

where gp is defined in (2.55), the parameter x can be used to control the error esti-
mates for quasi-interpolation in domains. We will discuss this problem in Chapter
9.

To proceed with the estimation, we note that (2.63) implies

w2 ) W) e

< 2(vVDh)jeal-,n,D)llz.. ,
which gives the following.

LEMMA 2.23. Suppose that n satisfies the decay and moment Conditions 2.12
and 2.15 with K > N + n and the conditions of Lemma 2.11, and let k > 0 be
such that (2.63) holds. If u is continuously differentiable in B(x,hr) up to order
N, then

K P '7777D co «
(0= Mol < (WD Y Wl Pl ooy, )

[a]:N
(2.65) 5
2> (o
[a]=0
Because of

(Mo — My p)ux)| < lleo(- 7. D)o lul .

which is a consequence of (2.64), the following local estimate can be established.
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COROLLARY 2.24. Under the conditions of Lemma 2.23 for any € > 0 there
exists positive D and k such that for any v € WX (B(x, hk))

(1 = Ma,p)u(x)] < ey (VDM [V arull o (Bx i)
M—-1
+e(llullz. + >0 (VDR IVru(x)])

k=1

with M = min(L, N) and the constant ¢, depending only on n. Moreover, if u €
WZL(Q) in some domain Q C R" then

(I = Mup)u(x)| < e;(VDR)M |V arul| 1o

(2.66) M1 .
+e([ull Loy + Y (VDR)*|Viu(x)])
k=1
for all x € Qp,, where we use the notation
(2.67) Q, ={x:B(x,7) C }.

2.3.4. Hoélder continuous functions. The proposed quasi-interpolation for-
mula approximates non-smooth functions as well. The Figs. 2.1 and 2.2 depict the
difference between the function u = |z|'/? and its quasi-interpolant My ou with the

Gaussian basis function (cf. (1.7)). We see that the error behaves near x = 0 like
h'/2.

0.08 {
0.151

FicGure 2.1. Error for FiGure 2.2. Error for
h =0.08 h =0.02

Such convergence behavior can be established also in the general case. Let, for
example, u € WLH7(R"), ie.,

[0%u(- + %) — 0%u()llz

x|

= <¢q forall xeR", [a]=L,

with some constants ¢, and L < N.



2.3. POINTWISE ERROR ESTIMATES FOR QUASI-INTERPOLATION 39

THEOREM 2.25. If n is as in Theorem 2.17, then the estimate
Ca «
[u(x) = Mypu(x)| <er, (VD)7 Y el

I
=L a!

%
b >0 Pl et
[a]=0
holds, where

and

/o c—m|Y|/-—m\e® /-—m
e =0 15 ) (7).
PRrOOF. From
1
Ua(x, hm) — 0%u(x) = L/SL_l([)O‘u(sx + (1 — s)hm) — 9%u(x))ds,
0
one obtains the estimate
|Ua(x, hm) — 0%u(x)|

[0%u(sx + (1 — s)hm) — 0%u(x)]

d
|sx + (1 — s)hm — x| s

1
<|x- hm|”L/sL_l(1 — )7
0

1
<|x-— hm|”caL/sL_1(1 —8)"ds=cq L
0

DL (y+1)

x — hm|”.
I‘(L+”y+1)| |

Hence using (2.51), we derive

Rp (%) = (=VDh)" Y 6a;!(X) o (%’ " D> ‘

o=

oo (VP 3 (S| oty

REMARK 2.26. If the bounded function u satisfies
lux+y) —ux)| < Clyl”
for some 0 < v <1 and all x € R”, then
u(x) = My pu(x)| < ¢y (VDR)'C + go(n, D)|u(x)| .

The following sufficient assumption on 7, which ensures that €o(n, D) < ¢ for pre-
scribed ¢ > 0 and sufficiently large D, can be easily derived from Corollary 2.13.
The generating function n has to satisfy

P01+ [x)* <00, xeR",

for some K > n and all 0 < [8] < u, where p is the smallest integer greater than
n/2, and Fn(0) = 1.
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2.3.5. Approximation of derivatives. If the derivative 9% exists and sat-
isfies the decay condition (2.45), then

— hm
9° My pu(x) = D2 (vVDh)" ¥ 37 w(hm) 9% ( = .
mezn ( ﬁh )

We note that the continuous convolution satisfies

07 ) = (VD)1 [uly) 0% (XL )y

(2.68) e .
= (\/Y_Dh)_"/aﬁu(y) n(ﬁ) dy = C\/ﬁhaﬁu(x) .
En

Proceeding as in the proof of Theorem 2.9, we obtain

(VDR)PH 9P My, pu(x) — 0°C. /5, u(x)]
<DL Y (lloal0®n. D), +/|ya n(y)| dy) %
Bn

[a]=L

L—1
+ > (-VDh)
[a]=0

X 98, D) - [yeos [0%u(x)|
oa(hﬁn,D) /y 3n(y)dy’ o

R™

If 7 satisfies the moment Condition 2.15 of order N, then in view of (2.68) and
Lemma 2.16,

§oc+s
0°C mpulx) — Pu(x)| < %/!y n(y)| dy,
[a]=N R™

and we obtain the estimate
(VDh)BN9P My, pu(x) — 9Pu(x)|
oxtBy,
< (VDr)NtAl Z %/b’an )| dy

[a]=N
+ (vVDh)* Z (Hpa( D)|, /’y 9P(y)| dy ) [[0%ull . uHLoo
[al=L
i \/—h [o] Ja(h,aﬁn,D) —/ya(?'an(y)dy‘ WQZ&

— B
Hence we have proved

THEOREM 2.27. Suppose that n satisfies (2.45), (2.47), and suppose that the
partial derivative 0Pn satisfies the conditions of Lemma 2.11. Then for any € > 0,
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there exists D > 0 such that for any u € WL (R"), L > N + [3],

dots
|0° My pu(x) — 9Pu(x)| < (VDR)N Y % / |y n(y)| dy
=N g
601
+ (VDr)EB Y (Hpa(-ﬁﬁn,D)HLw +/!ya 5ﬁn(y)!dy) 6%l sl‘L”
[a]=L R™ '
— |0%u(x)|
+e Z (\/Bh)[a]*[ﬁ] ~ .
[a]=0

2.4. L,-estimates of the quasi-interpolation error

To justify applications of approximate approximations in numerical methods, it
is important to study approximation properties of approximate quasi-interpolants
also in integral norms. In this section we concentrate on estimates in the norm of
the space L, = L,(R™), 1 < p < o0.

2.4.1. Formulation of the result. We use the representation of the approx-
imate quasi-interpolant

M Y (B 2000 X
o) ) = 32 (VW) o ea(5 D)

(2.69) 5

+
[e]

(—VDh)e] & Oa (5, n, D) + Rp n(x),
~y ol h
which is valid for any sufficiently smooth function u (see (2.50)). It is supposed
here that 7 is subject to the decay Condition 2.12 with K > max(L, N) 4+ n and
the moment Condition 2.15 of order N. The integer M in (2.69) is given as M =
min(N, L) and the remainder Ry j is defined by (2.51).

Under the assumption that 0%u € L,(R™), 0 < [a] < L, we obtain, by using
Lemma 2.6,

[u— My pullL, <

N-—1

VD)l
2 % 10%ullz, lleal-n, D)z
[a]=0 :

L—1
(w/Dh)[O‘]
+ Y o 0%l lloal . D).
[a]=N )
—-n/2

B 3 P (S )

L
mezZn P

The first two sums on the right-hand side can be estimated by using Corollary 2.13
and Lemma 2.6. In particular,

JBh)lel
S WP euls, loal,n D)l

al
[a]=Ek

k IS
S(gh)—ff S 0%, Y 0% Fa(De)| < (VO L) g,

(2m)*
[a]=F vezn\{0}
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with the numbers

(2.70) ex(D) = max Z ’8“.7:17(\/'1_)1/)‘ :
=k ez 0y

We show in Lemma 2.29 below that

X —hm\® /x—hm
2.71 HDiﬂ/Q ( ) ( ) Ua(x, hm H < ¢,||0%u
( ) m%ﬁ \/ﬁh n \/5[?, ( ) Lp 77” ||Lp
it 0%u € L,(R™) and [a] = L > n/p, where the constant ¢, does not depend on u,
h, and D. Note that the condition L > n/p guarantees that u € WPL (R™) can be
identified with a continuous function.

THEOREM 2.28. Suppose that n satisfies the decay and moment Conditions 2.12
and 2.15 of order N. Then for any continuous function u € WpL, 1<p< o and
n/p < L < K, the quasi-interpolant (2.23) satisfies

€k (D)
(2m)*

M-1
lu— Mupullz, < ¢y (VDM ||VasulL, + Z (VDh)

k=0

Viulz,

where M = min(L, N), the constant c,, does not depend on u, h, and D and the
numbers € are defined by (2.70). Moreover, for any ¢ > 0, there exists Dy > 0
such that for all D > Dy
M—1
lu— Mupulr, < ¢y (VDM [[Varullz, +& > (VDR)¥||[Viulr, -
k=0

2.4.2. Estimation of the remainder term. To prove (2.71), we introduce
the functions

(2.72) San(x) =D Y (xg}?)an(xggf)%(x, hm).
mezn

LEMMA 2.29. Suppose that 0 satisfies the decay condition (2.45) and that the
function u is such that 0%u € L, with [a] = L, where 1 <p < co and n/p < L <
K —n. Then the L,-norm of Sq.,n admits the estimate

[SanllL, < cnll0%ullL,
with some constant c, not depending on u, h, and D.
PROOF. We use the functions ¢, defined by (2.31). Since
27/2 T(n)I
o) = T I‘((n)—i—(Z))
there exist constants ®,(t) for any ¢ € (0, 00) such that
Gu(s) <O, if t<s<o0.
On the other hand, s"¢,(s) is an increasing function of s; hence
Ou(s) < (t/s)" ®u(t), for 0<s<t,
which, together with the decay condition (2.45), implies

w0 3 | o2, <A
mezZn *

for any s € (0,1] and [a] = L.

as s — 00,
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First let 1 < p < co. Applying Hoélder’s inequality and (2.73) with s = 1, we
obtain

sth||zzp /( Z ‘ —n/2( hm) (X\;ﬁh}jn) ’1/p+1/p/|Ua(x, hm)|>pdx

< (Adk (VD))" /D n/ZZ ’ (= hm) (%)“zja(x,hm)mx,
=

with p’ = (1 — p)/p. Choose 6 € (0,L — n/p) and apply Hélder’s inequality once
more to get

R~

1
/SL_lao‘u(sx +(1- s)hm)ds‘p
0

1 1
SLP/S(L 1=1/p"=00p| 9%y (sx + (1 — s)hm |pds{/sl+9p ds}
0 0

|Ua(x,hm)|” = L?

/

1
LP
_ (L-0)p—1|9cx _ p
= @y /s [0%u(sx + (1 — s)hm)|Pds.
0
Hence it remains to estimate

1

/D vy |5 hm) = hm ’/SL OP19%u(sx + (1—s)hm)[Pds dx

mez" 0

/ (L—6)p— 1/|3a )? (VD Z ‘(t\/_i_)];::) (\/_hs )’dtds

where we changed the order of integrations and summation in the last equality sev-
eral times, which is justified since the integrands are non-negative, and substituted
t = sx + (1 — s)hm. The application of (2.73) results in

/ —0)p— o t — hm
0/s<L 0) 1[|a u(t)| E ‘(ﬁhs) (\/_hs)’dtds
SMKWD)O/S(L o [P = SEGEEED o,

which leads to
¢ LP A®g_r (VD)
S P < (AD DY\P/P K-L
1ecnllz, < (A%x— (VD)™ s <0~
for arbitrary 6 € (0,L — n/p). Because of
1 p

0<0<Lon/p (0P (L—0)p —n)/P  Lp—n’

10%ullZ,

we obtain
Lp

Lp—

ISenllz, < A®k_r(VD) — [[0%ull.,
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If p = oo, then using (2.73) with s = 1 and the inequality |Uq(x,¥)| < 0% L.,
one obtains
ISapllze < APK—L(VD)|0%u] L., -
If p =1, then clearly
1

1Sa.nllz, < L/SL71 |8°‘u(t)|(\/55)7” Z ’(%)an(%)’dtds

0 R™ mezZn
1

gALcI)K,L(\/ﬁ)/sL**"ds /|8°‘u(t)|dt <

0 R

[0%ul|, -

Thus the assertion is proved for 1 < p < oo and we see that the constant ¢, is
bounded by

Lp

¢y < A@K_L(\/'Z_)) Tp—n

O

2.4.3. Remark on the best approximation. Using properties of the quasi-
interpolants, we can draw some preliminary conclusions concerning approximation

properties of the sets
x — hm "
span{n( WD ),m S/ }
if h — 0.

A space S of complex-valued functions defined on R" is called shift-invariant
if, for each f € S, the space S contains the shifts f(- + m), m € Z". In other
words, S contains all the integer translates of f if it contains f. A particularly
simple example is provided by the space of all finite linear combinations of shifts of
a single function ¢. The closure of this set in some Banach space X, denoted by

S(p) = closurex (span{¢(- — m),m € Z"}),

is called the principal shift-invariant subspace generated by ¢. The space S(p) can
be dilated by the parameter A > 0 to obtain

S"() = {f(-/h): f € S()},
and the family (S”(¢))s, is called a ladder of principal shift-invariant spaces. Thus
the quasi-interpolants My, pu are elements from the ladder (S”(n(-/D)))n, and

Theorem 2.28 implies, for example, that for any € > 0, there exists Dy > 0 such
that for all D > D,

(2.74) dist(u, S"(1(-/D); L)) < c((VDR)N + &) [ully-x

for any u € WZfV(R"), N > n/p, if n satisfies the decay and moment Conditions
2.12 and 2.15. Here the distance of the subspace S"(p) to f is defined as

(2.75) dist(f, 8" (9): X) = inf If = fullx

In the next chapter, we shall see that (2.74) is valid if the moment Condition
2.15 is replaced by the requirement Fn(0) # 0.
Let us note that this requirement together with the boundedness

Pn()|(L+ ) < oo, xeR",
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for some K > n and all 0 < [3] < u, where p is the smallest integer greater than
n/2, ensures that for any ¢ > 0 there exists D > 0 such that

(2.76) lim dist(u, 5" (1(/D); L)) < lullz,

This follows from Remark 2.26 and the density of compactly supported smooth
functions in L.

2.4.4. Local L,-estimates. Here, we estimate the quasi-interpolation error
in L, for functions, which are given on a bounded domain Q@ C R". Let u €
WE(©). We know from (2.62) and the proof of Lemma 2.23 that the truncated

quasi-interpolant /\/lgfj)ju allows the representation

e 9%u(x)
My hu(x) = ux)+ Y (VDR fo(x) —
[a]=0 ’

D"/? X —hm\® /x—hm
+(=VDR)M 3 > ) )Ualx, ).
|
[a]=M o hmé B(x,ht) vDh vDh
with sufficiently small functions satisfying fo (x) < 2|lea(-,n, D)||L.. if the trunca-
tion parameter  satisfies (2.63) and x € Q,, (see (2.67)). Here M = min(L, N).
Proceeding as in the proof of Theorem 2.28 and Lemma 2.29, one can deduce

I = M )ullz, @0 < (VDM [V arul 1)

= VDh)led ||aau(x)||Lp(Q)
+2 Z (VDh) —al leasn D)o
[a]=0 ’

The difference (Mp, p — Mg’%)u can be estimated in view of Lemma 2.1 and (2.63)
by

; /p . _
|(Mnp = M)l 10,0 < ( / nldsc) (1N ) 7l
|x|>~ VD
< lleo(-+n, D)l lullpon -

Hence we derive

LEMMA 2.30. Suppose that n satisfies the conditions of Theorem 2.28. Let )
be a domain in R™ and let u € WpL(Q) with L > n/p, 1 < p < oo. Then for any
€ > 0 there exist positive D and k such that

M—1
(T = My p)ullL, .. < (VDM [Vaullp,@ +& > (VDR)!(ViullL, @)
k=0
where Qyp, is the subdomain defined in (2.67) and the constant ¢ does not depend
on u, h, and D.

2.5. Notes

The error estimates for the quasi-interpolants M}, pu obtained in this chapter
have been announced and proved, partially in a different form, in [62], [64], [66],
[67]. The proof of Lemma 2.11 is taken from [71].
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It can be seen from (2.50) and Theorem 2.17 that the quasi-interpolant My, pu
converges to u with the order O((v/Dh)N) if and only if 7 satisfies, besides the
moment and decay Conditions 2.15 and 2.12, the conditions

(2.77) *Fn(VDv) =0, YveZ"\{0},0<[a] <N.

They are known as the Strang-Fiz conditions, which play an important role in
the theory of approximations from shift-invariant spaces. The determination of
the approximation powers of principal shift invariant spaces, i.e., the rate of decay
for sufficiently smooth functions, has received considerable attention in the litera-
ture. We mention some results, which are relevant for the fast decaying generating
functions 7 considered here.

In [92] Strang and Fix analyzed the La-approximation properties of the (non-
closed) subspace Sa(¢) = S«(¢) N La(R™), where S.(¢) denotes the set of all linear
combinations of the integer shifts of a compactly supported function . They proved
that the condition

(2.78) Fp(0)#0, 9%Fe(w)=0, VYvreZ"\{0}, 0<[a] <N,

is necessary and sufficient for the controlled approzimation of order N. This means
that for a given f € Wi¥(R") there exist approximants

fa="> chp(-—m) € Si(p)

mezn
such that
I1f = Fullze < ™| fllwy
and the coefficients of f; satisfy

(2.79) HemHlea@ny < ™2 fllL,

with constants not independent of f and h. They showed also that (2.78) is equiv-
alent to the polynomial reproducing property, i.e., for any algebraic polynomial
g € IIy_1 of degree < N

(2.80) > g(m)p(- —m) €Ty ;.

mezZ™

Note that the Strang-Fix conditions (2.78) has been considered previously for n = 1
by Schoenberg in [86]. He showed that all polynomials of degree < N can be written
as Y ez Cm@(- —m), if the piecewise continuous function ¢ with the exponential
decay at infinity satisfies (2.78).

There is a rich literature where Strang-Fix conditions and the connections to
the approximation power of subspaces have been clarified and extended in various
directions. The extensions include shift-invariant spaces which are generated by a
collection of generating functions, generating functions with non-compact support,
and approximation orders in other than Ls-norms. The description of these re-
sults is beyond the scope of this book. A good overview concerning the historical
development of La- and L.-approximation orders is given, for example, in [11],
which develops a general approach to this topic. It contains also a rather large
bibliography and additional information. Approximation orders in L, have been
investigated, in particular, in [12], [38], where it is shown that the Strang-Fix
conditions are equivalent to certain “controlled” approximation orders of principal
shift-invariant spaces, too.
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In [11] de Boor, DeVore, and Ron proved the following result, which shows
that one cannot expect the convergence by the ladder (S”(n(-/D))), if D is fixed:
Assume that F is bounded on some neighborhood of the origin. If S™ (o)), provides
the approzimation order N in Lo(R™), then Fyo has a zero of order N at every
v € Z"\{0}.

The concept of approximate quasi-interpolation replaces the Strang-Fix condi-
tions (2.77) by the weaker conditions

(2.81) > 0*Fn(vVDr)| -0, 0<[a]<N, ifD—oo.
veZ\{0}

Depending on 7, one can fix the parameter D such that the saturation term satisfies

N—-1 . .
0*u(x) —iv/Dh [ o 2mi
‘ Z o! ( 2 ) Z g ]:77(\/5”) e n
[a]=0 vEZ™\0
N—
<e ) (VDh)*|Viu(x)|
k=0

—

for some prescribed € > 0. Therefore, if € is sufficiently small, the quasi-interpolant
M}, pu behaves in numerical computations like a converging approximation process.

This approach allows one to enlarge the class of generating functions for the
practical application of quasi-interpolants of the form (2.23) to numerical methods
for the solution of partial differential and multi-dimensional integral equations. In
fact, the action of important multi-dimensional integral or even pseudodifferential
operators on many functions with fast decaying Fourier transform can be given
analytically or by other efficient methods, and these functions satisty (2.81). In
the next chapter, we discuss several methods to obtain new basis functions with
simple analytic structure, which satisfy the moment condition (2.47) with large N.
This provides high-order approximate approximations with the property that many
analytic operations can be performed very efficiently.

A straightforward consequence of the estimates obtained in this chapter is the
following observation: If (2.77) is violated, then in order to derive convergence, the
parameter D should dependent on h, D = D(h), so that

(2.82) Z |0%Fn(/D(h)v)] -0 as h—0,
veZn\{0}

at least for &« = 0. Then the conclusion of Theorem 2.17, for example, can be
reformulated as follows: The quasi-interpolant M, p(,)u satisfies the estimate

M—-1
(2.83) My pmyu —ul| < c(RMDE)M2|Varull + Y WED(R) 26 (h) [ Viul))
k=0

where
Ok (h) == [m]afi lea(,n, DR)|| =0 as h—0.
Hence, M}, pnyu converges to u if the function D(h) is chosen to satisfy

D(h) — oo and Rh*D(h) -0 as h—0.



48 2. ERROR ESTIMATES FOR QUASI-INTERPOLATION

Then the convergence rate is determined by the minimum of hMD(h)™/? and
RFD(h)*/26,(R), k = 0,...,M — 1. Tt is clear that one has to check these con-
ditions for any generating function under consideration individually, and that the
search for an optimal function D(h) can be rather complicated.

One can find some sporadic results in the literature, where this approach to
the quasi-interpolation was studied for special generating functions. Stenger, in his
book [91, Section 5.8], studies one-dimensional quasi-interpolants with special basis
functions satisfying the moment condition for N = 2 and with the functional de-
pendence D = 26— 0< B <1. He proved the convergence of the approximations
for continuous functions. In [8] Beatson and Light analyze multi-dimensional quasi-
interpolants with variable D, which use tensor products of linear combinations of
univariate Gaussians or exponentials e 'l as basis functions. It is shown that the
quasi-interpolant with linear combinations of the Gaussian as generating function
converges to u € W2 (R") with the order O(h¥ |log h|V) if D(h) = N |log h|/72.

By dealing with fixed parameters D in the quasi-interpolation formulas, we
avoid the problem of finding the optimal dependence of h and can treat different gen-
erating functions simultaneously. Although approximate quasi-interpolation does
not converge, we obtain approximations with certain order, which can be rather
large, up to a prescribed accuracy for appropriately chosen D .

Moreover, it is advantageous in various numerical applications of the method
to choose D not depending on h. First of all, the number of terms in the quasi-
interpolation formula which are necessary to compute the approximate value at a
fixed point within a given tolerance does not depend on h. Hence, if one fixes D,
one can use this number of summands for any step size. But more importantly, the
fixed D is very useful in the cubature of integral and pseudodifferential operators,
which is one of the main applications of approximate quasi-interpolation and will
be discussed in the following at different places. Here a fixed parameter D allows
one to reuse already calculated terms of the cubature formula with a certain step
size h for other discretization levels.

Let us note that in the abstract framework of approximation properties of shift
invariant spaces there is the notion of non-stationary ladders (S"(pp))n, where
the h-entry of the ladder is the h-dilate of an h-dependent principal shift-invariant
space S(p5). It generalizes the notion of stationary ladders (S”(y)); described
above, which are obtained by dilating the same space S(¢). Obviously, the situation
corresponding to the quasi-interpolation operator /\/lh)p(h) satisfying (2.83) fits into
the setting of the non-stationary ladder (S”(n(-/D(h))))n.



CHAPTER 3

Various basis functions — examples and
constructions

3.1. Introduction

We have seen that approximation rates of order N can be guaranteed up to
some saturation error for the quasi-interpolant (2.23) if 7 is a sufficiently smooth
and rapidly decaying function which satisfies the moment Condition 2.15. For
example, any function n € S(R™) which is symmetric and satisfies Fn(0) # 0 can
be used as a generating function for approximate quasi-interpolation operators of
the second order. It is the aim of this chapter to develop different methods to
construct generating functions satisfying the moment condition with large N from
simpler ones.

First we give examples of functions depending on one or several variables which
generate approximate quasi-interpolants of the second or fourth order. These func-
tions provide small terms ||eq(-, 7, D)| L., even for relatively small D, which makes
them suitable for practical applications as mentioned in Remark 2.18.

3.2. Examples

3.2.1. One-dimensional examples. The table below lists some basis func-
tions, defined on R, and their Fourier transforms. The last column of the table
contains a lower bound D,,;, which guarantees that the main term of the satura-
tion error satisfies

> |Fn(vVDy)| <1078

veZ\{0}
for any D > Dyin.
T1/2 e_w2 e‘”z)‘2 2.0
1 1
- - 4.1
mcoshz cosh w2\
2z 1
_ ——— 1.1
72 sinhz cosh® w2\
2
S 14 27 |A|) e 271 12.0
(1l + 22)? (1+27]) e
e 2 _x2)\2
—e cosV2x e cosh V2 2.6
T

49
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The first four functions satisfy the moment condition (2.47) with order N = 2,
and the last function with N = 4.

3.2.2. Examples of multi-variate basis functions. For an arbitrary n, one
can take tensor products of functions mentioned in the one-dimensional case. Some
further examples which satisfy the moment condition with N = 2 are contained in
the following table.

1) Fn(X) dim

/2 o IxI? o 2IAP any

sech(|x]) 5 % N3

(—1)* a2 gk e —2mVTIx| (14 [A[2) k- (n D2 any

T(k+2%) orF V7

Here x denotes the characteristic function of the unit ball B(0,1) and J, de-
notes the Bessel function of the first kind.

In the following we describe some methods to construct functions satisfying
the moment condition (2.47) of high order N. A general analytic formula, to be
obtained in Section 3.3, leads to interesting function systems especially in the case
of radial 7. In Section 3.4 we consider other analytic methods, which employ
the parameter D. Section 3.5 deals with linear combinations of translates of a
given simple basis function. We focus on the construction of multi-dimensional
basis functions with minimal support and on the calculation of the terms which
determine the saturation error.

Finally, in Section 3.7 we consider methods of diminishing the value of the
parameter D that can be reduced without increasing the saturation error.

3.3. Basis functions for higher-order approximations

3.3.1. A general formula. We obtain a general analytic formula for the
construction of generating functions which satisfy the moment condition for an
arbitrarily given N. We use the notation

1
Fn(X) A=0 '

THEOREM 3.1. Suppose that n satisfies the decay condition (2.26) with K >
N + n, that it is continuously differentiable up to order N — 1, and that

/n(x)dx;é 0, /|X|N_1|(9°‘77(x)|dx <00, 0<[a@] <N-1.
R» -

(3.1) O*(Fn)~1(0) := 9~



3.3. BASIS FUNCTIONS FOR HIGHER-ORDER APPROXIMATIONS 51

Then the function

N-1 o -1
(32) i) = Y T o)
[a]=0 )

satisfies the moment Condition 2.15 of order N.

PROOF. Because of (2.26) the Fourier transform Fn is continuously differen-
tiable up to order N and moreover F7n(0) # 0. We denote the N-th order Taylor

1
polynomial of ——— by
Fn(X)
N—-1 I
Pn(A) = Z 0%(Fn)~'(0) ol
[a]=0 ’

Since
%Py (0) = 9%(Fn)~'(0), 0<[a] <N,

we obtain the relations

1
]:77()\)) A=0 B

for all 0 < [B] < N. Hence the function Py(A)Fn(A) — 1 has a zero of order N at
the origin, i.e., it satisfies the moment Condition 2.15. By

PeNFI) = 7 3 oo(F) 0 () ° o) ().

al \ 27
[a]=0

P (FnN)Py(N)|s_g = 9°(Fn(X)

[x=o0

the assertion is shown. O
Note that the Fourier transform of ny is given by
N—-1
0%(Fn)1(0) ya
Fix(N) = Fu(n) Y e
[a]=0
Hence, if n is such that ny satisfies the decay Condition 2.12, then the saturation

error of the quasi-interpolant (2.23) with the generating function 7y is controlled
by the values 9% Fn(v/Dv) and 9%(Fn)~1(0).

3.3.2. Symmetric basis functions. If the basis function 7 has some ad-
ditional symmetries, then the general formula (3.2) becomes simpler. Let n be
symmetric with respect to the coordinate planes z; =0, i.e.,

(3.3) N1, Tiy ey Tn) =0T, e, — Ty X)), 1 =1,..0,00.
Then automatically
xn(x)dx =0
Rn
for any multi-index e = (o, ..., @) containing at least one odd «;. Hence all

~

indices a; in formula (3.2) must be even integers and this formula simplifies to

S

—1

0%*(Fn)~*(0)

)\ q2a _
20! CAn)e] 0**n(x), N=2M.

(3.4) 2y (X) =
[a]=0
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. . . . . a?
ExAMPLE 3.2. Consider the one-dimensional Gaussian function n(z) = ™7
Here formula (3.4) leads to

2

(—I)Mil HQMfl(.TE) e’
(3.5) nom () = Jr (M —1)122M-1 -
where Hj denotes the Hermite polynomial
d\"
(3.6) Hy(r) = (=1)Fe™ <d_) o
T
Indeed, L — 7~ 12¢™% and from
Fn(A)
d \2% 222 crd N\ _h2 . .
(3.7) 5) ™ — 1)%21(5) e = (—1)7% Hy;(0),
A=0 A=0
we obtain , X
= (Fn)—(0) _ (=1~
T2 = ﬁ HQQ(O)v
which implies
2 M—1
_ e’ H;(0)
() = 2 ) Hyj(x)
From [1, 22.4.8]
(24!
(38) 12500) = (~1P 28y 0) =0,
so that
2 M—1 ;
e ” (-1)/
(3.9) Non (z) = > o Hajlw).
T = jtas

The recurrence relation [1, 22.7.13]
Hiy1(x) = 2xHy(x) — 2kHp—1(x)

implies the summation formula

(-1)* ~ (=)
okt Hanta(2) = >3 1225 Hy;(x)

and hence formula (3.5) follows.
Figs. 3.1 and 3.2 show two of the one-dimensional generating functions which
provide quasi-interpolants of order 6 and 12, respectively.

3.3.3. Radial basis functions. Suppose that the function 7 is radial, i.e.,
n(x) = ¢(r) with r = |x|. Here we give a formula for the radial function n9ps(x) =
apr (1) satisfying the moment Condition 2.15.

The moments of the radial function 755, are

o0

/XZanzM(X) dx — /TQ[Q]*f’n*l 1/)2M(T) dr / W2 dw

R™ 0 Snfl
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1.2

TEYT T

-0.21]

E;Z 3 4

FIGURE 3.1. Graph of ng(z) FIGURE 3.2. Graph of ni2(x)

where S,,_1 denotes the unit sphere in R" and w = x/|x| € S,,_1. Therefore it is
sufficient that 9y, fulfills

T 5
(3.10) /r2k+"711/12M(7")d7":Lk , k=0,...,M—1.
Wn,
0
Here
27Tn/2
3.11 =18, =
is the surface area of S,,_1. Furthermore,
wn/r%"’"_l Yops (r) dr = / |x|2kn2M(x) dx = (—27T)_2kAk.7:’l72M(0)
0 R~
with the Laplace operator
A= —
2
= o5

Hence the moment condition (3.10) for the radial function a5/ is equivalent to
From(0) =1, AFFnop(0) =0, k=1,...,M—1.
Since the polynomial

— I(3) A9(Fn)~'(0)

Popr (A |A|%
Jgo '221Fj+ )
satisfies
1
AFPy(0) = AR(Fr)~L(0) := AF—— , k=0,...,M—1,
() ( ) () fﬁ(é)g:o

we derive the following.
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THEOREM 3.3. Suppose that n satisfies the conditions of Theorem 3.1 and is a
radial function. Then

M1 —1)7 AI(Fn)~'(0)

g' 4m)2 T (5 + 2)

(3.12) Nan (X Ajn(x)

JZO

is subject to the moment condition (2.47) with N = 2M and it has the Fourier
transform

SR IB) AED )

Fnanr (A JBT(+ 1)

JZO

REMARK 3.4. An interesting feature of (3.12) is its additive structure. The
approximation order of a given quasi-interpolant

— hm
n/2 hm (X )
m%” 772M @h
can be increased by 2 if a new sum of the form
— hm
D/ 3" u(hm) @(L)
mezZm @h

with the function

AMy(x)

_ ey (EDM AY(FR) 71 (0)
o) =G a7 )

is added to the quasi-interpolant.

3.3.4. Example. We apply formula (3.12) to the n-dimensional Gaussian
n(x) = e X", From

N (Fp) 1 0) =x "2 AT em 8| = (—1)ip 2 AT

£=0 £=0
= (=17 "ATFn(0),
we see that
2 o0
A (Fn)~(0) (2m)° /| 17 e |x|? ( )an /T2j+n—1efr2 dr .
0

Using

/Tk_l e_r2 dr = —F(k/2)

2
0

and making use of (3.11), we obtain

(472)7 77”/2F(j + %)

(3.13) A (Fn)7H(0) = Tn/2)
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Then formula (3.12) becomes

M-1 N
x) =T (2 (1)’ A9 (Fn)~1(0) i e Ixl?
o (x) =T'(3) JZ:; JAm)AET (5 + %) °
(3.14)

-1

S

—~

—U7 i

_ .—n/2
-7 147

(=)

j=
Because

FI eI ) = 7" 2(=1)7 (2m) P AP A
and from (2.12), we obtain
/7“2je7772’”2 n/2,1(27rr|x|)r"/2dr
0
= (~1)7 j1ad e L2 (1x?).

Ad o IxP? /2 (=1) (2m) %
e =
(3.15) x| /271

The last integral can be found in |7, 8.6.13], and L;'Y) are the generalized Laguerre
polynomials, which are defined by

Yoy s d\k
(3.16) LY (y) =2 ]f' (d_y) (e Vyi), 4> 1,

and are orthogonal in the space L3(0, 00) with weight y”¥e Y (see, e.g., [93]).
Thus we can rewrite (3.14) as

M-—1
—n —|x|? n/2—1
Nang (x) = w2 e PN L2 (52

§=0
which transforms, by using the recurrence relation [93, (5.1.14)]
~1
(3.17) L7 V() = L) = L7 (v)
to the function
manr(x) = 72 LG (1x[?) eI

Note that 71 is the unique function of the form p(|x|2)e =" with a polyno-
mial p of degree M — 1, which satisfies the moment Condition 2.15 for 2M. Indeed,
by (3.10), p is subject to

7 B _ I'(n/2
/yk /2 p(y)e ™Y dy = dox 7(77152)7 k=0,....M -1,
0

i.e., the polynomial p of degree M — 1 is orthogonal to all polynomials of degree
less than M — 1 with respect to the weight y™/2 e ~¥. Hence p(y) = cLS\Z/j)(y), and
the last integral with k& = 0 and (3.16) lead to ¢ = 7~ "/2.

THEOREM 3.5. An n-dimensional approximate quasi-interpolant of the form
(2.23) with approzimation order O(h®*) can be constructed with the gemerating
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function
2 M-l 2
o () = w2 L) () e = a2 50 L ) e
3=0
(3.18)
. ~xf?
which has the Fourier transform
M=1, 92\
Al2)7
(3.19) Frpn(A) = e ™ MY M
—~ !
J
The functions {nonr}, M =1,2,..., form the unique system {p(|x|?) — x| } with

univariate polynomials p of degree M — 1 satisfying the moment C’ondztwn 2.15 for
N =2M.

REMARK 3.6. The property mentioned in Remark 3.4 takes the form
n/2— —1x|?
Mear2(x) = nanr () + 2 L2 (1xf?) o7

Therefore the quasi-interpolants

— hm
3.20 MEDy(x) = D"/ (hm) X . M=12,...
(3.20) (x) > ulhm) naa T )

mezm™

allow the representations
2M 42 2M
MiZp P u(x) = MiZE u(x)

(3.21) _|_( Dl) 7 Z (hm) L(n/z 1)(|X —DZ;M )e—\x—hm|2/Dh2
T n

mezm

—-1)M (Dh?
:M%)u(x)Jr(M)! (T) AM M u(x).

REMARK 3.7. Note that formula (3.5) corresponding to n = 1 is in accordance
with the relation

(1/2) (=1)*  Hapyi(7)
3.22 L{ .
( ) ( ) k' 22k+1 T ’

see [1, 22.5.39].

3.3.5. Anisotropic Gaussian function. An important generalization of the
Gaussian is given by the exponential function

e (Axx) , x € R",

where A is a non-singular n X n matrix of the form A = Ar + iA; with two real
symmetric matrices Agr and Aj satisfying Re A = Ag > 0. Note that the inverse
matrix A~! belongs to the same set of matrices. The Fourier transform of this

anisotropic Gaussian function is given by
n/2
"/ —m2 (A7)

(3.23) Flem“™ ) = ot )72 © :
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where the square root of det A is defined as the value of the analytic branch of

(det B)~'/2 on the convex set of symmetric matrices {B} with Re B > 0 which

satisfies (det B)~1/2 > 0 for real B (cf. [34], where further explanations are given).
Then for any symmetric matrix A satisfying Re A > 0 the function

—(A71x,x)

(3.24) nA(x) = © with an(A) _ e*ﬂ'2<A>\7>\>

772 (dot A)1/2

generates an approximate quasi-interpolant with approximation order 2. As in the
above construction, the function nfM with the Fourier transform

M-1, o ;
2 s A)\,)\ J
Fhy(3) = e 5 LR A

j=0
satisfies the moment Condition 2.15 of order 2M,
noh(0) =1, O*Fnsh(0) =0, Va with0< [a] <2M.

Using the notation
n 82
AV, V) = Qjk—F—
< ) Z i O0x;0xy,
J,k=1
and the properties of the Fourier transform, the function nf‘M can be given as

M—1 :
772M(X) = ! ( 1)]
n/2 1/2 1 AJ
/2 (det A)Y/ = gtas

(AV, V) e~ (A7)

Similarly to the proof of Theorem 3.5, one establishes

M-1
1 — -1
A _ }: (n/2=1)/ g—1 — (A7 %,x)
772M(x) - 7r"/2(detA)1/2 Lj (<A X,X>) € <
(3.25) =0
1

— (n/2) -1 —(A7 x,x)
W"/Q(detA)l/Q LM71(<A X,X>) e .
If ReA > 0, then this function generates, due to Theorem 2.17, an approximate
quasi-interpolant of order O(h?M).

3.4. Some other methods

In this section, we consider some other analytic methods which provide gener-
ating functions ny such that Fn — 1 has a zero of higher order N. In particular,
we show that D may serve not only as a scaling parameter to control the satura-
tion error. This parameter is also useful to obtain other approximating functions
adopted to special situations. In the following we suppose that the basis function
7 is symmetric with respect to coordinate planes, i.e. satisfies (3.26), and has unit
0-th moment

(3.26) /n(x) dx=1.

Rn
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3.4.1. Using a collection of different D. We consider the function

Z a;D _n/Q (%J)

for a given M-tuple D = (Dy, ... ,DM), D; > 0,D; # Dy, j # 1. The a-th moment
of np evaluates to

M
/x D (x dx_zaj "/2/ n(\/ﬁ)dx—/xo‘n(x)dxzajpj[a]ﬂ_
J

Rn Rn Rn j=1
Because of the symmetry (3.26),

/X"n(X) dx =0

R’n
for odd values of [a], the function 7 satisfies the moment Condition 2.15 of order
N = 2M if the coefficients a; satisfy the linear system

M
Zajpjkzdok, kZO,...,M—l.

The unique solution of this system is

THEOREM 3.8. Suppose that n satisfies (3.26), (3.3), and the decay condition
(2.26) with K > 2M + n. Then for any M-tuple of pairwise different positive
numbers D; the generating function

3.27 i = MD_"/2 IR
(327 =30 () [T 5=,
k#j

satisfies the moment condition (2.47) with N = 2M.

REMARK 3.9. It can be easily seen from formula (3.27) that the generating
function np is subjected to the extended decay Condition 2.12 together with 7.
Since the Fourier transform of 771D equals

Fiip (A Z}'n \/_)\H D

k#]

we conclude from Theorem 2.17 that the approximate quasi-interpolant
— hm
D—n/2 Z (hm) 77D( )
i VDh
has the approximation order 2M and the saturation error can be controlled by the
values of
Dy,

Dy —D;

=

S [ m(voDm)

vezm\{o} j=1

, 0<[a] <2M.

1
J

bk
Sl
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Note that the coefficients in (3.27) do not depend on 1. Hence, Theorem 3.8
provides a very simple method to enlarge the approximation orders which can be
applied without further effort to any sufficiently smooth and decaying function 7.

A practical realization of this construction is the following: Suppose that for
given values {u(hm), m € Z"} and different D;, we have approximate quasi-
interpolants

o —h .
/\/l]hu( /zmgn (%)7]:1,...,]\4,

of the order O(h?). Then by Remark 3.9, the linear combination
Dy
> 11 Dy -, Manul)

provides an approximate approximation to u of the order O(h?M).

3.4.2. Derivatives with respect to D. Another construction can be derived
from formula (3.27) letting D; — 7 >0, j=1,..., M. The expression

1k
Jj= K ;ﬁl
is the value at the point z = 0 of the polynomial interpolating the function f at

xzj, 7 =1,...,M. If all z; — y, then this polynomial tends to the polynomial
interpolating the derivatives f(®)(y), k=0,...,M — 1, i.e.,

M—-1 (
Z (%‘) —

7j=1 1 k=
#J

Thus, if D; = 7>0,j=1,...,M, then

fPy) as z;—y, j=1,....M.

[=)

M— 1

;kHl Dk 7n/2’7(\/—) - JZ:; -aT‘a < W”(%)) |
k#j

To show that the moment condition holds, we note that

M-1 S
—7) &7 n x _1)yM-1 7,M o\ M-1 . x
> ( ’l) W<T /277(_)> - J\i/ 1)! (6_) (T 1 /277(_)>'
= g oor VT (M -1t \or VT
Hence for 7 > 0 and any multi-index a, [a] < 2M | we obtain

) (o o))

R

_1yM-1 d \M-1 -
- ((M)_ 1! /n(x) xea ()T =
RTL

where we use the symmetry (3.3) if [a] is an odd number.
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THEOREM 3.10. Suppose that n is continuously differentiable up to order M —1
and that it satisfies (3.26), (3.3), and (2.45) with K > 2M +n. Then the generating
function

. (=DMt aNMEL s X
3.28 = (") (=)
satisfies the moment condition (2.47) with N = 2M. The Fourier transform of
7iam (X) is given by

Fiine(X) = % (%)M1 (7 Enven)|

T=1

REMARK 3.11. Note that formula (3.28) applied to e~*° gives the function
system described in Theorem 3.5 by the uniqueness of this system, but, in general,
(3.4) and (3.28) lead to different systems.

3.5. Linear combinations of translates

We consider quasi-interpolation formulas

X
(3.29) Z u(hm) nD(E - m) )
mezZm

where for given D the generating function np is a linear combination of shifts

x —
(3.30) =D Y (5 )

keA

for a finite subset A C Z™. Then one can rewrite

(3.31) Z u(hm) 77@(% — m) —pn/2 ZFh ( \/—h}lL’n)

mezZm mezZm

with the functionals
=Y mcu(h(m—k)).
keA

Hence, the quasi-interpolant (3.29) belongs to the principal shift-invariant subspace
spanned by 7(-/v/D). If n satisfies the decay Condition 2.12 with sufficiently large
K, and if A C Z™ and the coefficients v, are chosen such that np satisfies the
moment Condition 2.15 for N < K —n, then one can expect an approximation rate
O(h™) plus some saturation error.

3.5.1. Construction of the generating function (3.30).

THEOREM 3.12. Suppose that n satisfies (2.45) and let Fn(0) # 0. For any
positive N < K — n, there exist a finite set Ay C Z"™ with the cardinality |[An| =
(N+n-—1)!

(N -1D!n!
(3.32) =D "2 ) an(x_ )
keAn

satisfies the moment Condition 2.15 of order N. Moreover, for all [a] < N and
ver

and coefficients vk, k € Ay, such that the function

0" Fip(w) = DIV 3 s 0P F( D) 0 () (0).

B<Llax
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PRrROOF. The Fourier transform of (3.32) equals

Fip(A) = Fn(vVDA) Y e e 27N
keA
We want to find a trigonometric polynomial
A) — Z T e—27ri(k,)\)
keA
such that np = F~1(Py Fn(v/D-)) satisfies the moment Condition 2.15 of order N,
or equivalently, such that

05 (PA(\)Fn(VDA) — 1)]A:0 —0, Va,0<[a]<N.

It can be shown similarly to the proof of Theorem 3.1 that this requirement can be
achieved with any trigonometric polynomial satisfying

(3.33) 9Py (0) = DI¥/29(Fp)~1(0), Va,0<[a] <N.

The notation 9% (Fn)~1(0) is explained in (3.1).
This means that the coefficients vk have to satisfy the system of linear algebraic
equations

(3.34) Zykka—( */_)[ Lo (Fn)10), 0<ja]< N

keA 2
It is known (cf., e.g., [88, XIV.1]) that for any N there exist various sets A C Z"
N —1)!
with |A] = % such that the linear system (3.34) is uniquely solvable.
—Dln

Taking one of these sets A, the first assertion is established.
Now, we note that

O Fnp(A D2 98B Fn(VDA) 9% PPy (M)

al
=2 B! (a - B)!

BLla

hence if A =v € Z", the perlodicity of Py(\) implies

O Fp(v) =Y = Bila B DWI/2 98 Fny(vVDr) %P P, (0) .

BLla

Taking into account (3. 33) we get

o [B1/2 o8 [a—PB]/2 59— -1
0*Fip(v) = > = Bila gy 0 07 F (VD) D 0%=P(Fn)~1(0),
B<lax
which establishes the second assertion. O

Let us mention that the quasi-interpolant

(3.35) MPu(x) := Z u(hm)np(% - m)

mezZm
differs from the quasi-interpolants considered up to now: The matter is that the
dependence of the generating function 1p on the parameter D is more complicated
than for quasi-interpolants of the form (2.23). The quasi-interpolant M? is not
generated by a scaled function

D_n/2 77(/\/5)7
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but by a linear combination of translates of this scaled function with coefficients
depending on D, but not on h. However, the more complicated dependence is
compensated by the fact that the function n has to satisfy the moment Condition
2.15 with large N in the case (2.23), whereas here only the 0-th moment 7 must be
different from zero.

Nevertheless, the approximation properties of MP are similar to those of M, p.
Since we have no scaling parameter D in (3.35), the expansion (2.50) applied to
MPuy leads to the representation

0%*u 2mi
M u(x) Z ( ) Y Fupw)e n X LRy p(x)
1=0 vezn\{o}
with the remainder term
X
Ry n(x) Z Z (— — m) np(g - m) Ua(x, hm) .
[a]= N : mez”
Thus one obtains the estimate
N-1
(3.36) u(x) = MPux)| < ep bV | Vullp @) + Y exh?Viu(x)])
k=0
with the constants
cD—max—Z |(x —m)®np(x —m)|,

=N a!
meznr

and

ep = (2m)7F ’ﬁl]a%c o Z O*Fnp(v)e )
vezn

VD |02~ (Fn) "1 (0)]
G e

THEOREM 3.13. Let u € WY (R™) for some N € N and suppose that n satisfies
the extended decay Condition 2.12 and its zeroth moment is different from 0. Then
for any € > 0 there exist D > 0, a discrete set Ay € Z", and coefficients ~y,
k € Ay, such that the quasi-interpolant (3.35) generated by

1) =D 3 ()

keAN
satisfies the estimate
N-1
(3.37) lu(x) = MPu(x)| < ep M |[Vnullp. + € Z h¥|V u(x)]
k=0

with a constant cp independent of u and h .

REMARK 3.14. A useful feature of the quasi-interpolant (3.31) is a consequence
of fixing the parameter D. We have already mentioned that the coefficients ~y,
which solve the system (3.34), depend on D but not on h. Hence, if these coeffi-
cients are determined, then they can be used for different A to obtain high-order
approximations, which is impossible in the case of D varying together with h.
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From the proof of Theorem 2.28 it is clear that the assertion of Theorem 3.13
can be generalized to estimates in the L,-norm, 1 < p < co. Then, as a direct
consequence, we get an estimate of the best approximation announced in Subsec-
tion 2.4.3.

LEMMA 3.15. Suppose that n € S(R™) with Fn(0) # 0. Then for any N and
any € > 0 there exist D > 0 and a constant cy such that for all u € W;V(R"),
L<p<oo,

N—
dist(u, S"(n(-/D); Loe)) < ex (VDR [V, +2 3 (VDR) [ Vyullz, -
k=0

=

3.5.2. The case of symmetric 7. The construction of 7p in the case of
symmetric n and N = 2M can be performed using the trigonometric polynomial

(3.38) PyN) =Y ag[Jeos2nB;n;,  B=(5,....0.) € Z%.

Bl<M j=1

Then np = F~1(Py Fn(v/D-)) is symmetric in the sense of (3.3). Therefore, (3.34)
leads to the linear system

[a]
(3.39) > aps® = (- 4%) 92(Fn)"(0), 0<[a]< M.
[Bl<Mm

ExXAMPLE 3.16. Consider the basis function for approximation order 2M de-
rived from n(z) = sechz, x € R. Here (3.39) is the linear system

o« 1 D \N@/ d 2
. IﬁgM%ﬁ2 B ;( - R) (ﬁ) cOShWQ)\‘,\:o , 0sa<M,

. . M—
with the Vandermonde matrix (ﬁzo‘)a 6210 .

(3.40) for any M. In the case M = 4, for example, the function

Thus, there exists a unique solution of

|B]<4
with the coefficients
1 497D 7w3D?  nPDp3 37D 1373D? 7SD3
=TT T s T 2300 GET T T 7384 1536
37D  7D? o3 7D  w3D? D3
“2= 50" T 96 T 3840 93577360 1152 23040

generates a quasi-interpolant of order O(h®).

A set of multi-indices J C ZZ,, is said to be normal if o € J and 8 < ¢ imply
B € J. The linear space of n-variate polynomials associated with J is denoted by

Py =span{x*: a € J}.

Furthermore, for 1 < j < n let there be given sequences T; = {t;;}7°, of different
real numbers and consider the lattice

I]Z{ta = (tl,a17"'7tn,an): a < J},

which is determined by the sequences T; and the index set .J.
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M—1
[a],[8]=0"
owing to the following general result of Hakopian [32]:

In the multi-variate case the matrix (ﬁm) a, B € 2%, is non-singular

THEOREM 3.17. ([32]) Let J C Z%, be a normal set. Then each polynomial
p € Py is uniquely determined by its values on the lattice T;.

Note that
H cos2mBA; = 9—r(B) Z o 2mitkA)
=t £()=p
where ¢(k) denotes the vector ([kil, ..., |kn|) € ZZ and k() stands for the number

of non-zero components of the multi-index 3. Thus, the unique solution {ag} of
(3.39) provides the generating function

(3.41) =3 25®as Y n(xfk)

Bl<M §(k)=8

which satisfies the moment condition (2.47) with N = 2M . This construction leads
to the approximation formula

0t T (2 (S acuthm- )

mezZn [E(k)|<M

where |{(k)| = k1| + -+ - + |kn| and ¢ = 2”‘(5(k))a5(k). This formula has approxi-
mation order O(h?M) plus saturation term and is based on the values of u at the
mesh points A(m — k) with the minimal distance to hm.

REMARK 3.18. For any radial function 7n(x), the solution {ag} of the linear
system (3.39) is independent of any permutation o(3) of the components of the
multi-index 3. Then formula (3.41) can be written in the form

m(x)= Y 27"Pag Y- n(X\/_ﬁk)-

[Bl<M o(§(k)=p
ﬁl >. ~~ZB71

3.6. Matrix-valued basis functions

An interesting consequence of formula (3.18) is the identity

M=2 i ix?
. 2 a1k N (DA e
(3.42) A7 pam(x) = (A ¢ jgo (j+ 1)!45+1 ) ’

which will be used in Section 4.3 to obtain cubature formulas for the inverse of the
Laplacian.

This formula can be generalized to other partial differential operators. Let, for
example, L be a positive definite m x m matrix of homogeneous partial differential
operators of second order with constant coefficients. Then, for any vector function
f with elements from S(R"™), the Fourier transform of Lf has the form

FLEA) = 472 APPA(w) FFA), AeR", weS, 1,
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with a positive definite matrix A(w) > ¢ > 0. We can introduce the exponential

—m? A2 A(w)

matrix function p(A) =e and similarly to (3.19), the modified function

M1 21312 40, )i
panr(8) =y - R

J=0

)

which satisfies
8% (jianr (A) — I)‘H —0, 0<[a]<2M.

Hence the inverse Fourier transform of uops satisfies the decay and moment Con-
ditions 2.12 and 2.15, which allows us to construct high-order approximate quasi-
interpolants. This generating matrix function is given by

(3.43) fiong (x) := F " pans (x F ) (%)

=0

and can be easily derived if ji := F 'y is analytically known. Moreover, and this
is more important, it is then possible to derive high-order approximations for the
inverse of L by

M2
—1

(3.44) L™ pom(x) = Z j+1 ,4J+1 ;

Jj=

which is the analogue of (3.42).

3.7. Diminishing the parameter D

In this section we consider the problem of how the parameter D can be dimin-
ished without loss of accuracy of the quasi-interpolant (2.23).

Since D determines the number of summands in (2.23) necessary to evaluate
the approximate value of u(x) within a given tolerance, it is of practical interest,
especially for the multidimensional case, that this number is as small as possi-
ble. On the other hand, the saturation terms are determined by the values of
0°Fn(vDv), v € Z"\{0}, [a] < N, such that smaller values of D enlarge this
error, in general. This concerns especially the main part of this error,

) > Fn(vD Ty
veZm\{0}

which does not decrease together with h.

3.7.1. Perturbation of 7. We start with the equality

p"/? Z u(hm)n(%)

mezZm

(3.45)

= u(x) g(x/h) + D2 3 (u(hm) — u(x)) n(

mezZn™
where 7 satisfies the usual conditions and g(x) denotes the sum

000 =D 3 (A = S By e

meZm vezr
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From (2.36) and Theorem 2.17 it follows easily that the second term in the right-
hand side of (3.45) is bounded by

(3.46)
N—-1 o (x *u
con= > (VDN eal D)o, TeN oo (D 32 100
[o]=1 ' =N

converging to zero together with h.
Since we require from 7 that its integer shifts span an approximate partition of
unity, it is natural to assume that |g(x)| > ¢ > 0. Hence

(3.47) ’gp(x—;/;) 3 u(hm)n(x\;_#) - u(x)’ < ewn.
mezZm

However, the function g(x) is one-periodic and therefore

o) /oG -m) =150 fa(3)

If we define

_ x

i) = 1)

9(vVDx)
we derive a new quasi-interpolant
~ X — hm
(3.48) Muu(x) =D S w(hm) n( )
m%Z:n VDh

which satisfies the error estimate
|u(x) — Mpu(x)| < ¢ Lewn

by (3.47), i.e., even the saturation error of (3.48) tends to zero as h — 0.
In general, it is impossible to get an effective expression for g—!, but a good
approximation can be found, for example

x)=1- Z Fn(vVDrv)e 2wy
lv|=1

LEMMA 3.19. Suppose that n satisfies (2.45), (2.47), and the conditions of

Lemma 2.11. Then
_n /X —hm

mezZm

with H(x) = n(x)g1(VDx), approzimates u with the order O((v'Dh)N) plus some

saturation error and the main part of this saturation can be estimated by

D)< n Y [Fa(VDv)P+c > [Fn(VDy)|,

lv|=1 lv]>2
where ¢; = max |g1(x)].

PROOF. Since

() (S5E) () ).
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we obtain after multiplying (3.45) by g¢1(x/h)

D 5 i) g;)gl(x—hhm)

mezn
x -n X — hm
_u(x>gl(ﬁ)g(h)+91( ) 2 % ))H(W) .
Now,
gl(x)g(X) =1 —( Z ]—"n(\/'z_py) e27'ri(x71/>> + 91 ( Z ]:,,7 \/_I/ —2mi(x, V>>,
lvi=1 v[>2
implying the inequality
pD—n/2 w(hm) ﬁ — hm ‘
< u(x < Z|]—"77 |2+clz|}"n )+clauh 0
lv|=1 lv|>2

3.7.2. Combinations of translates. The following approach is in the spirit
of (3.38). Suppose that 7 satisfies the usual moment and decay conditions (2.47)
and (2.45), suppose it is symmetric as in (3.3), and let K > 2M. We seek a
trigonometric polynomial

- (B + 3N
Thv(A) = Z ag Hcos TP T3
Bl<M  j=1 \/5

such that
(3.49) O**Ta(0) = **(Fn)~1(0), Ya,[a] <M,

and we define the generating function o (x) := F~1(Tar Fn)(x). Clearly, this
function satisfies (3.3), the moment condition

.7:772]\/[(0)21, (90‘.7:1?2]\/[(0):0, 1< [Oé] §2Ma
and additionally, based on the special structure of Thy,
Fion(VDr) =0

if at least one component v; of v €Z" is an odd number.
Thus, A2y generates an approximate approximation of order O(h*M) and the
main part €o(f2ar, D) of the saturation error is bounded by

50(7?2M, D) < Z |fﬁ2M(2\/5V)| .
vezm{o}
The equations (3.49) lead to the system
e D
> ap8+ = (- D)o E ). lal <,
|Bl<M

where e = (1,...,1). This system is similar in form as (3.39) and it is uniquely
solvable for all n and M.
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. _ _ 2
We apply this method to the example 773/2e =" n =3 M = 2, and we
derive the generating function

Lj

2VD

3
— &!1/16P (1/8 1 D) cosh (28; + Dz,
g—:u‘l:[l 2vD )

3
fa(x) = 7 3/2 e X ( /167 (11/8 + 3D) H cosh
j=1

providing the order O(h?*). Here even the choice D = 1 gives
o0(fis, D) < 4294310717 4(M4,D) < 3.8793-107°, [a] = 1.

3.8. Notes

This chapter is based on the articles [66] and [70], where some other methods of
constructing generating functions for high-order quasi-interpolation have also been
considered.

Note that the analytic methods discussed in Sections 3.3 and 3.4 lead to quasi-
interpolants which do not belong to the shift-invariant space generated by the start-
ing basis function n. This is in contrast to the method described in Section 3.5,
which is well known for basis functions satisfying the Strang-Fix conditions (cf.
1921, [85]).

1~——7= 3

Ficaure 3.3. Graph of ¢(z)

Probably the simplest example in this respect is shown in Fig. 3.3. This function
is the linear combination of cubic B-splines (cf. (1.20))

c(z) = %(81)(:1:) —blx—1)=blx+1)),

which satisfies the moment Condition 2.15 with N = 4 and generates therefore a
quasi-interpolant of approximation order O(h%).



CHAPTER 4

Approximation of integral operators

4.1. Introduction

In the next three chapters, we discuss the probably most important applications
of approximate approximations, which lead to new classes of cubature formulas for
integral operators of mathematical physics and to closed formulas for approximate
solutions of initial boundary value problems for classical partial differential equa-
tions.

Many integral operators of mathematical physics are convolutions with singu-
lar kernel functions, for example with fundamental solutions of partial differential
operators. Because of the singularity of the integrand, the numerical computation
of those integrals by standard methods is an involved and time-consuming task.

Here the use of quasi-interpolants (2.23) with adapted basis functions can be
very advantageous. Consider, for example, the convolution operator

(4.1) Ku(x) := /k(x —y)u(y)dy.

Rn
A cubature of this multi-dimensional integral can be obtained if the density w is
approximated by a quasi-interpolant

(4.2) un(x) =D " 3" u(hm)n(

mezZm

X — hm
\/511)

and the generating function 7 is chosen such that Kn(x) can be computed efficiently.
Then the sum

(4.3) Kup(x) = h" Z u(hm)/k(\/ﬁh(x\;_% - y)) n(y) dy

provides a simple cubature formula for the convolution (4.1). If the integral Kn(x)
is expressed analytically, then (4.3) becomes a semi-analytic cubature formula. This
allows one to apply other analytic operations to the cubature formula (4.3).

Another advantage of (4.3) is that it retains the convolutional structure of the
integral operator. Very often, one has to compute a potential on a given uniform
grid as one part of a more involved algorithm. This leads to the computation of a
discrete convolution

(4.4) Kup(hk) =h" > ax-mu(hm), keZ",

mezZm

mezm R~

with the coefficients

(4.5) o= [ k(ﬁh(% ~y)) n)dy .

69
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which can be done efficiently using the Fast Fourier Transform.
If additionally the kernel function & is positive homogeneous of degree §, then

(4.6) Kup(hk) = h"(VDh)? > b mu(hm)

mezZm

where the coefficients

(4.7) bk = /k(% - Y) n(y) dy

R™

do not depend on the step size h. Thus, if the parameter D is fixed, then one can
precompute the required values of by and use them for the cubature of (4.1) with
different h.

These ideas can be best demonstrated on convolutions with a radial kernel
k(x) = k(]x]). In Section 2.1 we noted that the Fourier transform Fk(X), which
can be obtained by (2.12), is also radial. It is convenient to choose 7 as a radial
function also, with Fn(X) = Fn(|A]). Then by (2.15), the convolution integral in
the sum (4.3) reduces to an integral over the half-line

/k(\/ﬁh(% — y)) n(y) dy

R

2m
—|X—hm|"/2 T /fk fn(\/_hr) Jnj2—1(27r|x — hml)r 2y
It remains to find a proper radial function 7 such that this integral can be taken
analytically or at least by some efficient quadrature method. So the evaluation of
the multi-dimensional integral operator with possibly singular kernel function is
reduced to the quadrature of a one-dimensional integral or even to the evaluation
of explicit analytic expressions.

In this chapter, we give a detailed study of the already-mentioned approach for
two important integral operators.

In the next section, we consider the Hilbert transform, i.e., a one-dimensional
singular integral operator. It is shown that the derived semi-analytic cubature
formula approximates with high order up to some saturation bound.

Sections 4.3 4.5 are devoted to harmonic potentials. First, we derive ana-
lytic expressions of their action on the Gaussian function in any space dimension,
which are extended later to basis functions of higher-order approximate quasi-
interpolation. This results in semi-analytic cubature formulas for harmonic po-
tentials and related pseudodifferential operators.

In Section 4.4, dealing with approximation properties of these formulas, we
state the interesting effect that the cubature converges as the mesh size tends to
zero, whereas the density is approximated with some saturation error. This is
caused by the special structure of the saturation error and its convergence in weak
norms.

Finally, in Section 4.5 we describe a direct application of the high-order cuba-
ture of harmonic potentials to the solution of boundary value problems for Poisson’s
equation, using boundary integral equation methods.
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4.2. Hilbert transform

Here we consider the approximation of the singular integral

1 oo
(4.8) Hu(z) = — / Mdy,

T y—
which can be treated by our approach quite simply. The Hilbert transform is a
bounded operator in L,(R), 1 < p < co. Therefore we derive from Theorem 2.28
the estimate

M-1
17t = Mapw)z, < [#s, (0 (VD)™ [V arullz, +2 3 (VDR Vel )
k=0

provided the generating function of the quasi-interpolant M}, p satisfies the decay
and moment Conditions 2.12 and 2.15 of order N, u € W/}(R) and M = min(L, N).
Since
— hm
H(Mp,pu)(z (hm) Hn( )
\/— 2 VDh

we obtain a semi-analytic quadrature formula for the Hilbert transform if Hn has
an explicit analytic expression.

This is the case if 5 is the Gaussian function, for example. Since the Fourier
transform of (mx)~! is isgn A, we get from (2.10)

o0

1

™

sgn e ™ N e2miEA gy = —2\/%/67#2)\2 sin 2w\ d\
y—

—ie erf(ix),

(see [7, 2.4(18)]), where erf is the error function

(4.9) erf(r \/_ /

The imaginary error function is defined by

erfi(7) = —ierf(it) = % /et2 dt;
T
0

therefore we can write

1 [ eV
o
(4.10) - / dy=—e " erfi(z).
T y—x
— 00
We see that the quasi-interpolant with Gaussians provides the quadrature formula
of second order (modulo saturation terms)

— mh
HP u(z) = u(mh) (@=—mh)*/Dh* o1f r—m .
n.pu(e) mEGZ: ( VDh )
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Next, we determine

ng
Hijzar (2 7r3/2 Z l4; /
1 My dNy T e
_7T3/2jZO 7147 (@) /y—:zcdy7

— 00

where the formulas (3.6) and (3.9) for the Hermite polynomials and for n.ps are
used. From (4.10), we obtain

1 ;dN\% [ eV 2/ dNY o [
(& d :——(—) = [t gt
w3/2 (d:v> /y—:v 4 \dz) © /e

— 00 0

2j . ) iy
2 @) fdNF 2 d N2k [
__;Zk!@j—k)!(@) e (%) /e dt

k=0 0

2 o [ g
= —;HQJ(I) € /et dt
0
2j—1 . )
2 (29)! i Lo d TR,
T k; 2y — g He@) e (d:v) ¢

— 25—1 5y s 2j—k—1
Hayj(z) e 2 (2j)1i2% _
=T of SN o Hi(x) Haj i
7 erfi(z) + 7 2 R b k() Haj—p—1(iz),
which leads to the following representation for the Hilbert transform of nsp;:

M—1 S 251

_1)J i g20—k-1
oo () = —maas(o)enia) + 2 Y SRS SO (o) oy i),
§=0 k=0

The function
25-1 k—1
2 (1) (25)1i2%9~ .
() =23 S 2 ki) — gy @) oo (i)
=0 J k=0 J

is a polynomial of degree 2M —3, and it can be determined by using that Hnaps () —
0 as |z| — oo. Equality (4.10) provides the asymptotic expansion

o0 o0

2
—a? 1 e _ —2k 2% | —y?
e erfi(z) = —/ —p _W,TZI / e Y dy

1 o (=1)F
= ﬁ Z Ak 2k Hay,(0)
k=0

for |z| — co. Hence the polynomial pj; satisfies

par(x) = 12n (2 \/_Z4kxzk+1H2k(0)_’0
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as |z| — oo. Now we note that by (3.5)

which together with the relation
Hai(0) = (—1)" =3~

(cf. (3.8)) leads to

> 2k 1o~ (2k+2)

> it a0 = Co >
nom (@ \F 4+ x2k+1 2(0) = Ry e 4R Rl
k=0

After substituting here the explicit expression

Hopr—1(x) = Mz_:l =™ (2x)2M—2m—1

B —~ m!(2M —2m — 1)!

and some transformations, we get the final form of the polynomial

@M -—1) &= e (—1)™+L (2m — 2k)!

pM(x):w(M 1) 922M—1 Z 21: 2 Z 2m—|—3) (M—2—m)'(m—k)'

Hence we obtain

THEOREM 4.1. The semi-analytic formula

H(2M) \/_ Z (mh) (pM(x\;i—;Zh) B 772M(:c\;572h)erﬁ(x\;5n;h))

mEZ

approximates the Hilbert transform of any u € WPL(R), l1<p<oo, L>1, with

K—
IHu = 125 ullr, < e(VDR)S|Vicul|r, +& ¥ IViul,
k:O

)_.

where K = min(L,2M + 2). The number ¢ > 0 can be made arbitrarily small by
choosing D sufficiently large and the constant ¢ depends only on p, L, and M.

For example, a sixth-order approximation for the Hilbert transform is obtained
by the simple formula

1 9T, T3 4 52 15, _»
75 22, (s v~ (5 e erow)

with 7,,, = (x — mh)/v/Dh.
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4.3. Harmonic potentials

Here, as a multivariate example, we consider the inverse of the Laplace operator,
the harmonic potential

n_ 1)
. n = >3,
(4.11) Lpu(x) /|x— Y 2 n>3

47Tn/2
which provides the unique solution of the Poisson equation
“Af=u R, [f(x)] < Clx|"? as x| — o,

for integrable right-hand sides u. In the case n = 2, the harmonic potential is given
by the integral

(4.12) Lou(x) = % /log 1 u(y)dy .
R2

x —yl
The Fourier transform of the kernel is (47%|A|?)~! and we have from (2.15) that

27 00.7-'77(7")
Lon(x) = x[7/2—1 | 422

Tnj2—1(27r[x]) 2 dr
(4.13)

1 7 o
- W/fn(r) T a1 (2mr|x]) r"= D 2y
0

for any radial function 7). In the following we approximate the density u(x) of the

harmonic potential with the quasi-interpolant ./\/lgmg)u defined by (3.20), which is
based on the functions n2y.

4.3.1. Action on Gaussians. First, we determine the harmonic potential of
the Gaussian function e~*°. From (4.13), we have

7.‘.71/2—1

(4.14) Lo(e ) (x) = ST

/e -t Tnj2—1(27r[x]) rn=4/2 gy
This integral exists for any n > 3 and can be expressed by the lower incomplete
Gamma function

x

(4.15) ~v(a,z) = /T“_l e " dr
0
as follows:

||

2 1
= n/2—2  —1 _
(4.16) Ln(e”)(x) = = 2/ e T = 27(2 1 |x|)
0

(see for example [7, 8.6.11]). Let us mention that in the case k € N

~v(k,x) = (k—l)!(l—e‘””Zﬁ),

=7
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i.e., the harmonic potential of the Gaussian is expressed by elementary functions.
In the case of odd space dimension n, we see from

7(%,:10) = merf(z)

with the error function erf given in (4.9), and from the recurrence relation
(4.17) Y@+ 1,z) =avy(a,xz) —e T a®,

that the harmonic potential of the Gaussian is expressed using the error function
erf. In particular,

4.18 La(e P 1 e d LENCRPREE
( . ) 4(€ )(X) - m |x—y|2 y = 4|X|2( —¢ )
]R4
and
x|
(419)  Ly(e ) (x) = 1 - / f(x|)
. e X) = = T_ — €er X|).
’ |x—y|y 2[x| |

If n = 2, then we use that the radial function f(|x|) = L2(e”!" I* )(x) is the
solution of the differential equation

1d/ d 2
;%(T%)f(’r)——e y O<T<OO7
satisfying
f(()):—/rlogr e " dr:%,
0

with the Euler constant v = 0.577215.. ., and

fr) :O(log%) as r — 00.

From [1, 5.1.39]

dt—|——*—E( )+ logr

71/ 17”2 2
= = 1 ,

0

where

(4.20) Ei(z) = / L

is the exponential integral, and therefore

(4.21) £o(e7 P )x) = 7 BallxP?) — 5 logx].
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Thus, we obtain the semi-analytic approximation of the harmonic potential for
any dimension n > 2

Dh2 2 X — hm
—_— u(hm) L, eIl r'm) Wwith ry, = ,
(nD)n/2 m%ﬁ (hm) £n ) (Fem) VDh

using the quasi-interpolant based on the Gaussian function.

(4.22)

4.3.2. Action on higher-order basis functions. Now we consider the har-
monic potential of the radial function

manr(x) = 7" L (x]?) e
We know from (3.18) that

M—-1

n/2 —Ix 2 ( ) —Ix 2
LY () om0 = 57 S Al
j=0
which, because of £,A = —1I, gives
M- 1
n/2 .12 _. x|2
Lo(Ly 211 e ) () = La (e ) Z el
(4.23) . =t
1 (=1t
= ﬁn(eﬂ'l? )+ AT 1o—Ix?
4G -
Furthermore, applying (3.15), we get
17 e n/2-1 Cix]?
(4.24) v A X = LD (x)2) e xI

so that (4.23) can be written in the form

(n/2) e e il M—2 L(n/z—l)(|x|2)

L (LY, 12y el =Ly(e " i - -
(Lo (- 17) e ) (e) = L (717 ) () +e ;O e

Hence, the harmonic potential of the generating function 72, is given by the finite
sum

S G

e Ix

1 o=l 1Y (x
(4.25) Lanen (%) = =5 La )6+ 5 = 40+

In the classical cases n = 2 and n = 3, one obtains the following formulas using
classical orthogonal polynomials: For the Newton potential, i.e., for n = 3, relations
(3.22) and (4.19) give

(Ve (<)) + " y U H2j+1_(|x|))

L (G2

with the Hermite polynomials H;. If n = 2, then (4.21) leads to

1

4.26 L = —=
(426)  Loman(x) = oy

(4.27) Lomnr(x) = — (210 L B (x4 e Miz Lj(IX|2)>
. X) = — R x
272M I g x| 1 2 i1

with the Laguerre polynomials L; = L§O).
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A very simple formula can be obtained in the case n = 4 if a recurrence relation
of generalized Laguerre polynomials is used. We provide two of those relations,
which will be used in the following;:

(4.28) LY V() =L (y) — LY (),
@m) e = (D) - G+ )L W)

see, for example, [1, 22.7.30,31]. From (4.23), we have

2 M—2 (1) 2
| L (1xI%)

e Ix

2 = 4G +1) -

Lanon(x) = %L;(e*‘ P )(x) +
=0

Since by (4.29)

1 ) '
L) = o (G + D20 = G+ D EE ()
we derive

M—2 7 (1)

L '(1x1?) 1 (0) 2
Z 4]+1 = 4|X|2 (1_LM71(|X| ))7
7=0

which together with (4.18) provides

1 2 eflxl2
r = _(1—e M — (1—Ly_
4120 (X) An2[x ]2 ( e )+ 47T2|X|2( m-1(]x| ))
(4.30) P )
o 1—e LM_1(|X| )
472 |x|? '

4.3.3. Semi-analytic cubature formulas. Summarizing the results of the
preceding subsections we conclude that the approximation of the density by the
quasi-interpolation operator Mg;\;{) leads via (4.3) to the cubature formula for the
harmonic potential

(4.31) En hu( )=
Di? ) 2 L ()
- 7| | 7‘I‘m‘ J—
T N O D S
mezn Jj=0
where we set
(4.32) py = X2

VDh
and the corresponding analytic expression (4.16) or (4.21) has to be used for

En(e" |2 )(rm).
In particular, we obtain the cubature formulas for the practically important
two- and three-dimensional cases
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(4.33) £ () —
g "22 w(hm) (2 log ﬁ B ([ra]?) + o1l ]:_42_:02 L]j(l+ml|2))

(4.34) £ u(x) —
i (5l e S )

The cubature errors of these formulas will be analyzed in Section 4.4.

4.3.4. Numerical example. We provide some results of numerical tests to
approximate the Newton potential. We applied (4.34) with different M and fixed
D > 2 to sufficiently smooth densities of the explicitly known Newton potential.
Fig. 4.1 depicts the maximum cubature error for M = 1,...,5, different mesh sizes
h and the densities (A((1 — [x[?)%) and (1 — |x|?)% ) measured at the unit ball By.

Error of L3(A((1—|-[*)%)) Error of £3((1 — |- [*)4)

1 e S 1 — e
0.01 - . 0.01 - -
1le-06 - . 1e-06 - -

N=2 =-— © N=2 -—
N=4 o N=4 o
| N=6 -o i L N=6 - B
le10 F NZg o le10 - NZo o
N=10 o , N=10 o
le-12 |, L Lod lel2b Lot 8
h 0.1 0.01 h 0.1 0.01

FIGURE 4.1. Cubature error of Eé\f[h, N =2M, using D = 3.

Note that the slope of the error curves coincides with the approximation order
of the corresponding quasi-interpolation of the density. Only for very small h and
already very small relative errors, the slope decreases. This can be seen in more
detail in Table 4.1, which contains the corresponding values of the approximation
rate.

Let us discuss some features of the cubature formulas (4.31). The first term
En(e_‘ P )(rm)7 which provides the approximation order 2, decays slowly. There-
fore the approximation of the harmonic potential requires the summation over all
nodes hm within the support of the density w. The remaining terms in (4.31),
which increase the approximation order, are only local corrections due to the factor
e~ lrml®, Hence, in order to obtain higher approximation orders at a given point x,
one has to add only a small number of new terms associated with the grid points
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M 1 2 3 4 b) 1 2 3 4 )

h! Ls(A(1—[-)3) Ls((1-1-")})
8 098|212 |3.38|4.78|6.34 | 1.53 |3.09 | 4.82|6.83 | 9.23
16 || 1.62|3.35]5.18|7.09 |9.10| 1.86 | 3.75 | 5.72 | 7.76 | 8.28
32 || 1.89 383|579 |7.78 981 | 1.96|3.94|593|7.82]|6.34
64 || 1.97 396|595 |7.95|9.03 | 1.99| 398|598 | 7.64| 7.02
128 [ 1.99 | 3.99 | 5.99 | 7.85 | 2.12 || 2.00 | 4.00 | 6.01 | 3.73 | 0.72

TABLE 4.1. Approximation rate of the cubature Lé\?h for the den-
sities A((1 — [x[?)%) and (1 — [x[?)} using D = 3.

hm in a neighborhood of x. Hence, these corrections depend only on the density
in a neighborhood of this point.

Another feature is the fast computation of (4.31) for uniform grids. Since the
kernel of the harmonic potential is homogeneous of degree —2, the computation on
the grid hk, k € Z™, can be performed in accordance with (4.6) using the coefficients

M—-2 L-gn/2—1) (|rk|2)

by = En(ef| a8 )(rk) + eIl Z

=0

— with r, =k/VD,
J

which do not depend on the grid size h.

4.3.5. Gradient of the harmonic potential. Let us give a simple applica-
tion which utilizes the semi-analytic nature of the cubature formula (4.31). The
gradient V (£, u) of the harmonic potential can be approximated by the gradient of
the cubature formula £M, u given in (4.31), which is a semi-analytic formula, too.
The estimate of the apprbximation error will be derived in Theorem 4.11. Here we
derive a simple analytic expression for V(ﬁ%hu).

First we consider V(L,n2a7). From (4.25) we get

9 19 ) ALY (X
(4.35) . Lon2m (X) 7 (En(e )(x) +e FZO 47+ 1) )

If n > 3, then the first term evaluates in view of (4.16) to

0 2 0 1 n
i =1 -2 = o (Z_1x?
Oy, Ln(e )(x) Oy, 4]x|n—2 7(2 /[ )
(2—n)xr /n 5 Tk _a
4. = —_— _ — n X
(4.36) (5 7 L)+ e

— T (R 2)
TFIRICHE

and the last equation is a consequence of (4.17). One easily obtains from (4.21)
that
0 Tk

gz La(e T )60 = g —e ™) =

),
2|x

E (1 %)
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hence, for all n > 2

(4.37) %En(efl -2 )(x) = —2|ik|n ’y(g, |X|2) = 2z £n+2(e*| -2 )([x]).

Here by L,42(e™!" I* )(Jx]) we denote the radial function on R™, which coincides
with the value of the harmonic potential of the Gaussian in R"*2.
In particular,

O ri(el P we (VEer(x]) e
g ol 1000 = (g e ).
g ale ™)) =~ (1= (x4 1))

To compute the derivative of the sum in (4.35), we use the generating function
of the Laguerre polynomials

o0

ZLE”Y)(y) 2= (1—z) 1 Levs/(z-1)
j=0
(see [1, 22.19.5]). Hence, differentiating the sum
(1—z)7 7 te¥/(=70) = ZLY)(y) e Y 27,
j=0
we obtain the formula
AN (T () o mp (rEm) oy -
(4.38) (d—y) (L) o) = (=)L ™) e v
Therefore the terms of the sum in (4.35) can be transformed to
n/2—1 —|x|? n/2 —|x|?
(4.39) iLg / )(|X|2)e I -y L; / )(|X|2)e Il
| doi A+1) SEESY

which gives

-2 7 (n/2) 2\ . —|x|?
9 _ 2 ) 22 LD (x2) e
(440) dxy, EnﬁQM(X) Togn/2 <£"+2(e )(|X|) =+ jEZO 40 n 1)

= —2mx Lotanam ([X])

where L, 12m20(|%]) is the radial function on R™ which is equal to the harmonic
potential of the radial function 7z, on R"+2,
There exists another formula for VL, nps for n > 3, which may be useful in
computations and will be derived next. We can rewrite (4.36) as
L

a 2 2 2
— =1 — _ =1 — x|
g En (7 )60 = g (=22 (e ) () 0.
Using (4.38) and (4.29), the terms in the sum in (4.35) are transformed to
n/2—1 —|x|? n/2 —|x]|?
o LV (xPye Rt E () e
D A +1) TG+

—|x|? )
_ _ ke (n/2-1) |12 (n/2=1) 2 n (n/2-1) |12 )
— L\ L\ + L\

2|X|2 ( J (|X| ) Jj+1 (|X| ) 2(] 1) j (|X| ) ’




4.4. APPROXIMATION PROPERTIES 81

which, by noting that L(W) y) = 1, implies

(
M=2 y(n/2=1)_ 12y —|x|?
0N (2 e
0xy “— 4(y +1)

n/2—1 Cx[? ik
_ 2_n —1\422 L( / )(|x|2)e || n Tk € ‘ 2( (n/2— 1)(| | ) )
x| 4 +1) 2|x[? fara

Therefore, if n > 3, then (4.35) can be transformed to

0 x 2 2
- — /2 "tk _ =1 —Ix
. Loy (x) = e ((4 2n) Ly (e )(x)+e )

n/2—1
* = 2L§- / )(|X|2) " Tk e_|x|2( (n/2 1) (| 2) - )
47+ 1) 2|x|?

n/2—1 —1x|?
L2 (|x[2) e )
271'”/2 :

(4.41) + (2-n)ZE ¢

x> 4
7=0

Tk
= W ((2 —n)Lypnan (X) +
Compared with formula (4.40), this formula has the advantage that it allows one
to compute both the harmonic potential and its gradient with minimal additional
effort.

If n = 2, then we obtain the partial derivatives of the harmonic potential as

—|x[?
il ~Ix[?y 4 Tk ©) (o2
(4.42) Dy 21zt (%) 27r|x|2( ¢ )+ 27| x 2 (Laf, (x*) = 1)
Tk

x2
= g (P ()7 1),

Summarizing, we arrive at the following formulas for the gradient of E%hu:

(4.43) V(L) (x)
(n/2=1) (1112 o—lrm|”
h Z u(hm)re <(2—n)£n772M(rm) + Loy~ (Irwl) )

2rn/2

_ (n/2) 2
h 202 1) | e 5 L ()
_h (h y\n/ 2, m|”) T'm L ——
onn/2D(n—1)/2 Z m rm( g e =0 J+1

meznr

with rpy, from (4.32), which is valid if n > 3. For n = 2, we obtain

u(hm)rm (0 e |2
(4.44) V(L u) (%) 27TD Z T L() (e ?) eIl 1),

4.4. Approximation properties

4.4.1. Rough error estimate. Let us estimate the error of the cubature
formula (4.31) for the harmonic potential in the case n > 3. By construction, the
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cubature formula is the action of the integral onto the quasi-interpolant
Lylyu(x) = Lo (M2 0)(x)
and therefore the cubature error equals
Eﬁ{hu(x) — Lpu(x) = En(Mglg) — DNu(x).

Tt is known from Sobolev’s Theorem that for n > 3, 1 < p < n/2, and ¢ =
np/(n — 2p) the operator £,, as the inverse of the Laplacian is a bounded mapping
from L,(R™) into Lq(R™) (cf. [89, Theorem V.1]). Hence

2M
|2ath = Loullz, < Apgllu— M5 ull,
where A, , denotes the norm of £,, : L,(R") — L,(R™). Then Theorem 2.28 gives

immediately

LEMMA 4.2, Let 1 < p <n/2, ¢ =np/(n—2p) and let u € W} with L > n/p
and choose 2M > L. Then for any ¢ > 0, there exists D > 0 such that

L-1
|£M = Loz, < Apg(en (VDR [V rul, +e (VDR Vaulls, )
k=0
However, the numerical tests do not show that there exists a saturation error,
which does not converge to zero. We shall see in the next section that this is because
L,, is a smoothing operator.

4.4.2. Quasi-interpolation error in Sobolev spaces of negative or-
der. We study error estimates in dual spaces of Sobolev spaces of functions with
derivatives in L,. For r € N, we denote the space of linear functionals on W,
p'=p/(p—1),1<p<oo, by Wy" =W, "(R").

LEMMA 4.3. Letu € W', 1 <p < oo, r €N, and {a,} € [y(Z"). Then there
exists a constant ¢ depending only on n, r, and p such that
27

(4.45) Hu 3 a,,eT(-w)‘ L<ehr Y %HUHWW
vezmo) Wi veimgop AT IVE) ’

PRrROOF. For |v| # 0, the norm of the multiplier
271'1
().

e W2T—>W_2T
can be estimated by
27 27
HeT<"”> uH . = sup /e w0 y(x) o(x) dx
W llvlly2r =1
o 1G0T (Cay e g
= sup |———— [ ux)vx)(=A) e n ¥ dx
ol yar=1 | (4T3[ [2)"
p’ R™
h?r .
< W sup /‘A (U(X) v(x))|dx.
lvllwzr =t
P
Since
r! r!
A" (uT) = _6204 6ﬁ aQa—ﬁ—
(o) =) o Z > B! 2a— B)! 2a 5 U vy

[a]=r 1=r ,3<2
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we see that there exists a constant depending only on n, r, and p such that

12870060 dx < e fulwz- ol

R’Vl
which implies
2mi ch?"
446 H ho(w) H _chm .
( ) € u WP,QT = (47T2|I/|2)T ||u||W5
for any v € Z™ with |v| # 0. O

REMARK 4.4. The constant ¢ in (4.45) for the special case r = 1 is bounded by
¢ <max(2,n"P), p=min(p,p).

By interpolation arguments, Lemma 4.3 can be generalized for norms in func-
tion spaces of arbitrary negative order. The Bessel potential space Hy = H;(R"™)
is defined as the closure of compactly supported smooth functions with respect to
the norm

(4.47) lull ey = I1F 7L+ 4n®] - 2)* 2 Fullz, = 11 - A)PullL, .

COROLLARY 4.5. Let u € Hy, 1 < p < o0, s >0, and {a,} € l1(Z"). Then
there exists a constant ¢ depending only on n, s, and p such that

27
3 T Y _aw]
H “ et ‘H;S < ch (2rw|v|)® lullz -
vezn\ {0} vEZ™\ {0}

Proor. The spaces Hj are interpolation spaces that coincide, for r € Z, with
the Sobolev spaces, H) = W, 1 < p < oo, and are obtained from Sobolev spaces by
means of the complex interpolation method; cf., e.g., [94]. Hence, the multiplication
operator

Ah),,u(x) — e27ri(x,u)/h U(X)

satisfies

-0
VAl sz < 1Al oo | An 2,

for 0 < 6 < 1. Since Ay, is an isometric operator in L, the assertion follows from
(4.46). |

This leads to the following error estimate for the quasi-interpolation process.

THEOREM 4.6. Suppose that n satisfies the decay and moments Conditions
2.12 and 2.15 of order N. Then for any u € HPL, 1 <p<oo, L > N with
n/p < L < K—n and positive s < L, there exist constants c,, and ¢, , not depending

on w and h such that the quasi-interpolant My, pu defined by (2.23) satisfies

[l — /\/lh,DUHH;s < ¢y (VDh)N ||U||H§

min(N—1,[L—s]) o
VDh [ [|0%ul| 9>Fn(v/D
Z ( ) H Z | n( V)|_

27 a! (2m|v|)®
[a]=0 vezn\{0}

+coph®
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REMARK 4.7. The previous estimate is of the usual form O((v/Dh)") plus a
small saturation error which is controlled by D. However, if s < 0, then one has
even the convergence of the quasi-interpolant Mj pu in H, as h — 0, since the
saturation error is multiplied by A™°. The convergence of the quasi-interpolants
can be justified also for other spaces of negative order. Note that in the case s > 0
a similar estimate is valid, which implies that the saturation term increases with
the factor h=*. This is in accordance with the assertion of Theorem 2.27 on the
approximation of derivatives.

PROOF OF THEOREM 4.6. Since || - |z < |- | #y for s <t, from the represen-
tation (2.69) we obtain the estimate

lw = Mupull o < |Rpallz, + Z
[a] N

DL .
£ DR ety g

[a]=0

VDh _ N
( a) loa(h™" -0, D) 0%u |y

Obviously, the first two terms on the right-hand side of this inequality are bounded
by ¢(vVDh)N ||u||H£ with some constant ¢ not depending on u, h, and D. To
estimate the last term, we note that by Corollary 2.13

- [a] o
le% 7T(x,u)
(h,n,’D> (277) Z d*Fn(VDv) e .
veZn\{0}
In the case [a] + s < L we use Corollary 4.5 to derive

o ) o —la] [0*Fn(vDr)|
lea(h™" -, n,D) 80LUHHP*S Scsph ||6au||H§(27T) “ Z (2r|v|)® '
vezZm\{0}

If [a] + s > L, then Corollary 4.5 with u € HpL_[a] implies

||(505(h_1 -1, D) (’9"‘u||H;s
3 |0>Fn(vVDv)|

< CL—[al,p th[a] ||u||HI§ (27‘-)7[&]

I [a]
vezm\{0} (27lv))
which shows that
N-1 -1 o
Dh [a] ||5a(h 777aD)8 ’LLH —s
> (2 e < e (VD) Jull g O
2m al P
[a]>L—s
Note that (4.47) yields in the case s = 2
Jully-s < By ullys  with the constant B vl
ull -2 < By ||u]|y-2  wi e constan = Sup .
iy = Bl v A TT— A,

Therefore, by using Remark 4.4, we can formulate the following.
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ProproSITION 4.8. Suppose that n satisfies the decay and moments Conditions
2.12 and 2.15 of order N. Then for any € > 0 there exists D > 0 such that for all
uEWpL,LZN22withn/p<L<K—n

N-3 ﬁh [a]
= Mol s < (VDR Jullws +2cph® 3 P gy,

I
a0 al

with constants ¢, = By - max (2, nl/ﬁ) and ¢ not depending on u, h, and D.

REMARK 4.9. The weak convergence of the quasi-interpolants in L, leads to
an interesting consequence concerning the density of the ladder of principal shift-
invariant subspaces

X — hm

$" (/D)) = {n(*==

in L,-spaces, 1 < p < oco. By the Banach-Saks Theorem, the sequence of the arith-
metic means of a series, weakly convergent in L,, converges strongly. Therefore, it
follows from Theorem 4.6 that for any u € WPL, L > n/p, and any sequence h; — 0

):meZ",h>0}

N

1
Hu— lim — Mp; pu — 0.
=1

HL
j P

Hence, if we introduce the linear subspace

S (/D)) =J 5" (n(-/D)),
h;

where H = {h;} with h; — 0, we conclude from the results of Subsection 2.4.3 that
for any u € Lp, p <1 < o0,

dist(u, S" (n(-/D)); L) = 0,
if Fn(0) # 0 and for some K >n and 0 < [B] < i
10Pn(x)|(1+ |x)X <0, xeR",
where p is the smallest integer greater than n/2.
4.4.3. Cubature error for the harmonic potential.

THEOREM 4.10. Let 1 < p < n/2, ¢ = np/(n — 2p). Then for any function
u € WPL, where L > 2M and L > n/p, there exists a constant ¢, not depending
on u, h, and D such that the cubature formula (4.31) for the harmonic potential

satisfies

||£nu - E,I\l/{hU”Lq < ¢y (\/Eh)QMHuHWPL

2M -3

2

Ek(D)

+h% > (VDR e > (Apgcplulys + cq lulyes)
k=0 =0

with the norm Ay, 4 of L, : L,(R™) — Ly(R™), the constant ¢, of Proposition 4.8,
and the numbers ci,(D) defined by (2.70).
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PRrooOF. The assertion follows immediately from Theorem 2.28, Proposition
4.8, and the mapping properties of the operator £,,. Since

Lou— E%hu =Ly(u— M;fl\g)u) ,
we obtain
| Lou— LMz, = 1(=A) 1T = AYT - A) " u— MEF )|z,
<(=A) "M = A)Hu— MPP W)L, + 1= A) " u— MR )|z,

(2M)

< Apg [l = MR ull 2 + lu = MRl

Using the continuous embedding WPL C WqL’Q, we have only to apply the estimate
of Proposition 4.8. O

Let us estimate the approximation error of the gradient V(£,,u) by the formulas
(4.43) and (4.44) for V(Ln L), respectively.

THEOREM 4.11. Let 1 < p < n, g =np/(n—p). Then for any function u € WPL,

where L > N + 1 with n/p < L, there exist constants ¢, and c, independent on u,
h, and D such that

IV (L) =V (L3 u)llz, < ey (VDR |ul g

2M -2

VDh [ [[0%ul| g1 |0%Fnoni (VD)

teph Z ( ) a! Z 27 |y| '
[a]=0 veZ™\{0}

ProOF. The norm ||Vul|r, is equivalent to the norm [|(—A)Y2ul|,. Acting
as in the proof of the previous theorem, we get

M M
I(=2)72(Lpu = L3 0)[1, < Bpg lu = MR ull o+l = MR ull g

where B, , denotes the norm of the bounded mapping (—A)~/2: L, — L, ([89]).
Hence by Theorem 4.6, the assertion follows immediately. (I

Theorems 4.10 and 4.11 show that if the parameter D is chosen so that the
values € (D) are sufficiently small, then both the cubature Eﬁ{hu and its gradient
(Ln ,u) approximate with the order h?* up to the prescribed accuracy. More-
over, by the smoothing properties of the harmonic potential and its gradient, the
corresponding small saturation errors converge with the rate h? and h, respectively,
as h tends to zero. This property holds, in general, for other pseudodifferential op-
erators of negative order, whereas for singular integral operators, the corresponding
cubatures approximate with the order NV for A > hg, but tey do not converge.

4.5. Application to boundary integral equation methods

Let us consider a direct application of results of the previous section to the
numerical solution of boundary value problems with boundary integral equation
methods (BIM).

Since the 1980s these methods have become more and more popular for solv-
ing boundary value problems for partial differential equations with constant coeffi-
cients which occur in mechanics, electromagnetics, and other fields of mathematical
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physics. We will discuss certain BIM in more detail in Section 12.2. Here we con-
sider only a particular problem that arises when the differential equation has an
inhomogeneous right-hand side.

4.5.1. Transformation of inhomogeneous problems. Let L be a partial
differential operator with the fundamental solution £. Consider the equation

Lu=f inQ,

complemented by some boundary conditions. This boundary value problem can
be formulated as an integral equation over the boundary of the domain by dif-
ferent methods, using for example Green’s formulas or a surface potential ansatz.
However, non-homogeneous terms f are included in the formulation by means of do-
main integrals, thus making the technique lose the attraction of its ‘boundary-only’
character.

The simplest way to avoid domain integrals in the BIM is to represent the
solution w as the sum

u(x) = up(x) + U(x),

where U is a particular solution

LU=f in Q
and ug satisfies the homogeneous equation
Lug=0 in Q)

with boundary conditions adjusted such that the total solution u satisfies the bo-
undary conditions of the original problem. The remainder ug is obtained by solving
the corresponding boundary integral equations, involving the new boundary data
for ug. In order to find these data accurately, one must be able to compute a
particular solution (and, very often, its derivatives) with high precision.

Since the construction of a closed-form particular solution is possible only for
some special inhomogeneities, it must be approximated. The standard way to do
so is the cubature of the volume potential

KF(x) = / F(y) E(xy) dy

R~

where f is a compactly supported function with f(x) = f(x), x € €.

Here, we discuss the application of Theorems 4.10 and 4.11 for the particular

case L = —A and mixed boundary conditions are imposed:

—Au=f,
uloap = go, Ontloay = g1-
The domain © C R"” is bounded by a Lipschitz boundary 92, which is split into two
parts, where Dirichlet or Neumann boundary conditions are imposed, 9QpUIQn =
0. The normal derivative 0,u is taken with respect to the exterior normal n to
o09.

Let us suppose that the right-hand side f of the Poisson equation (4.48) can be
continued outside 2 to a compactly supported function f of preserved regularity,
say f € WQL(SNQ) and supp f C Q. Then the harmonic potential U = £, f is a
particular solution of (4.48) and we denote its approximant by Uy = Erl‘fhf with
the cubature formula given in (4.34).

(4.48)
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Since (2 is bounded, U}, is a finite sum, and, by Theorems 4.10 and 4.11, the
values of U|r and 9, U|r can be approximated by Up(x) and n - VU (x), x € T,
with high accuracy using appropriate chosen values of the parameters D, h, and
M. Thus, the remainder ug, subject to

Aug=0 in Q,
uolrp, = 9o —Ulrp, Ontolry = g1 — OnUlry,
can be approximated by the solution of the modified problem
Aup =0 in Q,
hulr, = go — Unlrp s Onunlry = g1 — OnUplry -
In order to estimate the difference between uy and uj, we use the Sobolev space

W21/2 (T'), which is defined as the set of restrictions of functions u € W (R") onto
I' = 09. We consider the spaces

Wy*(Cp) = {ulr,,u € Wy *(D)}
W, 2 (Tw) = (W,%(0w))
the second space being the dual of
V°V21/2(1"N) ={ue W21/2(l") :suppu C [}
with respect to the Lo-duality.
Assuming T'p # 0, f € L2(Q), the boundary data gy € W21/2(FD) and g1 €

W;l/Q(I‘N), there exists a unique weak solution u € W3 () of the problem (4.48)
and we have the estimate

(449)  Julwge < ¢l lza@ + 9ol + 19ty vzey):

with a constant ¢ independent of the data. This classical result can be found in
[30].
So, we find that the difference between ug and uy is bounded by

o~ wlhws oy < eI = Unllyaraqry, + 1940 = 0l e -
4.5.2. Error estimates.

THEOREM 4.12. If the right-hand side of the Poisson equation (4.48) satisfies
feWE(Q), L >2M, then

o = wnllwz @y < e( (VDR | fllwg )

+h2§52 (@h)[a1 [0 lwy ¢~ |aafnzM<\/5v>l) ,

27 a! 27|v|
[a]=0 veZm\{0}
where Mt
e A
Fronr(N) =e ™ 20N R
k=0

PROOF. By a trace theorem (cf., e.g., [30]), we obtain
||U - Uh||W2l/2(FD) + ||anU - anUhHWz*lﬂ(FN)

< |U = Unllwy(a) = cllLnt — E%hfl”w;(sz) ;
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and the last norm is estimated in the following lemma. O

LEMMA 4.13. Let Q, G C R™ be bounded domains and let f € WE(Q), L > n/2
and L > 2M. Then the cubature error of the harmonic potential can be estimated
in the norm of the Sobolev space Wy (G) by

1£af = £ Fllws ey < e (VDR | flwp o

(450) 2M—2 a 1 o 1%
“h Z (\/_h>[ 0% fllw @ Z |0 Fnont (VD. )|)

al 27|

veZ™\{0}
Note that L,f — LM, f = L,(f — MM f). Owing to Th 4.6 and
hat £, nnd = Ln h.D . g to eorem 4.6 an

Wy H(R™) = Hy '(R™), the norm

M
1 = MR Fllyw 2 oy

can be estimated by (4.50). Unfortunately, the harmonic potential £, does not
map Wy '(R™) boundedly into Wy (R™). Therefore we consider sufficiently smooth
functions f with supp f C Q.

PROOF OF LEMMA 4.13. Since the support of the quasi-interpolant M(2M)f
is the whole R™, we have to split the estimation of £, f — Eﬁ{hf. Let us define the
r-neighborhood ;F, r > 0, of Q by

(4.51) QF = {x: dist(x,Q) < 7},

where dist(x, ) denotes the distance between x and the closure Q O supp f. Fur-
thermore, we introduce a smooth cut-off function ¢ with ¢(x) =1 for x € Q;F and

supp ¢ C Q_QLT, and we write
(452)  Lalf =M F) = Lalle = DMER D) + Lalelf = MZE 1)

Note that Mf%ﬂf decays rapidly outside the support of f. There exists a
constant cys such that for all x € R"

2 n _1x|?
e PUILGA (%) < eare T2,

which implies

2
(2M) ~x—hm[*/(DR?) [ (2/2) |x — hm| )
MY F(x)] = (w n/Q\ ST f(hm)e < L5 (B
hmeQ)
o —|x—hm]| 2/(2Dh?)
TFD / hmeQ

S Ch_l e—dlbt(X,Q) /(2Dh2) max |f|

for x ¢ Q. The constant ¢ depends only on D, M, and the measure of §). Since

Iz 1) / (p(x) = DM f(x)

Arn/2

Lol =DM () = dx |

ly —x|*~2
dist(x,Q)>r
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we obtain for y € Q)

(21) . o — dist(x,Q)?/(2Dh?)
L= MY D) < b Mmaxlf] [ S
dist(x,Q)>r
—r2/(2Dh?
= ¢ max |f]| e/ _ : o —(dist(x,h = '2)? =1 /h?)/(2D) dx,
e

dist(x,h=1Q)>r/h

VLA (1= oM ()]

e —r?2/(2Dh?)

< ¢ max|f]| o~ (dist(eh I 2)?=r /1) /(2D) gy

Tnfl

dist(x,h=1Q)>r/h

which, in view of

o~ (st G )2 = /h)/(2D) gy o / o~ (167 =2/h%)/(2D) ¢
dist(x,h=1Q)>r/h [t|>r/h
< (27D)"/?,

leads to the estimate

(2M) o —7>/(2Dh?)
(4.53) [£n((L=@)M} 5" Fllwy(q) < ¢ max|f(x)| ————

Tnfl

with a constant ¢ independent of h > 0 and » > 0. The estimation of the second
term of (4.52) is based on the inequality

(4.54) [Lnvllwyey < ellvllwy@)y

with a constant ¢ = ¢(G, ), which holds for all v with compact support suppv C 2.
This follows by interpolation from the well-known boundedness of the harmonic
potential £, : Lo(Q) — WZ(G) for any bounded domains Q, G C R"; cf.,, e.g.,
[75, Satz 12.5.3]. Since £, has a symmetric kernel, we obtain by duality that
Ly (WZ(Q)) — L2(G) is bounded, too.

Hence we obtain by (4.54)

12n(o(f = MED )lwa ey < elle(f = MR Dl waaryy

(2M)
(pw, f — Mh,p e,
<c sup

weW (9} lwllw: o)

pw 1(Rn

< C||f—M(2M)f|| e sup H ||W2(R )
h,D W, " (R™) L Hw” Lot

weWS (923,) Wy (25,.)

which together with (4.53) implies for every r > 0
M)
1£n (= MiZB Dllwi o)

2 2
< (I = MR Pl oy + 1wy 7 €772 ) O
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4.6. Notes

The main formulas and some of the results of Sections 4.2, 4.3, and 4.4 have
been obtained in [67].

It is obvious that the error estimates for the cubature of the harmonic potentials
given in Section 4.4 can be generalized to potentials of symmetric and positive
definite differential operators with constant coefficients. The fact that the dilated
shifts n(x/h; — m), m € Z", h; — 0, are dense in the space L,, mentioned in
Remark 4.9, was recently extended by Bui and Laugesen [17] under rather weak
conditions on 7 for p € [1, o).

The problem of avoiding domain integrals in boundary integral formulations has
attracted much attention within the boundary element community and different
approaches have been developed to solve this problem; cf. [77]. The method
proposed in Section 4.5 differs from these approaches in using quasi-interpolation
instead of interpolating the densities, which provides high-order accuracy without
solving linear systems.






CHAPTER 5

Cubature of diffraction, elastic, and hydrodynamic
potentials

In this chapter we develop semi-analytic cubature formulas for other volume
potentials which are used to solve classical problems of mathematical physics. We
derive analytic formulas for these potentials applied to the generating functions
n2as defined in (3.18). Analogously to the preceding chapter, these formulas can be
used to construct high-order cubature formulas for the corresponding potentials.

Diffraction potentials are studied in Section 5.1. We obtain semi-analytic cuba-
ture formulas for the one- and three-dimensional cases. Formulas for the potential
of a more general advection-diffusion operator applied to the Gaussian are given in
Section 5.2. In the remaining sections we derive semi-analytic cubature formulas
for two- and three-dimensional elastic and hydrodynamic potentials.

5.1. Diffraction potentials

In this section, we consider the volume potential
(5.1) Swulx) = [ Enx—y)uly)dy
R’n

with the fundamental solution of the Helmholtz equation

i/ ko \n/2-1
(5.2) E1(x) = Z(Tlxl) HY),  (kx]), Imk>0.

Here Hr(Ll) = J, + 1Y, is the n-th order Hankel function of the first kind.
The function f = Sw is the solution of the Helmholtz equation

(5.3) Af+Ef=—u,

satisfying Sommerfeld’s radiation condition

(5.4) lim |x|<"*1>/2(<1, Vf(x)> —ik f(x)) =0.
|x|—o00 |X|

The diffraction potential appears frequently in problems of acoustics, electro-
magnetics, and optics. Besides the singularity of the kernel function & the appro-
ximation of this integral operator is challenging because of the fast oscillations of &
for high wave numbers k. The application of approximate approximations to this
problem provides semi-analytic cubature formulas, which reduce these problems to
the efficient computation of certain special functions.

93
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5.1.1. Higher-order formulas. Since the kernel & is a radial function, the
diffraction potential of radial generating functions 7 can be obtained by one-dimen-
sional quadrature. Moreover, from S,, = —(A + k?)~1, we have

j—1
Sn(—A) = (~AYS = kS + Y KU (=A)P.
p=0
Hence, similarly to Section 4.3, it is easy to determine the diffraction potentials of
generating functions constructed via the general formula (3.12). Counsider, for ex-
ample, the basis function 727 (x) = 7="/2 L%Zézl)(|x|2) e~ Then from formulas
(3.12) and (3.13), we obtain

M—1 ;
n AJ(Fn)~H(0) RN
Sumons =T (5 = Su(—A) (e
2t =1(3) S 1 EmT(j+3)
M—-1 1 j—1
_ /2 2j 2(—p=1) (_ AV (o=
7 Jz::o 4jj!(k: 5n+p§k (—A) )(e ).

By using (4.24), we obtain the representation

Sale™ ") (x) = k¥
Snnan (x) = 3 ZO 7]
>3 [ M1 g 2i=m) !
+ £ kT m! L("/2_1)(|x|2)
W"/QkQ 22(jfm)j! m P
j=0 m=0

which is the basis for approximate cubature formulas of order O(h?M) for the
diffraction potential.

5.1.2. Action of the one-dimensional diffraction potential on the Gauss-
ian. In order to find an explicit form of (5.5), it remains to compute 8,1(6_‘ P )
At least in the case of odd space dimensions, where the fundamental solution &
can be obtained from

1 2 eiz 1 ) 2 eiz
(56) H*l/Q_ ;ﬁ’ 1/2——'L ;\/E,

o _ (2 g (ldyne®
Hj+1/2——l(—1)‘]\/;2‘] /(;E) 7, j—1,2,...,

one can find analytic formulas of these potentials rather straightforwardly. In par-
ticular, if n = 1, then

ik|x|
Er(x) = ,
k(@) = <
and the diffraction potentials can be expressed using the scaled complementary error
function

e

(5.7) w(z) = e~ erfe(—iz) = e~ (1 n % /&2 dt)
0



5.1. DIFFRACTION POTENTIALS 95

(see [1, 7.1.3]), where
(5.8) erfe(r) = 1 — erf(r)
is the complementary error function. The function w(z) is also known as the Fad-

deeva function and will appear throughout the book at different places. It can also

be written in the form
oo
/efﬁ e2ist gy
0

—_— 2

(5.10) w(—z)=w(z) and w(-z)=2e % —w(z) forany z€C

(cf. [1, 7.1.11/12]).
If Im z > 0, then the integral representation

(5.9) w(z) =

$i

and it has the property

. —¢2

1 (§
5.11 = — dt
(5.11) we == [ =

holds [1, 7.1.4]. Then the real and imaginary parts of the Faddeeva function
w(z +iy) = K(z,y) +iL(z,y), y>0,

coincide with the Voigt functions

oo 2 ) 2

y e 1 (x—1t)e
5.12 K == ———dt, L = - —S——dt
1) Key) =L [ e Lew) -1 [ Spt

which appear in several fields of physics.
It follows immediately from (5.9) that for n = 1 the diffraction potential of the
Gaussian is equal to

(5.13) ﬁ 7e“”_y eV’ dy = %(W(g—i—ix) +W(g —m))

Thus, from (5.5), we obtain the diffraction potential of the higher-order generating
function

® _g2 M—1

e [ o= o ) (5 3

j=0
(5.14) —oo !
N e*IQ ]Wz—l (—1)mH2m($) ]Wz—l ﬂ
2(m+1 j gl
VLS = k2(m+1) Pt 479 4!

where the relation

Hom (1) = (=)™ ml4™ L2 (12)
between the Hermite polynomials H; and the generalized Laguerre polynomials (cf.
[1, 22.5.38]) has been used.
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5.1.3. General form of the convolution with Gaussian. The fundamen-
tal solution of the Helmholtz operator has the Fourier transform (472|A|? — k2)~1
Therefore, if the formula for convolutions of radial functions (2.15) is applied, then
the diffraction potential is expressed as a one-dimensional singular integral, if k is
real. Here we introduce another method to determine convolutions of general radial
functions with the Gaussian, which is applied to the three-dimensional diffraction
potential in the following.

Consider the convolution with a radial kernel Q(x) = Q(|x|), i.e

Qre M) = [QUx—y) e ¥ dy = [ Q(yl) e ¥ dy.
( ) RZ Yy Yy RZ y Yy

By introducing spherical coordinates in R™, we write

(Qre Yo =e > [Quy e tar [ eHres an,,
0

Sn—1

where x = |x|w, y = rw’, and S"~! is the unit sphere in R™. From (2.14), one
derives

/ o2xlr(ww’) g, 202 Jp o1 (2ix|r) 272 L, 51 (2]x]|r)

Gl 2T = (e

with the modified Bessel function of the first kind I, (¢t) = i~ J,(it). Hence, the
convolution of the Gaussian with a radial function can be obtained from the formula

, /2 o —IxI?
(5.15) (Q*ef"‘ )(x)— 2 T /Q L 0-1(2|x|r) ™2 dr .

Note that from (2.16)

2 179(1 d\Jsinh z
(5.16) IjH/Q(Z): \/; +/ (zdz) z

5.1.4. Analytic expressions of the diffraction potential. Applying (5.2)
and (5.15), we derive the representation

; k n/2—1
Sn(e_|'|2) 2/2(7) Hfll/é_l(k|x—y|) e W gy
Rn

2mx —y|

. 1)
1/ k\n/2—-1 271'"/2 e_|x|2 H 2 1(I€T) 2 .
- Z(%) |x|n/21 / T/n/? ¢ nja—1(20x|r) r™/? dr

—[x/? n/2 1
T e 1 2
= 2|X| /Hfl/)Q (k) Ly (20x]7) e rdr

In the special case n = 3, we obtain from (5.6)
ik|x|
e

& =—;
b(x Ar|x|’
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hence (5.15) leads to

1 [eifbyl 1272 eI Toir
e M dy =+ e / ¢ P32 I o (20x|r) dr
0

r
2 sinh z
)= \f2 VE

which together with (5.15) leads to

ar | |x—
R3

By (5.16) and (2.16),

1 ik|x—y| X2 F . ,
(5.17) g © oIyl dy = ¢ /e—r2 (er(2\x\+zk) _ o r(2lx|—ik) ) dr .

x -yl Afx|

Hence, by (5.9) we can write the right-hand side as

(5.18) - AP dy = Ve (w (ﬁ - i|x|) —w (ﬁ +i|x|)) .

dr | |x —y| 2 4)x]
R3

1 [ eklyl > 1 ikym  k

- —Iy? gy = = (_)

47r/ iyl © Y=otV
]R3

Combining (5.18) with (5.5) and (3.22) gives the analytic formula for n = 3:

If |x| = 0, then

97

(5.19) e M2
Il (=1)PHapi1([x])

973/2 = k241 [x]

Nl k M1 .2
Ssoa) = (v (5 =) = 3 +llxl)) i
k2
L 45!

Jj=p+

Note that numerical computations with w(z) can lead to overflow problems if
Im z < 0, which can be seen from the representation (5.9). This does not concern
the case Im z > 0, where reliable and efficient implementations for computing w(z)
with double precision are available. Fortunately, by using (5.10), the formulas
(5.14) and (5.19) can be modified so that the arguments of the Faddeeva function
have non-negative imaginary part. In particular, in the case k € R, the diffraction
potentials S; and Ss of the Gaussian can be expressed by the Voigt functions (5.12):

o0

. 2
1 k‘ 7y‘ 7y2 \/E elk‘z‘ eik /4 .2 k .
o )]
2k /e ¢ WE i te 5 il

(520 1 N iklx—y| S ikl o=/ Xk

etrIx— 2 T et ¥ e e ¥

L oty N )
) weyt . YT U - KA i
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5.2. Potentials of advection-diffusion operators

Here, we consider the volume potential of the differential operator with constant
coefficients in R™
(5.21) A, =—-A+2b-V+ec,

where b € C" and ¢ € C. The fundamental solution k)(x) of the operator A,
depends on the value of ¥ = ¢ + |b|?. We use the notation

(y,2) = Zyjzj and |z|? = (z,2)
j=1

also for complex-valued vectors y,z € C".

If 9 # 0, then
e(PX) /x| 1-n/2
W) = G () K. x#0,

where A € C\ (—o0,0] with A> = ¢ and K, is the modified Bessel function of the
second kind, also known as the Macdonald function [1, 9.6].

If ¥ =0, then
(b,x) 1
£ log —, n=2,
. 2 |x
Ko (X) E 1 e (b,x)

n>3

(n = 2wn [x]"27 ’
where w, is the surface area of the unit sphere in R"”.
LEMMA 5.1. Let ¥ :=c+ |b|? # 0. Then the solution of the equation
(5.22) —Au+2b~Vu+cu:e_|x|2, x € R",
is given as the one-dimensional integral
e —IxI? \n/2-1

5.23 =
(5.23) u(x) 2x + b[n/2—1

[ Koz O Laallx bl r e dr
0

where \2 = ¢ + |b|?. In particular, for n = 3,

(5.24)  u(x) = glsxijbl (w (%()\ —|2x + b|)) —w (%()\ +2x + b|))).

ProoOF. We have to simplify the integral

u(x) :/HA(X—y)e*b’\z dy
R™
e (bx) X—y 1-n/2 ) -
B (27T)"/2/(| ) |) Kyjpoa(Ax—yl)e by) =y I* gy
Rn
_ el e'bz/“/(|><+b/2—y|
T (2mn2 X

1-n/2 w2
) KapaOx+b/2—y]) e dy.
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By using (5.15), we derive

(b,(x=b/2)) o[b|?/4

e x_y 17’!7,/2 _ 2
Rn

o (b.(x—b/2)) o [b[2/4 9n/2 o—|x]”

(27T)"/2 |x|n/2—1

7 rN\1-n/2 2 n

x/(—) Kyja—1(Ar) e Lo 1 (2%|7) 7 /2 dr
A

0

e—1x=b/21* \n/2-1

= (2|x|)n/2-1 /K’n,/271()\7°) L1 (2x|r) T e dr.
0

which gives formula (5.23).
Noting that

e AT 2 sinh(|2x + b|r)

B | Lp(2x+blr) =)= X
2 v Dl D=\ T e bl

we see that for n = 3, the integral (5.23) takes the form

Ky o(Ar) =

= x|?
|26x7—|—b| e e sinh(|2x + b|r) dr
0
_ e*\XP eiTQ (er(‘2x+b‘7)\) _ e—’r‘(|2x+b|+>\)) d,r
|4x + 2b| ’
0
which gives formula (5.24) in view of (5.9). O

5.3. Elastic and hydrodynamic potentials

In the following, we consider volume potentials which arise in the solution of
two- and three-dimensional problems in elasticity and hydrodynamics.

Linear isotropic and homogeneous elastic problems are governed by the Lamé
system

(5.25) pwAf + (A + p) graddiv £ = —u,

where f is the displacement vector, u is the volume force, A and p are the Lamé
constants. The equations are considered in the whole space, either R? or R3. Cor-
respondingly, the vector functions f and u have two or three components.

The hydrodynamic potentials correspond to the linearized classical Navier-
Stokes equations

(5.26) vAf —gradp =u, divf=0,

where f is the velocity vector, p denotes the pressure, v is the constant viscosity
coefficient.
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5.4. Two-dimensional potentials

5.4.1. Fundamental solutions. A solution of the two-dimensional Lamé sys-
tem (5.25) is given by the volume potential

f@wifnx—muwmy,

R2

where I' = ||T'j;||2x2 is the Boussinesq fundamental matrix with the components

A+ ( )\+3/L1 xk;vl)
el G vl

A solution of the Stokes system (5.26) is given by the hydrodynamic potentials

I‘kl(x) =

2
=[S vutx-yyumdy. 560~ [(06x-y).uly)iy
2 = R3
with the fundamental matrix

(5.27) Up(x) = I’m) x

1 1
— | dgt log — + — Ox)=——.
1y (Bulog PR ) = 3P
The aim of this section is to derive analytic formulas for these two-dimensional
potentials applied to the generating functions 725 defined in (3.18). Note that

T 1 1 1

)

X MRy 2axkaxl l* %8 1% |+2
(5.28)

— = Vlogi

|x|? x|

5.4.2. An auxiliary formula. Since explicit representations of the harmonic
potentials

1 1
EQUQM(X) = Y- /IOg H 772M(Y) dy
2

are already known from (4.27), it suffices to determine the integrals

0? 1 9 1 1
— [ x-yl (1 5) dy .
Oz 0x) 47rR[|X vl ( 08 Ix -yl + 5 n2m (y) dy

Tymonm (x) =

Then, obviously,

5 A+
(5.29) gme—mmM<My—f%wmd> SO g e (%)
and
6kl 1
U (x —y)nem(y) dy = —527721\4( ) — ZII@”DM(X)a
(5.30)
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Explicit expressions of Iy;n2ps are based on the expansion

M—1 ;
2 1 1)’ 2
ans (x) = Ly (1xP?) e = =;Z( > i,

147
3=0

which is derived in Theorem 3.5. We have to consider the integrals

ok 1 1 2
I 1 “)e M ag
klﬁQM(X) 6wk6:vl 47T2 /| ( Og| y| + 2) ¢ Y
(5.31) M1 )
(-1)7 02 1 / 9 1 1 T
- - 1 ) ATe N dy.
+ = 147 Oz 0z 42 =yl ( o8 |x — y] + 2) ¢ Y
= e

5.4.3. Potentials of the Gaussian. Using integration by parts, it is easy to
check that

1 e I¥1? g

(5.32) 5 .
=@z +-—) |1 v gy.
(xl+5$z)/og|X—Y|e Y
]RQ

Therefore, we derive from (4.21) that

> 9?1 1 1 2
T (el — il —vI2(1 ) ey
(e )(x) Oxy0x) 47r/|x vl ( o8 |x — y] + 2) ¢ Y
0

(5.33) :5’6152(67‘.‘2)(’() + (z 6—9% 6x({:8xz)£( 7|.|2)(X)

+3
:5“(‘62(67“2)( —|x|? —1) Ikxl(l—e x| _1),

4|X|2 22N X2

which leads to the formulas

iyl Okt 2 At p 2
T — V™ gy = 22 [ 2P 7 -1
R[kmx y)e oo™ ) ) - g Tale ™ )0
A+ 3p 2
=——— 6 (E 21
ST 20 ki (E1(x[7) + 2log [x])
A+ p 1—e—xP A+ u TR e Ix* 1
1
MRE e e e i il G e
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and
“lyP? gy _ Ok AL 1 SNE
Vi(x—y)e dy = 752(6 )(X)—Esz(e )(x)
R2

5kl e IxI* 1 TrT] eI 1
- E 21 ) ( 1),
3 (Br(bf) + 2logx + 75— ) + T "

T

—lyl? 9
LA R N =117 - eI
5 |x—y|2dy 8Ik£2(e ) (x) 2|x|2(1 e ).
R2

Thus, the elastic potential of 7o(x) = 71 T given by

A4 TLX] e XI* 1
/sz(x—y) n2(y) dy = IO+ 20) [P ( FE 1)

(5.34)  R?

A+ 3u A+ p 1—e—x2>
1) — L ,
o (Gt MO S e

whereas the hydrodynamic potential can be derived from

/‘I’kl(X—}’)nz(Y)dyz %(52,72(,()4_%)
R2
(5.35) 4 Tk (e_x2‘1+1)
4rv|x|? |x|? ’
o[ B0 g B

2 ) |x—yl|? Y= 27 |x|?
R2

5.4.4. Potentials of higher-order generating functions. We consider the
integrals Iymanr, defined by (5.31), for M > 2. We write

Tumam (x) = Ikl774(x)
M-t

—1)7 1
1 Al e —lyl? dv.
+ Z 14 ('“)xkaxl 47r2/| Og| 1t ) y

Using the relation

1 1 1
A|x—y|2(logf+—) = 4log —— —
x—yl 2 x =yl

and Green’s second formula, we have for j > 2

1 1 1 - 1 1 ;
—2/|x—y|2(log —l——) Ajef‘”zdy:—z/log A= gy,
A x—yl 2 @ x—yl

R2 R2
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Thus (5.31) can be written in the form
Taman (x) = Trana(x)
) ‘
(5-36) 0 (-1 1 /log N
x -yl

+ 8xk8xl 2 j!4j*1@
J= R2

M-1

Because
1 9 1 1 2 1 1 1 2
— — 1 —)A =IyI* ¢ :_/(1 __) “IvI gy
47r2/|x Y|(Og|x—y|+2 ¢ M- Og|x—y| 2) ¢ Y
R2 R?
we obtain

0? 1 1 1 1 2
Bm) = =2 L [ (=21 Do v gy
) axkaxlzlw?/ ('X I A
R2

which can be simplified, in view of (5.32), to

8 Xy 1 2
I =—— /1 g
kl774(x) 8Ik 272 / 0og |X — y| € Yy
RZ
0 1 1 2
= (s ——)—— 1 v gy .
(kl+xl8$k 271'2/0g|x—y|e Y
]RQ
From (4.21), we have
8 1.2 T |2
5.37 —L [ — kel IxI* _1
( ) xla.’lik 2(6 )(X) 2|X|2(e )a
so that the integral I;n4 has the simple form
1 2 TEX] , _ix|2
(5.38) T a(x) = ;(5k152(e Y (x) + e © x| _1)).

To treat the second term in (5.36), which is present only if M > 2, we recall that
for j > 2

1 /log 1 Ao gy — _AT—2 o= IxI?
2 x -yl ’
R2

so that we obtain, by using (4.24)

M—3 7(0) 2 —|x|?
1 LO(|x[2) e~

039 DGO = ) = 2y 2 BG4 D)

Sums of Laguerre polynomials. The expression (5.39) for Ixnoar, M > 2, can
be simplified further by using the properties of the Laguerre polynomials, which
are given in Subsection 4.3.3.

First, we rewrite the sum

M—3 7(0) 2 —|x|?
0 L; (Ix[?) e~

T Owdn = B+ +2)

SMZ

It follows from formula (4.38) that

0? _ _
7Py = (=20l Py dmn ) ) o

4
(5 0) axkaxl J
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which implies
M3 LB (1x[2) e~ M3 L (1x[2) e~

Sm =z ST o Ok I
]ZO 20+ +2) = 4G+ 1)+ 2)

We simplify the first sum by using (4.29), which gives
2 1 .
L) = 1 (G DL (%) = G+ DL (%)

and therefore

xxsz’ L(2(|X|) 7351@1712 3+2L( (Ix[*) - (J"'l)L L(x[?)
kTl 2+ 15 +2) X 20+ 1) +2)

1)

RS (L< (%) L]+1<|x| Nz Lié}_mxm)

j+1 Jj+2 2|x|? M-1 '

To simplify the second sum, we use (4.28) and the fact that Léﬂ = 1. Then we can
write

Mﬁgm _1 ( 11 )L(l)(|x|2)
SAG+HDE+2) A G+l 2/
(5 41) _ lL(l)(|X|2) N M-3 (LEl)(|X|2) - L;1_)1(|x|2)) 3 LS\Z)_S(|X|2)
| 4 j=1 4G +1) 4M -1)
- 0
L) L ()
= 47 +1) 4(M —1)

To derive a more compact form of the potentials, we note that because of (4.28)

L) L (xRS LY () LS ()
D AG+1) 4A(4Mg—1) :jz:: AG+1) 4A(4M—1)

Jj=0 0

Hence, we obtain

1 —1x|?
TkTy (e|x|2_L§W)—2(|x|2)e ] )

Su = 2x[2 M—1
o (O LG (x?) e
— oK JZ:; A3+ 1) 4 —1) )

Final form of Imapnr. We have transformed (5.39) to

1 o 5 1
Tamam (x) = ;(51@1 +$la—>£2(e_|'| )(x) — —SM
(0) x|* o) 2) o —|x[?
_ O P2 L (xP) e L) (1x?) e
_7(£2( +Z ]+1 _ 4(M_1)

(1) 2 —|x|?
1 0 e ThT e Ly (%2 e X
U I _ Lk |x|* _ ZM=2
+ﬂ'<xl8x L)) 2|x|2(e M1 >)

b
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Now we use the results of Section 4.3 for the two-dimensional harmonic potential
£2(6*| 48 ). From (5.37), we have

(1) 2y o —|x|?
0 2 T _xr Laio(x[%)e
i [ _ LEt [x* _ 2
xlaxk£2(e ) (x) (e )

2|x|? M-1
_ TR (Lg\i[)—z(|x|2) e Ix* _ 1)
2|x|? M1
and by (4.25)
-2 1+ (0)
N L |x| e —|x/? 2
La(e )0 + Z e =Ll Pre e

Jj=

So, Iyim2pr can be written in the form

8 ) (1x[2) e~ Ix
Tanan (x) = 6kl (Cz( w1 - |)e—H )(X) Ly (%) e ) )

A(M —1
(1) 2\ ., —|x|?
apry Ly 5(1X[7) e
42 -1
(542) 22 e )
_ _ Mem—2(X) rpy (Mem—2(x) 1
= 0wt (‘CQ”QM(X) A(M — 1)) TP ( M-—1 x)

By (5.38), this formula is valid also if 2M = 4.

5.4.5. Final form of the elastic and hydrodynamic potentials. By using
(5.42), we obtain the explicit expression of the elastic potential from the represen-
tations (5.29) and (5.30), i.e

A+ 3p

/Fkl(X_Y) M (y) dy = m

(5.43)

Or1 Loanznr (x)

A+ )((cm a:kxl)ngM,g(x) TET] )

Lot \\2 T ) =1 T ae

Using (4.42), the hydrodynamic potentials can be written as

/‘I/kz(X—y)ﬁzM( )dY——@ﬁﬂhM( )

2v
Rz
1 (/0w zexi\ mem—2(x) zpay
i L (0 _many ,
(544) +4y< > TP M—1 T ax?
2 [ 2O gy — B (- 1) () e ),

T lx—y2 7 2mx?
2
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REMARK 5.2. We note that by simple differentiation of the expressions (5.34)
and (5.43), it is possible to obtain effective approximations of the stress tensor

Our  Ous Oouy,

8u1 8u2
(G G2y, Uk _ (S Ju2y
Tk ((%c + 0x> )+ u&rk’ 1.2 'M(B:Eg + 8901)
REMARK 5.3. Note that if M > 2, then we obtain
—|x/?
_ - _ 2) )
Tamonr2(x) = Taman (x) T MM = )(5le H(|x[?) — 2zpm Ly, o(1x[?)

from (5.39) and (5.40). This shows that as in the case of harmonic potentials, the
elastic and hydrodynamic potentials of 725742 can be obtained from those of 72,
by adding some rapidly decaying term. Therefore, to improve the approximation
accuracy to the potentials at a given point, only the values of the density in a small
neighborhood are required.

This is not true if M =1, since (5.33) and (5.38) imply

Sme X -1 zua _ix?
TIyma(x) — Tune(x) = - =] + 2] ((|x|2 +1)e x| —1).

5.4.6. Using matrix-valued basis functions. Following the idea suggested
in Section 3.6, we introduce matrix-valued basis functions adapted to the Lamé
system. In the two-dimensional case the symbol matrix of the operator

At

3

1
(5.45) L:=—E=n—(A+ograddiv), o=
7 7

has the form

A 2( |€]? + o&F 06162
vy
06182 pl€)? + o3

with the matrix function

14+ o0cos?y ocosvysiny
Alo,v) =

ocosysiny 1+ osin®y

) = 472|€]2 A(o,7),

and cosy = & /|€|. The matrix A(c,~) has the remarkable property

A(o1,7)A(02,7) = A(1 + 01)(1 + 02) — 1,7),
so that
AM(o,7) = A((1+0)F = 1,7), ke Z.
Hence, it is easy to find the exponential matrix
e Al 20 (—1)kx2k|g|2k 20 (—1)kx2k|g[2k
e~ I A(e1) Z MAIC(O: ) = Z MA(@ —o)*.7)

k! k!
k=0 k=0
2

i )k 2k|£|2k < 1+ ((1+0)*—1)cos’y  ((140)* —1)cosysiny )
(1+0)* —1)cosysiny 1+ ((140)* —1)sin

k=0

1+ (e”’Q"VE‘2 —1) cos? vy (e”’z"‘ﬂ2 —1) cosy sin y

7ﬂ2‘£|2k

(e*”z"“ﬂ2 —1) cosysiny 1+ (e*”Q"‘ﬂ2 —1) sin®
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Therefore we choose the inverse Fourier transform of the matrix
14 & ( —r2ol¢f? _1) S ( —n20l¢[ _1)
o —2leP? €12 €12

% (efw%m? _1) - |§z|>2 ( —nolE)? _1)

as generating matrix function 7 for the cubature of the inverse of the operator L.
The elements of this matrix 7 can be given analytically as

1 2 —|x[*/(1+0)
m = (e—x2 +|% (e—|x|2 —67)

Fn(§) =

l1+o

B2 1ye X _ - lxP/(4o)
) )

172 ix|? e~ X2 /(1+0) o —IxI? _ o —Ix?/(1+0)
2= m|x|2 <e 140 + FRE )a
o 1 —|x|? I% —Ix|? e*|x|2/(1+0)
= (g (e )

. ( 3 1)ex2 e X?/(140)
x> 2 |x[? '

Now, in accordance with (3.43), the matrix function
M-1

Nop (X) =
j=0

L7 n(x)

T4

generates an approximate cubature formula of order O((v/Dh)?M) for E~'u by the
sum

h? ﬁ (x—hm) w(hm)
v O
K meZ? \/l_)h
with
M—2
Tang (%) 1= L7y (x) = Zo G +1 |4g+1 :
j

It remains to determine the elements of the matrix L~'n. Since the symbolic matrix
of L=! has the form

140 52 —a@
(5as)  A@) _ 1 g2 GE
' 4m2(€|? 4m2€12(1 + o) 5152 140 51 ’
7l R

it follows that L~'n is given by the Fourier transform of
& & e ™ol g ookl
AoEne e | E T eE T el Tre Y
4m2|g? T 4m2g? @( ol 1) & L8 & e okl
€2\ 1+0 €2 T [€R 140
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We note that the relation

]_-( an ) _ §kél e_7r2|§|2
0z 01 472|€4
is valid for the solution f of the biharmonic equation
—Ix|?
e
A%f=—
/ T

Therefore, we obtain

82 X 1 82 1 1 _ 2
D (x) == fx) 78@/|X—Y|2(10g +—) e M dy
R2

" Owxdz 872 Ox x—y| 2
Okt e Se X1 1 apay 1 —eIXP
T !
or 2\ ¢ () + 8t |x|? + 4 |x|? |x|?
which implies the following expressions for the elements of the matrix L~ !n:
1 b'q
L ~ 9 —— ()
(L7 )1 (x) 22(x) + 1o\ 1o

1 5 1 |x|2 22+0) log(1 + o)
B 87T<E1(|X| )+1+0E1(1—|—a)+ l1+o 10g|x| 1+o

1 | e ~IxI* — o —IxI?/(1+0) o a3
RRN(E T Y
dr \\|x]2 2 |x|? 1+ 0 |x[?

(L )iz = (L7 )1 (0) = @ (12 ) = @12

1+o 1+o
1 2120 e_‘x‘z — e_‘x‘z/(1+0) o
"G P t1is)

(Liln)”(x):@n(X)JrH%@ﬂ( . )

l1+o
1 5 1 |x|2 22+0) log(1 + o)
B 87T<E1(|X| )+1+0E1(1—|—a)+ l1+o 10g|x| 1+o

1 3 1 e ~IxI* — o —IxI?/(1+0) o 3
IRN(E IR BRY
dr \\|x]2 2 |x|? 1+ 0 |x[?

5.5. Three-dimensional potentials

Let us turn to the elastic and hydrodynamic volume potentials which provide
solutions of the equations (5.25) and (5.26) in R3. The solution of the three-

dimensional Lamé system is given by the volume potentials

uk(x) = /Fkl(x —y) fily)dy,
R3
where ||T'jx||3x3 is the Kelvin-Somigliana fundamental matrix with

A4 (A+3M6kl xkxl)

5.47 I = Zrb
(5.41) ) = o \ 3 T P
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The solution of the Stokes problem in R3 can be expressed by the hydrodynamic
potentials

3
649 w60 = [ Y ubc-y) fi)dy. o) = [0 y).1)ay

g3 =1 R3

with the fundamental solution

(5.49) W (x) = L(@ +22). ) =

drv \|x|  |x[? Ar|x|3 "

In the following, we determine the values of the integral operators with the kernels
(5.47) and (5.49) acting on the basis functions n2ps(x). We use that

Trr; Ok 02 X 1
5.50 ThTL _ Okl _ X gl
(5.50) WP dmom N RF VK

Hence, the potentials can be obtained from the harmonic potentials (4.26) and the
integrals
82

1
51 1 = — dy .
(5:51) nss() = 5 [ =yl (y) dy
R3

Then similarly to the two-dimensional case

0 A+
(5:52) / Do = )mar () dy = % Lamaas () = G2 T ()
and
Okl 1
/\Isz(X—y)nzM( )dy = —/33772M( ) — ﬁfksz(X),
(5.53) ©
Tk non (Y) _ I
_7T |X_y|3 y = _a—fI;k 3772M(X> .
3

5.5.1. Potentials of the Gaussian. We apply the expansion (3.18) to write

Ba(E4 (- P e )60 = 5 / byl e dy

(5.54) v ,
—1)

N

; afkawl 47T/|X Y| Y

The relation

19 eIyl

—) | ——=dy
Ix -yl

_ —lyl?
(5.55) /|x y|e dy = (21 + = 5 02,
R?
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implies, in view of (4.19), that

Tale ™) (%) = s (e ) (x) + (w0 + li)i.c?,(<f\~\2)(><)

2(9.%‘1 afk
1 3z w2z Vmerf(x|)
VTE (5’“ B )<e 21|
rerf(]x|) TpT
R (3w |x|2)'

Thus, the three-dimensional elastic potential of the generating function 7y equals

erf(|x|)
Beih -+ 24l

/ Cr(x—y)n(y)dy =
(5.56) E°

(()\ +3u)0k + (A + ) Ikx;)

I

A+ p (3xm ~ ) (e—|x|2 ﬁerf(le)>7

MM A e BT

whereas the hydrodynamic potential can be derived from

/RS Vualx = y)maly) dy — X (xjxk + 5jk)

8rvlx| \ |x|?
1 3z 2 Vmerf(|x|)
| P i )
(5:57) i 8m3/2y|x|2 ( |x|2 M (e 2|x|
1 Tk — Yk Tp vrerf(|x]) 2
il dv = — e X7,
I Jys =y PO 27r3/2|x|2( E

5.5.2. Elastic potential of higher-order generating functions. We note
that

1 , . AI—L [ eIyl
— —v|ATe= IV gy = = d

87T/IX y|Ae Y= | g™
R3 R3

which for j > 2 is equal to —AI~2¢ X", Thus, for M > 2

2 0? 1 _ly|2 1 e—ly\2
el P e 00 = ([t e ey = [ )

R3 R3

M—-1

92 (—1) .
—9 N
Drr0; ; 147 ¢

Using (5.55), the first term, which is equal to Ij; (Lgl)(| -2) e =I'1*), simplifies to

9 1 1 2 N1 [ e
g - e WP gy = (5 _)_ £ g
Oz 0x; 47TR[ (|X vl 2|x—y|)e Y kl_Hclaxk 47TRg |x —y| ¥
and because

(5.58) xlaifflc£3(e*| 2 )(x) = 2I|];(/l|jé <e|X|2 _%)
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the integral Ix;n4 has the simple form
Tuna(x) = 7%/2 (5kz + xzi)ﬁs(e_l I )
8:Ek

zpap e X erf(|x|) ( xkxl)
2m32x[2 | dmlx| \ ' x]2 )

Moreover, we can apply (3.15) to obtain
& LY () e
5.59 I x)=1 x) — J__ :
( ) kln?M( ) kln4( ) aiEka{El J:ZO 8(]—|—1)(]—|—2)

Sums of Laguerre polynomials. One can simplify the second term in (5.59)

similarly to the two-dimensional case:

R G

82
S =
M Oxgdm 2 8+ 10 +2)
DORC M ELRAR 7 (s L
=T — Okl - - ,
g 20+ 1) +2) = 4G+ 1)+ 2)

where the expression (5.40) for the second derivatives is taken into account. The
first sum can be transformed by using
,B/2)

L () = 5 (04 (6 = G+ DI ().

which follows from (4.29). This leads to

L ()

LX)
Jgo 2+ 1)(j +2)
=L (xP)

M—-3 7(3/2) /w12 3/2)
Ly (%) (IXI )+

=Tm (2 (

X2\ =\ 2+ 1) 2 4G+ 16 +2)
m (;_L<3/2><|x| ) N BP0 LT

O xPP\2  2(Mm J:04]—|—1 (j+2)

Similarly to (5.41), we obtain
(5.60) MZ L N ) L)
' 4g+1 4G+1)(G +2) o 4G+ 4M-1)"

Jj=

resulting in
— 1/2 3/2
M2 L0 (x2) 3L (%)

. 1\42—3 (5/2)(|X|2) _ TET] (l i Z _
MU 9Gr DG +2)  [xP\2 = 4G +1) A(M — 1)
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Hence we arrive at the representation

— 1/2 —1x|? 3 x|
SM:%m@ﬂw+%fé/MWn"_w&%wmeH)
2/x|2 = 2(j +1) 2(M - 1)

M-2 7(1/2) —|x|2 3/2 ix|?
(T L (x*) e =P L2 () e
4(54+ 1) 4(M —1)

=0

Final form of Iiynaps. In view of (5.59) and (5.58), we can write the integral
Iximops in the form

T (x) = # <(5M n xla%c),cg(ef\ ) (x) - SM>

= #(51@1/33(6_'2)@() + %(e—WF —2£3(e_|'|2)(x)> _SM)-

Collecting the terms, we see that Ijy;nsps is the sum of

M—2 ;(1/2 1|2 3/2 1|2
O e P+ 3 L2 () e X L (x]?) e
w372 = A+ 1) (M —1)
_2(X
(- 22
and
M=2 7 (1/2) 11,12} o —|%|? (3/2) (1412 o —Ix|?
2 L X (S 3L
TiTl —Cg(e_H )(x)— Z g (| ) n M%) e
73/2)x|2 = 47+ 1) 4(M —1)
_TRTL 3n2m—2(x)
e ( Lsnan (x) + A= 1) )7
so the final form of Ignaps is
TLT] 3TkTy N2m—2(X
(5.61) T (x) = (5kl - W)£3772M(X) + (W - kl)lf(]}\l/[ii(li -

5.5.3. Final form of the elastic and hydrodynamic potentials. An ex-
plicit representation of the integral

o [ mem(y) , O
4t ) |x—y3 Y Oy Lamonr (x)
R3

can be derived from (4.41), which shows that

,4/2) (Ix[?)e —|x|?
i) x—yB ¥ e )
R3

i [ 1em(y) Tk .
— dy = (ESUQAI(X)_ - 127r3/2

Hence, together with (5.52) and (5.61), we obtain the elastic potential of nops
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A p TRT1\ Nanr—2(X)
r — dy = —— -3
wle=y)mem(y)dy = gon=s ( H |x|2) M—1
(5.62) R3
A+ 3u A xRz
+ L ,
(2u(/\ +2) T 2N+ 2p) [x? ) e (%)

and the 3-dimensional hydrodynamic potentials in the form

- 1 T
/‘I’kz(x —y)nem(y)dy = 55 (5kz + P )£3772M (x)
R3
1 3w\ nem—2(X)
(5.63) +8_V(5kl— e ) U1

1/2 x|
Tk o (y) gy = T (E ( )_ng/,i(lxI?)e x| )
ir | |x—y|3 |x|2 312 273/2 '
R3

REMARK 5.4. Analogously to the two-dimensional case, the elastic and hydro-
dynamic potentials of 125742 can be obtained from those of 723, by adding some
rapidly decaying term if M > 2. In fact, by (5.59) and (5.40),

—[x|?
e

Tamans2(x) = Trman (x) = 432 M (M — 1)

(3L S22 = 2w L2 (1x1%))

5.6. Notes

Various applications of potential methods to scattering, elastic, and hydrody-
namic problems were developed by many authors. For details, we refer to the
classical monographs [51], [52]. The main formulas for diffraction and elastic po-
tentials applied to n2as have been obtained in [67].

Approximation properties of the cubature (5.19) for diffraction potentials are
studied in Section 12.1. Since the mapping properties of the elastic and hydro-
dynamic potentials are similar to those of the harmonic potential, the estimation
of the cubature error for elastic and hydrodynamic potentials can be carried out
analogously to Theorems 4.10 and 4.11.






CHAPTER 6

Some other cubature problems

In this chapter, we consider applications of approximate quasi-interpolation to
various problems, which can be solved by using integral representations.

In Section 6.1, some integral and pseudodifferential operators, occurring fre-
quently in applications, are treated. We obtain explicit formulas for the action of
these operators onto the basis functions 79,;.

In Section 6.2, we use integral representations of solutions to initial value prob-
lems to derive approximate solutions via approximate approximations. As model
problems, the heat, wave, and plate equations are considered and semi-analytic
approximate solutions of these problems are obtained.

Based on integral representations of solutions to parabolic and hyperbolic prob-
lems, in Section 6.3 we derive efficient formulas for the potentials of elliptic equa-
tions applied to general Gaussian functions. These formulas lead to cubature for-
mulas for higher-order generating functions derived from anisotropic Gaussians,
considered in Section 6.4, and from approximate wavelets, considered in Section 8.7.

Finally, in Section 6.5, we derive formulas for harmonic and diffraction poten-
tials of products of Gaussians with the characteristic function of a half-space, which
are applied to the cubature of potentials over the half-space.

6.1. Cubature of some pseudodifferential operators

6.1.1. Square root of the Laplacian. In fracture mechanics, electrostatics,
and hydrodynamics, one encounters the pseudodifferential operator of order 1

(6.1) (=A)Y2u(x) = %/%, x € R?,
]R2

where A is the two-dimensional Laplacian. Using (5.15), one can transform the
integral
oo

1 [ e P 2 ) N |x|2

€ _d:—\x\/—qQ dr = LT =2 gy (B0

o7 | =yl y=¢e e o(2]x|r) dr 5 © o5
R2 0

(the last relation is taken from [82, 2.15.5.2]). Then
2

62 o [y = vm e (o () e ()

2 ) |x—y| 2 2
R2

with the modified Bessel functions Iy and I;. Thus, a second-order approximation
of (6.1) is given by the formula

(_A)l/2u(x) ~ % Z u(hm)e—rm/Q ((1 _ Tm)IO(%n) —i—’rmfl(%n))
meZ?

115
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with
|x — hm|?
Pm = ————— .
Dh?
In view of
M—

)_.

AJ o IxI?

772M

=1|H

j=0

from (6.2) one obtains

(—A)l/2 nzM(X)

( 2 (1 (B 1= ) e (B )))

which can be written in the form

(=AY 2npr(x) = e IxI/2 (PM(|X|2)IO(¥) + Qui(x*) 1 (g))

with polynomials Py; and @Qps of degree M + 1. Thus, an approximate approxi-
mation of the square root of the two-dimensional Laplacian (6.1) with the order
O(h?*M) modulo saturation error is given by the formula

mm%;;(hm)ermﬂ (PM(rm)IO( : )—f—QM(rm)Il( . ))

6.1.2. Higher-dimensional singular integrals. Some problems from me-
chanics, electromagnetics, and hydrodynamics can be solved by using second deriva-
tives of the harmonic potential

9? 2
835493:;6 EnU(x) B _8I1‘8Ik A

which represent pseudodifferential operators of order 0. In Section 13.2 we apply ap-
proximation formulas for these operators to the numerical solution of non-stationary
Navier-Stokes equations.

Using the results of Subsection 4.3.5 concerning the gradient of the harmonic
potential, it is simple to obtain high-order approximation formulas for (6.3). From

(4.36), we have
o0 1 n T n
T 2) - _ (— 2).
iz 4|x|n—27(2 /I o "\
Hence by (4.37)

02 2 0 wg
S Y () =
T L R v Tl ( )

Oik T Xk n 9
= IR a 17 )7
o ! 13 ) + x |n+27(2 11

which is valid for n > 2. From (4.17), we get

(5 + Lix?) = 5 (5 xI2) =[xl e 7"

(6.3)

u(x), xeR",

leading to
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0? 2 nzixy — 6 |x[? /n ;T 2
6.4 L, (el = DTtk = OikXT] (_ 2)_1_ x|
( ) 8$18Ik (e )(X) 2|X|n+2 0 2,|X| |X|2 e
Similarly we obtain from (4.39)
o LU g (e
drdr,  AG+1)  omtT 2(+1)
n/2+1 —|x|? n/2 _1x|?
LY (x2ye < L (x]2) e~
= TiTk : — Ok -
j+1 2(j+1)
Since by (4.38)
n/2+1 n/2 n/2 n/2
L () LEP () - L2 () n L (1)
j+1 Ix[? 2x[2(j +1)
the second derivative transforms to
(n/2=1) (1412 o —Ix[?
? L (|x[*) e~
Ox; 0y, 4+ 1)
—|x[? L(n/z)(|x|2)
_¢ (n/2) (142 (n/2) (142 C N
B ER (%%(Lg‘ (1x|%) = L2537 (1%[%)) + (nzizyk — dulx]| )W
Thus,

9?2 M-2 L§"/2—1)(|X|2) e—IxI?

TiTk i
Ox;0xy, ; 4(] + 1) :(n |X|2 B 6Zk) ; ; 2(_] + 1)

0

and therefore, in view of (4.25) and (6.4),

0? Ti T n/2 x|
i, L ) =~ LA () e

M=2 7 (n/2) (112 o—|x|?
TiTg 1 n L7 (1x|%) e
+ (TL |X|2 k 27T”/2|X|” Y 2 |X| + ;:0 27.rn/2(j + 1)

T; Tk ;T n/2 —1x|?

Hence the action of the operator (6.3) on the quasi-interpolant Mf%ﬂu can be

given as



118 6. SOME OTHER CUBATURE PROBLEMS

(65 A M)
' 8I18Ik h.D ux
— hm;)(zr — hmg) _(n T
n/z 2 ul { x — hm]? L LG (a2 e
meZ’Vl
2 /2 (2
(i = hmi) (e = hmg) (102 0wl S~ L (el
o S gt J;) 2G+1) )

where ry, = |x — hm|/(v/Dh). Since (6.3) is a pseudodifferential operator of order
0, we obtain the estimate

AT

| &7 = M| = 00 42,

with small ¢ if D is large enough.
As an example, we provide the cubature formula of the two-dimensional singular
integral

(6.6) Sau(x) := %/ (21 _|ilz(jfT4_ y2) u(y)dy, xeR2

Noting that
2

S =—L
2u(x) 95,00, 2u(x)
we obtain from (6.5) that
1 (.Il - hml)(:zrg - hmg) 1 _ 2
SQU(X) ~~ E u(hm){ — |X — hm|2 Lg\/[),1(|rm|2)e [rm]
meZ?
—2 ;01
(o1 = )@ — hm2)<”y(1, rml?) e*\rmleZQ L )(Irml2))}
|x — hm|? Tm |2 = j+1 '
Note that by (4.30)
a
(1, [rm/?) o lrml? MZ2L ) (|rml?) _ Cd—e Ly (jrml?)
T 2T [Fen? '

Thus, the singular integral (6.6) can be approximated with the order O(h?*™) mo-
dulo saturation error by

T, — hml)(:vg — hmg)

1
Soulx) ~ 25 D i) x— hm]?
meZ?
1—eleml’ (LMfl(|rm| ) + |I'm|2 M 1(|rm| ))

X
[T ?




6.1. CUBATURE OF SOME PSEUDODIFFERENTIAL OPERATORS 119

6.1.3. Biharmonic potential. Consider the bi-Laplace equation
A’f(x) = —u(x), x€cR3,

which has the solution

100 = o [ x=yluty)dy.
R3

Here, we determine the biharmonic potential of the generating function 7sp;:

1
(6.7 Mamaas () = o [ b=yl (v) dy.
R3
Recall that by (3.18)
M-—1 ;
3/2 —x[? (=17 i —xp?
7 man (%) = L () e = 30 S AT e
§=0
hence, because H3zA? = —I, we obtain
M—1 .
1 —1)y .
Hanonr (x) = 773/ (Hg(e*‘ i )(x) — —Hg(Ae*| - )(x) — ( ) A2 e*‘x‘z)
4 = jl43
M-—1 :
-y Y x) — L (el Py ) — S D pd2 o
=72 (M (e ) () = 2L ) () D A ).
where we use the relation H3A = —H3A2Ls = L£3. To determine the action of

the biharmonic potential on the Gaussian, we use the general formula (5.15) with
Q(r) = r/8m, which gives, in view of (5.16),

oo
71/2 o —xP?

1 o e
§/|X—y| e dy = W/e 11/2(2|X|r)7"5/2 dr
R3 0

ei‘x‘z

_ 2 _—r? 2|x|r —2|x|r
= ‘e e —e dr
o/ ( )

(6.8)

0
1 OO2 —(r—|x|)? —(r+]x|)?
_ggl/T(e e
0

L rerf([x|)

(§] Teri(|x

- 2x|* +1).
g+ T6/x] (2[x|* + 1)

Thus, we conclude from (4.19) that

Hana(x) = m %2 (H3(e_‘ o )(x) — 353(e_| o )(X))
- #(e“’“2 +/7|x|erf(|x])).

Note that the expression for Hsn, is even simpler than that for Hsne. The expansion
(6.8) also indicates that improving the approximation order pointwise by using the
values of the density in a small neighborhood is only possible for ngp; with M > 2.

(6.9)
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This was already mentioned in Remark 5.4 for the case of elastic and hydrodynamic

potentials.
Next, we consider
M-1 M-3 ;
Z (1) AT Ad=2 = IxI? :i Z ( 1)/ o IxI?
l |
= 47 16 = (G + 2) 4

o P TP LI (|x]?)
16 = G+DG+2)°

where the last equality is ensured by (4.24). This shows that, as in the case of
harmonic potentials for M > 3, the biharmonic potential of 12,742 can be obtained
from that of nsp; by adding some rapidly decaying term. Therefore, to improve
the approximation accuracy to the biharmonic potential at a given point, only the
values of the density in a small neighborhood are required.

The sum (6.9) can be simplified further owing to

S G DI S B

Z =Y (- — )L/ (xP)
= G+ +2) = 0(]—1-1 ]+2)
(1/2) = 1 ap (1/2) 1 (1/2)
1/2 2 1/2 2 1/2 2 (1/2
Ly " (x| )+;j+—1(lj]‘ (%) = L; /77 (x| ))—M— 5(1x[?)
LT () LA xR
j+1 M—l ’

=0

where we use (4.28) and the fact that Lgv) = 1. Hence, we obtain

1/2 —|x|?
e mix|erf(x]) L2 (x[2) e
873/2 167‘(3/2(]\/[ -1
L2 (|x?) e xl?
1673/2(5 + 1)

Hanan (x) =
(6.10) M—3

M

Jj=0

6.2. Approximate solution of non-stationary problems

The method of approximate approximations can be employed to solve initial
value problems for classical partial differential equations efficiently. As examples,
we consider the heat, wave, and plate equations.

6.2.1. The Cauchy problem for the heat equation. We introduce the
n-dimensional analogue of the example given in Subsection 1.2.2

(6.11) %—aA u=0, t>0, u(x0) =¢kx), xeR".

This Cauchy problem can be solved by the Poisson integral

612)  ult) = Piol) = s [ e gy dy
R’n
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cf., e.g., [75, Kapitel 25]. Note that

D n/2 2
6.13 -l 1?/D ( ) —[x|?/(D+4at)
( ) (Pre )x) = D + 4at ©
If the initial value @(x) is approximated by the quasi-interpolant (3.20), i.e
— hm]|
M(2 =D ¢(hm 772M(|X ) )
o m% VDh

then the function
M
un(x,t) = PuMp o) (%)

is a high-order approximate solution of the initial value problem for the heat equa-
tion (6.11). Since

W Jemnax 1, >0,
mat)™
]Rn

we obtain from (2.11) that

2M 2M
(6.14) [[u(,t) —un(, ), @ = IPlo— MBSO 1, @ny < o= MG oI, )

for any ¢t > 0 and 1 < p < oo. Using the relation

%I\ jp = (21 (DRANG e
m(py) = t L (5 & e,

we derive the analytic expression

7’#721\4(%)(")
DhZ\Ji . 2 2 2
_ J —|x-y|*/(4at) , —|y|*/(Dh7)
4at 73 Z ( ) A /e e dy
=0 R™
B (Dh?)"/? I —x[?/(Dh?+4at)
~ m/2(Dh2 + 4at)n/? Z ( ) Ale '

We see from (3.15) that
Ad o Ix/ ) _ (U I ey n® et [ (n/2-1) (i) ,
(Dh? + 4at)d J Dh? + 4at/)’

hence

,Pt"72M(\/|—|h)( )

(6.15) - (DhQ)n/2e—x2/(Dh2+4at)M1( Dh ) (n)2 1)( 12 )
- /(D% +dat)V/? S \Dh? +dat) " Dh2 + 4at /)’

Thus, the approximate solution of the initial value problem for the heat equation
(6.11) can be given by the sum
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(x,1) = "
U6 = T2 (DR2  dat)n/?
(6.16) M-1 2 j
Dh _
m(t) (n/2 1)
x D elhm Z (Dh2+4at) L; (m(t)).
mezn Jj=
where the notation
|x — hm|?
(6.17) () = prr g

is used.

Let us note that the inequality (6.14) gives only a rough error estimate for the
approximate solution (6.16) of the heat equation. It states that if ¢ € WZ?M(R"),
then for any fixed ¢ > 0 the formula (6.16) approximates the solution wu(x,t) of
(6.11) with the order O(h*) up to a saturation error, which does not converge to
zero. However, since the Poisson integral is a smoothing integral operator, one can
expect that the saturation error also tends to zero as h — 0.

This can be easily seen from the representation (2.69) which implies

PUMZE ) (x) — Prp(x)

2M—1 _ [a]
B —nj2 (=vDh) —|x—y|?/4at Ao y
= (4mat) [ E] ) —ar | y 0%p(y) Ea(hﬂ?zM, D) dy
| = R
+ Pi(Ranr,n) (%),

where the last term P;( Rz 5) is of order O(h?M). The first terms, which constitute
the saturation error, can be written by (2.46) in the form

1

—|x— 2 a a y
W/e ‘ y|*/4 ta (p(y)aa(ﬁ7n2M,'D) dy
R

7 [Ot] 80‘]:7721\/[(\/ DV) 7‘ 7y|2/4 t 27”(
= [ — Z Y MV 7T x a A y.V) aa d
(27r) > (4mat)"/2 / e e 0%p(y) dy
vezm\{0} R
i L] 2mi
= (L) o § ' O Fnorr (VD) e h (x,v)

2
veZn\{0}

1 2miv/4at
/e_ly‘2 e h WV 0%p(x — Vdaty) dy

/2
RTL

Now we note that for any x € R™ the function
—ly \2
e
faly) == —73 0%p(x — Vdaty)
T /2
decays rapidly as |y| — oo and its derivatives up to the order 2M — [«] belong to

Li(R™). Moreover, the Li-norm of these derivatives are bounded uniformly in x.
Hence the Riemann-Lebesgue Theorem gives

‘/e—\ylz 2Ty A) 9%p(x — Vdaty) dy’ = }]:fa()\)’ < ca|)\|[a]—2M
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with a constant ¢, depending on ¢ and t. Thus, the terms of the saturation error
can be estimated as follows:

1 v /da y
}W/e [x—y|*/4 taacp(y)ga(gawM,D) dy‘
R’n
2mi 2miv/4at
- (2W)_[a]’ Z % Fnont (VDv) e h ) ]—“fa(¥)’
veZ™\{0}
cah?M-la]

o ol —-2M
= 2n) 2 (dat) Va2 Y. |0 Fmu(VDy)|jy|ll 2
veZ\{0}
Hence, we have proved

THEOREM 6.1. If the initial values of the parabolic problem (6.11) satisfy ¢ €
WPQM(R"), then the approzimate solution (6.16) converges for any fized t > 0 with
the order O(h?M) to the solution of the problem.

In Table 6.1 we provide the error estimates and approximation rates for the
approximate solution of the heat equation (1.15) using formula (6.16) with M = 3.

h D=1 rate D=2 rate D=4 rate
0.8 [8.69-10"8 1.28 .10~ 1.00-107°
04 |287-1072 |4.92|2.27-1078 |5.81|1.78-10"7 | 5.82
0.2 |4.52-1071 | 599 |3.61-10710 | 5.98 | 2.87-1072 | 5.96
0.1 | 7.08-10713 |6.00|5.66-1072 | 5.99 | 4.52- 10711 | 5.99
0.05|1.14-107% | 5.96 | 8.90-10"*4 | 5.99 | 7.08-1013 | 6.00

TABLE 6.1. Numerical error for the initial value problem (1.15)

with ¢(z) = e ™*" and t = 10 using the approximate solution (6.16)
with M =3

6.2.2. The Cauchy problem for the wave equation. The next example
concerns the initial value problem for the wave equation

ure(x,t) — Axu(x,t) =0, t>0, xeR",
u(x,0) = ¢1(x), us(x,0) = ga(x).

If u satisfies (6.18), then the Fourier transform 4(X,t) = Fx_au(-,t) is a solution

3

of the Cauchy problem
G (N, 1) + 472 A2a(\ ) =0, t>0, AeR",
(X, 0) = G1(A),  4:(A,0) = ga(N).

(6.18)

Hence
sin 27| At
27| Al
To find an approximate solution of (6.18), the initial values g1 and g are replaced
by high-order quasi-interpolants. To determine the solution of the wave equation

(6.19) (A, 1) = G1(A) cos 2m| At + ga(N)
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with generating functions for those approximants, we apply the results of Subsection
3.4.2. In Theorem 3.10, we have shown that the function

nu(x) = % (({%)MA (T—l—n/277(%)>

generates an approximate quasi-interpolant of order O(h?M) for a suitable 7.
Again, we start with the Gaussian function. Let g;(x) = 7~ 1=/2e~IxI"/7,

Using formula (2.12), the inverse Fourier transform F5 ' of

T=1

e ™ TN cos 2| At and 7 le ™ T sin 27| At
27| A|

can be determined from the integrals

oo

2
ﬂ- / Tnj2—1(27r[x]) e —mrr cos(2mrt) r ™/ 2dr

/Jn/2’1(27”“|x|) e ™ sin(2rrt) P dr
0

1

|| /21

respectively. In view of (2.16), at least for odd n, these integrals can be taken

3

analytically. In particular, if n = 3, then

[2 .
Jija(z) = — sinz

and [7, 1.4.11, 2.4.19] imply that

o [ [ 2
7'|X|7T1/2 / \/;T‘l}(' 81n(2ﬂ-7"|x|) e—7r27—r2 COS(27T7"t) T3/2dT
0

1
= ] /T‘ e (sin2mr(t + [x|) — sin27r(t — |x[)) dr
T|x
0

1

- X2T — _X2T
:m(ﬁﬂ"l)e (D7 (¢ — [x]) o D%/ )

as well as

1 7 [ 2
x| 1/2 / \/2772:r|x| sin(27r|x]) o 3T sin(2rrt) 1/ 2dr
0

1
= el /e*“”z (cos 27r(t — |x|) — cos 27r(t + |x|)) dr
0

1 > 2
1 (e xD? /T _ (XD /T).
4(mr)3/2|x| (e ¢

Thus, for n = 3 we obtain

Fxt o (Frpr cos(2r] - |t)) (A (e + 1) = At = %))

- 1
= 22|
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with
(=ML g Mol g o€
(6.20) A (§) = Ar=1)! (E) (W) ~
and
_1 (Fnusin(27] - |t) 1
.7:)\i>x( = 27| ) = 17 (BM(t —[x]) = Bu(t+ |x|))
with
(=DMl g\ M e &/
(6.21) Bu(©) = 7= (57) (W) _
In particular,
6752 6752
A2(§) = 7(53 -5¢), As(§) = T(%fg — 4% - 35¢)
6752 6752
By(§) = (€ =3), Bi(¢) = —— (206> — 4¢" — 15).

Thus, an approximate solution to the wave equation (6.18) in R® with the
order O((v/Dh)*) modulo a saturation error can be obtained from the summation
formula

up(x,t) = Wgs (ilih (AM(t\—/’—g;:l) — Awm (%))gl(hm)

T o () (),

where dym = |x — hm| and the functions Ay and By are defined by (6.20) and
(6.21).

6.2.3. Vibrations of a plate. Similarly, one can study the initial value prob-
lem for free vibrations of a thin elastic plate which is modeled by
uge(x,t) + A2u(x,t) =0, t>0, xcR?,

u(x,0) = g1(x),  ue(x,0) = ga(x).

The two-dimensional Fourier transform @(A,t) of the solution to (6.22) satisfies
(N ) + 167 A*a(Nt) =0, t>0, XeR?,
(A, 0) =g1(A), (X, 0) = ga2(N).

It is therefore of the form

(6.22)

sin 42| A|?t
472 |A|?
As in the previous example, it remains to determine the inverse Fourier transform

of

(A 1) = G1 () cos 4m2 | A2t + Ga(N)

e =™ TN gin 4n2| X2t

2
e 0 NER

1 .2 2
77 e ™ T cosdn?| A2t and
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Obviously,
—\x\2/(‘r—4it)
(6.23)  fi(x,t,7):= T_lf;ix(e_w%l ' cos an?| |2t) = Re 6777'(7-7—4%) ’

whereas the smooth function

(e —m*TIAP sin47r2|)\|2t)

_ 1
fg(X,t,T) =F 47T27’|>\|2

A—X
is the harmonic potential of
2 2
T R, (e A gin 47T2|)\|2t)
and therefore satisfies the Poisson equation
e —|xI?/(r—4it)

Afg(x, t, T) = —Im m

with  fa(x,t,7) = 0 as |x| — oo.

Since by (4.21),
e —|x|?/ (T £4it)

x|? |x[?
A E( ) 1 —4
( N\rxa) T8 Tt T+ it

and

2 2 1 81t
g L) =Im El( |X| ) + —arctan T
T — 44t T

Im (El(ﬁ) +1lo

T — 4it — 4it 2 T2 4+ 16¢2"7
it follows that
_ 1 |x|?

(6:24) Rt =~ mB (-2 )
We introduce the functions

B (_1)M71 9\ M-1
(6.25) An (€, t) = m (E) (& t,7) .
and

B (_1)M—1 H\M—1
(6.26) Bum(,t) = I (67) fa(&,8,7) .

which are the solutions of (6.22) with high-order generating functions as initial
values.
Thus, an approximate solution to (6.22) of order O((v/Dh)?M) is given by

1 |x — hm| ¢t
up(x,t) = — Av | —=—, =5 )91(hm)
D méz ( /Dh Dh2)
h? |x —hm| t
=5 XZmi N (hm).
" T mez2 BM( VDh ’DhQ)gz( m)

6.3. Potentials of anisotropic Gaussians

We introduce a method to determine potentials of anisotropic Gaussians defined
by formula (3.24). This method is based on the solution of initial value problems
for linear parabolic equations.
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6.3.1. Second-order problems. First, we solve the differential equation

n
(6.27) =3 bjpda,On,u(x) = ATER L xR 0 >3,
jok=1
where the constant matrices A and B := ||bjk||;-fk:1 are supposed to be non-singular

and complex symmetric satisfying Re A > 0, Re B > 0.
As mentioned in (3.23), the Fourier transform of the right-hand side of (6.27)
has the form

.7:(6_<A71"'>)()\)=7r"/2\/detAe {(AxA)
The solution of (6.27) can be represented as a one-dimensional integral.
THEOREM 6.2. Suppose that the complex n X n matrices A and B are non-

singular and symmetric and that they satisfy Re A > 0, Re B > 0. Then forn > 3,
the function

1 T~ {(A+tB)! )

+/det( A+tB

(6.28) u(x) =

is a bounded solution of the equation

e —(A71x %)

vdet A

Proo¥r. Consider the Cauchy problem for the parabolic equation in R™:

du(x,1) (BVy, Vi) v(x,t) =0, ¢t>0, uv(x,0) e (4>
- x; Vx) UX, = ’ ’ v(X, = T
ot mn/2y/det A

Applying the Fourier transformation to (6.30), we conclude from (3.23) that 0(A,t)
= Fx—av(:,t) satisfies the differential equation

(6.29) —(BV,V)u(x) = , x€eR™.

(6.30)

b+ 472(BAA)D =0, (X, 0)=e ™ (AXN X eRn,
which gives (X, 1) = e ™ (AHUBIAN  Gince Re(A + 4tB) > 0, it follows from
(3.23) that

e —{((A4+4tB) " 1x,x)

/2, /det(A + 4tB)

(6.31) v(x,t) =

Integrating (6.30) in ¢, we arrive at

T T T
/vt(x, t)dt = /(BVX, Vx)v(x,t)dt = (BVx, Vx) / (x,T)—v(x,0).
0 0 0
The asymptotics |v(x,t)| = O(t™"/2) as t — oo, which is uniform in x, implies that
forn >3 and T — oo

o0

e
—(BV,V / dt = ,
< ) ) /2y /det(A + 4tB) 7/2v/det A

—((A+4tB) " 'x,x) —(A71x,x)

which establishes the assertion. O
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COROLLARY 6.3. Let the matrices A and B be as in Theorem 6.2 and let o be
some multi-index. Then a bounded solution of the equation

(6.32) —(BV,V)u(x) = 9%e A4 x%)  xecR",
s given by the integral
1 o ef<(A+tB)71x,x>

(6.33) ) =3 det(I + tA-1B) a

The assertions of Theorem 6.2 can be extended to other second-order elliptic
equations.

THEOREM 6.4. Under the assumptions of Theorem 6.2 on the matrices A and
B a solution of the elliptic equation

e —(A71x,x)

VdetA

with constant a € C, Rea > 0, is given by the integral

(6.34) —(BV, V)u(x) + au(x) = xeR", n>1,

1 T e {((A+tB) 'x.x)
(6.35) ux) =~ [ &

4 ) Vdet(A+tB)

If Rea = 0, then the solution formula (6.35) holds for n > 3.

e~/ gt

PROOF. Let v be a solution of (6.30). Then the function

e —((A+4tB) " 1x,x) e—at

/2 /det(A + 4tB)

w(x,t) == v(x,t) e " =

obviously satisfies

6.36) 2% (BV,, V) 0 0, w(x,0 e 47 R
. — wVaw+aw =0, t>0, wkx,0)=———, xeR",
ot ) wn/2¢/det A
and hence,
T
((BVx,Vx) —a) /w(x, t)dt = w(x,T) — w(x,0).
0
Note that in the case Rea > 0, the limits as 7" — oo exist for any space dimension
n > 1. O

6.3.2. Some special cases.
1. If A= B = I, then (6.28) is another way to determine the explicit expression
(4.16) of the harmonic potential of the Gaussian

00 |X|2
1 [ e—IxI?/0+t) 1
Ln(e I :—/ dt = 7/15”/2*2 —tdt.
(e 1) aromr Ax|—2 ¢
0 0

2. The case B = I corresponds to the harmonic potential of e_<A71x’x>, which
can be obtained from the one-dimensional integral

- 1 T e ((A+tD) 'xx)
(6.37) Lo(e A Ny =2 [ £

s
4] AT +1AT)
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In particular, in the case of a diagonal matrix A = diag(aj_l)?:l, a; > 0, we obtain
the harmonic potential of the orthotropic Gaussians

n
Jj=1

as the one-dimensional integral
1 7o e AT 3/ (1+a;t)
6.38 Ly, = - dt.
(6.38) vl 4 / 1:[ (L+at)/2
o=

3. It B=1 and a = 1, then the equation (6.34) takes the form
(6.39) A e A=
: —Au+tu=——r——,
Vdet A

and by Theorem 6.4, the Lo-solution has the form

1 T et/ o= (ATt 'xx)
-1/ i
4 ) /det(A+ 1)
4. If B =4I and a = ¢ — ik? with € > 0, then (6.34) is the Helmholtz equation

i ef(Aflx,x)

Aut (k2 tigu=""""
(e = =

and by (6.35), the Lo-solution has the form

(6.40) us(x) =

1 [ o= (e—ik?)t/4 o—((A+it]) ™ x,x)
4 /0 det(A + it])

If n > 3, then

1 [ oik’t/4 o—((A+it]) " 'x.x)

(6.41) lim u.(x) = = dt == u(x),

e—=0 4 Jo /det(A +itl)

which satisfies, by the limiting absorption principle (see e.g. [25]), the equation

i ef(Aflx,x>

vdet A

and Sommerfeld’s radiation condition (5.4). Since the solution of

(6.42) Au+ k*u =

Au + E*u = —p(x)
is given by the diffraction potential
Snp(x) = A Eu(x—y)e(y)dy ,

we obtain the one-dimensional integral representation of the diffraction potential
of anisotropic Gaussians
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ik?t/4 o—((A+itl)~x,x)

Su(e=7 ) ) (x) = i/e at
0

det(I 4 itA-1)

dz.

1 joekzz/él ef<(A+zI)71x,x>
4 ) det(I + zA-1)

In particular, the diffraction potential of the orthotropic Gaussian can be obtained
from the integral

100

2
1 5 n e—wj/(aj-i-az)
6.43 Eu(x —y) e~ Wilart oyl /an) gy — _/ RN | A
(o4 / Ky Y1) ° L2 a2 ™
R™ 0 j=1
In the special case of the isotropic Gaussian, we get the formula
| FomlPa+n
6.44 S, -2 _ _/ Kt/4 gy
(6.44) (e =1 | T ©
0

Let n = 3. Then

—|x|? 1+t —|x|? 7'2+k27'2 4
P10 v gy [ / "
(111572 72

~

where I' = {7 = /1 +it,t € (0,00)}, and hence |arg 7| < 7/4. Then the integral
formula

/63_“2/‘52“2‘52 G _ VT it atee (W (bt+ i—a) —-w (bt - @)) +C,
12 4a t t

which follows from [1, 7.4.34], provides the analytic expression (5.19) of the three-

dimensional diffraction potential of the Gaussian.

Furthermore, (6.44) allows one to obtain explicit expressions of diffraction po-
tential of isotropic Gaussians for all odd space dimensions n. Since

100 100

_a? . _a?
/67/(1“) R4 gt = (—1)7 (ii)ﬂ / e /) oKt/ gy
(1 +t)i+3/2 2a da (1 +1t)3/2 ’

we obtain

sote P30 = LY (7 o () ()

a=|x|
which, for example, evaluates for n =5 to
85(67"‘2)(}()
—|x/? JT —|x/? k k
e Te . . . .
=+ Top ((1 _u<;|x|)w(5 —Z|x|) (1 +ikx|)w (5 +Z|x|)).



6.3. POTENTIALS OF ANISOTROPIC GAUSSIANS 131

6.3.3. Elastic and hydrodynamic potentials of anisotropic Gaussians.
In this part, we obtain one-dimensional integral representations of the three-dimen-
sional elastic and hydrodynamic potentials, if the density is an anisotropic Gaussian
function.

We know from the considerations in Section 5.5 that it suffices to find the
integrals

1 : _ —(A7yy)
kl(x) 8wk6:vl 87T/| y| y

0? -1

- — (A7) gy

87T/IX yl 9o © y
R3

Since |x|/87 is the fundamental solution of the biharmonic equation, the function
Iy is a solution of the bi-Laplace equation

A’w(x) = — > e tATX) | x e RS
8xkaxl ’ '

THEOREM 6.5. Let n > 3 and let the n X n matriz A satisfy the assumptions
of Theorem 6.2. The unique solution wj of the bi-Laplace equation

o2 e—(Aflx,x)
Oxrdx;  /det A

satisfying w (x) — 0 as |x| — oo, is given by the one-dimensional integral

(6.45) ~A%w (x) =

x € R",

—((A+t1) %)
6.46 Wi (x) = dt
(6.46) k(%) = —15 / arkaxz Vdet(A +t)

PROOF. Similarly to the proof of Theorem 6.2, we find the solution of (6.45)
by solving the Cauchy problem

v (x,t) + AZv(x,t) =0, t>0, x€R",

(6.47) 92 e—(AT'xx)
v(x,0 v:(x,0) =0.
v(x,0) = Oxydxy 7n/2/det A’ t(x,0)
The Fourier transformed problem
Ve (A, 1) + 167 A[*D(, t) =0, t>0, AeR",

B(X,0) = —dm2A A e AAN T 5(X,0) =0
has the solution
B (A1) = —Am2 A\ e ™ (AN cos 472 | N2t

= 22\ N ( o~ T H(AF4DAN) | o= ((A—4it])X,) ) .

Hence, from (3.23) the solution of (6.47) is

Ukl (X t)

92 1 o~ (A+4itD) "'xx) o= ((A—4dtD)”'x,x)
_|_
Oy Oxy 2mm/? < Vdet(A+4itl)  y/det(A — 44t) >
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Multiplying the differential equation in (6.47) by ¢ and integrating, we arrive at

T T
0? 1 0 ,T
—/tAi’Ukl(X,t)d?fZ /tvgiz(tx)dt:T% — v (x,T) + v (%,0) .
0 0
Noting that for t — oo
oY, j=k, iy ,
vk (%, 1) —{ OE P 2; Ly M avﬂgi;’"t) = Ot vu(x,1), j €N,
tin B Y ] 3

uniformly in x, and letting T — oo, we obtain

o0

A2 . U 62 e—(Aflx,x>
(X, t)dt = — :
o/ k) dxdx; 7n/2\/det A
Now, we note that
W] (X) = /t’l}kl (%, t) dt
0

1 52 ef<(A+4itI)71x,x) ef((A74itI)71x,x)
=3 t dt
0

+
OxpOxy \ \/det(A + 4it])  +/det(A — 4it])
1 ( /°° i R P N B Uy )
=—=— z z+ z z .
32 ) 0z 0z \/det(A + z1) ) Ox0xy /det(A + 21)

The function
52 e—((A—i—zI)*lx,x)
z):=z
9(z) Oz 0z /det(A + 21)

is holomorphic in the half-plane {Rez > —Anpin}, where Apin > 0 is the minimal
eigenvalue of the symmetric matrix Re A. Furthermore, |g(z)| < ¢cR™™/? for |z| =
R — o0; hence if n > 3, then

g(z)dz—0 as R — 0.

|z|=R
Rez>0

Therefore, by Cauchy’s integral theorem

7009(2) dz = /009(2) dz,
0 0

which implies

1 92 e—((A—i—zI)*lx,x)
WEl (X) = —

— | z dz
160 O0x0z; \/det(A + zI)

The elastic potential of the anisotropic Gaussian can be obtained, in accordance
with (5.52), from
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_1 ) A1 A+
_ —(A7'yy) _ 9Kl ) __ATH
HiZFM(X y)e dy . Ls(e” )(x) Ot )Ikl( X)
(6.48) s -
1 / /\+‘LL) 52 ) ef<(A+tI) x,X)
/ AN +2p) Ozl /) \/det(T +tA- 1)

whereas the hydrodynamic potentials are derived from

_ - 1
/\Ijkl(x_y)ef(A ly.y) dy:%ﬁg( 1~,~>)(X)_;Ikl(x)
RS

1 x ro2 o~ ((A+tD) 7 1x,x)
- — 5 = dt,
(6.49) 4y 0/( Wty 8a:k3:cl) det(I +tA 1)
Tk /e A7y 1 70 0 e (AHtD T dt
47 [x —y|? 4 ) Oxy \/det(I +tA-T) )
R3

6.3.4. Potentials of orthotropic Gaussians. We specify the formulas (6.48)
and (6.49) for the case of the orthotropic Gaussian

j=1
Since A = diag(aj_l);?:l, it holds that
o2 ef((AthI)*lx,x) Azpriana 26510k 3 e ~aiT] 2/(1+a;t)
Oz \/det(I + tA-T) ((1 +apt)(1+ait) 1+ akt) JI;[l (14 a;t)1/2

Hence we derive from (6.48) together with (6.38)

7(1]1]/ 1+ajt)

Sk 7 (A + 3p)axt Se
/ ki(x —y)o(y)dy 1 ( * 2\ + 2u) )1+a,€thl (1+ a;t)1/2
R3 0 -

—aja?/(1+a;t)

n A+ p)agz / taia; ﬁ e it
ApA+20) ) (1 + art)(1 + agt) (1+a;t)l/?
0

j=1

and the hydrodynamic potentials
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/ Vo (x — y)ily) dy
RS

—a;a2/(1+a 1)

(0t a0)/2

B i oo(&kl@ + akt) Trriapart ) ﬁ e
)

4 2(1+axt) (1 +axt)(1+agt
0

dt,

ajwj/ 1+ajt)

o0 3
Tk P(y) aRTr / e
— | ———dy = dt.
ar | |x—y]? Y 2 1+a;€tj1:[1 (1+a;t)l/?

R3 =

6.4. Potentials of higher-order generating functions for orthotropic
Gaussians

In this section, we determine potentials of the higher-order generating function

M—1 ;
M) = —prt —
2M w/2(det A)V/? S 14T

“1x,x)

(AV, V) =4

(see (3.25)) in the case of a diagonal matrix A = diag(as,...,an), a; > 0. This
function can be written in the form
M—1

A _ 1 (-1 <
772M(X) = 7T,I/QX/W jz::() 147 1/13( )
with
(6.50) (%) == (Z ) He*ze/ae .

k=1

Recall that the corresponding qua51—1nterpolants generate approximate cubature
formulas of order O(h*M).
Our aim is to obtain one-dimensional integral representations of the harmonic
and diffraction potentials acting on né“M. We start with the harmonic potential
M—1 ;
1 SO
(6.51) Lo (x) = (%)
nieM ™/2 fa1 ... an jgo jl47 Lnths

From formula (6.38), we have

1 e —T¢/(artt)
Lnto(x) = / — dt
4 ; 21_[ 1+ t/a[
and, in view of (6.50), Corollary 6.3 provides

n i *xz/(aﬂrt)

Lnib(x) = 1/(2 817,) H 1+t/ae

=1

Since

(Yo

k=1 ’f

7! 52Bk
) Z g 8Iz5k
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with the multi-index 8 = (81, ..., 8,) € Z%, and

82ﬁk efzk/(ak“rt) - agk efzi/(ak“"t) I ( Tk )
a B STvtfar (s +8)5% /T t/ay P\ Var + 1/

the action of the differential operator results in

62 j n e xy /(ag+t)
(Zak 2) 11
= 0w/ 1T+ t]ag
(6.52) Gl et/ (ant) oo (2
N o B! kl;[l (1 + t/ay)Pst1/2 (\/ak T t)

M—1 ;
(=1
J=0
M—-1 ; 0 n
(—1)d 1 / vy, /(ak+t) Tp
= YT H EI (1 +t/ag)ost1/2 ﬁ’“(\/awrt)

Hence, from (6.51), we obtain the representation of the harmonic potential of higher-
order generating functions as a one-dimensional integral

M-1 —zi/(ak+t)

Ty,
Ly Hog (7) dt.
772M Z 7Tn/2 4g+1 Z /H Bi! (ay +t)Bet1/2 fan -t

Jj=0

Consider the diffraction potential. By formula (6.43), we have

e~ T 2/(ap+z)
S Eulx K224 ‘ dz

o (x / k(X —y)o(y)dy / H (1+ z/ag)'/?

and therefore
.n et 2 /(ag+2)
. k2z/4 ’ ‘

Snthj(x) = / (Zakax ) E (1+2/ag)'/? o
) =

Now, (6.52) leads to the equality

Snhj(x)

M—-1

(-1 / Kz/a ~ok/ (o t2) s
: Hag, )d
it Z 8! H 1+ 2 Jap) P12 20\ e o

J=0 Bl=j

Hence, the diffraction potential of higher-order generating functions can be obtained
from the one-dimensional integral
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SnngxM (X)

—a}/(ak+2)
k22/4 ak e "k ( Tk )

= [Bl=7 o

Note that for the functions corresponding to isotropic Gaussians, i.e., A = I,
we derive

M-1 e —1xI?/(1+2)

x
Snnanm (x Z 7T71/24]—1-1 Z/ b /4ﬁ' 1+z)[ﬁ]+n/2H (\/l—l—z)dZ'

7=0

6.5. Potentials of truncated Gaussians

6.5.1. Integral operators over bounded domains. In this section, we de-
rive one-dimensional integral representations of the harmonic and diffraction po-
tential of the Gaussian kernel restricted to a half-space.

The approximation formulas for integral operators which have been considered
previously provide certain approximation orders up to a small saturation term, if
the density is compactly supported and if it is sufficiently smooth on the whole
space. Suppose that one wants to compute the integral

(6.53) Ku(x) = / k(x —y)u(y)dy
Q

over a bounded domain ), where the density u # 0 at the boundary 9. The direct
application of the method described in Chapter 4, which is based on replacing the
density by a quasi-interpolant M}, pu and on the known values of Kn, does not give
good approximations of (6.53), in general. One reason is that M), pu approximates
uw only in a subdomain {x €  : dist(x,90Q) > kh} with some x > 1 (see, for
example, Corollary 2.20). This difficulty can be tackled by the continuation of u
with preserved smoothness to a larger domain, say Q = {x € R" : dist(x, Q) < rh}.
Then, obviously, the quasi-interpolant of the continuation @ of u to Q approximates
u in  and the integral

~ —n/2 ~ y— hm
Q/g(x—y)Mh,pu(y)dyzD / hmZGQU(hm)Q/k(x_y)n(W) dy

would give a cubature of (6.53), if the integrals

(6.54) /k(x - y)n(%) dy
Q

could be computed efficiently. Owing to the strong decay of 7, these integrals can
be replaced without loss of accuracy by the known values

/k(x - Y)n(%) dy

Rn
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if the centers hm € {x € Q : dist(x,09Q) > xh}. However, if the points are
located in a strip near the boundary hm € Q\ {x € Q : dist(x,09) > rh},
then it is necessary to compute (6.54) directly. This requires, in general, the use of
other n-dimensional cubature formulas and degrades the advantages of our cubature
approach. In Chapter 9, we propose an alternative method for the cubature of
integral operators over bounded domains, which avoids the computation of domain
integrals of the form (6.54) and works for rather general domains and kernels k.
However, in some special cases potentials of the form (6.54) can be reduced to
one-dimensional integrals and therefore can be computed efficiently.

6.5.2. Integral operators over the half-space. Suppose that the bounded
domain & C R} = {x = (x/,z,) € R",z, > 0} with 90N {x € R", 2, = 0} # 0,
and that u € C?(Q) can be extended smoothly by zero onto R, but u(x’,0) # 0.

To derive a second-order quasi-interpolant to u in 2, we extend this function
onto R” | using the formula

w(x', ) Zc] X, —jxy), , <0,

where the vector {c;} is a solution of the algebraic system

3

> g = (=DM k=1,2,3.

j=1

Then 1 is a C? extension of u for x,, <0 (see [33]) and, in view of Corollary 2.20,
for given € > 0 there exist D and & such that for any x €

fu(x) = Mi'B ()| < ey (VDR)? [ Vvullz @) + (|[ull ooy + (VDR Vu(x)])
with the quasi-interpolant
MYRax) =D 3" a(hm) e~ xhmlt/PhE
hme B(x,hr)
Hence, a cubature formula of the integral

wa=/%u—wuwwy

Q

is given by the sum

Kpu(x D2 Z / X—y) e ~ly—hm[*/Dh? dy
hmeQ R™
mnp>K
(6.55) 212
+D72 N a(hm) [ k(x —y) e Y TImI/PR gy
%(hm)7#0 R™
Im‘n‘S"i +

which is of order O(Dh?) modulo small saturation terms. Since the integrals in the
first sum are supposed to be known, it remains to give explicit expressions for the
integrals over the half-space, appearing in the second sum of (6.55).
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6.5.3. Harmonic potentials. Let us compute the harmonic potential of trun-
cated Gaussians

r'g-1 eIyl
-2 _— >3,
Va(x) 2 / P—T dy , n>3
]R"ﬂ{yn>a}
We have

— eIl Tn >a

Ay, = ’ " ’

0, Ty < a.
Taking the Fourier transform with respect to the variables x’ = (21,...,2,-1), one

obtains the differential equation for the function 0, (X, z,) = (Fyr—xr va) (N, 25):

82'[)(1 2 12 ~ _ﬂ'(nfl)
a2 — 47|\ va—{

Its solution is given by the integral

2 2)yr2
/2 gm0 o= INTT Tn >a,

0, Ty < a.

7T.(71—1)/2 e—w2|)\/|2

N —or ’ T — _ 42
¥ = T /e 2m|X |zt o=t gy
If z,, < a, then
(n—1)/2 \—m2 N2 F
" s (§] —orlN —z, 42
ba(N,20) = Y /e 2r| N | (t—2n) o=t gt
_ a(n=1)/2 27z |X| /e—(t+7f|>\/|)2 dt
/
4|

n/2 2mxn,|\|
e

=—— erfc(a+wX\]).
87|\ ( l |)
If z,, > a, then

Tn

n—1)/2 ,—m2|\|?
Ba(N ) = a(n=1)/2 g=m"IX| (/GQﬂ)\’(mnt) ot dt

47| N
_'_/67277\)\’|(t7mn) eft2 dt)

n—1)/2 o 7

_ m )// e—27rwn|>\/|/e—(t—7r\)\'|)2 dt+e27rmn\)\'\/e—(t+7r|)\'|)2 dt
47| N
7.‘.77,/2

(e )

+e 2N (erfe(a — | N'|) — erfe(, — w|>\'|))).
Let us define the function

ga(t, ) =" erfc (max(a, z,) + t)
(6.56) B
+ e 2ot (erfc (a —t) — erfc (max(a, z,) — t))
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Then
o /2 ,
(6.57) Vo (N, 7)) = W Ga(m|X'|, 2)
and, consequently, via the inverse Fourier transform (2.12),
/2 T
v (%) = W /ga(ﬂ't,xn) J(n_g)/2(27T|X/|t) t(n=3)/2 q¢ .
0

Therefore, the harmonic potential of the truncated Gaussian is expressed by the
one-dimensional integral

n 2
Iz -1) / e~ ¥l dy
4rn/2 |X _ y|n72

R*N{yn>a}

o0

_ VT

= Tz | Jaltn) Tz 2210 2 at,
0

which gives, in the case of the harmonic potential, for the integrals of the second
sum in the formula (6.55)

I(2 1) [ e ly—hml*/Dh®
Arn/2 / |X _ y|n—2

dy
"
(VDh)(n+9)/2, /7 T Ty — himp, 2%’ — hm!|t
AR [z (v W) wa(w

) tm=3/2 gt

6.5.4. Diffraction potentials. Let us apply the same method to determine

the diffraction potential of truncated Gaussians. Consider the equation

_ e IxI?
(6.58) Au—cu:{ © ) In >0,
0, T, < a,

where the constant ¢ has a non-zero imaginary part, Im ¢ # 0. There exists a unique
Lo-solution w, (x) of (6.58), whose Fourier transform

Wa(N, 1) = (Fyroa wa) (N, 1)

is a solution of the differential equation
0%,
ox2

2 2 72
_ﬂ-(n_l)/2 e Tn e T (X , Ty >a,
0, Ty < a.

— AR\ + ), = {

Hence,
7.r(nfl)/2 efﬂ'z\)\’\z

24T N]? + )12

oo
421372 1/2 o 42
/e RN P ) 2 [ —t] o=t gy

a

where the branch of the square root is chosen so that (47%|\'|? + ¢)'/2 > 0 for
¢ > —4m2|X'|? and its branch-cut is (—o0,0). Since Im ¢ # 0, it follows that

Re(m? N2+ ¢)Y/2 > 0,

(6.59) Wa (N, 7)) =
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which confirms the validity of formula (6.59). Noting that

d d
6—71'2\)\'\2/ei(4ﬂ'2\)\'|2+c)1/2te—t2 dt:ec/4/e—(t:l:(47r2|)\/|2+c)1/2/2)2 dt

b b
/4 Ar2|N |2 1/2 Ar2 |\ |2 1/2
— Ve erfe b:FM _ erfe d:,;m ,
2 2 2
we obtain similarly to (6.57)
BN ) = e ((47r2|/\’|2+c)”2 )
a yn) — 4(47T2|A/|2+C)1/2 gll 2 yn

with the function g, defined by (6.56). Hence, the solution of (6.58) can be obtained
via inverse Fourier transform and is given by the integral

O 0 c/4 /Oo /2 f(n=1)/2 ((47r2t2+c)1/2
4

— /
’LUa(X) - |x,|(n_3)/2 (47T2t2 + 0)1/2 Ga 5 ,J:n) J(nfg)/2(2ﬂ'|x |t) dt

_ Vet r 2 1/2 / tin—1/2
= Ix[ea2 9o ((t° 4 c/4)7 %, 20) Jn—s)/2(2X'[t) (CEDEE dt.
0

Making the substitution z = (t2 + ¢/4)'/2, we derive
(6.60)

7.‘_60/4 3
we(x) = 4|2\>/(/_|(7ng)/2 /ga(zv%) Jin—3)2(|x'|(42% — )/?) (42?2 — )/

c

with the integration contour
L. = {(t?+¢/4)Y?, t € (0,00)}.
Using the series representation of the Bessel functions

B i\ S (_1)kt2k
Ju(t) = (5) kz:% 22KEIC (v + k+ 1)

we see that
Jin—3)/2(|%|(42% — ¢)!/?) (42% — ) "=/

(K22 = o)\ ez S xR (e — 422)F
-5 ) X eovm

k=0
Thus, for fixed ¢ and xz,, the integrand of (6.60) is a holomorphic function of
z € C\ (—00,0], and the integration contour T'; of (6.60) can be deformed to an
arbitrary contour going from /c/2 to +o0o and not crossing the negative real axis
Rez < 0.
As a simple application of the formula (6.60), we compute the diffraction po-
tential of truncated Gaussians

(6.61) Va(x) = Se(x—y) e W dy

R""ﬂ{yn >a}
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with the wave number k > 0. Since the solutions w, of (6.58) with ¢ = —(k? + i¢),
€ > 0 and € — 0, converge by the limiting absorption principle to the integral
(6.61), we obtain

ﬁe_k2/4 NiAs2 L p2\1/2\ 4.2 | 1.2\(n—3)/4
Vo (%) = m/ga(Z,In)J(n—s)/2(|X (422 + k*)1/?) (422 + k) =3/ d

Ty

where the integration contour I'y, connects —ik/2 and +oo and lies in the closed
half-plane Re z > 0.

6.6. Notes

In Subsections 6.1.1 and 6.1.2, we extend formulas from [64] to higher appro-
ximation orders and arbitrary space dimension. The formula (6.4) for n = 2 and
n = 3 has also been given by Kanaun and Kochekseraii in [44] and has been used
for the solution of singular volume integral equations arising in thermo- and electro-
static problems, where the unknown function is a linear combination of Gaussian
kernels. In this paper the integrals of so-called edge Gaussian functions are calcu-
lated, which are the truncated Gaussians considered in Section 6.5.

The approximation method for solving the Cauchy problem for the heat and
wave equations considered in Subsections 6.2.1 and 6.2.2 was proposed in [64].
Here, we extend the method with the formulas for high-order approximation rates
in the n-dimensional case.

The results of Section 6.3 appeared first in [72].






CHAPTER 7

Approximation by Gaussians

Using approximate quasi-interpolation in Chapters 1 and 2, we obtained ap-
proximation formulas based on semi-discrete convolutions with Gaussians. Let us
emphasize that the concept of approximate quasi-interpolation is applicable to any
function in the Schwartz space with non-vanishing moment of order zero. However,
the Gaussian function is distinguished by the property that many integral operators
acting on this function provide simple analytical expressions. In this chapter we
consider some other remarkable approximation properties of semi-discrete convolu-
tions with the Gaussian.

In Section 7.1, we show that there exist semi-discrete convolutions which ap-
proximate analytic functions very accurately even for large step sizes. We give, in
particular, estimates for the approximation of polynomials and exponential func-
tions.

The results of Subsection 3.5.2 are applied in Section 7.2 to obtain explicit error
estimates for the high-order approximate quasi-interpolation using linear combina-
tions of translates of the Gaussian as basis function.

In Section 7.3, we consider the interpolation with linear combinations of Gaus-
sians on a uniform grid. Based on the explicit formulas for the interpolants, we
deduce the new class of Lagrangian functions
7D sinh )

It is shown that the interpolants spanned by Wp have approximation properties,
similar to those of the sinc function. In particular, we show the exponential appro-
ximation order of this interpolation up to some saturation error.

7.1. Approximation of entire functions

7.1.1. Approximants on coarse grids. Suppose that u(x) is the restriction
to R™ of an entire function u(z), z = (21, ..., z,) € C”, which satisfies the estimate

(7.1) lu(x + inrDhy) e ™ PV | < A(1+ |y[)""%, §>0,

for some fixed positive parameters h and D and any x,y € R™. Then there exists
the integral

(7.2) Um = /(3_7T2D‘y|2 u(hm + irDhy) dy
Rn

for any m € Z".

143
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THEOREM T7.1. If the entire function u satisfies (7.1) and the semi-discrete

convolution
_ 2 2
up, (X) § u e—|x hm|*/Dh

mezZm
converges absolutely for given x € R™, then

2ms

(73) Uh(x) — ’U,(X) = Z 'LL(X + Zﬂ'DhV) e_ﬂ'2’D‘V|2 e T(x,l/) .
vezm\ {0}

Proor. We may write
U e~ Pe—hml*/Dh* (7Dh)™" o~ [x—hm[*/Dh? /u(hm—|— iy) e YI*/PR? gy
]Rn
Applying Cauchy’s Theorem several times we obtain
Um e—|x—hm\2/Dh2 — (FDh)_n e—\x\2/Dh2 /u(zy) e—\y|2/Dh2 e2<x—iy,m>/Dh
Rn
— (xDh)" / w(x + iy) e~ VIP/DR? Q2ilx/homy)/Dh g
R’n

= /u(x+i7rDhy) o~ Dly|* o2mi(x/h—m.y) dy

]Rn
= /fx(y) e—2m’(m,y> dy = ffx(m)a
]Rn

where we use the notation
fx(y) = u(x + imDhy) e~ ™ PlyI* (2milxy)/h

Now it remains to apply Poisson’s summation formula (2.17) which gives

Z Ffx(m) = Z fx(v) = Z u(x + irDhv) e~ DIvI® g2milxv)/h ,

mezm veznr veL™

and is valid since the series converge absolutely in view of (7.2). (]
Note that under the condition
(7.4) /|_7-"u()\)| e™ PRI g < o0,

R’Vl
there is an equivalent formula for the coefficient

(7.5) Um = (7D) /2 / Fu(X) e™ PHEAE g2milmA) gy
R’n

Condition (7.4) is satisfied, for example, if u is an entire function subject to
n
xu(x +iy)] < Caexp (Y aslysl) -
j=1
Then its Fourier transform has compact support

suppFu C {A: —a; < \j <aqj;}.
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Relation (7.3) shows that the semi-discrete convolution uy, can be a very precise
approximant to entire functions u(z) even for relatively large steps h, if D is properly
chosen.

7.1.2. Examples.
7.1.2.1. Polynomials. From the relations

r . i —m2 2 dj r —n? 2 m—4im
Uy = /(hm—l—mDhy)J e ™ DY dy = o7 /e Dy” o (hm+inDhy)A gy, L
and
Y —72Dy? _(hm+tinDhy)) L d? ( hn  —Dh2azja
- ™ 1 m-taT 1 d — _( m / )
i ) ¢ ¢ Y= mai\®°
2 .
_e™/P Al nyyD-vDhA )
VaD d\I
and the definition of the Hermite polynomials (3.6), we obtain
m2 .
i = (197 (@)J (- @) o—(m/VD—v/DhA/2)?
\/7TD 2 / \/Z_) 2 A=0

/Dh
=07 1 ()
Hence, in view of (7.3),

so that the monomial z7 is approximated by

with the error estimated by

IRi(x)| < 3 |o+inDhm|! e P
meZ\{0}

2

In the case of n dimensions and with h = 1 we get, in particular,

(7.6) x® = W(@)M m%ﬂ Ha(%) e-lxoml/D gy

where H, denotes the Hermite polynomial of n variables
(7.7) Ha(x) = (—1)lel e X1 gorg =Ix*

and
Ra(x)= Y (x+imDp)* e @ PV o2mibew)
verm\{0}
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Note that for any multi-index a = (a1, ..., ay)

n
=11 (o)

with the univariate Hermite polynomial defined by (3.6). We see from (7.6) that
any polynomial P(x) can be approximated by linear combinations of the shifted

Gaussians e"x_m|2/D, m € Z", with an arbitrarily small relative error ¢ > 0 if D

is chosen large enough.
7.1.2.2. Ezponential function. Next, we consider the approximation of the func-
tion u(x) = e ®® with a fixed a € C". Theorem 7.1 leads to

up (x) = (ﬂp)fn/z eth2a2/4 Z o (hm,a) ef\xfhm|2/Dh2
mezZm™
— olxa) (14 Z o~ Dlv|* 2mi(x/h+Dha/2,v) )
vezn\{0}
Thus, if a € R™, then for any h > 0, the series u, approximates the exponential
function with the relative error less than

2 2
E eTrD\u| )

veZ™\{0}

Ifa=u+iv,u,v eR" with v # 0, and h < 7/(2|v|), then u;, approximates e{*2)
with the relative error less than or equal to

Z efﬂ2D|u\2/2 )
veZn\{0}

If n =1, then we get some special cases of the well-known transformation formula
for Jacobi’s Theta function (see (1.5))

(78) 7TZ|’LCL Z e~ m 2ra+2mwimz — a71/2 Z efrr(zfm)Q/a ,
meZ mEeEZ
for any z € C and Rea > 0. In particular, the substitution z = 2z — ia/2 provides
the identity
Z (_1)mef7r(2zfm)2/a — a1/2 Z effra(2m+1)2/4 eeri(2m+1)m

meZ meZ
(7.9)

=2a'/? Z e ~ma@mH1)*/4 oo 2r(2m + 1)z
m=0

which shows, for example, that

e D/4 X
cos2mx = m o= (2e=m)*/D _p(y ,
i S e

(7.10)

with R(z) = o™ D/4 Z cos (2m(2k + 1)z) o™ DK/ 0(6_2”2D) .
k=1
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7.1.2.3. Gaussian function. Finally we apply Theorem 7.1 and formula (7.5) to
e_‘x|2/D1, Dy > Dh2, and arrive at the expansion

n/2
—Ix[2/Dy _ (L) —h?|m[2/(Ds~Dh?) —|x—hm|?/Dh?
¢ 7D(D; — Dh?) Zn ¢ ¢
(7.11) ] mee , _
_ ef\x| /D1 Z e27ri(D17Dh ){x,v)/D1h e D(D1—Dh?)|v|? /D1

vezn\{0}

which shows that the Gaussian function can be expanded very accurately into a
series of shifts of thinner Gaussians with the error

‘e—|x|2/731 _(LW)”/Q T o (DDA /D0

TrD(Dl o mezZn

— O 771-2D(D17Dh2)/D1) o IxI?/D1

7.2. High-order quasi-interpolation

Here, we apply the approach developed in Subsection 3.5.2 to study high-order
quasi-interpolants of the form

p—n/2 Z uiznef\xfhmﬁ/th '
mezZn
7.2.1. Generating functions. According to Subsection 3.5.2, the function
np = 7Tn/2.7:71(PM e 7772D|~|2)
fulfills the moment Condition 2.15 with N = 2M | if the coefficients of the trigono-
metric polynomial

Py (A) = Z agHCOSZWBjAj, 52(51,---,@1)62%0,

Bl<M =1
satisfy the equations
o D\ _,, B
(7.12) > B =(-15) PFETNO)
Bl<M
for all a, 0 < [a] < M, with n(x) = e ~*I°. By (3.1), the right-hand side has the
form

8204(]_-77)71(0) — 7_‘_777,/2 82(1 e7T2|>\|2 _ an/27_‘_2[a]82a(e |2 )(O) ,

A=0
and we obtain from (3.7) and (3.8)
2 2 (204)'
(7.13) (el )(0):7.
This leads to the linear system for the coefficients ag
Dy el (2a)!
20 __ (T
(7.14) > agp _( 4) gl <M,

(Bl<M
which is uniquely solvable by Theorem 3.17. As mentioned in Remark 3.18, owing
to the radial structure of e _‘x‘2, the values of ag coincide for all permutations o(3)
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of the components of the multi-index 3, asg) = ag. Therefore, the solution of
(7.14) can be obtained from the reduced system

Dy [ (2a)!
2y (. Z A
(7.15) Z ap Z g = ( 4) m/2¢a)
[Bl<M y=0(cv)
for all multi-indices 0 < [a] < M with a1 > ... > «a,, and the second sum extends
over all different multi-indices «, which are permutations of the components of a
with a1 > ... > o,
If we denote the number of non-zero components of 3 by «(3) and write

H cos2mBiN; = 9—r(8) Z 0 2mi(k,X) ,
=1 £(k)=p

then we see that the unique solution of (7.15) provides the required generating
function

(T.16)  mp(x) = 7"2F Py (N) e TP ) = 3T e MR,
le()|<m
where ¢ = 2770 q, ) and as before (k) = (|k1],.. ., [kn]).

LEMMA 7.2. For any M > 0 and D > 0, there exist uniquely determined
n

coefficients cx with Z |k;| < M, such that the function (7.16) is symmetric and
j=1
satisfies the moment condition (2.47) with N = 2M.

ExAMPLE 7.3. To construct the sixth-order approximate quasi-interpolant in
R3, one has to solve the linear system (7.14) with 10 unknowns ag, [8] < 2,
which can be reduced to (7.15) with 4 unknows, corresponding to the multi-indices
(0,0,0), (1,0,0), (1,1,0), and (2,0,0). Its solution determines 25 coefficients cx =

2~ (k) agky with [£(k)[ < 2. These coefficients are given by

1(1 15D 21D2)

000 = 7572 s "6
D (1 3D
a5+ ) g0 =1,
D 1 D
Cx = W(E—i_ﬁ)’ 1E(k)| =2, k(k) =1,
D2
37216 |§(k)|:27 ’i(k):2

7.2.2. Saturation error. Now, we study the saturation error of the quasi-
interpolation operator with the generating function (7.16).

LEMMA 7.4. For any multi-indez o, [a] < 2M, and v € Z™ it holds that
(7.17) 0“Fnp(v) = (—277\/5)[01] v ef‘erD|u\2 .

PROOF. Since
]:77D(>\> — 7_‘,71/2 e—ﬂ—2D\)\‘2 PM(A) ,
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the periodicity of Py; and the equalities (7.12) imply

o> Fp(v) = "2 3 a'ﬁvm;_ B3l 0Py () 07 (e ) (D)
B<a
— 2 Y %aﬁpM(o)aa‘ﬁ(e""z)(W\/Y_DV)
B<a ﬁ @ IB
=(r [a] ﬂ < e|'\2 a—p e_H2 m v
P @Zf‘xﬁ'a gy ()@ P ) (VD).

Noting that by (7.13)

203)!
0, otherwise,
we obtain
o _ ﬂ' [OL] o — *‘ ‘ T
8*Fnp(VDv) = (1VD) 2; Gia —2ﬁ) 9°B (e~} (rv/Dr)
= (- 7'r\/_ o~ Dly|? Z ﬁ' i H,_ Qﬂ(ﬂ\/_ ),
28<a

where we use the Hermite polynomial in n variables (7.7). It can be easily seen
that the expansion of the monomial x* with respect to the Hermite polynomials

has the form
o!

ax _ 9~ [a] Z m He_ 2[3(}(),

28<a
which leads to

9*Fnp(VDv) = (—=2nVDr)® e Dvf?
and establishes the assertion. O

THEOREM 7.5. Let M € N, and let {ag}gj<ar be the solution of the system
(7.14). We define the point functionals

(7.18) uly = Y 27" g u(h(m - k)) .
(k)| <M

Then for any u € WX (R™) and all h > 0 the estimate

‘u(x) _p-n/2 Z UZ@ o—Ix—hm|*/Dh?

mezm
o Dh
< hv Z Po |8au||L + Z |aa \/_ ) Z |Va| e*ﬂ'QDh}‘z
[a]= N & ' o! vezm\{0}

1s valid, where

- x—m—k|?
pa—)IcIé%{)ED n/2 Z ‘(X_m)a Z 92 (k)ag(k)e |x—m—k| /D"
mezn [€(k) <M



150 7. APPROXIMATION BY GAUSSIANS

PRrROOF. From the representation (2.50) and Lemmas 7.2 and 7.4, we derive
that the quasi-interpolant

up(x) = Z u(hm) 77@(% — m)

mezn
=D/E Y7 e btmER KT 27 M ag u(h(m — k)
mez" |E(k) <M
can be written as
N-1 )
h [ 0%u(x 2mi,
’LLh(X) = u(X) + RN_’h(X) —|— (%) a'( ) Z 80.7:77@(1/) e h < ’ >
[a]=0 vezn\ {0}
— 0%u(x) sz 2m
= u(x) + Ry n(x) + Z (i\/ﬁh)[a] o Z v ¢~ Dlv| eT(XuJ)7
[a]=0 vezr\{0}
and Ry, is bounded by Theorem 2.17. [l

REMARK 7.6. Any trigonometric polynomial P(X) of period 1 satisfying the
equations (7.12) can be used to construct a generating function by

n(x) = w"/zf_l(e_”2D|'|2 P) (x)

such that the assertion of the previous theorem holds. But it follows from Lemma 7.2

that formula (7.18) gives the quasi-interpolant depending on the minimal number
of function values u(h(m — k)), |£(k)| < M.

[a] D=3 D=4

0 83010713 42910717
1 2.61-10712 1.80-10716
2 1.23-107 1 1131071
3 3.86- 1071 4.73-10715
4 9.10- 1011 1491071
5 1.71-107° | 37410
6 2.69 10710 7.83-1071
7 3.63 10710 14110713

TABLE 7.1. Coefficients of the saturation error for n = 3.

In Table 7.1, we give upper bounds for the coefficients in the saturation error

(D 71')[0‘] Z e e—W2D|V|2

|
' veZn\{0}

for different [a] and D, in the case of approximate quasi-interpolation in R3. Note
that these coefficients are multiplied by Al®l (see Theorem 7.5).
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7.3. Interpolation with Gaussian kernels

In the following, we consider the interpolation with the semi-discrete convolu-
tion
(719) (TrD)—n/2 Z U e—lx—hmﬁ/th

mezZm
at the lattice {hm, m € Z"}, i.e., for a given function u, we look for a function
Qnu of the form (7.19) such that
Qru(hm) =u(hm) forall meZ".

7.3.1. Lagrangian function. As mentioned in Subsection 1.2.3, the interpo-
lant Qpu has the simple form

Qru(x) = Z u(hm) XD(% — m)
meZ’Vl
with the Lagrangian function
(7.20) xp(x) = (TD) /2 3" X €~ Xm/P
mezZn™

which satisfies xp(k) = doi| for all integer vectors k € Z". In order to determine
the Lagrangian function yp, we introduce

(7.21) gp(A) = Y e ™ PR
vezn
which can be written, in view of Poisson’s summation formula (2.17), in the form
gp(A) = (aD)™/2 3 e Iml/P o 2milmA)
mezn

LEMMA 7.7. The Lagrangian function (7.20) is given by

omilxA) 6—71'2D\)\|2
(7.22) xp(x) = /e TN A,
&) gp(A)
]Rn
and the coefficients xm are the Fourier coefficients of the function 1/gp, i.e.,
(7 23) / 6727ri(m,)\) ™
" Xm = ’
gp(A)

where Q is the cube [— %,%]"
ProoFr. We transform
amieny €7 DI 777217\)\\2 ) N e~ DIA?
e (X A _ / 7T'L X, dA
Je S Py

—m2D|A+m|?

— eQﬂ'i(x,A) eQﬂ'i(x,m) eidk .
/ Z gp(A)

Q mezn
For x =k, it follows from (7.21) that
e27'r1 (k,A) 2 -
/ Z e DlA+m]? d\ = 50|k|

Q gD mezZm
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Thus, we obtain from (7.20) and (7.22) that

e~ DIAI?

P T m

2 2 .
—7m“D|A 2w (m,A
—e~TDAR § y eFmitmA)
mezn"

which establishes (7.23). O

The coefficients xm can be derived using the following lemma.

LEMMA 7.8. Let a > 0. Then

(7.24) (Z o—am® G2mima )_1 _ Z Ay 2TIMT

meZ meZ
where
2 o)
edm 2
= -1 —a(r+1/2)
o =Sy 2V ,
and the constant
m(a) — i (4T+ 1) e—a(2r+1/2)2 _ (z)3/2 i (47~—|— 1) e_ﬂ,2(27_+1/2)2/a
r=—00 a r=—00 '

The formula for the coefficients a,, can be deduced by applying the Residue
Theorem to the Theta-function ¢3, which leads to certain recurrence relations for
these coefficients. Here we verify formula (7.24) by checking that

(7.25) D emelhm ™ G = Ok -

meZ

We consider the sum

i o —alk—m)? jam? Z )e—e (r41/2)2
m=-00 r=|m|
_ o—ak?—a/4 (i(_l)reﬂw(rﬂ) I i(GQamk —2amk i ) 7ar(r+1))
_ o—ak’—a/4 (g(_l)re—ar(r-i-l) +n§1(_1 ro—ar(r+1) z;_n;amk —2amk))
r=0 r=1
If £ =0, then

Z Z r —a(r+1/2)? 7a/4 (1 + i(_l)re*GT(TJrl)(l + 27'))
r=1

m=—00 r=[m|
_ Z 2T+ 1 —a(?“-|-1/2)2 _ Z (47“+ 1) e—a(2r+1/2)2'

r=—00



7.3. INTERPOLATION WITH GAUSSIAN KERNELS 153

For k # 0, from

Z(_l)r e —ar(r+1) + Z(_l)r e —ar(r+1) Z (e 2amk + e—2amk)
r=0 r=1 m=1

3 (r41) eQak(rJrl) _ p2ak ef2ak(r+1) — g 2ak
=1+) (-1)e (1+ coah 1 T o—2ak _] )

0 2ak(r+1) _ e —2akr
-1 1) —ar(r+1) €

+ = 1( ) ¢ e2ak _q
1 2ak —a(r+1)(r—2k) _ 7ar(r+1+2k)

= g (1 Z NG )

1 oo o0

= —— (Z(_l)r e—a(r-l—l)(r—?k _ Z(_l)r e—ar(r+l+2k) )
ek —]

r=0 =0

)
1 > —a(r T— <
- b (Srerenen

o —a(r+1)(r—2k) )
r=0

we obtain the identity

Z e~ a(k— m)2 am? Z ’I" —a(r+1/2)?

e r=|m|
e Tt 1)(r—2k 1 = k+1/2)>
= 2 (Ve T — e D (e
e=ak — T p—

Now, we note that

o0

Z (—1)" efa(r7k+1/2)2 _ Z e —a(2r— k+1/2)% Z o —a(2r—k— 1/2)?
Z o —a(2r— k+1/2)% _ i e—a(2(k—m)—k—l/2)2
Z o —a(2r— k+1/2)% Z o —a(2r— k+1/2)% _ =0,

which confirms the assertion of Lemma 7.8.

Owing to (7.23) and Lemma 7.8, the coefficients of the Lagrangian function
(7.20) are given by

n/2 elml/b r_ —(r+1/2)%/cD
Xm = (7D) WH Z (-1)"e :

Thus, in the one-dimensional case the Lagrangian function has the form

1 = —(r—m 2 m2 = T — (7 2
xo(z) = D] 3 eml@mm? D emt /DS (L) = (r1/2)?/D
m=—c0 r=lm|

_ 7‘ (r—z+1/2)? /D
(726) ( 7) w/D_e z/D Z
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where the last equation is obtained similarly to the verification of (7.25). Conse-
quently,

2 3 ( o (= (2r41/2))*/D _ e—<w+<2r+1/2>>2/73)

D1 sinh = ,“—~_
k(D7) sin D=

xp(z) =

o 7 e CrHUDYP ginh ((4r + 1)x/D)
e—w

rT=—00

. X [e'e]
smh5 Z (4r + 1) e—(2r+1/2)2/D

T=—00

Summarizing, we obtain

LEMMA 7.9. The Lagrangian function of the span {e"'_m|2/D, m € Z"} 18
given by

i sinh (4rj + 1)z, o (2r+1/2)2/D
D

XD(X) _ e—\x‘2/D j:102 _ '
( Z (4r+1) e_(2r+1/2)2/D) H sinh %
=1

r=—00

=

In the next part, we show that a small perturbation of yp leads to another
Lagrangian function with simple analytic representation and interesting approxi-
mation properties.

7.3.2. Simplification. We use the expression (7.26)

oo

1 2
— -1 —(r—z+1/2)°/D
@) = ST, 2 Y
and the identity
Z (=" e~ (==t 1/2Y/D _ 9\/7D Z(—l)k e ™ D(2k+1)?/4 sin(2k + 1)mx
r=—00 k=0

= 2V7D e ™ P/ ginma + Ofe 79”21)/4) ,

which follows from (7.9). Hence, the Lagrangian function xp(x) can be represented
as
VaDe ™ Plisinrx
XD (.I) = 1\ o
k(D) sinh(xz/D)

+O(e 7971-21)/4)

with
k(D7) = (D)2 e ™ P/ 1 O(e 0T P/).
Thus, we can replace xp with the function
sinmx

(7.27) Up(x) = —_—
7D sinh D
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which, obviously, satisfies Up(k) = dox for all k € Z and is a small perturbation of
xp- It can be easily seen that

e—97°D/4
(7.28) Vp(z) — xp(z)| < ¢ ———
cosh —
D
In Figs. 7.1 and 7.2 we depict the graphs of
sincz = 22 and Uo(x) = mex ,
T 27 sinh B

which indicate that the use of the Lagrangian function ¥p(x) reduces drastically
the number of summations required to obtain a smooth interpolant to a given
function. On the other hand, we will show that up to negligible saturation errors
Up(x) provides similar approximation properties as the sinc approximants.

FIGURE 7.1. sinc x FIGURE 7.2. Uy(x)

By the formula [81, 2.5.46.2]

T sin bz T b
/ sinh ax du = 2a tanh 2q’
0

the Fourier transform of ¥p computes to
sinh 72D
2 coshm?D(A 4+ 1/2) coshm2D(\ — 1/2)
sinh 72D
~ Cosh 272D\ + cosh 72D

As in Subsection 7.3.1, we denote with the same symbol Up the Lagrangian function
in R™ given by the tensor product

FUp(\) =

1 o sinwx;
(7.29) Up(x) = Loox = (@ m),
(7 D)™ 31;[1 sinh %

which has the Fourier transform
n

sinh 72D
FUp(A) = .
p(N) 1_[1 cosh 2m2DA; + cosh 2D
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7.3.3. Interpolation error. In the following, we study some approximation
properties of the interpolant

(7.30) Quux) = > u(hm)\IJD(% - m) .
mezn

Suppose that the continuous function u belongs to Ly (R™) and Fu € Li(R™).
Then

Qnu(x) = Z%——m /fu e ZrihmA) g\

mezZm R
/}'u \IJD(% — m) e 2k A) gy
R’Vl GZn

where the change of integration and summation is justified because the integrand is
absolutely integrable and Up € S(R™). From Poisson’s summation formula (2.21),
we derive

b'q . . 2mi
Z \I]D(E — m) emih(mA) —_ o 2mi(xA) Z e V) FUp(hA+v).
mezZn vezn
Hence
. 2me
Qnu(x / Fu(X) e N N e T M) FUp(hA+v)dA.
veL™
Moreover, since
Z f\I/D A + I/ Z \I/D 727rih<m,)\> =1,
vezn mezZn
we obtain the representation of the interpolation error
u(x) — Quu(x /fu e 2T A) (1— Ze T "”>]-"\I/D(h)\+u))d)\
vewr

Let us introduce the function

Ip(x,A) = Z e mXY) Fp (X 4 v)

verLm
- Z ﬁ sinh 7T2D ezﬂ_imj vi
T cosh 2m2D(\j + v;) + cosh 2D’
such that
u(x) — Qpu(x /fu e 2mitaA) (1—09(%,@\))@\.
Note that

[9p(x,A)] <1
and for p € Z"

(7.31) oo (3 hA+ ) = o T bom) op (3,0
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Moreover, for fixed x € R” the function 9p(x,z) is meromorphic in z € C" with
simple poles at

1 ) 1
(7.32) k—l—ge—l—%(m—l—ge), k,meZ",
with the vector e = (1,...,1).

Using (7.31), the interpolation error can be transformed to

u(x)—Qpu(x) = /e2”<x’)‘> Fu(A) (1 - 199(5, hA))d)\

h
i
_ Z o 2mi(x At p/h) ]—'u()\ + %) (1 _ e*%(xu) 19D(%7h)\))d)\
ueZ",le
_ / e2riteN) 3 fu()\Jr%)(e%wm —0p(3,h2) )ax,
h-1Q REZL™

where h~1Q denotes the cube [— ™. Thus, we obtain the estimate

L L]

2k 2k

|u(x)— Qru(x)] <2 Z / | Fu(X + %)| dX
REZ™M\{0} |, 1

(7.33) +’ / e%i(x’)‘)}'u()\)(l—ﬁp(%,h)\))d)\’
h=1Q
<2 / |}'u()\)|d)\+‘ / e%i(x’)‘)}'u(}\)(l—ﬁp(%,h)\))d)\‘.
R7\h-1Q R-1Q

7.3.4. Spectral convergence. Based on the inequality (7.33), one can derive
several estimates for the interpolation error. Here and in the next subsection, we
give two examples. We restrict ourselves to the case when the continuous function u
belongs to L1 (R™) and its Fourier transform satisfies certain integrability conditions.

THEOREM 7.10. Suppose that the continuous function u is such that

July = [ 1Fu] (14 ]A)Y dA < 0
]Rn
for some N € N. Then the estimate
N—-1
Ao (X/h)| | Ao
(31)  Julx) - Quuo] < ex bV fully + > b 92BN
[a]=0 ’

is valid, with the functions

(7.35) aa(x) = 0% (1= 9p(c V)| _

A=0
and the constant cy does not depend on u.
PrOOF. Because
(7.36) [ 1Fuax < enuly.

R"\h71Q

it remains to estimate the second term of the right-hand side of (7.33).
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1le-08

5e-09

-1 -0.5 0 0.5 1

Ficure 7.3. Plot of ag(z) for D = 2

Note first that in view of (7.32) the series

o0 Za
1-— ﬁD(X,Z) = Z aa(x) E
[a]=0
converges absolutely for all z = (z1,...,2,) € C™ with
1
|| < 55 V1+72D2 =6, &= const >0,
T

uniformly for all x € R™. The functions aq(x) are given by formula (7.35) and they
are smooth and periodic with period 1.

Since A € h™1Q implies |h\;| < 1/2, we can use the series expansion to split
the second integral on the right-hand side of (7.33):

/ e 2mixA) Ly (X) (1 —dp (% h)\))dA

h=1Q
_ Z aa(X'/h) plal / e2mi{xA) ya fu()\) d\
(8%
[a]=0 h-1Q
N
_ aa(x/h) ho\ld [a] 2mi(x,A) yox
[01]20 R”\h*lQ
= aa(x/h rilx o
+ > 7"‘;!/ ) pled / e 2NN N Fu(X) dA
[a]=N h-1Q

If [a] < N, then
A%

pled / A Fu(A)| dX < hled (]|, LA -
| || u( )l — ||u||N )\ERIE\B?*IQ (1—|—|A|)N

Rr\R—1Q
< Wl (2R) NI = pNoN ey
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whereas for [a] > N

oo

h[a] 2mi(x,A) \ &
‘ > aalx/h) = [ 2N AT Fu(x) dx
[a]=N ' r=1Q
o laa(x/h)| |(AA)~]
N S laalx/ |
< hlully [Q]ZN al aeo (ho+ [hA)N
If we choose a multi-index 3 < a with [3] = N, then for A € h~1Q
[(hA)%| - |hA[NY _
L < [(hA)* R L < 2N [el
G = VT Gy =2
which leads to
= Ao (X/h) [a] 27 (x,A) Y& N I = |a’a (X/h)|
[a]=N h=1Q [a]l=N

The last series is uniformly bounded, which implies together with (7.36) that the
constant cy can be estimated by

N o Jaa(x)]
N <2 (1+m3x[z]:o e ) O

In Table 7.2, we give some values of the coefficients a,(x)/a! of the saturation
error in estimate (7.34) for different D and z in the one-dimensional case.

D=3 D=4

o x =0.25 z=0.5 xz =0.25 z=0.5

0 2.767-10713 5.535-10713 1.431-10°17 2.862- 10717
1 1.639 - 101! 0.0 1.130-1015 0.0

2 4.852-10710 9.704 - 10~10 4.462-10~14 8.934 .10 14
3 9.578-107° 0.0 1.174-10712 0.0

4 1.418-1077 2.836-10"7 2.318-10~11 4.636- 1011
5 1.679-1076 0.0 3.661-10~10 0.0

6 1.657-107° 3.315-107° 4.817-107° 9.634-107°
7 1.402-10~* 0.0 5.433-1078 0.0

8 1.038 - 103 2.076-1073 5.362-10~7 1.072- 10~

TABLE 7.2. Values of a4 (x)/a!

REMARK 7.11. Approximation properties of Qnu could also be studied with
the methods developed in Chapter 2. However, the generating function Wp has
a more complicated dependence on D than the generating functions considered
there. Additionally, ¥p does not satisfy the moment Condition 2.15 exactly. In
fact, the parameter D ensures that the moment condition is satisfied approximately
for large N, if D is sufficiently large, which ensures high-order convergence up to
small saturation errors.
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7.3.5. Exponential convergence. Finally, we show that the interpolation
with (7.30) converges exponentially up to a saturation error.

THEOREM 7.12. If for some a > 0 the continuous function u satisfies

lull, = / Fu(n)] e dx < oo,

then the error of the interpolation with (7.30) can be estimated for all x € R™ by

|u<x>—ghu<x>|s(e-a/@hwsé(};‘) (tan Z2)"™ )l

where

e~ ™D ., a>2hn?D,
=
e~a/h) 4 < 2hm?D.

PrOOF. We use the estimate (7.33) again. Obviously,

|Fu(X)|dX < e_“/2h/|]—'u()\)| e ax.
RM\h=1Q n

To estimate the second integral of the right—hand side of (7.33), we note that

2T
’1—191)( hx)‘ S ‘1—e T ) | F O (hA + v)
verm {0}
<2 Y FUp(hA+v),
veZ™\{0}

which leads to

’ / e 2ritaA) ]—"u()\)(l—ﬁp(%,h)\))d)\‘

< alA| —alA| i
<2 / |[Fu(A)] e ™M dA e (e GZHZ\{O}}"\I/D(}L)\—FV))

From

hw2D e —alil
e oAl FUp(hA i
Z p(hA +v) Z H cosh 22D(hA; + v;) + cosh 2D
veZ™\ {0} veZ™\ {0} j=

_ H Z sinh 72D e~ n sinh 72D e~
B i\ cosh 2m2D(hA; + v;) + coshm?D ~ cosh27w2DhA; 4 cosh 72D
=1\,

ﬁ sinh w2D e @Il
e} cosh 272Dh)\; + cosh 2D’

we conclude that

Ag}ﬁ)l(@ (e_“‘)“ Z FUp(hA + 1/)) < (1 +e)" —cy,
vezn\{0}
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where
Z sinh 2D e ol
c1 = max
! |RA|<1/2 s cosh 22D (hA + k) + cosh 2D
and
sinh 72D e —all tarh 2D
co = ma = tanh — .
2 \h,\\gjf/z cosh 2m2Dh\ + cosh 2D 2

Therefore, we obtain

—a n 2’D n—k
)\g}lﬁ)l(Q (e Al Z FUp(hA + 1/)) < ; (Z) ¥ (tanh FT) .

vezm\{0}

Hence, the second integral on the right-hand side of (7.33) can be estimated by

‘ / e Zmi(xA) ]—"u()\)(l—ﬂp(%,h)\))dk‘

r=1Q
n 2’D n—k
<2y <Z> o (tanh ”T) [’
k=1
The value ¢; will be estimated in the next lemma. O

LEMMA 7.13. Let a > 0. Then

ax -9l Z sinh 2D < 4€_F2D ,  a> 2h7T2D,
max
|RA|<1/2 k;éOCOSh?FQ,D(h)\ + k) + cosh 72D 4e—0/Ch) 4 < o2pn?D.

PROOF. Since |hA| < 1/2, we have the estimate
sinh m2D - 2sinh m2D
cosh 2m2D(hA + k) + coshm2D ~ e2m*D(hA+k) 4 72D
2De —272D(hA+k)

< 2sinh 7
for k=1,2,.... If k <0, then hA 4+ k < 0 and therefore,
sinh w2D
cosh 22D(hA + k) + cosh 2D
Hence, if |[hA| < 1/2, then
sinh m2D

kz#ocosh 2m2D(hA + k) + cosh 2D

< 2sinh 72D 27 D(hA+K)

oo —1
< 2sinhﬁ2D(Ze*2729(h>\)+ Z eZﬂzD(h)\Jrk))
k=1 k=—o0

— dsinh 7®D cosh27°DhA 3 e 2Pk
k=1
e—27°D
= 4sinh 7°D cosh 2m°DhA ——— o

—9e "D cosh 2m2Dh).
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So, it remains to determine

2 2
2¢" P max e % cosh2m®Dhl =4 max e ¢ e ™ P20

0<hA<1/2 0<hA<1/2
4e~™D 4> 2ha?D,
4e=e/Ch) g < 2hm2D. O

REMARK 7.14. Note that, in view of (7.28), the error estimates of Theorems

3

7.10 and 7.12 are valid also for the interpolant of the form (7.19).

7.4. Orthogonal projection

The construction of the orthogonal (in L3) projections onto the scaled and
shifted Gaussians uses some well-known facts about principal shift invariant spaces
(see [11]), which we recall briefly. Denote by S(¢) the Ly-closure of finite linear
combinations of the shifts (- — m), m € Z", of a generating function ¢, and

suppose that the shifts form an La-stable basis of S(¢), i.e., for all {am} € €2(Z™)
(7.37) e l{am}llee < || D amé(- —m)|;, gy < c2 [{am}lle. -
mezZm

Note that for any

o(x) = Z am @(x —m) € S(p),

mezm
we have
FoA) =7(N) Fo(A)  with 7(A) i= Y am e 2"™N € Ly((0,1)").
mezZm
Furthermore, if F¢ =7 Fp € Lo(R™) with a 1-periodic function 7, then
(7.38) 9l Lo (®r) = ||T[]:%-7:<P]1/2||L2((0,1)n),

where the bracket product stands for the 1-periodic function

[f,9):= > f(-—m)g(-—m).

mezm

For each f € Ly(R"™), the Lo-projection Pf € S(p) is given by

[Ff, Fe]
7.39 FPf) = LLIP g
(7:59) il [Fo, Fol
Then the shifts of the function @ € S(p), defined via

Fo

7.40 Fp=—"t _
(740) 7T Fo. 7ol

form the corresponding biorthogonal basis, i.e., (p(- — m),
Therefore, the best Lo-approximant P,u of the form (
the Fourier transform

Ly = O0|m|, M € Z".
9) to u € Ly(R™) has

?)
7.1
Z ]__u()\+z) efﬂ2D|h)\+u|2
h
_x2Dh2 (2|2 VAL
(7.41) F(Bpu)(A) = e T PR == S o2

vezr
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and the approximation error is the Lo-norm of the function
F(Pru)(X) — Fu(A)
— 1 Z (e—Tr2Dh2\)\\2 fu()\ + %) _ e—7r2D\h)\+u|2 fu(A)) e—7r2D|h)\+u|2,

vezL

o) = 3 P

vezn
7.5. Notes

The results of this chapter are based on the article [68]. The approximation
with Gaussian kernels e ~1*I* is often mentioned in the literature and has been
studied by many authors in connection with radial-basis functions and principal
shift-invariant spaces.

Buhmann found in [14] that the interpolation and quasi-interpolation from
the stationary ladder S"(e _“"‘2)h cannot yield strict convergence results, since
polynomial reproduction is absent. As mentioned in the Notes to Chapter 2, it is
possible to obtain approximations with Gaussian kernels converging for all h — 0, if
one chooses the parameter D depending on h. This was studied by several authors.
Madych and Nelson [58] and Wu and Schaback [98] study interpolants of the form

e 2
E U € |X—Xm| /D,
m

where the points x,, are allowed to be irregularly distributed over a domain Q. It
is shown that the corresponding expressions approximate smooth functions with
arbitrarily high order or even with exponential order. Quasi-interpolation with
Gaussians on uniform grids with variable D was studied in [91, Section 5.8] and
[8], which was already mentioned in Section 2.5. The tensor product construction of
a quasi-interpolation formula with Gaussians studied in [8] converges with the rate
O(hN|log h|N) if D(h) = N |log h|/72, but depends on the values of u at (2M —1)"
grid points. Other results on the approximation power of the non-stationary ladders
of principal shift-invariant spaces S" (e h|'|2)h were obtained in particular by de Boor
and Ron ([13]) and Johnson ([39], [40]), who proved convergence of any order k in
Ly and Ly-spaces, respectively.

In all these approaches, the use of finer grids enlarges the number of summands
necessary to compute the approximate value at a fixed point x within a given
tolerance. This is in contrast to the case of fixed D, which we prefer, because this
is advantageous in numerical applications and reflects the local character of the
quasi-interpolants constructed in Section 7.2.

The results of Section 7.3 are new. The Lagrangian function ¥p can be consid-
ered as the approximate counterpart of the sinc function. Owing to the exponential
decay, Up offers certain computational advantages, and it would be interesting to
examine numerical procedures, developed for sinc function approximation, for ¥p
approximation also.






CHAPTER 8

Approximate wavelets

8.1. Introduction

In this chapter we introduce the so-called approzimate wavelet decompositions
of spaces of approximating functions, which are generated by quite arbitrary func-
tions in the Schwartz class. These functions do not satisfy refinement equations
exactly, but in some approximate sense, which allows us to decompose fine scale
spaces within a given tolerance into a direct sum of wavelet spaces. As an ex-
ample, we give a detailed construction for the Gaussian generating function. The
approximate multi-resolution approach allows us to derive sparse representations
of pseudodifferential and other integral operators of mathematical physics.

The application of wavelet based methods to the representation of integral and
differential operators is an actual research topic in the numerical analysis of solution
methods for the corresponding operator equations. The usual setting is based on
multi-resolution analysis, introduced in [74], [61]. Starting from a finite sequence
of nested closed subspaces

(8.1) VoCcViC...CViCLa(R"),

the space of approximating functions Vj, corresponding to the finest grid, is de-
composed into the orthogonal sum

(8.2) V=W @Wj ;

where the wavelet space W; is the orthogonal complement W; =V, © V.
The chain (8.1) is called a (stationary) multi-resolution analysis of Vj; if the
spaces V; have the properties
(i) f(x) € V if and only if f(x —m) € V; for any m € Z™;
(i) f(x) e V;if and only if f(2x) € Vj41 for any j =0,...,k—1;
(iii) there exists a function ¢ such that {¢(- — m)}mezn is an Lo-stable basis
in Vp (cf. (7.37)).

Then the spaces V; are spanned by the dilated shifts #(27 - —m), m € Z", of the
scaling function ¢. The main goal of the multi-resolution is to determine a new
basis of the space Vi, which is used in numerical procedures. In n dimensions,
there exist 2" — 1 functions v, € Wy, called prewavelets, such that the shifts
{p(- —m),m € Z" v € V'} form an Ls-stable basis in the space Wy. Here, the
prewavelets 1, are indexed by the set V' = V\{0} with V denoting the set of
vertices of the cube [0,1/2]™. Thus, one obtains an Ly-stable basis of the space Vj,
consisting of

{¢(- —m),m e Z"} and {2"/%,(2' - —m),meZ " veV j=0,...,n—1}.

165
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Similarly to other transform methods, elements of Vi are now expanded into the
new basis and the computations take place in this system of coordinates, where
one hopes to achieve that the computation is faster than in the original system.
Additionally, some features of wavelets, such as the localization in both space and
frequency domains and vanishing moment properties, lead to a number of new and
interesting properties of wavelet based numerical methods. The multi-resolution
structure of the wavelet expansion leads to an effective organization of transfor-
mations. Furthermore, if the wavelets have a high number of vanishing moments,
then pseudodifferential operators admit sparse matrix representations within a pre-
scribed accuracy, which allows one to design fast numerical algorithms for these
operators.

From the properties (i) and (ii), it follows that the scaling function ¢ has to
satisfy the so-called refinement equation

(8.3) ¢(x) = Y amo(2x—m).

mezZm

In the applications to integral operators, as a rule, the scaling functions are piece-
wise polynomials satisfying some smoothness and vanishing moment conditions.
One drawback of these functions is that it is practically impossible to derive ana-
lytic formulas for the action of important integral operators of mathematical physics
on these functions, especially in the multi-dimensional case. Thus, it is necessary
to use cubatures for integral operators with singular kernel functions applied to
piecewise polynomials.

A different approach to the cubature of integral operators of mathematical
physics was developed in Chapter 4, where the density of the integral operator
is approximated by a quasi-interpolant (2.23) generated by some smooth function
7. Besides the decay and moment conditions, this function has the property that
the integral Kn can be evaluated efficiently, either analytically or by simple one-
dimensional quadrature. Here, we show that it is possible to find, similarly to the
wavelet approach, a new basis in the linear span

{n((x— hm)/\/l_7h),m ez}

such that the integral operators admit a sparse representation.

It is clear that the basic functions we have in mind do not satisfy a refinement
equation of the form (8.3). But it turns out that for a wide class of functions,
refinement equations are valid in an approximate sense. For example, the expansion
(7.11) shows that the Gaussian op(z) = e~ /P satisfies the inequality

o 12m? [ D(1-p)

R

o (—pm)? /Dy

(84) 2 2 2y 2
<e® /D Z e D(1—p’)v
veZ\{0}
This means that if we set u = 1/2, then ¢p(x) can be expressed by a linear
combination of the integer shifts of pp(2x) as in the usual refinement equation
(8.3), but only modulo the error

2 g 29 2
em/D E e371'D1//47

veZ\{0}
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which can be made smaller than any prescribed tolerance if D is chosen sufficiently
large. This leads to the idea of performing an approximate multi-resolution analysis
and wavelet construction analogously to the case where one has an exact refinement
equation. This is the goal of the present chapter.

Note also that the Gaussian satisfies the aforementioned approximate refine-
ment equation for any parameter ; < 1. Hence in general one is not restricted to
the particular choice of y = 1/2. However, in order to simplify notation, we will
employ dyadic dilations.

In Section 8.2, we prove that there exists a large class of basic functions satis-
fying approximate refinement equations in the sense of (8.4), which is the basis for
an approximate multi-resolution analysis. This is the topic of Section 8.3. We will
show that, for any function 7 from this class, sufficiently large D, and fixed k € N,
any element of the Ly-closure of the linear span

5) Vs (22 me )

can be approximated by elements of the direct sum
(8.6) Xp:=Vo+Wo+ ... + Wi_q,

with some small relative error. The wavelet spaces W; are almost orthogonal
so that the approximate decomposition (8.6) of Vj can be performed, using the
orthogonal projections Py onto V( and (); onto W .

A central point is the construction of univariate approximate wavelets. For
the example of the Gaussian function, this is given in Section 8.4. The wavelet
spaces W; are spanned by rapidly decaying analytic functions, plotted in Fig. 8.1,
which are small perturbations of elements of V;; and which are orthogonal to
all elements of V;. This allows one to obtain simple analytic formulas for these
approximate wavelets. More precisely, in the one-dimensional case, the space Wy
can be defined within the assumed tolerance ¢ = O(e _”2D) as the La-span of the
integer translates of the function

(8.7) Yp(z) = e~ (22 =1)?/6D (g 5%(2:1: -1).

Since the values of many integral operators applied to the wavelets can be
given analytically, one can use approximants from Xy to derive the cubature of
these operators. One assumes that the transformation to the basis in X leads
to data compression, at least for sufficiently smooth densities u. Additionally, the
moments of the prewavelets are very small and can be controlled by the parameter
D. This implies, for example, a fast decay of the integrals K1) if the kernel k(x,y)
satisfies

|05k (%, ¥)| < ca|x — y|~OFleD for some 4> 0.

In Section 8.5, we consider multi-variate approximate wavelets and the mul-
tiresolution structure of the spaces spanned by the Gaussian radial function. Fur-
thermore, we give explicit formulas for the ortho-projection Py onto V and almost
orthogonal projections ij onto W3, which are proved in Section 8.6, so that for
any ¢ € Vg, the estimate

k=1
(8.8) ek — Poor — > Qse|,, < celignlin,

Jj=0



168 8. APPROXIMATE WAVELETS

holds with some constant not depending on ¢ and D. Furthermore, we show that
this wavelet basis has the property that the action of important pseudodifferential
operators can be obtained efficiently.

The proposed approximate multi-resolution analysis combines the advantages
of well-established wavelet methods in numerical analysis with the use of simple
approximating formulas based on smooth generating functions. The drawback of
non-convergence and non-exact refinement equations can be overcome by an appro-
priate choice of parameters to force the errors within the round-off required.

8.2. Approximate refinement equations

In Section 7.1, we noticed the excellent approximation properties of the Gauss-
ian to smooth functions. In particular, formula (7.11) applied to the Gaussian itself
shows that for any pu < 1

e I/P _ (21 — p2)) /2 3 o~ 12 m|?/D(1—p2)  —|x—pm|*/Dp?
mezZm™
_o-Ix?/D 3 0 2mi(1=p?) (0 /i~ D(1—p?)|w|*

vezn\{0}

(8.9)

The second sum on the right-hand side is, for properly chosen p and D, a small
remainder, which can be ignored under certain assumptions, discussed later on.
Here, we show that equations of this type are valid for a large class of functions
from the Schwartz class S(R™).

8.2.1. Approximate refinement equations for 7. Equation (8.9) is a re-
lation of the form

(8.10) n(%) — p/2 m%ﬂ ﬁ(%) n(%) + small remainder term,

which we call the approzimate refinement equation. In the example (8.9), the func-
tion 7 is given by

o= 1xI?/(1=1n?)

(m(1 — p2))n/
and the “small remainder term” means that for a fixed p, the equality (8.10) holds
up to an arbitrarily small error if D is sufficiently large.

Approximate refinement equations are valid for a large class of basic functions
7 as shown by the following assertion.

(8.11) M(x) =

THEOREM 8.1. Suppose that n € S(R™) has a non-vanishing Fourier transform,
Fn # 0, and for some positive p < 1, the function 7 satisfies

(8.12) Fij = an(z-) e S(R").

Then
©13 a(g5) = 2 AR () + Ruo ),
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where R, ,p € S(R™), and, moreover, for any ¢ > 0 and k > 0 there exists
Dy = Do(n, 1, k) > 0 such that (1 + |x|*)|R, ..p(x)| < if D> Dy.
ProOF. We apply Poisson’s summation formula (2.17) to the sum

DS o)) 5 fan( )

mezZm

= Z fﬁ()x)/n(y) e2”<x/\/5u—y7u>\—\/fu) dy dA

vezn Rn
:Ze2ﬁ1xu/# ‘7:770‘) (A—I—\/_V) 27r1x}\/\/7dA
vezr ]: ( )
]:77()\) VD
_ + 27rle/)/u A—I—\/_V 27 (x,\)/ dX .
(\/5) VEZ,Z\:{O} | Fu(uX) Fla )

Using the notation

E(x,y) = /.7:77()\) Frlpx +y) ™0 gx

the assertion is proved if we show that
Rn,uD Z 6(\/— ) e27ri(x,u>/,u
veZ™\{0}

belongs to S(R™) and can be made arbitrarily small by choosing D large enough.
Because Fn, Fn € S(R™) and

/ dA
S A RAD (A |uA + v

/ dX\ n / dX
(L+IADT (1 + |pX +y)* (L4 [AD7 (1 + [pX +y])*
(Al<lyl/2p AI>lyl/2p

vl A | dA
(” 32’) IR/(1+|,\|) (Hi) R/(H'“’\”Dk

) @{uﬁmﬂ'* () R[“f'xw“’

the estimate
Y70 &(x,y)| < Cap
holds uniformly in x. This enables one to write

XaafRnyu,D (x) =— VEZHZ\{O} x*9P (5 (%, \/5,/) e2milx,v) /1 ) )

By the same argument,

X102 €(xy)| < € [ 5705 (NFiN) Fnlud +3) A < Cap
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for all x,y € R", which implies R,, , p € S(R™). Additionally, from
(1+ [x|")[€(x,¥)| < Crlyl™,

it follows that the sum
X
A+ Y fe(S=. VD)
veZ™\{0} (\/5 )

can be made arbitrarily small by choosing D large enough. O

REMARK 8.2. By (8.12), the functions 1 and 7] are connected by the convolution

n(x) =/ﬁ(x—uy)n(y)dy = %/n(xzy)ﬁ(y)dy-
Rn Rn

8.2.2. Examples of mask functions. In the following, the function 7 which
is defined by (8.12) will be referred to as the mask function corresponding to 7.
It will also play an important rule in Chapter 9 in developing quasi-interpolation
formulas on graded meshes. In the context of the present chapter, only the validity
of approximate refinement equations and effective estimates for the remainder are
important.

Some of the generating functions considered in Chapter 3 allow analytic formu-
las for 7. For example, the generating functions nsps(x) = Lg\’;/_2l)(|x|2) e~ from
Theorem 3.5 satisfy the requirements of Theorem 8.1, since by (3.19) they possess
positive Fourier transforms. By (8.11), the analytic expression of the mask to 7 is

o IxI?/a

Na(x :W, x € R",

where o = 1 — 2. 74 and 7jg, in the case of one space dimension, are given by

nlt) = = [0 - S WS, )]

s (t) = %{ﬁz(f) — 2% Re [1\/—’1—2__5 V\/‘(\/@7 %)}}

(8.14)

The function W(z,t) is defined by

—¢2

(8.15) W(z,t) = ——(wli(z + 1) + wli(z — 1))

with the Faddeeva function (5.7). Of course, these formulas allow one to obtain
analytical representations for the mask functions in any space dimension when n(x)
is a product of one-dimensional functions:

n(x) = mam(w1) - - M2 (wn).
For n = 3, the mask function to

na(x) = (g —IxP) e, xeR?,

has the representation

T e~ 1XI*/e i(ma+ |x i(ra —|x
ﬁ4(X)=%(ﬁz(X)—2—ﬂz (o ( ( Mjg_é' |>)_W(<T\/0_JD)))_
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8.3. Approximate multi-resolution analysis

In this section we perform an approximate multi-resolution analysis using the
Gaussian in R™ as the scaling function.

8.3.1. Approximate chain of subspaces. We introduce the closed linear
subspaces of La(R™)

v, = > amop(2-—m). {om} € LE), e,

with the normed Gaussian function
(8.16) ép(x) = (%)"/“ XD cmn
ie., [[¢plz, = 1. Since
|5 ot - =m0 | 5 e
Lo

mezZn mecZnr

(27TD n/2 / Z 672772D|>\ k|2 Z U 271'1 m,\) ‘ dX\

keZn mezZn

[0,1]"
and
Z e~ 2™ DIA-K/* >cp >0,
kezZn
the set {¢p(- — m)}mezn is an La-stable basis in V.
Furthermore, with 4 = 1/2, from (8.9) we have the approximate refinement
equation

ép(x) = m rp7E 2 ¢ P gp(2x —m) + Ofep)ép(x)

mezm

a2 2
ep = Z 03D y|?/4

veZ™\{0}
Additionally, equation (8.9) shows that for any | < j the space V| is almost included
in V;. For any element of ¢; € V; the small perturbation

G1(x) = ou(x )(1+ Z 7772D(17417j)\u\2e27ri(2j7172l7j)(x,u>)
veZn\{0}

where

admits the inclusion
(8.17) ¢1€V;.

Let us introduce a measure for the distance between subspaces. Let A, B be
two closed linear manifolds of a Hilbert space X. The gap (cf. [49, §IV.2]) between
the subspaces A and B is defined as

5(A, B) = max(6(A, B),8(A, B)),

where
0(A, B) = sup dist(u, B)
u€Sa
and Sy is the unit sphere of A (the set of all u € A with ||ul| = 1).
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Since X is a Hilbert space, the gap can be determined from the relation
6(A, B) = ||Pa — Pp||, where P4 and Pp denote the orthogonal projections onto
A and B, respectively. Hence, 5 satisfies the triangle inequality and it can be used
to define a distance between subspaces, and the set of all closed subspaces of A

becomes a metric space.
Therefore, by (8.17)

8.18 5(V,V;) < e 3D/ —_
(8.18) \ADEESY
veZ™\{0}

for all I < j.

8.3.2. Almost orthogonal decomposition. We introduce the closed sub-
space Wj C Vj41 of all functions which are orthogonal to V; and we choose
subspaces W such that 5(Wj,\7vj) <ep.

It can be easily seen that

(i)l < (14771 = 1) llgs . el s

for ¢; € W;. Thus, the situation is very similar to the case when exact refinement
equations are valid, which was mentioned in Section 8.1.

Let us fix some integer k > 0, which determines the grid for the approximating
functions. In the following, we show that any element of V can be represented
within some prescribed tolerance as an element of the multi-resolution structure

(8.19) Xk = VQ +W0+ —i’_Wk_l-

To this end, introduce the or‘rhogonal prO]ec‘rlons P :LyR") = V;,j=0,...,k,
and Q; : Lo(R") — Wj, QJ Ly(R™) — W ,j =0,...,k—1, and deno‘re
Q-1 = P.

THEOREM 8.3. Any ¢ € Vi can be approzimatively represented as an element
of the multi-resolution structure (8.19) and the estimate

22
ox - Z Qe <F 2R g,
—€&Dp
holds.
PRrROOF. The result follows from the use of the telescopic series
k
ok = Pror = Z(Pj — Pj_1)pr + Popr
j=1
k k—1 k—1
=> (P =P )ee + Qape = Y Qgsok-i-z i+1 — Py — Q)¢
j=1 j=—1
and the following auxiliary assertion.
LEMMA 8.4. The estimate
3ep — 262 .
1P; + Q; — Piyallr, < 171) . J=0,.. k-1,
—éep

holds.
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PROOF. We have

1P + Qs — Pitallr, < 1P+ Qj — Pisilln, +1Q; — Qjll 1,

with
1Q; — QjllL, = 0(W;, W;) <ep.
Note that (8.18) implies the inequality
(8.20) loj — Piv1pille. <epllwjlle, , Ye; € Vj.
Since Pj+1(V;) = V11 © W;, any @11 € V41 can be written in the form
ej+1 = Piy19; + Qjpjt1

with some ¢; € V;. From (8.20), we therefore derive

i1 — (0 + Qipjr1)llL. = l1Pir10; — @jillL, < epllwsllL,
and

lpj+llze

1— ED '
Now we use that the sum P; + @; is the ortho-projection onto V; & W;. Hence
for any u € L2(R™), we obtain the estimate

1
lojllz. < 1 Pj+1905llL, = FR— lpj+1 — QipsrillL. <

1—€D

. €D
(I = (P; + Q;))PjsrullL, = Ue\}]f_léwj 1P = vllz, < 7= = ullzs
leading together with (8.20) to

[(Pj + Qs — Pjs1)ullz, < (I = Pip1)(Pj + Q)ullr, + | Py (I = Py — Qj)ull L,
< if (P +Qj)u—vlL, + (I = P = Q) Pitallz, llullz,
’UEV]+1

&g
< (ep+ 5 _DED)IIUIILZ- -

8.4. Approximate univariate wavelets

8.4.1. Gaussian as scaling function. To find an analytic expression of the
wavelet, we apply some well-known constructions from wavelet theory. The scaling
function is

2 \1/4
(8.21) ép(z) = (—) e/
7D
We denote the corresponding scaled and wavelet spaces by V; and W, respectively.
The function

(8.22) Z(—l)m_lum_1¢p(2x—m) with  pu, =/¢D(x) op(2x +m) dx
mEeEZ R

is orthogonal to all integer shifts of ¢p, modulo constants. It has the form
S (1) lem MmUY g (90 —m) € Wo C V.
meZ

Its Fourier transform is given by

vorD ; 1
(8.23) 5T7T oA o~ DA /4 051)(/\%) 7
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where o, denotes the positive and 1-periodic function
1 2 . 2 N2
o () = e~ ™ Yt e27rzm)\ — e—am (A7) )
mEZ JEZL

Hence, the integer shifts of this function form a Riesz basis in Wg.
As indicated above, we want to use a very accurate approximation of this
function by a simpler analytic representation. Using (7.10), we derive the formula

Z (=™ e~m*/5D op(2z —1—m)
meZ

(8.24) — o (e DY/OD N 1y exp (- %(gex ~1)-m)?)

meZ
/107D
= OTTF 67571-2D/24 e*(2x71)2/6D (COS %(QZE _ 1) + RD({E)) 7
with

— 5
Rp(z) = ZCOS %(% +1)(2z—1) e O DK +k) /6 _ O(e’5ﬂ2D/3) '
k=1

5
The Ly-norm of the function e~ 2*~1*/67 ¢og %(2:1: —1)is

1/4
_ (37D)" /1 — e—257°D/12

51
8.25) kil — H ~2-1?/6P (o P9 ‘
(325) g = | cos (2| =7

We introduce the normed approzimate prewavelet
5
(8.26) Yp(z) == kp e (22=1)?/6D (g %(2:10 -1),

shown in Figs. 8.1 and 8.2 for two values of D. It differs from the corresponding

FIGURE 8.1. Wavelet 3(x) FIGURE 8.2. Wavelet ¢5(x)
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function in Wy

~ 3 2 2
Yp(z) == Kpy/ T0-D o™ D/ Z(—l)m e /PP o (2 — 1 —m)

mEeEZ

by

dp(z) — ¥p(z) = kp e (22-D?/6D Z e ST DR +K)/6 ¢
k=1

0o 5T Dk +4)/6 cos(5m(2k + 1)(2z — 1)/6)
Z cos(5m(2x — 1)/6)

5m(2k + 1) (22 —1)

k=1
Note that

cos(5m(2k +1)(2x — 1)/6)
cos(5m(2z —1)/6) (1 22 ? cos _(2“"” 1),
Hence,

oo k .
do(@) — oz Z )k =BT D k) /6 (1 +22(_1)j 0035%(23:— 1))

k=1 j=1

and, consequently, the gap admits the estimate 5(Wj,wj) < ep. Moreover, the
functions ¥p (- —m), m € Z, form a Riesz basis in Wj.
In view of
N . 3ep — 2e2
S(VotWo, V1) < 22— =D
1-— ED
(see Lemma 8.4), the system {¢p(- — m),¥p(- — k), k,m € Z} is a Riesz basis in
Vo+Wo.

8.4.2. Moments. Besides the fast decay of ¢p, we are interested in the mo-
ments of the approximate wavelet ¥p. Since this function is almost orthogonal to
the integer shifts of the Gaussian ¢p, which approximate polynomials very accu-
rately as seen in Subsection 7.1.2, one can expect that even higher moments are very
small and decrease if D increases. Using the Fourier transform of the approximate
wavelet

2
Fip(\) = kp 627TD oA 673#1»2/2 6725772D/24 cosh ST DA
(8.27) 1/4 5
_ (37D)Y4y/2 TN BN o 572D

Ve25m2D/12 _| 2 7

one can compute the moments of 1)p by the formula

/x’wp(x) do — (—2wi)_k%pr()\)’

R

A=0

1/4 2
_ (37D)' V2 i(e—m,\ 03T DN?/2 (oo om D)‘)’
(_271—1')1@, /e25m2D/12 _1 d\

The first 10 moments of ¢p for different values of D are given in the Table 8.1.

A=0
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moment D=3 D=4 D =
0 1.31-10713 4.84-10718 1.75- 1022
1 6.57 - 10714 2.42.10718 8.77-1072
2 -1.79-10""" | -1.18-10"'%| —6.70-10"20
3 —269-1071 | —1.77-107%| —1.01-10719
4 2.26-1079 2.72.10713 2.45-10717
5 5.69-107° 6.82-10713 6.13-10717
6 —2.61-10"7 ~5.89-10"1 | —854.10715
7 —9.35-1077 | —2.086-1071° | —3.010-10"4
8 2.73-107° 1.20-1078 2.84-10712
9 1.29-1074 5.51-1078 1.29.10~ 1
10 —2.54.1073 —2.25.1076 —8.93.10710

TABLE 8.1. Moments of ¥p

Owing to the simple form of ¥p, it is also easy to compute scalar products of
elements of V; and W;. For example,

(¢p, D (2" - —m))L,

(8.28) 26 e—(2m+1)?/(4* 4+6)D —50-4* x> D/3(4* 1! +6) 5m(2m + 1)
Yz V1 — o 257°D/12 €08 T +6

Hence, if kK = 0, then the approximate wavelets 1¥p are even orthogonal to the
integer shifts of the scaling function ¢p, and therefore V; L W; for all j.

The effect of the nearly vanishing moments is shown in Figs. 8.3 and 8.4 which
depict the graph of the Hilbert transform of the wavelets ¥3 and 5. This function
has the analytic representation

1 o0
pr(x) —_ — wD—(y) dy
(8.29) S
25m°D 5miD + 2(2z — 1) (22-1)°  5x
:m)(e_ 24 Imw( Wi )—e_ 6D sinF(Q:r—l)).

Here we use the Faddeeva function w(z) defined by (5.7).
To analyze (8.29), we note that for z = x + iy

2 oo
Imw(z) = 7 /(ft2 e 2Y! sin 2t dt .
0

Hence

(57riD;\/26(_22)x— 1))} <1

and this function converges to zero as |z| — co. Thus the Hilbert transform of the
approximate wavelet

}Imw

Up(x) = kp e 2 D/6D o 5%(233 -1)
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-1- -1-

Ficure  8.3. Hilbert Ficure  8.4. Hilbert
transform Hips(x) transform Hips(x)

2572D /24

coincides within the tolerance kpe™ with the function

—kpe PPy 5%(2:1: —-1).

Since the essential supports of ¥p and Hip are small; a high compression rate for
the matrix representation of the Hilbert transform in the basis

{¢D(- —m),m € Z} and {2j/2¢p(2j c—=m),m€Z,j=0,....k— 1}

can be achieved.

8.4.3. Other examples. The above described construction of approximate
wavelets can be performed for other generating functions of approximate quasi-
interpolants. Here, we consider the scaling function

2
(8.30) qﬁp(x):e_wz/pcoswﬁx, reR.

The quasi-interpolant generated by ¢p is of the approximation order 4 (see the
table in Subsection 3.2.1). We follow the wavelet construction indicated by (8.22).
First one has to compute the integral

fom, = /%(96) ¢p(2x +m)dx = \/1_7/679”2 cos V2x e =+ cosv/2(22 + y) da
R R

with y = m/\/l_) Since
e cos V2 =e 12 Re o —(a+i/V2)?

and

1
Reu-Rev = §(Reuv+Reuﬁ),
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we have to compute

[ = vD Re / (e—<w+z‘/ﬁ>2 o~ Qrty+i/V2)? | o —(e+i/V2)? o ~(Qaty—i/VD) )dx_
2e
R

From the relation

/e—(m+a)2 e—(2m+b)2 do — \/ge—(2a—b)2/5,
R

o = Y W\l} Re (ef<m/\/5+3i/ﬂ>2/s n ef<m/\/5+i/ﬁ>2/5) _
2eVd

Thus, by using (8.22), the element of the span of {¢p(2-+m)} which is orthogonal
to all integer shifts of ¢p has the form

37 (<1)™ Ree ~((2e=1=m)/VDi/ V2

meZ

we obtain

x Re (e —(m/VD+3i/VD*/5 4 o _(m/\/ﬁ+i/\/§)2/5) .

Therefore, in the sequel, we try to obtain simple analytic representations for the
real part of the sums

S (—1)m e~ (@am1mm)/VBHi/V2)? g ~(m/VDEI/ V25

(8 31) MmEZL
| S (—1yme (Gemtmm) VDIV o = (m/VDESVDS
mez
We start with
(8.32) Z (=1)™ & ~(2a=1=m)/VD+i/V2)? o ~(m/VD-3i/VD)?/5
mez
Because

2c—1—m 1 \2 1/ m 3\ 2

5% *5(5- %)
(2 -1 i\2 6/ m 4q 52z — 1)\2
_(—\/Gp_ﬁ) 5(—\@_3\/5_ 6vD )

(8.32) can be transformed to

o (= =D)/VED=i/VE® $™ (_qym ex ( a i( 4ivD  5(2z — 1))2)

m— _
= 5D 32 6

= ¢ ~((20-1)/VED~i/V3)? \/@
3

— 5 27miV/2D
% Z e—57r2D(2m+1)2/24 COS(?m + 1)(%(2$ _ 1) 4 MT),

m=0

where we use the special case (7.9) of Poisson’s summation formula for the Theta
function. The sum on the right-hand side can be approximated by its first term
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with high accuracy. Indeed, we have

Z o —5T D(2m+1)% /24 cos(2m + 1)( (;Ty+ 27”3V 2D)

m=0

o —57D/24 (COS (%ﬂy + @) + RD(Z/))

with the sum

Z o —5mD((2m+1)%-1) /24 cos(2m + 1)(567Ty n 2m'\3/2D) .

m=1

The terms of Rp(y) can be estimated by

57 2miN/ 2D
A )‘

<2615 exp (- T (a1 - BV2)T 1))

o —5T D((2m+1)%~1)/24 cos(2m + 1)(

24 57V D
16/1 2 V2 2 V2
<2 exp (_ : 6D(<m_ 5i\/25) + (m_ 5fr\/22_))))'

Therefore, the function

o —(22=1)/V6D—-i/V3)* o (%T(Qj7 S+ 2m'\/2D)

PD 3

. 52 /107D
with pp=e > D/24 5

approximates (8.32) with the error

T ) )

8.33 cef(szl)z/ﬁpex (— —
(8:33) P75 5:vp) 2 T v

¢ being some constant independent of D. Obviously, this error is in the range of
saturation errors and can be ignored if D is large enough.

Thus, the real part of (8.32) can be approximated modulo saturation terms by
the function

_ 5 27i/2D
Re (ef«sznwe—oﬂ/ﬁ)? o8 (%(% 1)+ MT))
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The remaining three sums of (8.31) can be approximated by
Z (—1)™ e —((2z=1-m)/VD+i/V2)? o —(m/VD+3i/V2)?/5

mEZ

—((22-1)/VED+2i/V3)? g (5%(2:10 1)+ m 2D),

X pp € 6

Z (—1)™ e —((2z=1-m)/VD+i/V2)? , —(m/VD+i/V2)* /5

mEZ

i QD)

= pp e ~(Qe=D/VEDHi/VE)? (o (5%(290 -1)+ 3

Z (—1)™ e —((22=1-m)/VD+i/V2)? ,—(m/VD~i/V2)*/5

mEZ

) V2D
= pp e_(21—1)2/6D cos (%(21; _ 1) + UK ),

where the errors are less than that of (8.32). More precisely, the estimates corre-
sponding to (8.33) are of the form

¢ 0Bt g (- TR 5]'% )(2- 51‘522_) ). i=123.
7T m

So, we define the approximate wavelet 1p, corresponding to the scaling function
(8.30) by

Yp(z) = e ~(22-1)*/6D R <e4/3 e 422 =1)/VISD (g (5%(2:17 —-1)+ m 2D)

6

e 32’D)

+ cos (5%(2:1: -1)- @)) + cos (5%(2x— 1)+ m 22D)) ,

1 e1/3 ¢ —2i(20-1)/VI8D (cos (5%(2:10 —1)+

and its distance to the elements of the span of {¢p(2-+m)}, which are orthogonal
to all integer shifts of ¢p, is estimated by (8.33). Finally, in a more compact form,
we get

Yp(z) =e —(20-1)*/6D (cos 5%(2% —1)p(2z — 1) +sin 5%(2% —1)q(2z — 1))

with the trigonometric polynomials

V2Dr | (Cosh \/2E;D7r e 2\/2D7T) . V2z

x) = cosh——+e osh 0s
p(x) 5 3 s
V2D 2v/2
+e4/3cosh—wcosﬂ ,
6 3vD
13 ( 2V2Drx . 2D\ . 2z 43 . V2Dr | 22z

q(z) =e (smh — sin ) sin —e*/?sinh ———sin —.

3 3 3D 6 3vVD
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8.5. Approximate multi-variate wavelet decomposition

In the multi-variate case, first we have to define the approximate wavelet space
Wy. In accordance with Subsection 8.3.1, the elements of V; which are orthogonal
to Vo form the space Wo. To define the wavelet space, which is a perturbation of
Wo, we denote

(8.34) wo(z) == ¢p(x), wija(x):=Yp(z),
and we introduce the collection of 2" functions given on R™ by
(8.35) Dy (x) = wy, (1) Wy, (), v=_(v1,...,0n) EV.

Here, V denotes the set of vertices of the cube [0,1/2]". Furthermore, we define
the principal shift invariant spaces
Xy ={®y(—m), meZ"}.

Note that Xo = V. Furthermore, we know from (8.28) that (wo(-—m), w1 /2)r, = 0
for all m € Z. Hence, if v # v/, then also (P (- — m), Py ), =0, for all m € Z",
which means that the principal shift invariant spaces X,, v € V, are mutually
orthogonal, X, | Xy/. The approximate wavelet space Wy is defined as the

orthogonal sum
W, =P xv,
\S%

where V' = V\{0}. Obviously, 6(Vo+Wy, V) < ¢ and the functions @, (x — m),
m e Z", v €V, form a Riesz basis in Wy,.

Now, we consider the problem of finding the approximate wavelet decomposi-
tion of a given element belonging to Vi, and of proving estimate (8.8). Following
Theorem 8.3, one has to determine the orthogonal projections onto Vo and W ;.

8.5.1. Projections onto Vj. Since ¢p(x) = H?Zl ¢p(x;), the ortho-pro-
jection Py onto Vj is the tensor product
(8.36) Po=Ry® - -® Ry
of n copies of the univariate La-projection Ry onto Vj.

THEOREM 8.5. The orthogonal projection Ry onto Vi has the form
(8.37) Rof =Y (f.¢p(-—m))L, ép(- —m)
keZ
where the function ¢p € Vy is given by the formula

op(r) = Y am(D) ¢z —m)

meZ
with the coefficients

em”/2P i (r+1/2)2/2D
(_1)7‘ e— T
p(D)

r=|m|

am(D) =

and the constant

p(D) = (27D)*/2 Y " (4r + 1) e 727 PRrH/DT
TEL
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PRrOOF. The biorthogonal basis is given by the integer shifts of ¢p, whose
Fourier transform is
Fop

Féo = [Fop, Fop]

(see (7.40)). Since
[Fop, Fép] = v%DZe—WD(A—W — Z o~m?/2D g2mim\

VvEL meZ
the assertion follows immediately from Lemma 7.8. O

8.5.2. Projections onto Wj. Because of the tensor product structure of the
functions ®,,, the ortho-projection onto Xy is the tensor product R,, ® --- @ R,,
with v = (v1,...,v,) € V', where

RO:LQ(R)—)‘/O7 Rl/glLQ(R)—)WO
denote the corresponding univariate ortho-projections. Since Wy is the orthogonal

sum of the principal shift-invariant spaces Xy, v € V', the orthogonal projection
Qo onto Wy, is given by

(8.38) Qo= Y Ry ® - ®Ry,.

vey’
In order to determine the approximate wavelet decomposition besides the ortho-
projection Ry onto the span of the Gaussians, we need a computable representation
of the projection Ry, onto Wy. The following theorem gives an operator Ry,
which approximates Ry in the operator norm within the required accuracy.

THEOREM 8.6. The orthogonal projection Ry/o onto Wy can be approxvimated
by the operator

§1/2f = Z (fﬂED(' _m))Q Yp(-—m),

mEZ

where the function @[;D s given as the sum

Up(r) =Y amp(z —m) € Wy,

meZ
with the coefficients
i = S (—1)] ((_1)m51 o ~81/2)2/4D  ~|m|(+1/2)/D
j=0

S 0 -8UHL/D?/D o ~2Aml(+1/2)/D ) ,

and the numbers Sy and Sy, which depend on the parameter D, are equal to
2(1 . e—257r2D/12) 1

(8.39) So = DT (Z(—l)j(Gj-i-l) e_ﬂzpmjﬂy/lz)* 7

JEZ
1 _ e—257°D/12 } N1
(8.40) S =— (1) (65 + 1) e~ PO+ /3)
1 (WD)3/2\/§ (JEZZ )

There exists a constant ¢ such that

(8.41) IR j2f — Rijaflls <ce ™ P |flle., ¥V f € La(R) .
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The construction of an almost biorthogonal basis to {i)(- — m)}mez in the
wavelet space Wy is provided in Section 8.6.

Thus, instead of the ortho-projection Qg onto Wy defined by (8.38), we consider
the operator

(8.42) Qo= Ry ® - ®R,, : Ly(R") = Wy,
vey’

where Eo = Ry is given in Theorem 8.5 and El/Q is described in Theorem 8.6. It
is clear that we have

~ 2
(8.43) ||Q0 — QQH S ce ™ D y

with some constant ¢ depending only on n. By Theorem 8.3, we obtain the following
approximate wavelet decomposition of the space V,,.

THEOREM 8.7. There exists a constant ¢, depending on the space dimension n
and on k, such that for any oy € Vi, the estimate

k—1
~ 2
loe = > Qierllr. <ce™ P gkl

j=—1

holds, where Q_l = Py is defined in (8.36) and the mappings Qj onto W are
obtained by scaling from Qg given in (8.42).

8.6. Proof of Theorem 8.6
By (7.40), the biorthogonal basis to the wavelet basis {¢)p(- — m)} is spanned
by the function
(8.44) Up(x) =Y waipp(z —m),
meZ

where wy, are the Fourier coefficients of the reciprocal function of
(8.45) G\ = Y [Fop(A +m)f* = [Fyp, Fpl(A) .

mEeEZ

From (8.27), we obtain

_ VOrD iy —372D(A+5/6)2/2 —3m2D(A=5/6)2/2
(8.46) Fip(A) = kp 1 © e +e

)

and therefore,

37D K —37°D(m+A+5/6)
GO = T zejz(e

1 e 3T D(m+A=5/6) 4 o (—257°D/12 e—37r2D(m+)\)2> _

Obtaining a simple analytic expression of the Fourier coefficients of 1/G seems to
be impossible. However, a very accurate approximation of these coefficients can be
determined after some simplifications.
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8.6.1. Simplification of G()\). Because
Z e—3w2D(m+A+5/6)2 _ Z 6737r2D(m7>\+1/6)2 ,
meZ meZ
Z e—3w2D(m+>\—5/6)2 _ Z 6737r2D(m+)\+1/6)2 7
MeEZL meZ

9 Z o3 D(m+N)? _ Z (efBWQD(er)\)Z +6737r2D(m7)\)2)

meZ meZ
—372D(m+A+1/6)? _|_e—37T2D(m+>\—1/6)2

_ . n’D/12 €
- ¢ Z 2coshm?D(m + )

mEeEZ

322D (m— 2 322D (m—A— 2
LoD Z o3 D(m=2+1/6)* | o—=37>D(m—A—1/6)
2 coshm?D(m — )

meEZ

2
— o™'D/12 Z

meZ

=3 D(m+A+1/6)?  —37°D(m—X+1/6)*
( coshm2D(m + A) + coshm2D(m — A) ) ’

G(\) can be written in the form

D 2
G(/\) _ 37 8HD Z (673772D(m+)\+1/6)2 _|_673772D(m7)\+1/6)2 )

meZ
37D K%e—%% =37 D(m+A+1/6) N e—3m°D(m—X+1/6)
8 coshm?D(m + )  coshm?D(m —\) |’

Thus, G()) is a small and smooth perturbation of the 1-periodic function

(8.47) g(\) = 37D K 3 (e*3ﬂ2D(m+>\+l/6)2 +efsw2o<m4+1/6)2)
8 )

meZ
and the perturbation is bounded by
(8.48) 0< G\ —g(h) <e 2™ Pg(\).
Instead of the Fourier coefficients wy of 1/G(X), we will determine the Fourier

coefficients of 1/g(\) in the following subsections.

8.6.2. Error of replacing G(\) by g()). Let us estimate the error which is
made by this simplification. The Fourier coefficients ay of 1/g generate a function
denoted by

(8.49) xp(z) = Z am¥p (- —m)
meZ

and a linear operator A : Lo — Wy defined by

(8.50) Af =Y (fixp(-—m)2¢p(- —m).
meZ
Owing to (7.39), the Fourier transform of R, /o f, f € L2(R), is given by
FRy )3 = ZLT0RI) 7).

GO
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whereas by (8.50), the Fourier transform of Af equals

_[FLFe)
F(AHA) = T}'UJD()\)-
Hence,
2 1 1 2 2 2
(B2 = )11 = [ [t = o] FonORIFLFupl)2 an
R
< [t ~ =t | \FonlF L FAF . Fin]
- 1
=X [lats — 5| FFoo0r+ DEIFLFAF D, Fiml i
oy ALCOTeY | |
/IIL—LFW Fun*[Ff, Ff] )
S ey el TR
- / |t — | GO s F i ax
J1G) ~ 500 S

where we use (8.45). Thus, by (8.48),

1
IRy = D11, < [ [1- GOy 2

—4n®D 2
[I= s raims=e / 12 ax

and therefore, the operator A, based on the Fourier coefficients of 1/g, differs from
the ortho-projection onto Wy by

(8.51) 1Rijp = Al <7277

8.6.3. Equations for the Fourier coefficients of 1/g. To find the Fourier

coefficients
1
67271"“(3)
ap = | ———dX\,
O/ g(A)

we apply some elementary methods of complex function theory. The function g(z),
z € C, is analytic and quasi doubly-periodic with

(852) g(Z + 1) = g(Z) s g(z + %) — _e3/D e—67‘riz 9(2) )

Hence, if we take a rectangle R = (2,2 + 1) X (2,2 + i/7D), such that g(z) # 0
on R, then the change in arg g(z) equals 67, if z traverses the boundary R in a
counterclockwise direction. Then by the Argument Principle, g(z) has three zeros
in R. By the symmetry of g(z) the points with Rez = j or Rez = j + 1/2,
j € Z, are candidates for zeros. Therefore, we choose the rectangular domain
R =(-1/4,3/4) x (0,i/(nD)) as periodic cell.
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It is easy to find the zero with Re z = 0, since for zo = i/(27D)

g(zo) = w Z (673ﬁ2p(m+1/6)2 o—3ri(m+1/6)

8

meZ
4 o 3T D(m+1/6)% (3mi(m+1/6) )

- 3D H2D e3/4D

e (—1)™ 673772D(m+1/6)2(efﬂ'i/2 + em‘/2> —0.

meZ

Next, we consider

2
3(y) = g(l —H'y) _ 31Dkp Z (e—3w2D(m+2/3+iy)2 +e—37r2D(m—1/3—iy)2)
meZ

2 8

_ 3771;”% eBﬂ'szz Z 673772D(m+2/3)2 (efﬁﬂ'zDi(erQ/B)y+66ﬂ2Di(m+2/3)y)

meZ
2 o0
= ‘37T,ZZI€D_ o3 Py Z o™ PBMA2?/3 o5 2m2D(3m + 2)y
m=—o00
2 > =
_ 37712119 037Dy’ ( Z o™ P /3 006 91 Dy — Z e =3 DM (g GWszy).
m=1 m=1

The trigonometric series has the period 1/(7D) and

~ 1 _ .3/D ,—67y ~
g(ﬂ) y) =e” 7 e g(y).
Moreover, at least for D > 1, g is a small perturbation of
31Dr%
4

such that its zeros y1,y2 are close to the zeros of cos27?Dy. In other words, we
have g(z) = 0 at the points

2 2.1, 2
e ™ P/3 37 DY cos 22Dy,

1 .
Zj:_'i‘lyj, .7:1727

2
with
1— 3
(8.53) y1 = 471_2)6 and yo = % with small €.
More precisely, € has to satisfy the equation
i (e_ﬂ_2Dm2/3 cos 7rm(1 - 6) _ e—37r2Dm2 cos wm(l + 36)) —0,
2 2
m=1
ie.,
sin % =e ™ P cosme+ O(e 75”2D) ,

which shows that 0 < e < e~™ P.
Knowing the poles of 1/g(z), we can apply the Residue Theorem and obtain

67271'ikz
/7dz:r0+r1 + 7o
9(2)
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with
—2mikz 67271'ikz
r; = 27t Res =27 .
! =2 g(2) g'(z) le=z
Hence, the Fourier coefficients satisfy

3/4 67271'1'16)\ 8/4+i/(xD) 6727rikz
ar = —d\ = / ——dz4+rg+ry+1ra,
/ g(N) 9(2)
~1/4 —1/4+44/(xD)

which, together with (8.52), leads to the relation
(8.54) ar = — e(2k=3)/D ap—3+ro+ri+ry foral keZ.

Since

3,72 .2
gl(zo) = m e3/4D Z (_1)m (m+ 1) 6—37T2D(m+1/6)2 ,

2 6
meEZ
we derive
Amie®/P 1 312D 2\ —1
_ _1\m - —371°D(m+1/6) _ k/D
To = 973i D212, ¢ 3/4D ( Z( 1™ (m + 6) € ) =Coe
meZ
with the constant
Qe —3/4D

(8.55) Co ( Z (—=1)™(6m + 1) o~ D(6m+1)2/12 )_1_

 3m2D2k3
meZ

To compute the residues r; and ro, we note that

g/(zj) = _Zg/(yj)a .] = 1725
and that

oo

37192 ,.2
J'(y;) = _ 3T D Rp l; "D 37" Dy; Z m( e~ ™ Pm* B gin 212 Dmy;

m=1

—_ 2 2 .
—3e73™ Pm7gin 67T2Dmyj)
. 2 2
— (_1)] 1637r Dyj bE,
where we denote

b 332 H2D
‘ 2

8.56 00
( ) % Z m( e—71—2'Dm2/3 . @ _|_3e—37T2Dm2 . M)
m=1

sin sin
2

Therefore, we derive

ri4+re =—27

—2mikzy 6727Tikzz )

e
= + —
( g (y1) ' (y2)
—mik o (3+€)k/2D 6—3(3+e)2/16D e~ ik o (1—€)k/2D e—3(1—e)2/16D

e
§ be be

= (~1)F ¢ ok/D (e(2k—3)(1+e)/4D _ e—(2k—3)(1+e)/4D)

)
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with the abbreviation
o e—3/4D o—3(1+¢)?/16D

8.57 e =
(8:57) ¢ ;

Finally, (8.54) takes the form
a = — e3P o 4 0y /D
I (_1)1@06 ok/D (e(2k73)(1+e)/4D _ o —(2k=3)(1+€)/4D )7
leading to the recurrence equations for the Fourier coefficients
o—k/D F=3)/D 0+ Cy
+ (_1)1606 (e (2k=3)(14¢)/4D _ o —(2k—3)(14¢)/4D )

ap = — e(
(8.58)

which are to be solved.

8.6.4. Solution of (8.58). Since g(\) is an even function, it suffices to deter-
mine the Fourier coefficients ay, for k > 0. After some calculations, which are based
on the representation of asr4; by a;, 7 = 0,1,2, and which involve some tedious
transformations, we obtain the series expansion

[e ]
ag = ek2/3D (63/4D Co Z(_l)j e—(3(j+1/2)+k)2/3D

Jj=0

(8.59) -
n (_1)k C1(e) Z (e—(B(j+(l—e)/4)+k)2/3D _ o~ B+(B+e)/4)+k)? /3D ))

Jj=0

for k > 0, with a new constant Cy(e) = 27/b., which, in view of (8.56), is given as

4
Cile) = 755
(5.60) 312 D2k,
. o -1
X < Z m( o™ P /3 gin Ln(; —¢) +3e73 P gin 77””(1;— 3¢) )) .
m=1

The exact value of € is not known but we know that € < e ™ P. Therefore,
in the following, we will use the formula for a; with € set to 0. We introduce the
coefficients

ap = o k?/3D (ea/w Co Z(_l)j o —(3(+1/2)+k)?/3D
j=0
+(=DFe Y (e ~BUH/OHR)? /3D _ o =(B(+3/4)+k)* /3D )) ;

j=0
where Cy = C1(0). Taking into account (8.55) and (8.60), the coefficients transform
to
(8.61) ar = So Z(_l)j e —3(+1/2)?/D  —2k(j+1/2)/D
§=0
F(=1)kS, Z(efsuﬂ/w/o o —2k(i+1/4)/D _ ,—=3(j+3/4)*/D o —2k(j+3/4)/D )

=0
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where
— 8 E m —m2D(6m+1)%/12 -1
S() = 37_‘_27 Z:2I<L2D (meZ(—l) (6m + 1) € ) N
_ 4 E m —m2D(6m+1)%/3 -1
S1 - 37_‘_27 Z:2I<L2D (mez(—l) (6m + 1) e ) .

With the value of kp (see (8.25)), the expressions (8.39) and (8.40) of Sy and S
follow. Noting that

N o —3(+1/9)?/D  —2k(j+1/4)/D _ o —3(j+3/4)*/D o —2k(j+3/4)/D )

I
.MS O/\

<
Il
o

(e —3(2j+1/2)° /4D —k(2j+1/2)/D _ o —3(2j+1+1/2)* /4D ,—k(2j+1+1/2)/D )

(—1)] ¢ ~3UHL/2°/4D o ~k(i+1/2)/D.

o

Il
=)

J

one can transform (8.61) to

oo

ar = So Z(_l)j e —3U+1/2)*/D  —2k(j+1/2)/D
j=0
+(=1)kS Z(_l)j e 3 +1/2)*/4D o —k(j+1/2)/D
j=0

which gives all formulas mentioned in the formulation of Theorem 8.6.

8.6.5. Error of replacing aj; by ay. It remains to estimate the difference
between the operators A (see (8.50)) and R, /3. The difference of the Fourier trans-

forms of R1/2f and Af, f € Ly(R), can be written as
F(Ra o f)0) = FANO) = FLFnl8) Foo() (700) - —5)
with the periodic function
T(A) = de e ZmikA
keZ

Similarly to the estimation of ||R; /3 — A||, we have to find an upper bound to

1
Since
1 2mwikA
—= = ay € ,
9(N) ,é ’

one obtains from (8.59), after some elementary transformations,

1
o) —7(A) = F(\ ) = F(),0),
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where the function F'(\,€) is given by

s (62(j+(1*6)/4)/17_6*2(j+(1*€)/4)/9) e —3(+(1-¢)/9)*/D

F(A€) = Ci(e) Z 02G+(1—-0/0/D 4 0 —2G+(1-9/D/D 19 cos 2mA
j=—o0
Hence,
1
T(A) — ——| G(A) < ce,
‘ (M) 900 (M)

which completes the proof of Theorem 8.6.

8.7. Potentials of wavelet basis functions

This section is devoted to the cubature of various potentials of wavelet basis
functions. We show that for any space dimension these potentials can be expressed
as one-dimensional integrals with smooth integrands, which can be computed very
efficiently. So, it is possible to combine the advantages of well-established wavelet
methods in numerical analysis with the efficient computation of important integral
operators. Indeed, let the function u be approximated by a quasi-interpolant (2.23)
with n(x) = e 1X” and h = 27 ie., with an element Mao—r pu € V3. We take
the ortho-projection ¢, = P(My-« pu) € X and, in this way, we obtain a multi-
variate wavelet expansion of u, i.e.,

k—1
(8.62) pr(x) = Z am®Po(x —m) + Z Z Z 0y m®v(27x —m) € X,
mezZn j=0 mez" veV’
where ®,, are the wavelet basis functions for the spaces spanned by the n-dimensional
Gaussian.

In Subsection 8.7.1, we rewrite the wavelet basis functions as anisotropic Gaus-
sians of complex arguments. In Subsection 8.7.2, the results of Section 6.3 are
extended in order to treat the action of integral operators on those functions. As
an application, we obtain formulas for harmonic, diffraction, and elastic potentials
of these functions.

8.7.1. Representation of wavelet basis functions. We recall from Sec-
tion 8.5 that the 2" wavelet basis functions are given as products

Dy (x) = Wy, (1) -+ Wy, (Tr), Vv=(01,...,0p) EV
with

wo(x) = ¢p(a) = pe /P,

wyys(x) = Yp(r) =k e (22 =1)?/6D (g 5%(2:1: -1)

and the two norming factors

2 \1/4 2
(8.63) p=ro=(=5) . r=rp= DA T
Here, V denotes the set of vertices of the cube [0,1/2]™ (see (8.35)). For the following
computation of potentials, we write the wavelet basis functions ®, as anisotropic
Gaussians.
Let us denote the unit vectors in R™ by e; = (dx)7_y, j = 1,...,n, and set
e=e1+...+e, =(1,...,1). For given v € V, we denote the projection matrix
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Qv = 2diag(v) having the rank m, the number of non-zero components of v. Let
P, = I — @Qy. Then definitions (8.16) and (8.25) of ¢p and ¢p imply

(864) ‘I)V(X) — pnfmﬂme*\P\,xP/D e*|Qv(2xfe)\2/6D H COoS 5%<Qv(2x _ e),ej>.
j=1

Using the relation

(8.65) ﬁ cos(Qvy,ej) =2"" Z cos(Qvy, u),
j=1

ueld

where U denotes the set of the 2™ vectors u € R™ with components +1, we can
write ®, as the sum

mo,.m 5
Dy (x) = % o ~IPexI?/D o ~|Qu (2x—e)|*/6D > cos %(Qv@x —e),u).
ucld

Note that
o~ 1Qv(2x=e)l*/6D (g %T (Qv(2x —e),u)

—|Qv(2x—e)|? /6D
_¢ 1@ a4 (e5ﬂi(Q\,(2xfe),u>/6_|_ef57'ri(Q\,(2x7e),u)/6)

2
B 2 2
_e 25m°D|Quul”/24 (e—|Qv(2xfe+57riDu/2)|2/6D +ef\Qv(2x+e+57riDu/2)|2/6D)
2 b
where, as in Section 5.2, we put
n
(8.66) (y,2) = Zyjzj and |z® = (z,2),
j=1

for complex vectors y,z € C™.
Using the abbreviation

(8.67) fu(x) — e —|Pyx|?/D e —|Qv (2x—e+5miDu/2)|? /6D

and noting that rank @)y, = m, we obtain

n—m .m —2572Dm /24
(8.68) B, (x) =" ¢ 3 fulx).

om
ueld

Now, we note that the function f, can be written as an anisotropic Gaussian
function which was defined in Subsection 3.3.5. Introducing the matrix and the
vector

3D e 5miDu "
(8.69) A=DP,+-7Qu, Z—Qv(i— ; )e(C,

we can write fy in the form

fu(x) —e —(Afl(x—z),x—z)

)

i.e., as an anisotropic Gaussian with complex vector-valued arguments.
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8.7.2. Potentials of anisotropic Gaussians of a complex argument.
Here, we compute potentials of shifts of the anisotropic Gaussians of the form

(8.70) e (AT (x—2)x—z2)

where the matrix A has the same properties as in Section 6.3 and z € C" is an
arbitrary constant vector.

First, we remark that for z=u+iv, u,v € R", and A = Ar + iA; with real
symmetric matrices Az > 0 and Aj, we have

Re(A(x +2),x +2) =(Ar(x+u— A" Av),x + u— A" Arv)
—((Ar + A]A;%lA])V,V> .

Hence, for any given z € C", the function (8.70) belongs to L2(R™). Thus, one can
consider partial differential equations with the right-hand side (8.70), similarly to
Section 6.3,

We note that in view of (8.66), the function e —(A7'2.2) ig the analytic extension
of the general Gaussian onto C". Since the differential operators, occurring in
Theorems 6.2, 6.4 and 6.5, have constant coefficients, the assertion of these theorems
remains valid if the real vector x € R”™ is replaced by z € C". In particular, we
obtain the following result.

COROLLARY 8.8. Under the assumptions on the matrices A and B in Theo-
rem 6.2, the following assertions are valid for any constant vector z € C":

(i) If n > 3, then the function

1 T o= ((A+tB) " (xt2) x+2)

1) T JaewariB)

0

u(x) =

is a bounded solution of the equation
e—(Afl(x-i-z),x-i-z)

vdet A ’

(ii) Forae C, Rea >0 andn > 1 or Rea =0 and n > 3, the function

—(BV,V)u(x) = x e R".

1 T e {((A+tB) " (x+z) x+2)

4 ) Jdel(A+1B)

is a bounded solution of the elliptic equation

e —at/4 dt

u(x) =

e~ (A (x+2),x+2)

—(BV,V)u(x) + au(x) = , xeR™.
(B9 9)u(x) + aulx) = ———
(iii) If n > 3, then the function
@ 1 7t 92 o ((A+tD) ™! (x+e) x+z)
wi (X)) = ——
M 16 ) Owcday det(A + t1)

is a solution of the bi-Laplace equation
52 ef(Afl(erz),erz)

= Oz Vdet A ’

satisfying w (x) — 0 as |x| — oo.

—A%w (x) x e R",
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8.7.3. Harmonic potentials of approximate wavelets. Let n > 3. By
(8.69), the matrix A has the form

D
A:DPV+37QV.

Thus, by Corollary 8.8(i), the harmonic potential of the function f, defined by
(8.67) equals

D ® e —|Pvx|?/D(1+t) o —|Qv(2x—e+57iDu/2)|* /D(6+4t)
n u = dt,
fulx 4 / (14 ¢)(n=m)/2(1 4 2t/3)m/2
0

which gives the following formula for the harmonic potential of the basis wavelet
functions

Dpn mem o —2572Dm /24

Ln®y (X) = om+2

o —|Px|?/D(1+41) o —|Qu(2x—e+57miDu/2)|?/D(6+4t)

dt.
2 / (1 + ) (n—m/2(1 + 2t/3)m/2

uell

Now we use that

o —2572Dm/24 (e — Qv (2x—e+5miDu/2)|? /D (6+4t) +e — Qv (2x—e—57iDu/2)|% /D (6+4t) )

_ 9 o~ 25T Dmt/6(6+41)  ~|Qy(2x—e|?/D(6+41) 5m(Qv(2x — e),u)

cos 6 it :
which gives, together with (8.65),
D n—m ,..m
La®y(x) = “p kR
4
) /°°e—va2/D<1+t> eIt /DOHY I rig. (2% —e)ey)
(L+)=m/2(1 4 2e/3)m/2 L 6+ 4t '

Introducing the two functions

e —2%/D(1+t)

go(w,t) = Pﬁ ;

—257r2Dt/6(6+4t) 5r(2r — 1
o (22-1)%/D(6+41) (22 )

7t = TR
91/2(55 ) 1—|—2t 6+ 4t

we can write the harmonic potential of the wavelet basis function in the form

(8.71)

D o0
(8.72) L, P = Z/ (21,t) ... Gu, (Tn,t)dt.
0
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We conclude that the harmonic potential of a function u with the wavelet
expansion (8.62) is approximated by
|x—m|?/D
/2 J2—2 —t
n/2—2 —
L pu(x Z am W / t e " dt

(8.73) mez 0

+222H2 Z Z /gv1(2jxl—ml,t)...gvn(2j:vn—mn,t)dt.
0

meZ™ veV’

8.7.4. Diffraction potentials of approximate wavelets. Analogously to
the previous subsection, one can determine the diffraction potential of the wavelet
basis functions

@=/&@—W®WMy
in

with the fundamental solution & given by (5.2). By Corollary 8.8(ii), and using
the arguments of Subsection 6.3.1, we derive

dt.

P m'D/ ik? t/4 —|Pyx|? /D(1+zt)e—|Qv(2x e+5miDu/2)|?/D(6+4it)

Snfu(x) =
Ju(x) = (1 + it)(—m)/2(1 + 2it/3)m/2

Because
e —2572Dm/24 (e — Qv (2x—e+5miDu/2)|? /D(6+4it) +e —|Qv (2x—e—57iDu/2)|? /D (6+4it) )

— o 257 Dmt/6(6+4it) o —|Qu(2x—e)|?/D(6+4it) Sm(Qv(2x - e),u) :
6 + 4it

one obtains the compact form of the diffraction potentials

D oo
S, ® = Z/ ik*t/4 Guy (1,1t . . . gy, (Tp, i) dt
0

with gg, g1 defined by (8.71).

8.7.5. Elastic and hydrodynamic potentials of approximate wavelets.
Here, we provide the formulas for the elastic and hydrodynamic potentials of the
wavelet basis functions <I>v in R3. It follows from Corollary 8.8(iii) that the integrals

1
: = o d
) = g / %=yl faly / X =31 g faly) dy
with fy defined by (8.67) can be written in the form
w (X) L pn—mﬁm'D2
w(X) = — =
T 52 o IPxI?/D(1+1) o —|Qu(2x—e+5miDu/2)|?/D(6+41)
t dt.
X/ D01 (1 + ) G=m72(1 1 2¢/3)m/?

0
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Then, together with formula (8.72), the one-dimensional integral representations of
the elastic and hydrodynamic potentials of ®,, follow immediately. Since by (5.50)

A+ p 02 Okt

r
(%) = 8mp( A+ 2p) 6w;€8:vl| x| = drplx|’
the elastic potential of ®, can be obtained from
/Fkl(x —y)ov(y)dy
RS
Okl A+ 7 /
=—-—L 4+ — D, (y)d
(8.74) L 3(2v)(x) 8mu(A + 2u) I 6yk8yl &) dy
tD A+p) 82
= — — v 7t v 7t v 7t dt7
/ e ) (01, 0 a2, )

with the functions go, g1 defined by (8.71).
Furthermore, by (5.49)

1 ? Okl

Uy (x) = x| —

&1v D0 drv|x|’

which together with (5.50) leads to the hydrodynamic potential of the wavelet basis
function

]R3
Okl 1 o2
= - (I)v P - —(I)v d
Ko@)+ g [ Iyl B () dy
R3
8.75 00
o :——/(&cz—i—tpi)g (21,1) ... gu, (Tn,t) dt
4 4 8Ikaxl “u ’ Un AT ’
0
1 Tk — Yk D 870
= | s dy = — — [ gu,(x1,1)gu, (22, 1) gu, (3, 1) dt.
T |x_y|3 (y) y 4 6(Ek gl(Il )g ('rQ )g('r3 )
3 0

8.8. Numerical example

The decomposition described in Theorem 8.7 was implemented in the one-
dimensional case to obtain compressed representations for density functions and it
was applied to the computation of one-dimensional integral operators. Table 2 pro-
vides some numerical results concerning the evaluation of the Hilbert transform of
different functions given on (—500, 500). Originally, the functions are approximated
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by the quasi-interpolant
32000

(8.76) up(z) == D2 Z u(hm) exp( -
m=—32000

(x — hm)?

Bz—) € Vo

with h = 1/64, i.e., they are determined by 64001 point values. Table 8.2 lists the
number of all basis functions in Vy and Wj, j =0,...,5, necessary to compute the
Hilbert transform at all grid points {mh} with the prescribed accuracy ep.

function D=2 D=3 D=4

1 2563 3509 4689

500 — x| 2290 3174 4286
sin(mz) 7624 7897 8116

e —°/1000 811 897 1085
e~ /1000 i (7r1) 3826 4140 4354

TABLE 8.2. Number of basis functions required to compute the
Hilbert transform at all grid points with prescribed accuracy ep

Except for exp(—x2/1000), the density functions u under consideration are
either non-smooth or oscillating, such that the support of the projections onto the
spaces Vp and W;, Q;u, is larger than the interval (—500,500). Nevertheless the
table shows that it is possible to obtain significant compression rates for data if
the density function behaves sufficiently well. The same applies to the computing
time. For example, to evaluate one point value of the integral besides the Hilbert
transform of all Gaussians exp(—(z —m)?/D), which form Q_;u € Vp, one has to
compute only the Hilbert transform of the wavelets with essential support near this
point. Therefore, the number of the summands, required to compute the Hilbert
transform at one given point is essentially smaller than 64001, necessary if the
representation (8.76) is used, and even much smaller than the number given in
Table 8.2.

8.9. Notes

Approximate multi-resolution analysis and approximate wavelets were proposed
by the authors in [69].

There is a large bibliography on wavelet theory. The basic material can be
found, for example, in the books of Daubechies [22], Meyer [74], and Chui [18].
The theory of prewavelets is developed in [74] and by de Boor, DeVore, and Ron in
[10]. Many interesting examples of scaling functions, which are used in numerical
analysis and satisfy certain smoothness and vanishing moment conditions, can be
found in [21], [22], [74], [19], [21]. There exists a series of papers on the application
of wavelet methods to the computation of integral operators and the solution of
integral equations, where different types of scaling functions and wavelets are used
(see [2], [9], [21], and [78] the references therein).



CHAPTER 9

Cubature over bounded domains

9.1. Introduction

In this chapter we extend the classes of cubature formulas introduced in Chap-
ter 4 to integral operators over bounded domains.

It was mentioned there that the exact computation of volume potentials is an es-
sential resource for the solution of boundary value problems with boundary integral
methods. Even more important applications appear when one combines boundary
integral methods with iteration procedures for linear problems with variable coef-
ficients or for non-linear problems. Essentially, the approach for solving boundary
problems for non-linear equations lumps the non-linearity into body forces and
then solves the problem iteratively. This introduces domain integrals or volume
potentials to the corresponding boundary integral equations.

If one wants to compute the integral

(9.1) Ku(x) = / o(x — y) uly) dy
Q

by using known values of the integral n applied to a generating function 7, the
approximation of the density u by a linear combination of dilated shifts of 1 has to
take into account the following circumstances:

- The approximant should have a simple quasi-interpolation structure.

- Since one has to approximate u extended by zero outside €2, the approxi-
mant must nearly vanish in Q¢ =R" \ Q.

- The error should be small in some integral norm over R™ since we are
interested in the approximation of integral operators.

- Discontinuous functions can be approximated with smooth 1 centered
on uniformly distributed nodes only with large errors; therefore mesh
refinement near the boundary of the domain may prove useful.

Here, we develop an iteration scheme which satisfies these requirements. We obtain
an approximation formula

(92) Byu(x)=D""2 3 ( )+Z Z Cﬂ»m"(xh_\];_m>

meQg

with h; = wh,0< pu < 1and coefficients ¢j.m, depending on point values of u near
the nodes h;m.

The sets Q; C Z™ are such that h(Q) consists of all nodes hm € 2 located at
a certain distance to the boundary 02 and such that h;Q; C Q, 7 =1,..., M, lie
in boundary layers of a width decreasing with j. We show that Bjsu(x) approx-
imates u on the whole R™ except for a small boundary layer of width decreasing

197
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exponentially with M, the number of iteration steps. This guarantees that By,
provides a similar approximation error in the L,-norms as the quasi-interpolant
My, p generated by 7, given in Theorem 2.28.

The operator By is the sum of the usual quasi-interpolation operator M, p
applied to the restriction of u to some interior subdomain of 2 and multi-resolution
correction terms near the boundary. The construction, which will be discussed in
Section 9.4, grants an easy computation of the coefficients c¢;j m, and the introduc-
tion of new higher-frequency terms in (9.2) does not require re-computation of the
coefficients ¢;j m.

The accuracy provided by Bj; for functions on domains gives high-order cuba-
ture formulas for (9.1) by setting

M
-—h,m
(9.3) Kru(x) = KBpu(x) = cjmKn(—= ) (x).
' N gz::omgg " hjv/D )

with com = D~"/2u(hm). This will be discussed in Section 9.5.

In Section 9.6, we specialize this method for polyhedral domains and generating
functions having tensor product structure. At the boundary layers, approximants
on uniform meshes are constructed, but the meshes are refined only in the direction
to the boundary. The anisotropic mesh refinement leads to a considerable reduction
of data points and, which is most important, of the number of summands in XBy;u
required for the cubature of Ku. In Section 9.7, we consider an example showing
how potentials of special anisotropic tensor product generating functions can be
computed.

9.2. Simple approach

We start with a naive approach. By the local character of quasi-interpolation,
which is described in Subsection 2.3.3, some of the above-mentioned requirements
can be satisfied.

Recall that for arbitrarily small e, there exist D and k, such that for all x €
Q.n C Q the quasi-interpolant to any smooth function u € W2 (Q2) provides the
estimate

Ju(x) = My pu(x)| < c(VDR)V|[V vl ()

(9.4) Nl .
+e(llull £ ) + Z (VDR)¥|Viu(x)]),

k=1
if n € S(R™) is subject to the moment Condition 2.15 of order N (cf. Corollary
2.24). The subdomain €y, is defined by (2.67) and the constant ¢ depends on the
generating function 7. Note further that by Lemma 2.22

05)  [Mup(xow) )| < gp(h™" dist(x, Q) + £, ) sup Ju| < esup Jul,
rkh
where x( is the characteristic function of {2, and x € ¢ =R" \ﬁ
Consequently, the function Mp, p(xou) is sufficiently small on °, and it appro-
ximates v in the subdomain 5., in view of Corollary 2.24, with the estimate (9.4).
So, we are left with the boundary layer Sy = Q \ Qa,p, where the error

u1(x) == u(x) — Mp p(xou)(x)
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is large. In order to retain the simplicity of the approximation method, one could
try to approximate this discrepancy by the quasi-interpolation operator My, p on a
finer mesh with step size h; = ph, 4 < 1. Since the approximant must be sufficiently
small outside 2, we introduce the characteristic function y; of the boundary layer
S1 = Quny \ Qakhtrh, and consider

- 777,/2 X — hlm
(9.6) Mu, p(x1u1)(x) = D mZS m(hlm)n(—@hl ).

which provides, in view of Corollary 2.24, the estimate

|u1(x) — M, p(x1u)(x)] <c(vVDh)V |Vl p(sy)
N-—1
+e(lullz.@ + Y (VDh)*|Viu(x)))
k=1

for x € Qapn, \ Q2xn. However, since My, p(xou) nearly vanishes at 02, one has
max |V x My, p(xou)| = O(VDh) ™) max |ul,
S1 0a2xn
so that
Jur (%) = M, p(x1u) (x)] < e (VDRO)N|[Vnull L) + 2N ull . @)
(9.7) Nl .
+e(lul ) + D (VD) | Viu(x)]) -
k=1
Hence, the approximation error depends on the quotient p = hq/h. Of course, in
order to get approximation order O(h™V), one could choose p = h, but this is not
practical because of the large number of summands in (9.6).

This procedure can be repeated iteratively as long as the remaining boundary
layer is sufficiently small, but for each step the approximation error behaves like
(9.7). This is confirmed in Fig. 9.1(a), where the Heaviside function is approximated
with the above procedure, using 5 iteration steps, p = 1/2, and 7 is the Gaussian.
Fortunately, there exists another approach to represent coarsely scaled generating

FIGURE 9.1. Multiscale approximation of the Heaviside function
with Gaussians, based on (a) quasi-interpolation of the discrep-
ancy and (b) the approximate refinement equation.
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functions by linear combinations of finer scaled versions, which is based on the
approzimate refinement equation studied in Section 8.2. Using this idea, instead
of the quasi-interpolation of the discrepancy, yields considerably better results, as
shown in Fig. 9.1(b). In what follows, we utilize approximate refinement equations
to construct multi-resolution approximants for functions given on domains.

9.3. Application of the approximate refinement equations

9.3.1. Approximate factorization of the quasi-interpolant. Theorem
8.1 states that identities of the form

(9.8) n(%) —p2 Yy n(%)n(%) + Ry p.p ()

mezZm

with a small remainder term R, , p are valid if 7 and the mask function
i=F " (Fn/Fn(p))
belong to the Schwartz class S(R™) and
Fn#0,
which is supposed throughout.

THEOREM 9.1. If u=! € N, then the approzimate refinement equation (9.8)
implies the approximate factorization of the quasi-interpolation operator (2.23)

(9.9) Mpp=Munp M+ Rip

with the quasi-interpolant

v X — hm
(9'10) M ) U(X) = D_n/2 u(hm) = e —
h,D m%ﬂ 17( \/’Bh )

and the remainder

—n X
(9.11) Ry pu(x) = D"/ %ﬂu(hm) Ryyup (3 —m).

PROOF. Using (9.8), one obtains

p—n/2 m%ﬁ u(hm) n(%)

o N (e (B X/ (k) —m/p— v
=D u,n;zn (h )”(@)”( JD )

+D"/? Z w(hm) R, , p(x/h —m).

mezZm
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1 1

Since g~ is an integer, k = v 4+ u~
at the representation

Mi.pu(x) = D" kge:m u(hm) ﬁ(“k\/_l_)m)n(xu; 5%1‘) + Ry pu(x)

=D" Z u(hm) ﬁ(uhk — hm)ﬁ(x — uhk) + R, pu(x)

m € Z". Thus, after re-indexing, one arrives

o hv/D /D
=D 2 Y My pu(uhk)n( *—L25) 4+ Ry pu(x). 0
= h,D (/J’ )77( /,Lh\/’Z_D> h,D ( )

9.3.2. Properties of the mask function 7. In Section 8.2, some analytic
examples of mask functions 77 were given. Here, we discuss some further properties
of these functions. Let us note that for the computations in the algorithms described
below, we do not need the analytic expression of the functions 7. In the following
section, we will show that for our purposes it suffices to precompute the values of
7] just at several points, which is simple if 7 is a radial function. Otherwise, it can
be done with some numerical method for computing the inverse Fourier transform.

Suppose that in addition to the requirements of Theorem 8.1, n is subject also
to the moment Condition 2.15 of order N. Then, in view of (2.48), 7} satisfies these
conditions as well. Then, by Theorem 2.17 the quasi-interpolant .//\/lvh,p defined
by (9.10) features the same rate of approximate convergence as Mj, p (which is
generated by 7). Note that the terms of the saturation error can be estimated by

lea( 7, D)L < Z o TN

vezZ™\{0}

A Fn(p) ‘A:\/ﬁu

For example, the quasi-interpolation operator Mh,D generated by the mask function
Moy tO
—n n/2 —|x|?
nnr(x) = w2 L2 () e
(cf. (3.18)) provides the estimate
ju = My, pu| = O(VDR)*™) + [[eo( -, lans, D). »

where

Z Py (Jv*n°D) o (1)

- o, D <
lleo(- s 7201, D)l e < Pr—_1 (p2|v]272D)

veZn\{0}

with the polynomials

| S

J
!

<

Pr_q(t) = Z_

(cf. (2.39), (3.19), (8.12)). Consequently
leo(- 7ioar, D)l = Onp® M &= (1719TP),
Similarly to (2.63), one can introduce the parameter % so that

(9.12) RN pp (7,7) < D2eq (-, 7,D)|L., [0l <N,
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where the function rp(t,7) is defined as in (2.61). Note that by (2.64)

AP _n/z ‘,, X —1m ’< s
gp(%, 1) sup D > 77( 75 ) <lleo(+, 7 D)L -

|[x—m|>F&

9.3.3. Convolutions based on the remainder term. In the following, we
have to estimate semi-discrete convolutions R, pu of the form (9.11) which are gen-
erated by the remainder term R, , p(x) in Theorem 8.1. These sums are properly
defined, since we have rapid decay in x. Moreover, since (1 + |x|*)|R, ..p(x)| can
be made arbitrarily small by choosing D large enough, one can always find D such
that

(9.13) [RrpullL. <ellullr.

for any prescribed ¢ > 0.
Let us consider some examples. If 7 is the Gaussian (n = 72), then by (8.11),
the corresponding function 7}, is the scaled Gaussian

772(\/—5) = 772(\/2)(177_/3)) = 772(@),

Recall the approximate refinement equation (8.9) for this case

D =D —p?).

o XD _ (D) /2 Z o1 Im[?/D ~|x—pm|?/Dp
mezn
_ o-IXI%/D Z o 2mi(1—p?) (x,v) /u —m*Dlv|?
veZm\{0}

Hence, the generating function of (9.11) is given by
x —~ x
Row200) = 1) [0 = M)t ()] = m () [(7 = M, 31 (5],

where Mu,51 is the quasi-interpolant Muﬁu for u(x) = 1 and x,, = (1—p?)x. Thus

by Theorem 2.17, |R,, . p(x)| < |lc0(- , 12, D)/ ... and the semi-discrete convolution
Ry, ,nt has the uniform bound

Rnpnu(x)] < leo( 12, D)relullze = leo( 12, DL = 1))zl Lo

The following lemma, which will be stated without proof, shows that the remain-
der terms R,,,, ,,p in the refinement equations, corresponding to the generating
functions n2ps defined by (3.18), exhibit similar behavior as the remainder in the
case of the Gaussian n;:

LEMMA 9.2. Suppose that the parameter p € (0,1) is fized. Then there ex-
ist positive univariate polynomials Q1 and Qs of degree M — 1 such that for any
sufficiently large D

| Boon ()] < Q1(1x?/D) e PPN Qu(Dfpf?) e PA—#IE
veZm\{0}

As a consequence, we obtain that the generating function of the convolution
Ry, has the amplitude of the same order as the saturation error.
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9.4. Boundary layer quasi-interpolants

In this section, we use the approximate factorization (9.9) to construct a bo-
undary layer quasi-interpolation operator Bj;. For a given sequence of step sizes
{h;}iLy with

h; =p'h, O<hu<l, plez,
we obtain an approximate multi-resolution decomposition of the quasi-interpolant
on the highest resolution My,,, p, from which the desired boundary layer quasi-in-
terpolation is derived after an appropriate truncation of the summation.

9.4.1. Multi-resolution decomposition. We use the notation
(914) Aj :Mujh,Dv Aj :Mujh,Dv Rj :R;ﬂh,Du .7 207172'-'7
where Rp, p is the semi-discrete convolution (9.11). By Theorem 9.1, we have
(9.15) A= AjnAj+R;,  j=01,2....

THEOREM 9.3. Let {x;}}L, be a set of linear operators. Then

M
(9.16) Anxmr = Aoxo + ZAj( Aj-1xj- 1 Z Rijx;-
j=1
PROOF. By the approximate factorization identity (9.15)7 one has
Ajxg = Aj-1xj-1 + Ajx; — Ajmixg-1
= Aj_1xj-1 + A — A Ao — Ry
= Aj1xgo1 + A (G = Ajmix-1) = Ryt
and the assertion follows by induction. (I
For the following we denote the distance of x € Q to 92 by
(9.17) d(x) := dist(x, Q°)

and we define the set {XJ T as the collection of operators of multiplication by
characteristic functions of ‘rhe domains §);4;, where 7 > 0 is a free parameter, i.e.,

u(x), d(x) > Th;,
(9.18) Xju(x) = { (0 )7 (otilerwisi.
Denoting
M ~
(9.19) Biy = Aoxo + ) A (G — Aj-1xi-1),
j=1

one can write
Xou, ] = 05

M
* ~ . ~
MU = 5 At with @, := { - ’
s xju—Aj1(xj-1u),  j>1

Hence the function Bj,u is the sum of quasi-interpolants applied to xou and to the
discrepancy functions #;, j = 1,..., M, computed on grids with different step sizes.
Note that by (9.16)

M-—1
(9.20)  w—Byu=u—Ag(xou) ZA 5 =u— Ap(xmu) ZR]
7=0

Jj=1
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Thus Bj,;u approximates u like the quasi-interpolant on the finest grid modulo the
small remainder term Zj]\igl R, (xju).

9.4.2. Restriction of A;. Note that by properties of .//—\;l/hj717p7 the function

Uj = X;U — th—lyD(Xjflu) ) ] Z 1 )

is small in an inner subdomain of 2. This is used to restrict the application of
./Z(j = ./Whjp in (9.19) to a small boundary layer.

More precisely, in view of Lemma 2.23 and (9.4), one can choose D such that
for any x € Q(;1z)n,_,, where & is determined from (9.12), the estimate

|t (%)| < c;(VDhi—1)N||Vvullz o

9.21 N-1
021 e(lullz) + Z(\/ﬁhj—l)kwku(xﬂ)
k=1

holds. Hence one can ignore the contribution of A;%;(x) to the sum Bj,u(x)
it d(x) > (7 + R)hj—1. Therefore, in the following definition, we introduce the
operator Bjs in which the summation is performed layer by layer with only minimal
overlapping:

DEFINTTION 9.4. Let {XJ ~ . be the operator sequence
- ( ) U(X), Thj S d(X) S (7' + I%)h,jfl,
u(x) =
X 0, otherwise.

We define the boundary layer approximation operator by

M
(9.22) Bar = Aoxo + Y AiXi(x; — Aj—1xi-1)-

Jj=1

Alternatively, as we indicated in the beginning of this chapter, we can rewrite
(9.22) in the form

(9.23) Buu(x Z Z ijn(xh—\f/z_m)

j=0meQ;
with the coefficients
u(hom)a .] = Oa
Cjm = .
u(hjm) = My,_, p(xj—1u)(hym),  j>1,
and the set of indices

{ {m € Z" : Thy < d(hom)}, J=0,
Q; =

(9.24)

{meZ":7h; <d(h,m) < (r+R)hj_1}, j>1.

Note that in view of the truncation, the values of .//\/lvhjflyp(xj,lu)(hjm)
for m € Q; require only the point values u(h;j_1m) for 7h;—1 < d(hj_1m) <
(T+ 2/%)h,j,1
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REMARK 9.5. The practical implementation of Theorem 9.3 does not require
an explicit formula for 7. Indeed, in order to calculate Bpsu(x) by (9.23), one has
to compute the coefficients ¢; m, i.e., tabulate (x; — .ijlxj,l)u at the points h;m
(cf. (9.24)). By Remark 2.21, the computation of gj_lxj_lu(hjm) requires only
the summation over the indices v, for which

|hjm/hj—y —v| = |pm —v| <&,

where & is such that (2.63) holds. These (u~1(2r+1))" values (or just u= (25 +1),
if 77 is a radial function) can be precomputed using the numerical Fourier inversion
of (8.12).

9.4.3. Pointwise estimates. For a sufficiently smooth function u on , we
consider the approximation error for x € Q. Using (9.19), (9.20), and (9.22), one
derives

S

—1
(9.25) u—Byu=u— Ap(xmu) — R,(xu) + (B — Ba)u.
J

Il
=]

Since the characteristic functions satisfy

(9.26) (I =X)x = (= Xj)x5-1
it follows from (9.19) and (9.22) that

M M
(927) By =By =Y A(I-X)0G—Ai-1ixi-1) = YA T=X) T4 1)x;1-
j=1 j=1

LEMMA 9.6. Let x and & be such that (9.4) and (9.21), respectively, hold and
let 7 > 0 satisfy 7 > pk — k. If d(x) > (7 4+ k)hj—1 — khj. Then

A (T = X) (I = A1) (¢ -1w) ()] < oo D)l (c(VDhy )N | Vvul (o)
N—-1
+2e¢ Z (VDh;—1)¥IViul .. ()
k=0

with a constant c, depending only on 7j, whereas for d(x) < (T + &)hj_1 — kh;

|AG(T = X5) (I = A1) (xj-1u)(x))|
<e(@+lpo(sm D)llLa + 1057 D) L) 1wl L oo (02)-

PROOF. Split (1 = ;) (I = Aj-1) (x;-11) (%) = 01(%) + va(x) with
v1(x) == { (I = A1) (Gaw)(x),  dx) > (T + &)k,

0, otherwise,
va(x) = { —Aj-1(xj-1u)(x), d(x) < 7h;,
0, otherwise.
In view of (9.5), we have
10 (+sn, D) || Lo sup 1], d(x) > (1 + &)1,
VENCIES S :
gp(h; (7 + R)hj—1 — d(x)),n) sup |vi], d(x) < (7 + &)hj_1.
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By definition, gp(x,n) < €, so that for d(x) < (7 + R)h;—1 — kh;

[Ajor(x)] < el + llpoC 70 D)z lullcie) -
Furthermore, by (9.21)

N-1
[o1(3)| < ca(VDh- )V [Vvull o) + e([ull o) + D (VDR—1)F[Viu(x)])
k=1

which implies obviously for the case d(x) > (7 + &)h;_1 — kh;

[ Ajvr(x)]
N—-1
< oo 7 D)l oew (ea(VDh; - )N [V nvullz ) + 2 Y (VDhj1)* | Viull o) -
k=0

To estimate v2(x) in the case d(x) < Th;, we note that dist(x,suppx;—1) >
(1 + &)hj—1 — Th;. Hence by Lemma 2.22

[v2(x)| < gp(7(1 — p) + R, 1) sup |ul ,
which leads to

[Ajv2(x)] < llpo(m, D)l Lo lull () - O

THEOREM 9.7. Suppose the generating functionn € S(R™) satisfies the assump-
tions of Theorem 8.1 and the moment Condition 2.15 of order N. Let u € CN(Q)
and let € > 0 be given. There exist positive D > 0, k, and k such that for any non-
negative T > Kk — K, the boundary layer quasi-interpolation operator By defined by
(9.22) satisfies the estimate

N—
(I = Bar)u(x)| < e(VDhy)N [ Vvull o) +¢ VlIViul Lo »
k:O

)_.

where the index j can be determined by

j=0, i () > (r+ 7 — sho.

ji=1,....M -1, if (T+R—kwh; <d(x) < (T4+F—kKu)hj_1,

j=M, if (74 max(R — kp, k))har < d(x) < (T + K — kp)har—1,
where d(x) is the distance from x to 0.

PRrROOF. First, we choose D large enough and such that the saturation errors
of the quasi-interpolants M, p and My, p are less than a sufficiently small §. Also
let the sum of the remainders satisfy

’ Z Rj(xju < dlullzo(@)

which is possible, in view of (9.13). Then we choose values of the parameters x
and & such that corresponding quasi-interpolants satisfy the estimate (9.4) with the
given 0.
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It remains to estimate the terms of the decomposition (9.25). Since by Corollary

2.24,
N-1
= A (xarw) (%)] < ey (VDR [Vvull L) +€ D (VDhar)* [ Viu(x)|
k=0
if d(x) > (7 + k)hs, the application of Lemma 9.6 completes the proof. O

Thus, the behavior of Byu(x) is actually very close to that of Aju(x) for
some positive j < M, where j increases as the distance from x to the boundary
decreases. This leads to the effect that the approximation becomes better in the
points X € Q(ry.)n,, Which lie nearer the boundary 9€2.

hr

9.4.4. Numerical examples. We give some numerical examples to illustrate
the overall approximation properties of the operator Bj; defined by (9.22), and
especially the behavior of the error near the boundary. We shall use the boundary
layer quasi-interpolation (9.23) generated by the functions 72, 74, 76 based on the
Gaussian (see (3.12)), providing the second-, fourth-, and sixth-order of approxi-
mate convergence. The corresponding mask functions 72, 74, 7jg are given by (8.14).
In all cases, we use D = 3, which assures saturation levels of magnitude 10712, 101!
and 10710 for quasi-interpolants My, p based on 72, N4, 76, respectively. The step
refinement ratio in all examples is p~! = 3.

We recall that by Theorem 9.7, By performs approximately as A; on the j-th
boundary strip (7 + & — kp)h; < d(x) < (T + & — ku)hj_1, i.e., the nearer the
boundary, the better the approximation. The approximation results are plotted
over the boundary layer

{xeQ: (1+kr)hpyr <dx) < (T4 F— Kkp)ho}

in order to illustrate the interplay between the different quasi-interpolants building
the operator By;. Since the step-size used by Bjs is proportional to the distance
from the boundary, one can determine the order of the formula used by the slope
of the error plot |(I — Bar)u| against the distance to the boundary in logarithmic
scales.

Consider the plot in Fig. 9.2 showing the error from the approximation of
cos(1000z) near the boundary using the second-order formula based on the Gauss-
ian. One can clearly see the stepwise increase of the accuracy towards the boundary
until a saturation is reached. The error remains unchanged within a boundary strip,
since the step does not change there. Observe also the slope of the “staircase” — it
is approximately two.

In Fig. 9.3 the same function is approximated using the sixth-order formula
based on 7. Here, the slope is approximately 6 : 1, but the saturation error is
higher.

The plot in Fig. 9.4 shows the results for the approximation of the function
log() near the origin again using the formulas of O(h?)-, O(h*)- and O(hS)-orders
of approximate convergence. Note that in contrast to the previous examples the
absolute error |(I — Bys)log(z)| does not decrease as the mesh size becomes finer
near the origin. This is due to the fact that the second, fourth and sixth derivatives

of the logarithmic function grow as 22, =%, and 7% as x — 0.
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u(x) = cos(1000 x); D = 3; pt = 3;

0.01+
le-04
1le-06
1le-08
le-10
le-12

le-14

le-10 le-08 le-06 le-04 0.01 1

Fiaurre 9.2. Error plot for (I — Bjys) cos(1000z) using boundary
layer approximations of order O(h?).

u(x) = cos(1000 x); D = 3; pt = 3;

1t
0.01+ _
le-04 E
1le-06 E
1le-08 -
1le-10 § .
le-12 .

le-14 | ]

le-10 le-08 le-06 le-04 0.01 1

Fiaurre 9.3. Error plot for (I — Bjys) cos(1000z) using boundary
layer approximations of order O(h®).

The second example represents boundary error plots for the approximation of
the function ,
w(z1,ws) = { cos(1%0|x| ), r1 > 0,x2'> 0,
) otherwise,
as an illustration for the action of a two-dimensional operator built as the tensor
product of two one-dimensional operators By, acting on the arguments of x =
(21, 22). These one-dimensional operators are based on the generating functions 7y
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u(x) = Iog(x) D=3 pl—

0.01

1le-04

1e-06 | O(h*)

1e-08 | O(h°)

1le-10

o WWMWWW

le-08

le-06 le-04 0.01

FIGURE 9.4. Boundary layer error plots using second-, fourth, and
sixth-order formulas for (I — Bjs)log .
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FiGure 9.5. Boundary layer error plot for the function
cos(100 |x|?) with support on the first quadrant of R%. We use
the tensor product of one-dimensional multi-resolution operators

providing the order O(h?).

and 7g, which provide the approximate order of convergence of O(h?) and O(h®),
respectively. Similarily to the previous examples, we use D = 3 and the step

refinement ratio in all examplesis p~

1

= 3in both the x1- and zo-directions. Again,

the approximation results are plotted in logarithmic scales only in the interesting

area near the vertex of the angle.
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FiIGURE 9.6. Boundary layer error plot for the function
cos(100 |x|?) with support on the first quadrant of R?. The tensor
product of one-dimensional multi-resolution operators providing
the order O(h®) is used.

Precisely as in the one-dimensional examples, one can see the gradual increase
of accuracy in the direction towards the boundary when the second-order formula
is used (Fig. 9.5). The plot in Fig. 9.6 shows the approximation results, when the
sixth-order formula is used. In this case, the saturation level is reached already
after two iterations.

9.4.5. L,-estimates for quasi-interpolants of functions in domains. We
estimate the error of the boundary layer quasi-interpolation (9.22) in the L,-norm.
These estimates are the basis for the convergence studies of the cubature formulas
(9.3); therefore we will need them on subdomains and on the whole space.

We start with some simple estimates:

LEMMA 9.8. The multiplication operator with the characteristic function Xs,
of the boundary layer Sy, := {x € Q : dist(x,9Q) < h} can be estimated by

(9.28) || Xs, ullp, ) < R P/Pju (q), 1<p<g< oo,

(9:29) || Xs,ullz,@) < ch"[lullws (), 1<p<oo,0<r<s/n, r<1/p,
(9:30) [ Xs, ull(wsoy < chllullr,,, @), 1<p<oo, 0<r<s/n, r<1/p,
with constants depending only on ).

Here, (W;(€2))" denotes the dual space of W;(Q2) with respect to the Ly inner
product.
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PRrooOF. The first inequality follows with ¢ = pt, t > 1, from

t—1)/t
/|X5hu|pdx§(meas,5’h)( T all? e

pt

Q

To prove (9.29), we note that u € W}(Q), t > n/p, implies u € C(Q) by Sobolev’s
imbedding theorem. Hence,

p
/|X5hyu|l’ dx < max |u(x)|P meas Sy, < ¢ meas Sy ||u||W£(Q) ,
Q

so that
X5, ull ) < b lullwg)
and by interpolation

s, ull L ) < hPllullwei)y,  0<O<T1, t>n/p.

Setting r = 6/p and s = prt yields (9.29). Finally, since the operator Xg, is
symmetric, the estimate

1 X5, 1L, -1y @) —ws @) = X8, [lws @)~ 1,2

holds, which proves (9.30) and the lemma. O

Next, we consider the quasi-interpolant M}, pu where the function v is given
in a domain 2. In Lemma 2.30, we have considered the Ly-error in subdomains, so
it remains to consider the behavior of M, pu outside 2 and in the boundary layer.

To characterize the behavior of M, pu outside supp u, we use the functions

Hn(t) = [ o] dx
|x|>t
and gp(t,n), which was defined in (2.55). Since n € S(R™), both functions decay

to zero faster than any negative power of t.

LeEMMA 9.9. Consider two disjoint domains in Qq, Qo C R™ and let u be a
bounded function with suppu C Qy. Then

(9.31) IMupullz, ) < gp(h™ 7)Y Hy((VDR) " 1)Y? [[ul|p,n
where 7 := dist(Q1,Q2) and ¢ = p/(p — 1). If Q2 is bounded, then

(9.32) [MhppullL, @) < cgp(h™'r, 77)1/‘1 Hn((\/l_)h)_lT)l/p hsu% |u(hm)|
mefly

with a constant ¢ depending on s.

Proor. By Holder’s inequality,

oty <% 5 () S (1) i,

hmeQs hmeQs
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<o (52 )" hzﬂz‘”(xg i

hme

< D—np(l—l/tz)/?gD(h—17.7 77)p/q w(hm)| /’
hmeﬂg

’dx

Since

/‘ x—hm ‘dxg / ’ (\/_h>‘dx<(\/_h)"H77((\/—h) 7),

|x|>dist(hm,1)
(9.31) follows. Note further that for bounded 5

Z — meas€ly as h—0.

hmeQ,
Hence,
1/p
||u||p7h:(h” 3 |u(hm)|p) < cmeasQy sup |u(hm)),
hmeQ, hmeQ,
which proves (9.32). O

COROLLARY 9.10. Let 7 > 0 and let x,, be the characteristic function of
Q. C Q. Then

71/27_)

||Mh,D(thu)||Lp(Rn\Q) < cagp(T, W)l/q Hn(D 1/]DHUHLOO(Q) .

LEMMA 9.11. For a bounded domain €

(T = My p)ull @00 < calmh)? (14 [lpo( 1 D) Lo @) 2l Lo 5

where the constant cq depends only on the domain 2.
ProoF. With the notation S, = Q\ Qyp,
(I = Mnp)ul L, (s0) < 1T = Mip)ul (s, (meas Sp)
< (14 11po (7, D) L. 2m)) (meas Sp) /7 Sup Jul . 0

Lemmas 2.30 and 9.11 and Corollary 9.10 give L,-estimates for the quasi-inter-
polation error on the whole of R™. Corollary 9.10 assesses the error accumulated
outside 2 of the quasi-interpolant applied to the restriction of u to Q.5 C €. Since
n is in the Schwartz class S(R"), the product gp(r,n)Y/? Hn(D~'/27)'/P can be
made of the same order of magnitude as the saturation error e, by choosing 7
larger. Note that ¢ is controlled by the parameter D.

Then by Lemma 2.30, the quasi-interpolant My, p(x-ru) is a good approxi-
mation of u at internal points, lying at a distance larger than (7 4+ x)h from the
boundary. The error is then of order O((\/Z_)h)N) + ¢ and can be controlled effec-
tively by a proper choice of the step size h.

Thus, the main contribution to the overall error comes from the boundary
strip Q \ Q(;4.)n, where, by Lemma 9.11, the error is of order O(RP) if u does
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not vanish on 9. Since it will be numerically very expensive to make this term
small by choosing h smaller, especially in higher space dimensions, we again use the
boundary layer quasi-interpolation operator Bj; to reduce the size of the boundary
strip.

9.4.6. L,-estimates for boundary layer quasi-interpolation. We esti-
mate ||(I — Bar)ul|L, mn), where By is defined by (9.22). Similarly to Theorem 9.7,
one can prove that

N-1
(T = Ban)u(®) 2, (00) < ¢ (VDR)N [V null1, 0 +2 D (VDR Vil 1,0
k=0

where Q) = {x € Q : d(x) > (7 + max(k — ki, k))har}. So it remains to es-
timate ||[Byu(x)||z, (o) and [[(I — Bar)u(X)|[z,@\Q,)- From Corollary 9.10, the
representation

M
Buu = Ao(xou) + Y AN (x5 — Aj-1x-1)u

j=1
and the definitions of xo and X; we obtain directly that

IBarull, ey < ca M gp(r,n)"/ Hy(D 1) P lul|, (o) -
Furthermore, by (9.25), the difference (I — Bar)u(x) at Q\Qps is the sum of

3

(I — An)(xaru)(x) and terms which are less than the saturation error hence from
Lemma 9.11, we conclude that

(I = Bar)u(x) ||, (@\2n)
< c(r + max( — mp, £)har) VP (14 [|po (7, D) Lo o)) 1ull o ) -
THEOREM 9.12. Let the generating function n € S(R™) satisfy the assumptions
of Theorem 8.1 and the moment Condition 2.15 of order N. Suppose that Q C R

is bounded with Lipschitz boundary and let u € WPN(Q) with N > n/p. For any
e > 0, there exist D > 0 and a boundary layer approximation Bys such that

lu = Barul, eny < et (PN |V vullz, ) + c2(u™ B)VP|lull o) +ellullyyx gy -

Therefore, for a given pu, the choice

logh

log pu

guarantees that ||u — Basul|L, ) behaves as the usual quasi-interpolant generated
by 7.

M=~ (Np—1)

9.4.7. Estimates in weak norms. We saw in Subsection 4.4.2 that the
quasi-interpolation on uniform meshes converges in weak norms because the satu-
ration error, which is caused by fast oscillating functions, converges weakly to zero.
The same property holds for the case of non-uniform meshes considered here. For
the proof of Theorem 9.7, the approximation error (I — Bys)u is decomposed as
follows:

S

-1

(I = Bau= (I = Auxam)u— )  Rj(xju) + (Byy — Bu)u.

<
Il
o
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The second term consists of convolutions with small oscillating functions, whereas
(B3 — Bu)u, by Lemma 9.6, consists of functions with Ly-norms which do not
exceed ¢(Dh)N||[V nyullL, (o), plus small oscillating functions.

Therefore one can show similarly to Theorem 4.6, by using the results of Sub-
section 9.4.6, that for s > 0 the norm in the Bessel potential space H, ® is bounded
by

M—-1
| 3 Ritxw) = Bir = Banu|, . < en (VDR Tl
=0 g

N—-1 c ( D)
tesht S0 (VDRIZE Z e o)

!
=0 al

Thus, it remains to estimate |[(I — Aarxar)ull;-<. For integer s > 0, we have
P

(7 = Anexan)ull g« < e(lAnxarullz, ey + 17 = Anrxan)ul (s 9)y)

with ¢ = p/(p — 1). Denoting by xar+1 the characteristic function of the boundary
layer Q\ Q4. one gets from Lemma 9.8 that for 0 <r < s/n, r < 1/q,

haro

Ixar+1 (I = Anexan)ull (wi @)y < chlylXar (I — Avxan)ul| o)

1
< chly P llullwy oy -

Furthermore,
(I = xar1)T = Avexan)ull(we @)y = = sup ’ / (I — Aprxa)updx
||<P||w;(9):1
Q\Snr41
- Ea(n,D)
< ey(VDha)V | Vvt Loy + cs iy Y, (VDhar)t QT’,HaauHLP(Q) ;
[a]=0 ’

so that the following approximation result is valid.

THEOREM 9.13. Under the assumptions of Theorem 9.12 for any € > 0, there
exist D > 0 and a boundary layer quasi-interpolant Bys such that

llw = Barull s gny < (s (VDI)N + co (™ B) /P4 |l ) + € B [l =10

where 0 <r < s/n and r < (p—1)/p.

9.5. Cubature of potentials in domains

In this section, we derive some estimates for the cubature of integral opera-
tors that often appear in problems of mathematical physics. As mentioned in the
beginning of this chapter, the cubature formula Cpu for the integral operator

ut) = [ kx = y)uty)dy
Q
is easily obtained from the boundary layer quasi-interpolation of the density

(9.33)  Kru(x) = KBpu(x) = i Z Ck,m /k(x -y (M) dy,
k=0 hymeQy, R» hk\/ﬁ
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if n is chosen such that the integrals can be obtained analytically or by simple
one-dimensional quadrature.
Many interesting operators are bounded mappings

(9.34) K2 Ly(Q) — W (1),

with some domains Q, € C R", i.e., K € L(L,(Q),W,;"(€1)). Note that the case
m = (0 corresponds to singular integral operators, whereas the volume potentials
associated with elliptic partial differential equations satisfy relation (9.34) with
m > 0. If the operator K is such that (9.34) holds with Q = Q; = R", Theorems 9.12
and 9.13 imply

THEOREM 9.14. Suppose that n € S(R™) satisfies the assumptions of Theo-
rem 8.1 and the moment Condition 2.15 of order N. Letu € WY (Q) with N > n/p
and K € L(L,(R"), H*(R™)). For any e > 0 there exists D > 0 such that

[Ku = Knul| g ey < a(VDR)N |V ul o)
+ Cz(NMh)l/p”UHLOO(Q) + EHU’”WIﬁV’l(Q) ‘

If additionally K € L(H,™(R"™), L,(R")), then

[Ku — Knull, @y < (e (vVDR)N

+ ea (MR lullw ey + €A™l
where 0 <r <m/n, r < (p—1)/p.

However, very often, the integral operator K satisfies (9.34) only for bounded
domains 2, €; C R™. Important examples are the harmonic or elastic potentials.
In this case, we are interested in the estimation of Ku — Kpu on some bounded
domain €. Since, in general, supp Byyu = R™, we have to consider integrals of the
form

/ k(x— y)Baru(y)dy, x €.
Qe

To this end, we choose a ball Br with radius R centered at the origin, which
contains €} and ;. We suppose that the kernel satisfies the estimate

(9.35) 0%k(x —y)| <rallyl), x€,yeR"\Bg,

for all multi-indexes 0 < [a] < m and some functions rq () of at most polynomial
growth.

LEMMA 9.15. For any N > 0, there exist constants cn,a,r such that

| [ oone-Buuas], < exn ¥ mes) ol o

R"\BR

Lp (1)

If R — oo, then ¢y o,r — 0.
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PROOF. We estimate

[ ekey) X amn (T o
R\ Bg hpmeQy kVD
< ellul? / re(ly ‘n(mwdyp
|| ||Lw<m(Rn\BR ( |>hkmzegk 5 )
p
<clull ([ ralyhan(n disity. Q. y)
R"\Bgr

Let ro(y) < cjy? for y — oo. The rapid decay of gp implies
gp(hi ™ dist(y, Qx),n) = gp (7 + by * dist(y, Q),7) < exhy dist(y, )~
for any N, so that the inequality

re(|y1) go(dist(h " dist(y, Qx), n)) dy < ch) /
R"\Bgr R™\Br

ly

g
dist(y, Q)N Y

with N > n + j proves the assertion. (I

THEOREM 9.16. Let u € W (Q) with N > n/p and K € L(Ly(Q), W (Q1))
satisfying (9.35). Then for any € > 0, there exists D > 0 such that

K = Knullwy 0,y <et(VDIN [lullwy (@)
+ CQ(MMh)l/pHUHLm(Q) + 5||u||WI§V’1(Q) .

If, additionally, KC € L((W}7} (Q)),L,(82)), then

/(p—1)
(9.36) [Ku — Knullr, ) < (c1(VDR)N +C2(MMh)l/p+T)||U||W;V(Q)
+eh™ ||U||WI§V—1(Q) :
where 0 <7 <m/n, r<(p—1)/p.
ProoF. Fix the ball Br and split
Kru(x) = KByu(x) = KxppBuu(x) + K(1 — x5 ) Buu(x) .

The W;"(Q1)-norm of the difference

[Ku = KxBpBuullwp @) = [Kxse(u = Buw)|wme,) < crllu— Barulln, (sx)

can be estimated using Theorem 9.12. It follows from Lemma 9.15 and Sobolev’s
imbedding theorem that the W, (€21)-norm of the second term is bounded by

IK(1 = xBr)Brulwp @) < coh™[[ullp @) < eb¥[ullwy o) -
The same arguments also apply for (9.36) by using the inequality
IKu = KxprBarullL, i) < erllu = Buulwr () < cllu = Baull gmgny
and Theorem 9.13. (|

Summarizing, for a large class of domain integral operators with singular ker-
nels, one can define cubature formulas retaining the order O(h") plus some small
saturation error, if the boundary layer quasi-interpolation of the density is used
with appropriate parameters p and M.
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REMARK 9.17. Note that the previous construction and results are applicable
if instead of the integer points {m € Z"}, the set of lattice points {Am : m €
Z"} with a non-singular n x n matrix A is taken as basis grid. This case can be
transformed to that considered above by introducing the coordinates y = Ax and
the new generating function n4 := |det A|~1n(A-), which satisfies the conditions of
Theorem 9.14.

Let us consider two simple cubature examples:

ExaMPLE 9.18. Consider the logarithmic potential

1 1
Lou(x) = Py /log x—] u(y)dy .

Q

Note that the mapping
L:L,() — sz(Q), 1<p< oo,
is bounded, if €2 is a bounded domain. Thus, Theorem 9.16 yields the estimate
121 — Lo pullwz) < et (VDR)N [V nul|L, @)
+ (M) VP |ul| L) + ellullyy-1q) -

Consequently, if the boundary layer approximations are such that p™ is of the
same order of magnitude as hNP~! we get the approximation order O(h") modulo
a small saturation error. If we measure the error in a weaker norm than W]f7 the
saturation error tends to zero together with h. For example, if u € WiV (Q) with
N > 1, then we obtain

1£2u = Lopull o) < (x(VDR)Y + o™ ) |fullwy o) + € 2 [lullyyr-1g)

so that even the choice u* < AV =1 leads to the order O(h") plus a small error term
converging to zero with the rate O(h?). Note that Sobolev’s imbedding theorem can
be used to prove the convergence of the cubature L3 with respect to the uniform
norm.

EXAMPLE 9.19. The Poisson integral (6.12), i.e.,

Prp(x) = (4mat) ™™/ / e~y et o(y) dy
Q

provides a solution of the homogeneous heat equation with initial value u(x,0) =
o(x), x € Q. In Subsection 6.2.1, we pointed out that the Poisson integral of the
Gaussian or related functions have simple analytic expressions. Since the kernel
function is smooth for any fixed ¢ > 0, the Poisson integral generates a bounded
mapping from Sobolev or Bessel potential spaces of arbitrary negative order into
L,-spaces. Therefore, from Theorem 9.16, it follows that

[Pep — Penoll naeny < (c1(VDR)N + cop™ B[l @) »

with constants depending on ¢ > 0 but not on ¢ and h. Hence, P, o = P(Bue)
represents a semi-analytic cubature of order O(h™V) without saturation errors.
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REMARK 9.20. Theorem 9.16 shows that for p < oo and D large enough,
an N-th order approximation of the integral Ku up to a prescribed accuracy can
be obtained by fixing ¢~' € N and choosing M large enough, for example, M =
O((pN—1)logh/log ). The computational costs are, of course, proportional to the
number of grid points used for the construction of By;. The thickness of the layers
O, k=1,..., M, is proportional to the size p*h of the mesh chosen there; hence
the number of grid points at Qy, is O((u*h)~(»~1). Therefore, the computational
costs for evaluating the sum over all nodes of the layers Qk, k = 1,..., M, are of

the order
(((u - uM)h)("1)>
O - .
I—p

Thus, the boundary layer approximation with isotropic meshes reduces the order of
the computational costs by 1. In the next section, we consider the use of anisotropic
meshes for special domains leading to a further reduction of the complexity of the
cubature. Note that a more detailed analysis performed in [35] indicates that an
optimal choice for scaling subsequent meshes is p = 1/3, if the generating functions
(3.12) are used.

9.6. Anisotropic boundary layer approximate approximation

The method developed in the previous sections uses refined isotropic meshes on
each boundary layer. This is the reason why it can be applied to arbitrary bounded
domains. But a closer look shows that, in fact, only mesh refinement towards the
direction of the boundary is necessary in order to achieve the same approximation
results.

Here, we consider this modification of the boundary layer quasi-interpolation
for the case of three-dimensional polyhedral domains. This leads to formulas of
reduced complexity but having the same accuracy as before.

Consider a three-dimensional bounded polyhedral domain 2. To approximate
the integral operator (9.1), we divide the domain into simpler parts and process
them separately. Using a partition of unity, the function u is decomposed into the
sum

(9.37) u= (wm + D et Y Pt Y sﬁfk)u

corners edges faces

where the cut-off functions ¢ € C§° , 0 < ¢ < 1, are different from zero only on
special parts of ). So, ¢., = 1 at a neighborhood of the k-th corner point and
vanishes outside a larger neighborhood. Correspondingly, ¢., = 1 at a neighbor-
hood of the interior of the k-th edge, ¢y, = 1 at some interior part of the k-th
face and ¢;,+ = 1 on some interior part of 2. The approximation of y;,: u can be
performed by the usual quasi-interpolant (2.23) with a suitable generating function,
whereas the functions ¢., v are approximated on the domain supp ¢., by applying
the multi-scale quasi-interpolation operator B;; considered in Section 9.4.

We study the approximation of the functions ¢, v and ¢y, u by using mesh
refinement only in the direction normal to the boundary side.

To start with the approximation near the faces of €2, we consider a sufficiently
smooth function u given in R} = {x = (x/,z3) € R® : z3 > 0}, with bounded
support and u(x’,0) # 0. More precisely, suppose that G C R3 is a bounded
domain whose boundary contains a two-dimensional domain I' C {(x/,0) : x' € R?}.
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In the following, Wlfv(G) denotes the subspace of all functions from WY (G), which
can be smoothly extended by zero through OG\T'.

We are interested in constructing approximants to u € WéV(G) with respect to
the sequence of anisotropically distributed mesh points {(hm’, u¥hms3) : (m’, m3) €
73, m3z > 0}. Therefore, we consider generating functions of tensor product form

(9.38) n3(x) = 13(x’, 3) = n2(x") m (w3) ,
where 72 and 7; are generating functions of the Schwartz class of two or one vari-
ables, respectively, with positive Fourier transform.

The following assertion can be proved analogously to Lemma 2.30.

LEMMA 9.21. Suppose that both no € S(R?) and m € S(R) satisfy the moment
Condition 2.15 for some given N and let pn € (0,1). There exists k > 0 such that
the quasi-interpolant

}:I
939 ./\[h ux) = D / U hml,/,bhm3 773
N
(hm’,uhms)eG

— hm' z3 —uhmg,)
WD ' puhVD

approximates u € WIfV(G) , N > n/p, in the subdomain Gypun = {x € G : x3 >
kph} with the estimate
N-1

IVt = ull 1, Gy < ¢ (VDR [V ivullz, +€Z VD!Vl L, @) -

Thus, one obtains approximations of order O((vDh)N) modulo saturation
terms, for all x € G with the exception of the strip 0 < z3 <  for arbitrarily
small § > 0, if u is chosen sufficiently small. Therefore, it suffices to refine the mesh
only in the z3-direction, i.e., to use the refinement equation for the one-dimensional
generating function 7;. If we denote the corresponding mask function defined by
(8.12) by 1, then, obviously, the assertion of Theorem 9.1 remains true for A}, ,
and

./\N/h#u( — D—3/2 Z hm , phms) 172( /h—\/f;_)m'> i (x3M_h/\L/%m3 ),
meZ3

ie.,
N = Npy2 Noo + R s [Ruull <€
Analogously to the isotropic case, we may define the face approximant as

x' —hm' x5 — pFhms
(9.40)  Bagu(x) = D%? Z > Cj,m 773( = )
J=0 (hm’,ud hm3z)€Q); h\/’Z_) u]h\/z_)

with the coefficients
u(hm', hms), ji=0,
m = { w(hm!, i himg) — (N, jo-1xg—1u) (hm', hmg),  j > 1,
where
Q;={xe€G:mhy! <x3 <(r+rR)hu '},
x;(x) =1 for zg > 717 and zero otherwise, and the parameters 7, & are obtained
from the one-dimensional functions 7; and 7;.

Obviously, for the approximant on the anisotropic mesh (9.40), the assertions of
Theorems 9.12 and 9.13 remain true. In contrast to the approximation (9.2), which
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uses isotropic mesh refinement, the pointwise estimate on the layer (7+#&—rp)h; <
x3 < (T+&—rp)hj—1 is O((VDh)N), which is worse than O((v/Dh;)"). However,
this does not influence the estimate in integral norms and, which is more important,
the approximation quality of the resulting cubature formula. But most importantly,
anisotropic mesh refinement leads to a considerable reduction of the number of
mesh points and, therefore, of terms in (9.40), required to derive the N-th order
approximation of integral operators. Since any Q; contains O(h~2) mesh points,
the numerical costs to obtain the sum over these nodes are of the order O(Mh~2).

Quite similarly the approximation of edge functions u ¢, can be performed with
the order O((v/Dh)™) plus small saturation, by using anisotropic mesh refinement.
Consider the bounded domain G obtained after intersecting some wedge W =
{(z1,22,23) € R : 22 > alz1]}, 0 < a < oo, with another domain. The common
part of G and the boundary of the wedge OW is denoted by I" and again we denote
by WIfV(G) the subspace of all functions from W (G), which can be smoothly
extended by zero through OG\T.

Now, we are interested in constructing approximants to u € szv (G) with
respect to the sequence of meshes, which are refined in the two directions normal to
I'. As basic mesh points, we choose the lattice {(hAm', hms) : m’ € Z2 | ,ms € Z},
where A is a 2 X 2 matrix, transforming the quarter plane R?H onto {x e W:x3 =
0} with det A = 1.

In view of Remark 9.17, the following assertion for the tensor product generat-
ing function (9.38) is valid.

LEMMA 9.22. Suppose that both na(x') and n(z3) satisfy the moment Condition
2.15 for some given N > n/p and let p € (0,1). There exists k > 0 such that the
quasi-interpolant

x' — phAm' z3 — hmg)

N, =D hAm', h :
H»hu(x) Z ’LL(/], m m3)773( /Lh\/ﬁ h\/,l—)

(pthAm’ ,hm3)€eG

approzimates u € WZfV(G) in the subdomain Guun = {x € G : dist(x,I') > kuh}
with the estimate

N—
NGt = tl| 2, () < € (VDN [Vvull, ) +e D (VDR |Vl () -
k=0

—

The mesh refinement towards I' without loss of approximation order is possible
owing to the factorization

Nuw =Nz o Nuw + Riy s IRl <,

where again =1 € N,

x’—uhAm’) 1(;103 —hmg) ,

A/ . Ty—3/2 ’ -
Nounu(x) =D 3" u(h Ana, himg) i N 5

meZ3

and 7z is the mask function of 72 defined by (8.12). This follows immediately from
the fact that the quasi-interpolant with 7y 4 := n2(A-) is based on the nodes hZ?
and that Fng 4 = Fma(A~14).
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Now the edge approximant to u € WN (G) is defined as

x' — WhAm' z3 — hms
) Bt 05T (o i
=0 (i hAm/ hims) €Q; 1 hvD hVD

with the coefficients
u(hAm’ hms), j=0,

Com = { u(hAm’, hmg) — (ﬁuj—lﬁhXjflu)(ﬂjhAm/, hms), j>1,

where
Q;={x€e€G:Thy! <dist(x,T') < (7 + &)hp! '},

x;j(x) = 1 for dist(x,T) > 7/ and zero otherwise, and the parameters 7, & are
obtained from the functions 72 and 7j;. Again, for (9.41), the assertions of Theorems
9.12 and 9.13 remain true. We note that the numerical costs to evaluate Bas cu are
of the order O(M?2h=2).

After these preparations, we can define the anisotropic boundary layer approxi-
mant to the function u given in the polyhedral domain 2. Turning to the decompo-
sition (9.37) and using the different types of approximants defined in (2.23), (9.2),
(9.40), and (9.41) we introduce

By = h (Uint) Z B (uee,) Z Bue(ugpe,) + Z B, (uey, ) -
corners edges faces

THEOREM 9.23. For any € > 0 there exist D > 0 and a boundary layer appro-
zimation By, which is anisotropic near faces and edges of the polyhedral domain

Q € R3, such that for any u € WZfV(Q), N > 3/p,
lu— Baru| L, ) < ex (VDY |V vt @) + c2 (1™ B) Pl o) + ellullwy -1
and

= Bastll -+ sy < (ex(VBRY + ealu™WYP 4+ 1) fulyyw—1 -
where 0 <1 < s/3 and r < (p—1)/p.

9.7. Potentials of tensor product generating functions

From the results of Section 9.5 and Theorem 9.23, it follows that the assertions
of Theorem 9.16 are valid also for the approximation ICEM of the integral operator
K over a polyhedral domain  C R3. For the practical application, it remains to
study the efficient computation of integrals of generating functions occurring in the
approximant By;u. Here, we consider the tensor product function 73 with factors
of the class nzps defined in (3.12), i.e., we set

ma(x) = 2L (% 2) L2 @) ot

M-1
1)J+k . a2k

— ——3/2 J
-7 Z lkl4J+kAx82ke v

where Ay = (9/0x1)? + (8/83:2) . Therefore, the anisotropic generating functions
can be written in the form
Nl ( 1)J+k j _Ix/|2 (9% 2.2

_.—3/2 —a’x
3(x',ax3) =7 E — 7 A, e —— e 3
s (X' )= e Gl k! 4i+kq2k T Ox2k
Js
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Then the convolution integrals with n3(x’, axz3), a > 0, have the form

/g(x —y)ns(y', ays) dy
]R3

M—-1 +k 2k
RV (=1 / i ol 07—t
=7 —— [ g(x—y)Al e —e T ¥ dy
(9.42) j,kz_o Gkl 47+k g2k J y Dy2F

k! 4i+kq2k = Ox3k

M-1 j+k 2k
— —3/2 Z "(—1)J AJ 9 /g(x—y) e~ V1P =au5 gy
k=07’ s

We see that higher-order cubature formulas are easily derived from the integrals

(9.43) / g(x —y) e WF=a%i gy
R3

which have been considered in Section 6.3. For integral kernels g, often occurring in
applications, the integral (9.43) can be reduced to a one-dimensional integral with
a smooth integrand. In Section 6.4, this approach was extended to higher-order
generating functions, which are not tensor products. Here we apply this approach
to potentials of n3(x’, ax3). Note that the case a # 1 covers both types (9.40) for
the face function and (9.41) for the edge function approximation.

Consider, for example, the harmonic potential of n3(x’,axs). In Subsection
6.3.1, we treated the harmonic potential of anisotropic Gaussians in the general
case. In particular, applying formula (6.38), we obtain the Newton potential of the
anisotropic Gaussian e~I¥I"=a%23 45 the one-dimensional integral

1 /e—ly’|2—a2y§ o] 7e—x'2/(l+t) o —a*w3/(1+a?t)
47TR3 |X—y| y_40 1—|—t 1/1_|_0th

such that, in view of (9.42),

1 !
13 (y » @y3) dy

Ar ) x—yl
]R3

! Mil (~1)ytk gk 7e—|x/|2/<1+t> o —aw3/(14+a%t)
A2 L Lkl 4atRa2k T g2k 1+t V1+a%t
J,R= 0
From (3.15), we conclude that
—Ix’|? —1x'|?
j e Ix'|?/(1+1) _ (—1)jj!4je x| /(‘1+t) (p)( |x’|2)
* T4t A+ttt 77 \14¢
and
o2k e—a2w§/(l+a2t) Zke—a2m§/(l+a2t) 2.2

= (~1)Fk1ak 2

(/o) (28 )
dx3k T+ a%t (14 a2t)k+1/2 7K 1+a%t/’

Thus, the Newton potential of n3(x’, axs) is given by the one-dimensional in-
tegral
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1 73 ylva’
. ( Y3) dy
dm Ix -yl

R3

1 Te-WIP/a+t) g—a%ad/(ra ML [O (XY [ (=1/2) ey )
432 / 1+t Vita?t 4= (+1) (1 + a2t)*

Obviously, an analogous formula can be derived for the other potentials con-
sidered in Section 6.3.

9.8. Notes

The poor performance of the simple quasi-interpolation method described in
Section 9.2 was observed by Ivanov. He proposed in [35] the approximate factoriza-
tion of the quasi-interpolation operator and the boundary layer quasi-interpolation
based on the multi-resolution decomposition discussed in Sections 9.3 and 9.4. Rig-
orous results on the approximation error in L, were obtained in [36]. In the present
chapter, we presented a modification of the proofs given there. The results of Sec-
tion 9.6 on the anisotropic boundary layer approximation are taken from [37].






CHAPTER 10

More general grids

In this chapter, we show that the construction of approximate quasi-interpolants
(2.23) is not restricted to uniform cubic grids.

It is required sometimes to approximate functions on the nodes of orthotropic
partitions or on uniform non-orthogonal grids. In Section 10.1, we consider some
variants for the construction of approximate quasi-interpolants on those uniform
grids, among them two-dimensional regular triangular and hexagonal grids. Then
we study the more interesting case to approximate a function by its values on
non-uniformly distributed nodes.

For the case when the grid can be interpreted as a perturbation of a uniform
grid, in Section 10.2, we construct quasi-interpolants which involve the function
values on the non-uniform grid, but the generating functions are centered at the
nodes of the uniform grid. Therefore the quasi-interpolants have the well-known
simple structure.

For other distributions of nodes, we require that the approximate quasi-inter-
polant have a similar semi-discrete convolutional form in order to obtain cubature
formulas as in the uniform case. This can be achieved if the nodes are obtained by
a smooth transformation of a uniform grid. In Section 10.3, we derive formulas for
quasi-interpolants which approximate functions given either on an n-dimensional
domain or a manifold. We show that the approximants exhibit the same properties
as the approximate quasi-interpolants on uniform grids.

10.1. Uniform grids
10.1.1. Orthotropic grid. If the function data are given on a rectangular
grid
{(him1,...,hymy) :m e Z"},

then it is useful to consider the more general quasi-interpolation formula

1 Tr1 — hlml Tn — hnmn
S S hima. .. o,
JD,...D. D ulbam,.. hum )77( VDl Dl )

" mezn

Applying the one-dimensional Poisson summation formula (1.3) in each variable to
a sufficiently smooth and rapidly decaying function 7, one obtains the formula

mz(l‘l—hﬂm)al (ﬂcn—hnmn)%n(aﬁl—hlm1 xn—hnmn)
Tt &= N VDl "\ V/Diha VDihy T \/Dahy

n

= (é)bL] Z 8“.7-'77(\/1711/1,...7\/9_71%) 1_[627ri;nju]-/hj7

vezm j=1
which is valid if both series converge absolutely. Then error estimations, similar to
those of Chapter 1, can be obtained.

225
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A further generalization of the quasi-interpolation formula is the "tensor prod-
uct" case, which means that the generating function has the form

n(x) = (1) ... mn(2n),
where it is possible that the one-dimensional generating functions 7; have zero
moments of different order in different directions.

10.1.2. Non-orthogonal grid. The quasi-interpolation formulas can be eas-
ily generalized to the case when the values of u are given on a lattice

Ap :={hAm, m e Z"}

with a real nonsingular n X n matrix A. We want to use the same generating
functions as before, for example, radial functions 7. This situation can occur,
for instance, in cubature formulas for pseudodifferential operators, where analytic
expressions are available only after affine transformations.

We define the quasi-interpolant

_det A X — hAm
(10.1) Ma,ulx) = o 3 u(hAm) ( Nors )

mezZm
Using the notation ug = u(A-), na = det An(A-), t = A71x, the sum (10.1)
transforms to

_det A A7 'x — hm
Maul) = Tz 3 walhm)n(4=—= =)

mezZ™

_ pn/2 (hm) t—hm
5 ()

This is exactly the quasi-interpolation formula (2.23) with the transformed gener-
ating function 74 applied to the function w4. Since

[xnatax = dea [xenax dx = (4% dx,

R Rn Rn

= Mh)DuA(t) .

the generating function n4 satisfies the decay and the moment Conditions 2.12 and
2.15 together with 7. Therefore one can apply all estimates obtained in Sections 2.3
and 2.4 to the quasi-interpolation formula (10.1).

Denoting the j-th component of the vector AV by (AV), and using the notation

(AV)* = (AV)]* ... (AV)om
we have
%ua(t) = (A'V)*u(At) , 9*Fna(A) = ((A")'V)*Fn((A") N,

where A! denotes the transpose of the matrix A. If, for example, u € WX (R"),
then representation (2.50) takes the form

MAhU(X) ( )+RNh( )

N-1 |
: (é;h DI ()R VDAY ) T,

[a]=0 vezn\{0}

with a remainder Ry j, which is bounded by

|Ryn(X)] < eay (WWD)V|[Vivullz.. ,
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and the constant c4 , is independent of u, h, and D.

We see that it is always possible to choose D such that the quasi-interpolant
M, satisfies an estimate of the form (2.49) or a local estimate similar to (2.58)
for any € > 0.

Let us note that by (2.22), Poisson’s summation formula on the affine lattice
A = {Am} ez has the form

() - 5 B e
mezn vezn
10.1.3. Examples. We consider approximate partitions of unity and quasi-
interpolants based on two regular grids in R2. For the first, the triangular grid, we
can directly apply the results concerning non-orthogonal grids. The second example
is a hexagonal grid, which cannot be represented as an affine lattice.
First, we consider quasi-interpolants on a regular triangular grid.

VAVAVAVAVAVAN
\VAVAVAVAVAV

VAVAVAVAVAVAN
NNININININ

FiGure 10.1. Tridiagonal grid

It is easy to check that the matrix

1 1/2
A =
0 V3/2
maps the integer vectors m € Z2? onto the vertices y4, = Am of a partition of R?
into equilateral triangles of side length 1 indicated in Fig. 10.1. From (10.1), we see

that a quasi-interpolant on the nodes {hy4, = hAm}cz2 of a regular tridiagonal
partition of R? can be given as

V3 x — hy2
Mbu(x) == == w(hAm)n( —=2),
2D 2, ( VDh )

which has the approximation properties described in Chapter 1. In particular, the
A
X~ ¥m

3
ﬁ”( /D

function system { )} forms an approximate partition of unity
meZ2

and

A
‘1 — @ n(x — ytn) ‘ ’ / 727ri\/5<A71x,u>dX ]
veZ*\{0} po
1 -1/V3
0 2/V/3
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and from (10.2), we obtain Poisson’s summation formula for 5(x) = 7~ e~ xI"

a triangular grid

on

V3 O G
21D
meZ?
(10 3) — l Z 627fi(11V1+$2(2V2—V1)/\/§) /e—ly\2 e—27ri\/f(y11/1+y2(2U2—u1)/\/§) dy
T vEZ? R2
_ Z 674772D(1/127u1vz+u§)/3 e27ri(zlu1+z2(21@7v1)/\/§) )
veZ?
Hence, the main saturation error which corresponds to e = (0,0) is bounded by
\/g 2 275(,,2 2
1— —|x—Am]| /D’ < —4m*D(vi —v1iva+v3)/3
’ 27D L © < 2 e
meZ2 (v1,v2)#(0,0)
-6 674772D/3 +O(€74ﬂ-2D) )
Note that this difference is less than the single and double precision of floating point
arithmetics of modern computers, if D > 1.5 and D > 3.0, respectively.

Fi1GURE 10.2. Hexagonal grid

Next, we consider a regular hexagonal grid of side length 1, depicted in Fig. 10.2.
It can be obtained when the nodes of a triangular grid of side length /3 are removed
from the nodes of a regular triangular grid of side length 1. This is indicated in
Fig. 10.3, where the eliminated triangular grid is depicted with dashed lines. The

F1GURE 10.3. Nodes of a hexagonal grid

removed nodes can be written in the form Bm, m € Z?, with the matrix

3/2 0
B = .
( V3/2 V3 )
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Hence, the set of nodes X° of the regular hexagonal grid are given by
X ={Am}ez2 \ {Bm}yeze,

and the sum of the shifted basis functions 7(-/v/D) centered at the nodes of X° can

be written as
Z 77( ) Z n(x—Am) Z W(X Bm)

yeeXe meZ2 meZ2

Under the condition Fn(0) = 1, we have from (10.2) that

> ”(X?/gm) - defA (1+ X FavDa) )i D)

mez? vez?\{0}

Thus we obtain

S (YY) =R S pp e

yoEX® uezz\{O}

2D . ty—1
E 7:77 ) U)eQﬂ'z(x,(B ) u>'
33 3\/_ vez2\{0}

Hence, an approximate partition of unity centered at the hexagonal grid is given
by

() "(X&%Q)—”S S Fn(D(AY) ) ey
y

veZ2\{0}

Z ]:77 ) V)e2m<x,(3f)*1u)'

veZ?\{0}

l\D|P—‘

Now we define the quasi-interpolant on the h-scaled hexagonal grid

= {hAm}meZ2 \ {th}meZ2

as

3v3 X — hy®
(10.4) Miu(x) := — u(hy®) .
n m = Y "( h/D )

Since it can be written in the form
33 x — hAm x — hBm
MSu(x) = —= uw(hAm)n| —— ) — w(hBm)n| ————) ),

we see that under conditions (2.45) and (2.47) the quasi-interpolant M provides
the usual estimates (2.49), (2.58) and (2.60) for sufficiently large D.

Because
2/3 0
Bl = ,
( -1/3 V33 )
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we obtain, by using (10.3), Poisson’s summation formula for Gaussians on the
hexagonal grid

3v3 o—x—y°12/D _ 3_\/§( S obeam/p_ § ef\xmeF/D)
47D 47D
yeexe meZ? meZ?
_ § Z 674772D(1/f71/1vz+v§)/3 e2wi(zlv1+m2(2vz7v1)/\/§)
vEZ?
_% Z 674772,D(l/f71/11/2+1/§)/9 e271'7;(1)1(21/171/2)/34‘1’1)21/2/\/5) )
veZ?

Hence, the main saturation error for n(x) = 77! e ~1xI” is bounded by

’1 38 o —Ix—y°|?/D
47D
yoEX®
1
< 5 Z 3674772D(uf7v11/2+v§)/3 _|_ef47r2D(vffu1vz+u§)/9

(v1,12)7#(0,0)
—3 e—47r2D/9 +O(e—47r2D/3)'
10.2. Quasi-interpolants for data on perturbed uniform grids

Here we give a simple extension of the quasi-interpolation operator on a uniform
grid, defined by (2.23), to a quasi-interpolant which uses the values u(x;) on a set
of scattered nodes X = {x;};cs C R, close to a uniform grid.

10.2.1. Perturbed grid. Consider the following example. Let {z;} be a
sequence of points on R, close to the uniform grid {hj};ecz and such that z; 1 —z; >
ch > 0. Choose a rapidly decaying function 7 satisfying the conditions

1= -] < | Y@-ime-)| <=
JEZ JEZ

One can easily see (and it is a special case of the results of this section) that the
quasi-interpolant

Tijy1 — hj hj —x; x .
M) = 5 (Z2 = afay) + (o) ) (5 )
j% v -y w0 h

satisfies the estimate
|Mpu(z) — u(z)| < Ch? |[u"|| @) + e(lu(@)] + hlu'(2)]),

where the constant C' depends only on the function 7.
In the following, we suppose

CONDITION 10.1. There exists a uniform grid A such that the quasi-interpolants

_ X — hy;
(10.5) My pu(x) =D 2 u(hy;)n( —=2L
h,D ijEA Y 77( h\/ﬁ )

approximate sufficiently smooth functions v with the error

N-1
(10.6)  |u(x) = Mppu(x)| < ¢y VDR)N | Viulz, + € Y (VD) [Viu)],
k=0
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for any € > 0 and sufficiently large D. Let X} be a sequence of grids with the prop-
erty that for k1 > 0 not depending on h and for any y; € A, the ball B(hy;, hk1)
contains nodes of Xj,.

10.2.2. Construction.

N -1 !
DEFINITION 10.2. Let x; € Xj,. A collection of my = ﬁ — 1 nodes
nl(N —1)!
xi € Xy, will be called a star of x;, denoted by st(x;), if the Vandermonde matriz
(10.7) Vin = {(L;xﬂ) } (@] =1,..,N — 1,

is mot singular.

ConDITION 10.3. Let X, be a sequence of grids satisfying Condition 10.1.
Denote by x; € X, the node closest to hy; € hA. There exists ko > 0 such that
for any y; € A there exists a star st(X;) C B(X;, hka) with |det Vx| > ¢ > 0
uniformly in h.

To describe a construction of the quasi-interpolants which use the data at Xj,

we denote the elements of the inverse matrix of Vj j by {bg)k}, [@]=1,...,N -1,
X € st(X;), and we define the functional
N-1 X\ .
Falw) = u@) (1= (vi=32) X o))
[a]= xjEst(x;)
N 0 X\
—I—Zu(xk)Zb (yJ h)'
xpEst(X;) [a]=1

Then the quasi-interpolant is defined as the sum

—h
(10.8) Mh Du n/2yJZ€AFJh (X \/_yj)

i.e., the generating functions are centered at the nodes of the uniform grid hA. As
in the case of uniform grids, this construction allows one to apply fast methods for
the cubature of integral operators.

10.2.3. Error estimates.

THEOREM 10.4. Under Conditions 10.1 and 10.3, for any € > 0, there ezists
D such that the quasi-interpolant (10.8) approzimates any u € WX (R™) with the
error estimate

N-1
(10.9) My pu(x) —u(x)| < enpp BV Vaulr, +2 Y (VDR |Viu(x)],
k=0

where ¢y, p does not depend on u and h.

PrOOF. For a given u € WX (R") and the grid X;,, we consider the quasi-
interpolant (10.5) on the uniform grid {hA}

— hy;
My, pu(x) = D~/? u(hy;) 2.
h,D yJZGA J ( h\/’l_) )
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According to Condition 10.1, we can find D such that M, pu satisfies the inequality
N-1

(10.10) |Mppu(x) — u(x)| < eny (VDR)N[ViulL, +2 Y (VDh)*|Viu(x)|.
k=0

Hence, it remains to estimate | M, pu — M}, pu|. From the Taylor expansion (2.1)
of u around t € R™, we have

N-1 oy,
(10.11) wmy= 3 2 aft) (x — )™ + Ry (x,t)
[a]=0 )

with the remainder

which obviously satisfies

(10.12) IRn(x,t)| < enlx—t|N  sup  |Viul.
B(t,|x—t|)

For y; € A, we choose X; € X and use (10.11) with t = X;. We split

_ - oy (X~ hy;
Mi.pu(x) = MDu(x) + D y;ARN(hyJ,XJ)n( e )

with

1) _ y—n/2 = 9%u(x;) ~ o, (X~ hy;
(1013)  MDu(x) =D Y 3 (hy; — %) n( e )

y;EA a=0

Because |hy; — X;| < k1h for any y;, we derive from (10.12) that
| MW u(x) = My pu(x)|

_ X — hy;
<en (k1h)ND n/2 ‘n(ij)‘ sup |Vyul.
ijGA h\/ﬁ B(x,hk1)

The next step is to approximate 0%u(X;), 1 < [a] < N, by a linear combination of
u(Xk), Xi € st(X;). Consider the linear system with my unknowns

(10.14)

(10.15) — (xk — X;)¥ = u(xk) —u(X;), =xi€st(X;),

which, in view of Condition 10.3, has a unique solution {a(o{)hg[a]ngl- It follows
from (10.11) and (10.15) that

Nl h[a] () a — Xk_ij a ~
> e - 07u(®) (FE) = Ruvlxe X))

ol
[a]=1

Again by Condition 10.3, the norms of Vj_h1 are bounded uniformly for all j and h.
This, together with (10.12), leads to the inequalities

) — 92u(x;)|

(10.16) =

< CouhN7l sup |Vyul, 0<[a] < N.
B(;j,hﬁz)



10.2. QUASI-INTERPOLANTS FOR DATA ON PERTURBED UNIFORM GRIDS 233

Therefore, if we replace the derivatives 0%u(x%;) in (10.13) by a¥’, then we get the
sum

=2

-1 ()

Dt 5 (k) 3 %y - 507) (5.

ijA [a]:l
which, in view of
) al j X
o) = 3 b (ulxr) — ulx;)),
XkESt(;j)

coincides with the quasi-interpolant My, pu defined by (10.8). Moreover, by (10.13)
and (10.16),

[Mou(x) — M(I)U(Xﬂ
10.17 —h
( ) < CyhN Z n[a]D n/2 Z ‘ ( yJ)‘ sup |Vyul.

B(x,hk2)

Now, we use Lemma 2.6, Wthh implies the inequality

supD”/QZ’ ( y;)‘_

xeR”

for all D > Dy > 0. Hence, from (10.14) and (10.17), we obtain

|Mp, pu(x) — My, pu(x)| < CyhY (sup ) |V nul,
B(x,hko

which, together with (10.10), establishes the estimate (10.9). O

10.2.4. Numerical experiments with quasi-interpolants. The behavior
of the quasi-interpolant M}, pu was tested by one- and two-dimensional experi-
ments. In all cases, the scattered grid is chosen such that any ball B(hj,h/2),
jJe€Z™ n=1orn =2, contains one randomly chosen node, which is denoted by

Xj.
A 000tk N 0.00025 - -
'Y . '\I%‘ A e L 4
\ n! (VIR : \ n T‘\'-'\ /’\/‘1
' VR Lo O \ < /
AN \ [} \ \ YA
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|l \ \ ] \ |
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J \ /
0.0004 ‘\ /
W VWv\Mr\/\/\ <y /I
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\
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- 05 0.5 1
(€Y (b)

2

FIGURE 10.4. The graphs of My, pu — u with n(z) = 7= /2e=*",
D =2, st(z;) = {zj11}, when (a) u(z) = z* (on the left) and (b)
u(x) = (1 +2?)~L. Dashed and solid lines correspond to h = 1/32
and h = 1/64, respectively.
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FIGURE 10.5. The graphs of My, pu — u with n(z) = 771/2(3/2 —
22)e™*" D = 4, st(z;) = {zj_2,2j—1,7j+1}, when (a) u(z) = 2*
and (b) u(x) = (1 + 22)~!. Dashed and solid lines correspond to
h=1/32 and h = 1/64.

In the one-dimensional case, Figs. 10.4 and 10.5 show the graphs of v — M)}, pu
for different smooth functions u for h = 1/32 (dashed line) and h = 1/64 (solid line).
We use 7~ /2" (Fig. 10.4) and 7~ 1/2(3/2 — 22)e~*" (Fig. 10.5) as generating
functions.

As two-dimensional examples, in Figs. 10.6 and 10.7, we depict the quasi-
interpolation error M, pu — u for the function u(x) = (1 + |x|*)~! and different
h if generating functions of second- (with D = 2) and fourth- (with D = 4) or-
ders of approximation are used. The h?- and respectively h*-convergence of the
corresponding two-dimensional quasi-interpolants are confirmed by the L.,-errors,
which are given in Table 10.1.

\‘\\\\\Q' s\\\\ ’

FIGURE 10.6. The graph of M, pu — u with u(x) = (1 + |x[?)~!
D=2 N=2nkx) =r"'e X (a) h=2"6and (b) h=2"".
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FIGURE 10.7. The graph of M, pu — u with u(x) = (1 + |x|?)~7},
D=4, N =4, n(x) =72 ~ [x)e "

(a) h=2"%and (b) h =2"".

h D=2 D=4 h D=4 D=6
—418.75-1073 | 1.57-1072 27414.42-107% 9591074
2.21-1072 | 4.00- 1073 2 2.95-107° | 6.61-107°
5.51-107% | 1.01-1073 27611.92-107%|4.24-10°¢
2
2

5 5
6 6
“T1142-107* | 252-107* “T11.24-1077 | 2.68-1077
13.56-107° | 6.50-107° 817.80-1077 | 1.71-10°%

TABLE 10.1. Ly-approximation error for the function u(x) = (1+
x[2)~! using My, pu with n(x) = 7~Le"*I’, N =2 (on the left)
and n(x) = 712 — [x|2)e~ I, N =4 (on the right).

3

10.3. Non-uniformly distributed nodes

Here we study a case of non-uniform grids. To be more precise, we consider ap-
proximate quasi-interpolation for functions with compact support in some domain
Q C R” and for functions given on an n-dimensional manifold in the case when
the nodes are images of a smooth mapping of uniformly distributed grid points.
The approximant should have a simple semi-discrete convolutional form, similar to
(2.23), in order to get effective methods for computing pseudodifferential operators.

10.3.1. Description of construction and error estimate. Suppose that
w C R™ is a bounded domain and that ¢ = (p1,...,0s) : w — R°, n < s, is
a sufficiently smooth and non-singular mapping, defined in a neighborhood of w.
That means that

(10.18) 6l = (L) #0. yew.
(4)
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where (9 denotes the minor of order n of the matrix

dp1/0yr -+ Op1/0y,
P'(y) = : : ,
Ops/Oyr -+ Ops/Oyy
corresponding to the rows with indices ¢; < ... < i,,. The sum is extended over all
distinct (i) = (41,...,in), 1 < i, < s, of this kind. Then ¢ generates a one-to-one

mapping between w and 2 = ¢(w) € R*.

Let u be an N-times continuously differentiable function on Q with compact
support, i.e., the composition ue¢ € C¥ (w). It the following, we study the appro-
ximation of u by the quasi-interpolant

n x — ¢(hm)
(1019) uh(x) =D & hr;Bu(qb(hm))n(ﬁh |qb/(hm)|1/"> ! X = ¢(Y) €N ’

where the summation extends over all hm belonging to some subset B C w, which
depends on the point x € Q.

Note that formula (10.19) in the case s = n corresponds to the quasi-interpola-
tion on a domain Q € R™ with respect to a set of data points {Xy,}, which can
be represented as a sufficiently smooth image of a uniform lattice, x, = ¢(hm),
hm € w. If s > n, then Q = ¢(w) € R® can be considered as a part of an n-
dimensional manifold parametrized by ¢. The generating function 7 is given in R?;
hence (10.19) defines a function in R®. We are interested in how the restriction of
this linear combination to €2 approximates the function u on 2. In the sequel, we
suppose that in the case s > n the generating function 7 is radial.

The following theorem states that the difference u;, — « has a similar behavior
as in the case of uniform grids provided that 7 satisfies the Moment Condition 2.15
of order N and some additional smoothness and decay requirements.

THEOREM 10.5. Assume, besides the moment Condition 2.15 of order N, that
1 is N+pu—1-times continuously differentiable in R® with p = [n/2]+1, the smallest
integer greater than n/2. Additionally, all the derivatives 0Pn, 0 < [B] < N+u—1,

have to satisfy the condition
1+ |x|)~ K-8 0<[B]<N,

(10.20) 10Pn(x)| < Cg (14 ) 7]
L+, N<[B<N+p-1,

for some number K > N + n. Furthermore, we assume that ¢ : w — € is in the
class CN*1 and we let u € CY(Q). Then, for any € > 0, there exists D > 0 such
that at any point x € Q)

N—-1
(10.21) Jun(x) = u(x)| < (VDN [ull gn g +e Y cx (VDR)F.
k=0
Here ¢ does not depend on u, h, and D and the numbers cy can be obtained from

the values 0%u(x), [a] < k.

REMARK 10.6. For a given non-singular parametrization ¢ of €2, the quasi-
interpolant

-1
D=2 3™ w((hm)) p LKL m
3 o)) n( =I5 =)
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is an approximation formula for a uniform grid on w. It provides approximation
errors similar to those established in Section 2.3. However, we want to have approx-
imations with the property that, for example, the action of convolution operators
can be determined efficiently. These integral operators have difference kernels with
respect to the variable x € Q; therefore, formula (10.19) leads to semi-analytic
approximations as soon as the convolution of 7 is known.

10.3.2. Quasi-interpolation on domains. The convergence proof is based
on several lemmas. Let us fix a point x € Q, denote yo = ¢~ '(x) € w, and make
the substitution

_x=¢y) _ éyo) — o) w
(10.22) £y) = & (y)[1/7 - o' (y)|t/ yew.

LEMMA 10.7. The mapping € : w — R?® can be represented in the form
(10.23) £ly) = Alyo —y) +lyo —yI*&(y) . yvew,

where A : R" — R® is a linear mapping with |A| = 1 and € € CN~Y(w). There
exist a closed ball B(yo, k) C w around yo with radius £ > 0 and positive constants
Cy and Co such that for any y € B(yo, k) and all real s € [0, 1]

(10.24) €' (y)| > Cr and  |sA(yo —y) + (1= s)E(y)| > Calyo — I -

PROOF. Since

@' (y) Ey)(VIg' (y))”

R n ' (y)]

and £(yo) = 0, we obtain A = |¢'(yo)|~"/" ¢'(yo) which implies |A| = 1. Hence,
the matrix A*A is not singular and therefore |Ay| > c|y| with some positive con-
stant ¢. Now, Taylor’s formula

£(y) = &(yo) + €' (yo)(y — o) + O(ly — yol*)

¢'(y) 2
— —W(y —¥o) + O(ly = yol”)

g(y) =

leads to (10.23) and to

sA(yo —y) + (1= 5)€(y)| = |[A(yo —¥) + (1 = 8) [yo — y[*£(y)]
> (¢ = lyo — YIIE®)) lyo — ¥l - O

After having fixed the ball B(yq, k), we will study the quasi-interpolant

€(hm)) '

(10.25) un(x) =D Y u(qb(hm))n(ﬁ

hme B(yo,x)

We give an asymptotic expansion of uj(x) for h — 0 up to terms of the order
O(h™). By using (10.23) and the Taylor expansion of 1, we split uy(x) into a
finite sum of semi-discrete convolutions plus a remaining term. In the following,
we denote the variables in R® by x, whereas the symbol y denotes variables in
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w € R™. Thus, the Taylor expansion (2.1) of the function n on R® near the point
Alyo — )/\/_h yields, because £(y) = A(yo —y) + |yo — y|? £(y),

)y = (yo—yP€®)” 5 /Alyo—v)
”(ﬁ)_z 31(vDh)A aﬁ”( \/05;1 )

[B]=0

N vo — y2€(3))° [ n_ sA(yo —y) +(1—5)¢€
+(\/5h)N Z (yo Z! y) /SN 18577( (yo—y) +( ) (Y))ds,
0

[Bl=N
where 98 denotes the corresponding partial derivatives in R®. Denoting
i(y) = u(@(y) and ijap(y) =y’ 0%n(Ay),

we obtain the splitting of the quasi-interpolant (10.25)

(v/Dh)Bl } - /Yo
h hm)P R
(10.26) Z: van/zhm€§y0 1:)( m) §(hm) 77A,,3( \/—h )—i— ~N(yo),

where the remainder is of the form

1
Ry(yo) = N(WDR)N 3 D_—W/SN—l
0

% Z ﬂ(hm)g(hm)ﬁ lyo — hm[*V 98 (SA(YO - hm)\/‘%;l - s)ﬁ(hm)) ds .

LeEMMA 10.8. Suppose that n satisfies the decay condition (10.20). Then

hme B(yo,k)

[Rn(y0)| < ¢ (VDN [l o(siyom)
with a constant ¢ depending only on n and ¢.

PRrROOF. If we use the abbreviation

_ . s
Cy = max | ,
yeB(yM)\ (y)E(y)”|

then, in view of (10.20) and (10.24), we can estimate for [3] = N

—n/2 i (hm) E m5|y0—hm|2N s (SA(yo — hm) + (1 — s) {(hm)
» 23 e NG )

_ — hm|*N |sA(yo — hm) + (1 — s) E(hm)|\ —N—-K
<e,Cpp2 Y Mo hmPT —
hme B(yo,k) (Dh ) ( Dh )

_ - hm|2N Cg|y0 — hm| —N-K
<¢,0gD n/2 |y0 1
= cuCp 2 (D2 (1+ /D )
Cg|y0 — hm|)N—K

VDh '

hme B(yo,k)

< CgCy?N D2 N (1 +
hme B(yo,k)
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The last sum is uniformly bounded for D > Dy > 0, since

“n Calyo — hm[\N-K
ron T (1s S

hme B(yo,k)

< sup D—n/2 Z (1 +
R mezn

Cobe IV g (VB

VD
with the function ¢, defined by (2.31), which proves the assertion. O

Next, we consider the semi-discrete convolutions in (10.26). It can be easily
checked that, in view of (10.20), the generating function 74 g satisfies

10%74,8(y)| = ly[?®! |0Pn(Ay)| < Ca(1 + Jy|) KA

for any 0 < [a] < p, i.e., it satisfies the extended decay Condition 2.12 with
K > N — [B] + n. Hence, we can expand the sum

_n - ~ . Yo — hm
DN ) Em) s ()
hme B(yo,x)

for the function ﬁgﬁ € CN-18l as in (2.36), up to the order N — [3] and we can
apply Lemma 2.11 and Corollary 2.19. Then we obtain

LEMMA 10.9. We have

(\/Z_)h) - ] £ B~ Yo — hm
D2 (hm) &(hm)? ija g ( =—=—
iz hmGBZ(yo ®) Aﬁ( VDh )
—-[B]-1 pe . .
- []Z ( a!)( = (\/(_271')2)[ ] ZZ aa]:ﬁA,ﬁ(\/'Z_)V) e2h (yo,v)
a]=0 =
+ Rn-p(yo) ,

with the remainder bounded by
. xB .8
|Rn-g| < C(\/Eh)N(HU& By + IVN_jg (@€ )”C(B(yo,n)))-

Now, (10.26) together with Lemma 10.9 leads to the representation of the
quasi-interpolant (10.25)

N-1 N—[B]-1 |
SN 0% (1.€”) (yo) (VD) 14 ) .

a'ﬁ' (2mi)le] > 0% Fijap(vVDy) e h ¥
ﬁ] 0 Ot : vezn

+ O((VDh)N).

Hence, the behavior of uj is determined by the values of the partial derivatives of
the n-dimensional Fourier transforms

(1027)  9*Fiap(VDr), 0<[B]<N-1, 0<[a]<N-[8]-1,

for v € Z™, which will be studied in the next lemmas.
First, we consider the case s = n, where the Fourier transform of the function
fiap(y) = [y?P1 68n(Ay) is easily found.
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LEMMA 10.10. Let s =n. Then
0> Fijag(X) = (2mi) " BIABI 9> (NP Fp(A~IN)).
If n satisfies the moment Condition 2.15 of order N, then, in particular,
X L, [a] =[B] =0,
0*Fiap(0) =
0, 1<[B]l+[a] <N-1.

Thus, the quasi-interpolant (10.25) defined in the domain Q C R”™ has the
representation

N—-1 N—[B]-1
Dh) el +[8] ~
0+ Y Y 0l

un(x) = i o o Al (2t 7 (7€) (30)
x Y et or ARl g (AP Fp(ATTN)) +O((VDR)N) |
veZ™\{0} A=VDv

which proves Theorem 10.5 in the case s = n.

10.3.3. Quasi-interpolation on manifolds. Now, we study the values of
the Fourier transforms (10.27) in the case s > n, where the generating function n
is radial and depends smoothly on the norm |x|, x € R®.

LEMMA 10.11. Let A : R™ — R® be a linear mapping of rank n and let n be a
smooth radial function in R*. Then, for any multi-indices o € Z%, and B € Z%
with [a] = [B], there exist a collection of multi-indices v,8 € 72, and numbers
Cy,6 Such that for all y € R" -

(10.28) y™ 02n(Ay) = Z D eysy? On(Ay) .
[6]=1[v]=[9]
PROOF. Since Ay = x with an sxn matrix A of rank n, there exist an invertible
n x n matrix B and a subvector x’ of length n, such that y = Bx’. For definiteness
suppose the ordering x = (x/,x”) and 92 = 85// 85//. For any [3'] = 1, the partial
derivative 85,/ is a linear combination of 99 with [§] = 1. Hence, if the multi-index
B" € Z%," satisfies 3" = 0, then (10.28) is true with ¢y s = 0 for all [§] < [3].
Let_[ﬁ"] > 0. Since y = Bx’ implies
Z csx' 7,
[6]=[a]

we have to transform x’ 8ﬂ 8 " 77 with [6] = [8'] + [8"]. Suppose that the variable
x; belongs to the first group x’ Wlth the corresponding multi-index e; € 715, of
norm 1. Similarly a variable of x” will be denoted by xy with the corresponding
multi-index e} € Z2 20" of norm 1. Since, for any radial function 7, the identity

holds, we have for 3’ =0

(10.30) x' 202, = x" P %
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Moreover, as long as § — e € Z%, and B" — e}l € Z%,", we obtain from (10.29)
that - -

X/ 585/’85/’/’77 = X ].IJ 3 8 7 77

/ o= ej 35 af// 7e azkn — X/ 579]‘ 85/ I 5//
X 008 08~ 1y 0, — xS0 98
— & 65— JIk 813 +e ]af// 77 +x 5—e} 85 +e 85” 729,677 /5 eJ8 —e 5////

If the vectors 8 — 2e} or Jei —e;- have negative components, then the corresponding
terms in the right-hand side are set to 0.
Obviously, repeating the last equations and using (10.30), we obtain expressions
of the form , .
XX 08y, 1< ]+ ] =[] < 18],
which, in view of x = Ay and y = Bx’, completes the proof. O

Hence, the proof of Theorem 10.5 results from

LEMMA 10.12. Let A: R™ — R®, s > n, be a linear mapping of rank n and let
n be a smooth radial function in R®. Using the notation of Lemma 10.11, we have

ﬂ]+ 3]
Fias = Y z S e e O TS EN(A” ) )
[e]=[8] [8]=1 [v]=[0]
In particular, under the moment Condition 2.15,
L, [a] =[8] =0,

aam“’(o)_{ 0, 1<[Bl+[a]<N-1.

10.3.4. Quasi-interpolant of general form. Now, we apply the estimate
for (10.25) to the quasi-interpolation formula

(10.31) un(x) = D2 Zu(xm)n(%) ,

containing numbers Vi,, which should be determined by using only nodes near xy,.
Of course, Vi, will be an approximation of h|¢’(hm)|*/™.

THEOREM 10.13. Under the conditions of Theorem 10.5, the quasi-interpolant

—n X —X
Uh(X):D /2 Z U(Xm)n(\/_T‘;n), XEQ,
xm€P(B(yo:r)) "

approzimates sufficiently smooth functions v with the estimate (10.21), if the num-
bers Vi satisfy
|(Vin)™ — h"|¢' (hm)|| < chVT™ .

Proor. Evidently,

> (g~ G

xm€€(B(yo,x))

_ Vi — h|g (o) [/ X — Xim
=2 > ulbm) Vi ”“(ﬁhw(hm)u/n) + B(x),

[a]=1xmEE(B(yo,x))
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where we use the notation 74 (x) = x* 9*n(x) and the remainder satisfies

Vin — h|¢'(hm)|1/")2
Ve '

RG] < e (
Since
/%@My=4w[d=h
Rn
it is clear from Theorem 10.5 and Lemma 10.7 that

ot 5 st (i i) )

XmEf(B(YOW))

is of the order O(hY) if and only if
’Vm — hl'(hm)["/"
Vin
for all data points X, in the neighborhood &(B(yo, x)) of x. O

<chV

There exist different methods to find an N-th order approximations of |¢’(hm)]| .
The simplest way is to replace the partial derivatives p;/Jy, by difference quotient
approximations Ag of the order A" which involve only the j-th coordinates :cf( of
the centers xx = ¢(hk), k € Z", near xp,. An example is given by

Aj — 2(:Elzn+ee — ‘,Ein—ez) _ xfn-i—?eg B wfn—2eg
£ 3h 12h
approximating ¢, /9y, with the order h*. Obviously, the n-th root of
[RAJ ], j=1,....s,€=1,...,n,

can be taken as Vi, if N = 4.

Another method of defining Vi, which uses the measure of grid patches near
Xm, consists in the following. Consider a cube ¢ C R"™ having all the corners at
lattice points k € Z™ with 0 € Q. We denote its volume by |@Q| and introduce
Qm = hm + h@Q. Then

Lo
@Q/ ()| dy

(10.32) N-1 8a|¢/(hm)| pntlal
= "¢/ (hm)| + Y —— 3 /ya dy +O(hNT™).
[a]=1 ’ O

Therefore, by choosing different cubes Q7 of the above-mentioned type, one can form
a linear combination of the equalities (10.32) such that the sum does not contain
terms with A"t1®l 1 < [a] < N — 1. Thus, h"|¢'(hm)| can be approximated with
the order O(h™N*™) by linear combinations of the integrals

[1swlay = [ ix=lo@i
Qhn #(Qhn)
over the finite number of cubes QJ, = hm + hQ’.
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Consider, for example, a surface I' in R3. We choose the squares Q! = [—1,1]2
and Q2 with corners at the points (£1,0) and (0,41). Then
2h*
/ [ (y)| dy = 4h%|¢ (hm)| + == (0@ |¢' (hm)| + 0> |/ (hm)| ) + O(h°),
Qh

h4
/ | (y)| dy = 20%|¢/ (hm)| + ~= (9*|¢ (hm)| + 02|/ (hm)] ) + O(A°).
Q%
Consequently the quasi-interpolation formula (10.31) on I with
n(x)) =7""e ™™ and Vi =V[0(@QL)I/2 or V= V]0(Q%)]/2

approximates with the order O(Dh?) plus some saturation error. Similarly, ap-
proximate approximation with the order O(D?*h?*) on T can be obtained with the
generating function

n(x)) =7 12— x)e ™" and Vi = ]B(Q2)] — [(QL)I/4 -
10.4. Notes

In Sections 10.1 and 10.2, we followed the paper [55]. The approximation of
scattered data by functions centered on a uniform grid has been considered in [24]
as an auxiliary step for the construction of scattered data approximants with radial
basis functions, which reproduce polynomials. It follows from the proof of Theo-
rem 10.4 that if the quasi-interpolant M, pu from Condition 10.1 approximates u
without saturation error, then Mj, pu has the same property.

The results of Section 10.3 are taken from [71]. In a series of papers (cf., e.g.,
[26], [27]), Fasshauer performed numerical tests for the quasi-interpolant (10.31)
on a non-uniform grid.






CHAPTER 11

Scattered data approximate approximations

The aim of this chapter is to study quasi-interpolation for functions with values
given on a rather general grid {x;};cs. In order to treat this case, we will modify
the approximating functions. More precisely, we consider approximations of the
form

(11.1) Mu(x)=Y" Y u(xzc)Pj,k(X)n(X;ij)v

J€J xp €st(x;)

with some polynomials P; i, where the set of nodes st(x;) is an extension of the star
st(x;) given in Definition 10.2. With such a quasi-interpolation, one can achieve
high-order approximation of u(x) with respect to the local mesh size, up to a
small saturation error. Moreover, by a suitable choice of the basis functions 7,
one can obtain efficient approximation formulas for integral and pseudodifferential
operators.

We give a simple example of a quasi-interpolation formula (11.1). Let {x;} be
a sequence of points on R such that 0 < k < z;41 —z; < 1. Consider a sequence
of functions (; on R with support in a fixed neighborhood of the origin. Suppose
that the sequence {¢;(xz—x;)} forms an approximate partition of unity on R, which
means that

1= ¢l - <e
J
for a certain sufficiently small positive € and for all x € R. Then

[ute) = Y @) (5 — 5)| < eluta).

J
Now, we note that for x € x; + hsupp (;

(hx»)xﬂl_x/h x/h —x;
j

<ch?® max  |u’(t)]
Tj+1 — Ty Tj+1 — Tyj

tex;+hsupp (;

‘u(x) —u

with a constant depending on diam(supp(;) and k. Then, obviously, the quasi-
interpolant

Mpyu(z) =) ulhz;) (w@(% - xj) LS -1 (% - xj_1)>

. Tjt1 — &5 Tj— Tj—1
satisfies the estimate

|Myu(z) = w(@)] < ch® |[u”]| @) + e lu(@)],
where the constant ¢ depends on the functions (.

245
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11.1. Approximate partition of unity

We show in this section that an approximate partition of unity of R™ can be
obtained from a given system of approximating functions centered at scattered
nodes {x;};es, if these functions are multiplied by polynomials. Here, J denotes
an infinite index set. We are mainly interested in rapidly decaying basis functions
which are supported on the whole space, but we start with the simpler case of
compactly supported basis functions.

11.1.1. Basis functions with compact support.

LEMMA 11.1. Let {B(x;,h;)};jcs be an open locally finite covering of R™ by
balls centered in x; and with radii h;. Suppose that the multiplicity of this covering
does not exceed a positive constant ., and that there are positive constants c1 and
co satisfying
(11.2) Clhm S hj S Czhm

provided the balls B(x;,h;) and B(Xp, hm) have common points. Furthermore, let
{n;} be a bounded sequence of continuous functions on R™ such that suppn; C

X;,h;). We assume that the functions >y — ni(h;y) are continuous uni-
B(x;j,hj). W that th tions R™ n; (h; ti :
formly with respect to j and

(11.3) s(x) = an(x) >c on R"
jed

where ¢ is a positive constant. Then for any € > 0 there exists a sequence of
polynomials {P;} with the following properties:

(i) the function
(11.4) 0 := ZPJ'”J'

jedJ
satisfies

(11.5) ©(x) — 1] <e forall x eR";

(ii) the degrees of all P; are bounded (they depend on the least majorant of the

continuity moduli of n; and the constants €, ¢, c1, 2, Hn);
(iii) there is such a constant co that

|Pj| <co on B(xj,n;).

PROOF. Since the functions B(x;,1) 3 y — s(h;y) are continuous uniformly
with respect to j, there exist polynomials P; subject to

’pj(x) - %x)‘ < 4§ on B(xj,h;)

for an arbitrary positive 6. The degrees degP; are independent of j. Letting
0 =€ (pnlInllz.)~", we obtain

m)(Pix) - =) < =

Then
(11.6) sup 3~ [y (P9 - — =) < <.

jeJ
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since at most u, terms of this sum are different from zero. Furthermore,
1 1
> m09 (P9 = i) = o mbIPs (0 = i Do)
Jjed JjeJ JjeJ
=D n(x)Pi(x) ~ 1,

j€J
which proves (11.5). O

REMARK 11.2. Let the functions {n;}cs in Lemma 11.1 satisfy the additional
hypothesis n; € C"(R™). Then one can find a sequence of polynomials {P;} of
degrees L; such that

1 R’
sup |Pj(x) — ——=| < C(r) —JT sup |V,s(x)|
B(x;,h;) s(x) j B(xj,h;)

(see, e.g., [59]). This shows that it suffices to take polynomials P; of degrees greater
than c(r)e~1/" in order to achieve the error € in (11.6).

11.1.2. Basis functions with non-compact support. Now, we consider
the case when the approximating functions are supported on the whole R™. As in
the previous chapters, we suppose that the functions n; are scaled translates of a
sufficiently smooth function n with rapid decay,

n;(x )—W(X;JXJ)-

First, we formulate a result on weighted polynomial approximation which follows
from [60, Thm. 4.2]. If we denote by wsp, 6 > 1, p > 0, the weight function

(11.7) Ws,p(X) —exp( pZ|:1:k|)

then, for any g € W2 (R"™), there exists a polynomial P € IIyn_1 such that

(11.8) wsp(g — P < e N(1=9) r/5(||w5pg||1: + Z Hwap )

)

with a constant ¢ depending only on the weight function. Here7 Il denotes the set
of polynomials which are of degree at most N in each variable x1, ..., x,.

Ty,

LEMMA 11.3. Assume that the following assumptions on n, the nodes {X;};e,
and the scaling parameters {h;} are satisfied:

1. There exists K > 0 such that

_ -K
(11.9) e= || 30 a7 =) T <o
jeJ °°
2. There exist 6 > 1 andp > 0 such that
(1 1
(11.10) H il H : HL VnH < Gsp <00
w5p Leo ws,p

with the weight function ws, defined in (11.7).
3. There exists C > 0 such that for all indices j,m € J

h; X —X
11.11 y (M) <C.
( ) hm w5;P h]] + hm — C
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4. The sum

an(x) ’

jed
which, in view of (11.9) and (11.10), converges absolutely to a smooth
bounded function s, has a positive lower bound, i.e., fulfills (11.3).

Then, for any € > 0, there exists Lo and polynomials {P;} of degree degP; < L.
such that the function © defined by (11.4) satisfies

O(x)— 1] <e forall xeR".

PROOF. Suppose we have shown that for any € > 0 and all indices j there exist
polynomials P; such that

(T - )| < ()

(ck is defined in (11.9)) and deg P; < L.. Then
X — X X — X; 1
w52 - )l

R’Vl
and, as in the proof of Lemma 11.1, we conclude
X — X X — X,
sup‘an( ]>73j( J)—l‘ga.
ies J J

Let us fix an index j and make the change of variables y = hjfl(x - X;).
Then (11.12) is proved if we show that there exists a polynomial P; such that for
ally e R”

(11.13) (P - 557)] < =0+ ]

(11.12)

)71(

with 3(y) = s(h;y + x;). Since 57! € WL (R") according to (11.8), we can find a
polynomial P; satisfying
€

sup

1
ol Pi(y) — @‘wé,p(}’) <

Cs,p CK
with the constant ¢;, in the decay condition (11.10). Now (11.13) follows directly
from

K
I +1y]) " < cspwsp(y)-
By (11.8), the degree of P; depends on the weighted norm

1 X — X 1
gl e (52
SUp Ws.p (¥ )’ S(y) | TR e\ Ty, s(x)

(11.14) 1 N b
< - - _J
=% )2 i h; ) mz T

()|

Rn

Since by (11.10),

X — Xm X — X |X_Xm| -K
’V"( . )’SC“*P“"‘*F( . )(H . ) ’

a uniform bound of (11.14) with respect to j can be established, if the sums

5 P (552 (522 14 2
hon P\ Ry )Py, B,
meJ
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are uniformly bounded for all j. Consider the function

fz) =
for a < b and 0,7 > 0, which attains its minimum at the point

ard/(5=1) 4 py6/(6-1)
50/(—1) 4 78/(6—1)

‘;v—ar ‘x—br
g T

o —

€ (a,b)

with
_ (b—a)
flxo) = (00/G—1) 1 70/G-1))5-1 °

Since for § > 1
(0_6/(671) _'_7_6/(671)) < (O'+T)6/(571),

we obtain the lower bound

la — b|° >‘a—b}5

f(z) > (09/G—D) 1 79/G-D)o—1 = |5 ¢ 7

for any z € R and 6 > 1. Hence, we derive

X —X;j X — X Xj — Xpm
i h; ) wsa h )Sw‘;’p(h—i—h )
J m ¥l m

from (11.7). Therefore, the condition (11.11) on the nodes {x;} and the corre-
sponding parameters {h;} guarantees that the degrees of the polynomials P; can
be chosen independent of j. O

11.2. Quasi-interpolants of a general form

In this section, we study the approximation of functions u € WX (R") by the
quasi-interpolant (11.1). We will show that within the class of generating functions
of the form polynomial times compactly supported or rapidly decaying generating
function, it suffices to have an approximate partition of unity in order to construct
approximate quasi-interpolants of high-order accuracy up to some prescribed satu-
ration error.

Recall the Definition 10.2 of the star of a node x; € X as a collection of
(N —-14mn)!

nl(N —1)!

{(xr—x;)*}, [@]=1,....,N =1, x4 € st(x;),

my = — 1 nodes x; € X such that the Vandermonde matrix

is not singular. In the following, the union of the node x; and its star st(x;) is
denoted by st(x;) = x; Ust(x;).
Let us assume the following hypothesis concerning the grid X = {x;},es:

CONDITION 11.4. For any x;, there exists a ball B(x;,h;) which contains my
nodes xj, € st(x;) with

(11.15) |det Vjn,| = ‘det{(u)a}Nl

>c
h; [a]=1,xjEst(x;)

- Y

where c is positive and does not depend on x;.
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11.2.1. Compactly supported basis functions.

THEOREM 11.5. Suppose that the function system {n;};cs satisfies the condi-
tions of Lemma 11.1 and let u € WY (R™) and ¢ > 0 be arbitrary. There exist
polynomials P; i, independent of u, whose degrees are uniformly bounded, such that
the quasi-interpolant

(11.16) Mu(x) =Y u(xx) > Pix(x)n;(x)

keJ st(x;) 3%y
satisfies the estimate
(11.17) |Mu(x) —u(x)| < ChL  sup |Vnu| +elu(x)],
B (X sk him)

where X, is an arbitrary node and x is any point of the ball B(Xmm, hm). By k,
we denote a constant greater than 1 which depends on ci1 and co in (11.2). The
constant C' does not depend on h,,, m, and .

PrOOF. For a given ¢, we choose polynomials P;(x) such that the function
(11.4) satisfies
[O(x) — 1] <e forall xeR"

and we introduce the auxiliary quasi-interpolant

(Dyy(x) = N~ 9°ulxy) o
(11.18) MOu(x) =37 (D 2 (= %)% ) Py () ().

Jje€J  [a]=1

Using the Taylor expansion (10.11) with y = x;, we write M(Mu(x) as
MWu(x) = u(x)0(x) = Y R (x,%;)P;(x)n;(x).
JjEJ
which gives
M Ou(x) = u(x)] < Y[Ry (%,%;)P; (x)n; (x)] + [u(x)] [©(x) 1] .

jed
This, together with the estimate (10.12) for the remainder, shows that for x €
B(xm, hin),
(11.19) IMDu(x) —ux)| < C1RYN  sup |V u| +elu(x)],

B (X sk him)

where the ball B(X,, k h.,) contains all balls B(x;, h;) such that B(x;, h;) and
B(xy, hp) intersect.

Similarly to the proof of Theorem 10.4, we approximate the values of the deriva-
tives 9%u(x;) in MMu by a linear combination of u(xy), where x;, € st(x;). The
solution of the algebraic system

o)
(11.20) > o (o = %)% = ulxe) —u(x;), xp € st(x;),
1<[a]<N

is given by

. al i
o) = D bk (ulxi) —ulxy), 1<[a] <N,

J xRpEst(xy)
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where {b(j)
{0%u(x;)} in (11.18) by {a(J)} we derive

M) =Y hue(1- XY i (5572)")

} are the elements of the inverse of Vj4,. Replacing the derivatives

JjeJ X Est(x;) [a]=1
N-1 o xa
+ ua) 3 b0 (F2) Pieam )
xpEst(x;) [a]=1 J

=> > wu () 175 (x)

J€J xp€5t(x;)
which can be rewritten in the form (11.16). Note that for k # j
N-1 ) (X — %X\
Pix(x) = > b (h—J) Pi(x), Pj;i(x) - > Pulx
[a]=1 J X Est(x;)
hence the degree of the polynomials P; j, is not larger than deg P; + N — 1.
From (10.11) and (11.20), we obtain

N—-1 h[a] ) Xk—X- a
Y o tal) —0mube) (P ) = R xs).
[a]=1

Hence the boundedness of ||V]_hlj|\ from Condition 11.4 and the estimate of the
remainder (10.12) imply

@ - 0ul) < 1O sy [Tl

B(xjvh’j)
Therefore, we have the inequality
1)y, X — x; |l
(Mu(x) = MOu(x)| < C2 3o sup Vvl b 5 P Gom o)
jes  Bxih) [a]=1
and, for any x € B(x, hm),
|Mu(x) — MPu(x)| < Cshd.  sup  |Vyul.
B(xXm Kk hm)
The last inequality and (11.19) lead to (11.17). O

11.2.2. Quasi-interpolants with non-compactly supported basis func-
tions.

THEOREM 11.6. Suppose that, in addition to the conditions of Lemma 11.3, the
inequality

(11.21) HZ (1404 =)™ KH < o0

holds and let u € WO]X(R") and € > 0 be arbitrary. There exist polynomials
Pk, independent on u, whose degrees are uniformly bounded, such that the quasi-
interpolant

(11.22) Mu(x) =Y uta) Y P55 s )(X;jxj)

keJ st(x;j)dxx
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satisfies the estimate

(11.23) |Mu(x) — u(x)| < C sup h% IVNu|L, +elux)|.
meJ

The constant C does not depend on u and €.
PROOF. Analogously to (11.18) in the proof of Theorem 11.5, we introduce the
quasi-interpolant

N-1

MWa(x) = Z ( Z 80‘1;7(:(3)()( - Xj)a)'Pj(X ;jxj)n(x ;jxj)

Jj€J  [a]=1

and we obtain the estimate

) = w0l < 3 | (6300 P (S5 (52 )| + o) 1060 = 11

jeJ

By (11.13), we have

i () < () o (e 2

] J

with the lower bound ¢ of s(x) (see (11.3)). Together with (11.10) and (10.12), this
leads to

X — X; X — X;
Ry (x,%;)P; L)n L ‘
v e P (S I (552
N resp X —X;j
(%22 wa( I )*7)(
resulting in
M Mu(x) — u(x)| < |u(x)][0(x) = 1] +ex sup IV vl

N—-K
<(henal - M (0 P T ()T
jeJ jeJ

Now, we can proceed as in the proof of Theorem 11.5. O

X=Xy

h;

< exh |V ulls..|

S\ K
x xj>
)
h;

REMARK 11.7. Let the parameter kx be chosen for fixed x so that

X —X5\ | x—x; |V x—x; |\~ K
PORRTH I, ) h; (1] ) <=

Ix;— h;
X;—X|>kx

Then the estimate (11.23) can be sharpened to

[Mu(x) - u(x)| < C e X hy' W )|VNU| +e (Jux)] +IVyullz.) -

11.3. Computation of integral operators

Here, we discuss a direct application of the scattered data quasi-interpolant
(11.22) for the Gaussian n(x) = e ~1*I°. Suppose that the density of the integral
operator with a radial kernel

(11.24) Kut) = [ alx-yhu(y)dy
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is approximated by the quasi-interpolant

(11.25) MU(X) = Z Z U(Xk) Pin (X ;jxj) e*|x7x]'\2/h§ ]

J€J x), €58(x;)

Using the following lemma, it is easy to derive cubature formulas for (11.24).

L
LeEMMA 11.8. Any polynomial P(x) = Z B xP can be written as
[B]=0
L
’P(x)e_‘x‘2 = Z B Sg(Vx)e_|x|2
[8]=0

with the polynomials Sa(t) being defined by

(11.26) Sp(t) = (%)[E]Hg(%),

where Hg denotes the Hermite polynomial in n variables introduced by (7.7).

Here and in the following, by Vx we denote the vector of partial differentiation
with respect to x,

0 0
A N
o0x1 oxy,

PrOOF. We are looking for the polynomial Sg(t) defined by the relation
(11.27) xPe~ X = Sg(Vx)e_|x|2, x € R™.
Taking the Fourier transforms

F(Sa(Vy)e MY (\) = 7/2e ™ NS5 (2miN)

and

2 /3 2 2
FxBe**)(0) = 7Tn/z(_ E) e IE

2mi
we obtain (11.26). O

Therefore, we can write P; (x) e —l* = T (Vx) e~ with some polynomials
7,.x(x). Then (11.25) can be rewritten as

Y Y oy V) eI /02
J€J xp Est(x;)

As in Chapter 4, the cubature formula for the integral Cu is obtained by replacing
u by its quasi-interpolant Mu, i.e.,

Ku(x) = KMu(x)

=Y 3wl Tty Vi) [ oy e v ay

(1128) JE€J xpEst(x;) R

=Y S ) Ty V) [athylyhe > o  ay.

Jj€J X1, Est(x;) Rn
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where we set t; = (x — x;)/h;. Now we apply formula (5.15) for the convolution
of radial kernels with Gaussians and derive

ly—t,[? 27n/2 e lts* T 2

/g(hjlyl)e vouldy = W/T"/Qe " g(hyr) L jan (2[t5]r) dr
J
R 0
Using the notation
27Tn/2 6_t2 7 2
EJ (t) = W /’f’n/2€ T g(th)In/2,1(2Tt)d’l",
0

relation (11.28) leads to the cubature formula
i n |X —Xj |
Ru(e) =300 3 ulxe) Tslhy Vx) £ (TJ)
JjEJ X Est(x;)

for the integral KCu.

11.4. Construction of the O-function with Gaussians

In Lemma 11.3 we gave conditions on a basis function n with non-compact
support, on the nodes {x,}, and on the scalings h; which ensure the existence of
polynomials P; such that the sum

> Pix) W(X ;jxj)

jeJ

is an approximate partition of unity. In this section, we describe a method for
constructing this ©-function if n is the Gaussian.

We start with an approximate partition of unity with Gaussians which are
centered on a piecewise uniform grid. Then we approximate each of the Gaussians
with functions of the form polynomial times Gaussian with scattered centers by
solving some least squares problem. The advantage of this approach is its local
character. The method does not require solving a large system of linear equations.
Instead, in order to obtain a local representation of the partition of unity, one has
to solve a small number of linear systems of moderate size.

11.4.1. Approximate partition of unity on a piecewise uniform grid.
We point out that shifted Gaussians with different scalings can form an approximate
partition of unity, provided that the centers g; and scaling parameters D; are chosen
appropriately. More precisely, for a given bounded domain Q C R™ and any ¢ > 0,
there exist a finite sequence of nodes G = {g;} belonging to a piecewise uniform
grid, parameters D;, and factors a; > 0 such that

12D,
ll—ZaJ—e*"“gJ'/Dﬂ <e for xe0.
g;€G

Indeed, we start with a uniform grid {Hm + b,m € Z"} with H > 0 and b €
R™. Omitting the Gaussians with centers far from €2, we obtain from Poisson’s
summation formula that for any D there exists a finite subset Z; C Z™ such that

1 ﬁ Z o ~Ix—Hm-b/(DHY) | £ . o =7*D L
T n

meZ;
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with a constant ¢, depending only on the space dimension. By using the approxi-
mate refinement equation (7.11), we can expand Gaussians in this sum as a linear
combinations of finer scaled Gaussians. For a given p < 1/2, we can find another
finite subset Z(u) C Z™, depending on p, so that

o— 2 [KI2/(D(1—pi2))
o~ e Hmobl*/(DH) 3 e
KEZ(1) "

—372D/4 e—\x—Hm—b\2/(DH2)
)

—x—b—H(m-+uk)[?/(DH? u?)

<cpe x€N.

Hence, if we choose Zy C Z; and expand e~ |x—Hm—b|*/(DH?)
Gaussians with a scaling factor py,, then for x € Q

1_# 3 o —lx—Hm-b|?/(DH?)
e n

, m € Zy, into scaled

meZ\Z>
e Fmlkl?/(D(1—4ni)

e*leb*H(erumk)\2/(DH2#fn)
— pg,)"?
m€Z2 kE€Z(pm m
—372D/4 —7T2D/4 1 —|x—Hm-b|?/(DH?)
< e (e +(7T’D)n/2 Z ¢
meZs;

< Cn6737r2D/4 (ef‘erD/Al 1+, efﬂ'QD).
Choosing D large enough, we obtain the approximate partition of unity
(11.29) {ajetsmi®/ps )
g;€G
on the piecewise uniform partition
G={Hm+bme 21\ Z}U | J {H(m+ pmk) + b,k € Z(1m)}

meZs;

with the factors
1

(7-‘-’1))77,/2
ot K|2/(D(1—p2,)
D) (1 — 1)
it gje{Hm+ pmk)+b:-me Zy, k€ Z(um)}.

D; = DH?, a; = if gje {Hm+b:me Z\ 2},

Dj = D(Hum)*, a; =

This partition satisfies

’1 - Z a; e &l/Pi| e forx e Q.
g;€G
Obviously, one can omit the grid points outside 2, which appear during the re-
finement and have no influence on the value of the sum for x € 2. Moreover, the
refinement procedure can be repeated for any of the Gaussian functions in (11.29)
without violating the above estimate if the scaling factors 4 < 1/2. Then one
obtains a new piecewise uniform grid G and explicitly given D; and a;.

We see that using only Poisson’s summation formula and the approximate re-
finement equation, there is a great flexibility in constructing approximate partitions
of unity with Gaussians, which are centered on piecewise uniform grids and approx-
imate the constant function 1 with any given precision.
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11.4.2. Scattered nodes close to a piecewise uniform grid. The con-
struction of the approximate partition of unity

(11.30) {Pj(x)e*"‘*"j'z/h? }

will be given for finite sets of scattered nodes X = {x;};cs which are close to
piecewise uniform grids, described in the previous subsection. To be more precise,
we suppose

ConDITION 11.9. Given a set of scattered nodes X = {x;};cs. For any ¢ > 0,
there exist a piecewise uniform grid G and an approximate partition of unity with
Gaussians

(11.31) {ake—|"—gk‘2/7’k Lg € G},
which satisfies

(11.32) ‘1_ Z akefleng/Dk
gLeG

<e forxe.

For some fixed x > 1 and for each grid point g € G, there exists a subset of
scattered nodes ¥(gy) C X with |x; — gi| < kv/Dy, if x; € X(gk) and

U = =x.
greG

The main idea in constructing (11.30) is the following: We take the corre-
sponding approximate partition of unity with Gaussians on a piecewise uniform
grid (11.31). For given g, € G we fix a scaling parameter h; for any x; € X(gx)

and we determine, by using least squares approximation, a polynomial P§k) of cer-
tain degree L§k) such that

(11.33) Z 7:]@ (x) e ~Px=xsl*/n]
X EE(gk)

approximates e~ Ix—&l*/Dr For example, we require that the discrepancies
(11.34) wg, (%) = Z ’pj(_k) (x) e~ X=X */h] _ o= Ix—gnl*/Dx
x; €5 (gk)
are subject to
(11.35) max Z aglwg, (X)| < 9.
X
grLeG
Then, obviously,

T ol et
)

greG x; €X(8k

<d+e,

where ¢ is the accuracy (11.32) of the approximate partition of unity on G. Thus,
if 0 is sufficiently small, then the function system

{ e ~Pexil*/h3 Z akpjgk) (x)}
Z(gr)3x;

is the required partition of unity for the scattered nodes {x; }.
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Note that if a node x; belongs to different sets ¥(g), then the scaling pa-
rameter h; has to take the same value in the approximations formulas (11.33) for
the different Gaussians e~ x—&+°/Pr_ Of course, the choice of the scaling param-
eters h; in (11.33) is crucial. They should reflect the density or closeness of the
nodes x; € X(g) to preserve the local character of the resulting quasi-interpolants.
Therefore, it is natural to assume that

(11.36) h? <Dy forall x;€X(gr).

The choice of the scaling parameters h; will be considered in Subsections 11.4.6
and 11.4.7 in more detail.

11.4.3. Discrepancy as convolution. We consider the prototype of the dis-
crepancies wg, defined by (11.34)

(11.37) w(x) = Z P (X ;ij) ol /hS _ o= Ix?/D
X; €3 J

where the form of the argument of the polynomials P; is chosen for technical rea-
sons. Note that w(x) = a 'wg, (x — g;) with the set of nodes ¥ = S(gx) — g
By Condition 11.9, the nodes x; € ¥ satisfy |x;| < kv/D. Recall the assumption
h3 < D.

We will use a least squares method for constructing P; € Iy, such that for
some 7 > 0 the discrepancy satisfies

eI’ lwx)| <e
for sufficiently large L;. By Ilr;, we denote the set of polynomials of degree Ly,
and, in what follows, we use the representation
Lj
Pi(x) = Z cjpx”.
[B]=0
Then by Lemma 11.8,

L;
X —Xj Clx—x,12/R2 s 2 7n2
Pj( hzj)e B/ = N " ;3 Sa(hy V) e Xl /0o
! [B]=0

and w can be written as

L;
(11.38) wx)= Y 3" ¢ pSplh; Vy) e TRI/MT _omIxY/P
x; €2 [B]=0

To estimate the L..-norm of w, we represent this function as a convolution in
the following assertion.

LEMMA 11.10. Let P(t) be a polynomial and let 0 < Dy < D. Then
P(Vx) o Ix=yI*/D _ o o 1x[2/(D-Dy) FP(V) o—lx—31?/Do

U)hlh Lhe Constanl
‘ 0( 0)

and x standing for the convolution operator.
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ProOF. From
e IxyIP/D _ /e—|x—t\2/<D—Do> o 1e-*/D0 gt
RTL
we obtain

P(Vy) e~ Ix—¥I*/D _ P(~Vy) o |Ix—¥I>/D

— /e*lx*t\z/(D*DO)'p(vt)e*\t*b’\z/po it
Rn
Now, we choose positive numbers §; and Dy such that
UZ:D—DQZh?—éf- >0 forallx; €X,
and we write, using Lemma 11.10,
Lj

—|x—x;|?/h?
Z ¢5.B Sﬂ(hj Vx)e | 317 /h5
[8]=0
h§ "2 —|x—t*/o < —lt—x;]2/82
B (7T52-0) /e Z Z ¢j,8Sp(h; Vi)e il7/%5 dt
T R X763 [8]=0

and

o—lx12/D _ (%)"”/e—m—tﬁ/o o—It2/D0 i
TLohOoO
RTL

Thus, by (11.38),
D n/2 2
- —[x—t|"/o
w(x) (ﬂ'DOJ> /e

R’n
h2Dgnj2 L
X ( > ( 5]2D0) 3" ¢jpSa(hy Vi) e It —e"tz/%) dt .
x;€x [8]=0
To simplify notation, we introduce
h2Dgn/2 Li
(11.39)  xe(t)= 3. (;QDO) S ¢i.08a(h; Vy)e 15 _ o —It/Do
xj€x [81=0

with ¢ = {¢; g} such that

(11.40) w(x) = ( D )"/2/eflet\2/o Ye(t) dt .

Do

R’Vl
We obtain by Young’s inequality (2.11) that

Dl
75 I XcllLs -
ng (2mo)n/4 o

Y lwg, ()]

gLeG
can be derived from the following.

WL <

An estimate for the sum
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LEMMA 11.11. For given h; < VD, j € X, let the positive numbers 05, Do be

chosen such that D — Dy = h? - 5?— =0 > 0. Denote 7 = #’D'Do' Then

(11.41) lw(x)] < CQelexl2 Q(c),

with the constant
. (D(U2+DD0)>n/4
o=\ .

21 Do
Here Q(c) is a quadratic form defined by
(1.2 Qo) = [ eHFIPP (o) at
R’Il

with the function xc from (11.39).

PRrROOF. By using
x — |2 = ‘\/_x - ‘ (1— a)lx| + —|t|2
for any a > 0, we derive the representation

D \n/2
w(x) e A-ax*/o (ﬂ)oa) /ef|ax7t\2/<aa> o =a)lt*/(a0) \ () gt

Rn

from (11.40). Then Young’s inequality leads to

—a X2(T D ’ﬂ/2 —a»2o' a 11(7'
(11.43) |w(x) 1=/ ‘S(ﬂ)oa) [e=el /o, el WICORVE I,

In view of (11.39), we have to choose the parameter a such that the functions
e (1-a)lt*/(a0) o—It1*/Do o (1=a)lt]*/(a0) o ~I6=x;1*/5} ¢ [, (R™),

Since D — Dy = h? — (5J2» = o and h? < D, this can be achieved, for example, if a is
chosen such that

(1—a)lt]? B w _ _w e g DDy
ac Do D’ 024+DDy’
Then
(1-a) o l-a o
ac DD, | o  o2+DDy
and

—al-|? o\ /4 no(0? + D Dy)\ /4
le= ™, = (52) " = (Fom )
Lo 2a 2D Dy
Hence, from (11.43), we derive

2 n/4
rlx]? ’ < (M) o 12/(D Do)
’ w(x) ¢ - 27TD80' H ¢

COROLLARY 11.12. The following estimate holds:

2 2 2 2
S Py el A ol /D’§02e_7‘x‘ min /Q(c).
C
€Y

XCHLg' O

(11.44) min
Pj EHLj
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In the next subsections, we describe a constructive method to find the vector
¢ = {c¢; g}, which realizes

min Q(c)

and establish its uniqueness.

11.4.4. Construction of polynomials. Let us give an explicit expression of
the quadratic form @Q(c). From (11.39) and (11.42), we obtain

Qlc) = /GQUH'Q/(DD“)(%*Q‘“Q/DO dt
Rn

hiDo\n/2 201t2/(DDy)  —[t[2/Do e [2/s2
-2 Z ( ) Z C;.8 € € Sg(hj Vt)e J i dt

X; €Y J [ﬁ] =0 Rn

hjhixDo Ls
+ > (Mkp) > Zcmcm
Xj,Xp €Y |B8]=0 |~v|=0

y /ezonP/(DDO) Sa(hy Vi) e % 1/83 S (1, W) e ~1exel*/0E g
R’Vl

Since

Sp(hy Vx) e ™M/ = Sp(—h; Vy) e "I,
we introduce the functions

h3Dy
B(J)( ) ( 52@

)"/QSg(—h]‘vx) / e2o|t‘2/(DD0) e_‘t|2/D0 e_‘t_xlz/[s? gt ,
Rn

(jk) _ (hjheDo\"
Cony (x¥) = ( 5;04D )

< Sy V) S5~y [ o210 PP g x5 e g,
]Rn

such that

20 = ()" 23 Y eyl

x,; €3 [B]=0
L;
ik
P VD b DL
x;,x, €2 [B]=0 [v]=

The minimum of the quadratic form @(c) is attained for the solution ¢ = {¢; g} of
the linear system

(11.45) Z Z CJ,ﬁC;%, (xj,x1) =B (x1), xx €%, 0<[v] < Ly.
x; €% [B]=
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The integrals

2 n
(thO) /2/eza|t\2/<wo> L T

7o) )
_ ( mh3 Dj )"/QGX (_ (D —20)|x|? )
52(DyD + D — 20) P\" 82(DyD+D - 20)

and

(ha‘thO)" /ezam?/(mo) o~ E-x[2/6% L —lt—y[?/0} g

5,6,D
R’Vl
n npngy3n/2
_ G exp (20HE + By %)~ Pulx — 51
D/2(DoD(37 + 07) — 206262)" /2 0 DoD(3? 1 67) — 200767

provide the explicit formulas for computing the coefficients Cg:) (x;,%k) and the
right-hand side B.(Yj)(xk) of the system (11.45):

. h2 D2 n/2 (D — 20)|x2
() (x) — T ~o o B o)lx
By (x) (5§(DOD+D—2U)> Sa( hﬂv")exp( 5§(D0D+D—2a))’
n ninay3n/2
w2 hp Dy

(7F) —
Cﬂ77 (x,y) = D"/Q(DOD((SJZ 4 5/%) _ 205?5%)71/2

20(82|x|* + (5J2»|y|2) — DoD|x — y|2)
DoD(52 + 62) — 200202

X Sa(—h;V)Sy(~hVy) exp

In the next subsection, we show that (11.45) has a unique solution {c; g}. Then
by Corollary 11.12, the sum

L;
(XX - lx—xs12 /R _ _ (X—Xj)ﬁ —|x—x;|? /2
(11.46) Z 73]( hj )e = Z Z 8 » e

x;EN x;€ [B]=0

approximates e~ XI*/P with the error co e ~71XI° v/ Q(c).

11.4.5. Existence and uniqueness. To establish the uniqueness of the min-
imizing vector ¢ = {¢; g}, we use another representation of the quadratic form Q(c)

defined by (11.42). If we introduce polynomials Téj) of degree [3] by

j h2DO n/2 2 /52 2,2
(11.47) TG (x) = (22=2)"" e /5% Sg(hy v) 0~/
(ﬁp)

then by (11.39),

L;
elt) = e 8P 5 5 o 10 g
X, €X [B]=0
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and from (11.42), we conclude

Q(c) = /eQU‘t'2/<DD°> (e*‘t'Q/DO -y Z ¢; 8Ty (¢ —xj)ef\tijwz/éf-)zdt

R Xj €x [5

:/(efm?/o 3 Z ¢ 6T (6 — x;)e —|t—xj|2/zs§eam?/wm)fdt_

R™ x; €X [B]=0
Since
gt [t -x* Dop_‘sg%( DoD _)2 o |x;[?
D()D 6J2 - 5J2DO'D DQD - 5?0’ D()D - 6J20'
and

DyD — 850 = D 4 0(Do — 6;) > 0
we can write

6=, [2/62 o lt]2/(DDo) _ qolxi|*/(PeD~620) o ~[t—t;]2/d;

with
11.48 d LA
(11.48) S Dot
and the transformed points
DyD d;
(11.49) t; = 0 J x; €Y.

'DoD—(SJQ-UXj :(5_J2-Xj7

Note that dj = D if h? = D and otherwise d; < D.
Then Q(c) can be written as

(1150)  Q(c) = /( Sl 3 Z &aTS (6 —x;)e *|t*tf‘2/df)2dt

R Xj ex [ﬁ
with the coefficients
Cipg=Cip e 01%1?/(DoD=630)
Since Téj) are polynomials of degree [3], the minimum problem for Q(c) is equiv-
alent, in view of (11.50), to the problem of finding the best Lo-approximation

min /(e‘“ﬁwD Z Z bjp(t—t;) _It_tf‘2/df>2dt.

bj.8
7P jn x;€X [B]=

LEMMA 11.13. Let ¥ = {x;} be a finite collection of nodes and let d; > 0. For
any f € Lo and all L; > 0, the polynomials P; € 11, which minimize

£= 3 P —py et

X;EX

b)
Lo

are uniquely determined.
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PRroOOF. We write the polynomials P; in the form

Z bﬂ"(\/—) '

[Bl=0
Then the application of Lemma 11.8 gives

Hf Z Z 3,8 ( _)ﬂe—l-—xj\2/dj

x;€X [B]=0 Ly
=172, -2 Zb,ﬁv + 3 Z Zb,ﬁbm Uy (x;,y1),
x; €X [B]=0 x;,XK €Y [B]=0 [v]=0

where the notation

V9 (x /f ) Sa(v/d; Vo) e 1ex1/ds gy
= Sa(— VTV [ 10 € i,
Rn

uﬁ('lj;:) (x,y) = /SB(\/ d; V) e XA s (\/dy, ) e 1Yk gy
(11.51) R

_ (M)"/Qgﬁ(_\/d—jv (—/dr V) e lx /(s a)

dj + dy.
is used. The norm is minimal if the coefficients {b; g} satisfy the linear system

(11.52) > Z bipUsy (xj,x0) =V (xi), xp €3, 0< [y] < Ly
x,; €3 [B]=0

Hence, the uniqueness of the m1n1m171ng linear combination

Z Z bj.p ( \/— )ﬂe_‘x—xy‘\2/d:‘

x; €% [B]=0

is equivalent to the invertibility of the matrix ||Ug:> (x;,%)| of the system (11.52).
Thus, the assertion is proved by the following lemma. O

LemMA 11.14. The matriz ||L{éji) (x5, %k)|| with the elements defined by (11.51)
is positive definite, i.e., the sesquilinear form satisfies

(11.53) > Z ZUM Xj, Xk) Vj8 Uy > 0

xj, X, €2 [B]=0 [y]=0

for any non-zero vector {v; g}.
Here, as usual, vy~ denotes the complex conjugate of vy, ~.

ProOF. To establish (11.53), we use the representation

(11.54) e~ x¥P/(dtd) _ (M)"”/ef<dj+dk>\t|2€2i<t,x> o2063) gt

™

3

R~
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which implies, in view of (11.51),

u[(ij,:)( ) (d dk: n/28ﬁ /d v /d v / (dj+dp)|t|>+2i{t,x—y) dt
Rn
:(djdk)n/2/ —92i./d t —9; / t d+dk)|t\ +2i(t,x—y) dt .
Rn

Then for an arbitrary constant vector {v; g}, the form in (11.53) can be rewritten
as

Ly Ly

Z Z ZZ/{(Jk) (Xj,Xk) V)8 Uk~

x5, Xk €X [B]=0 [v]=

L; Ly
= Z ddk”/QZ Zngvk7
Xj Xk €D [B]=0 [v]=0

—2i+/d t 211/ t —(dj+dg) \t|2 2i(t,x; —x) dt

R™
2
:/‘ Z d"/ Uj,BSﬂ 21\/_1; —d;|t>+2i(t,x;) it
Rn X;€EX B]=0

which shows that

j
Z Z Zuﬂ'y X],X;C U],gvk,y>()

x;,XK €S [B]=0 [v]=0

Here, the change of integration and summation is justified because the integrand is
absolutely integrable and the sums are finite.

Next, we have to show that the inequality is strict, when {v; g} # 0. This is
equivalent to showing that

(11.55) o(t)= Y d* Zumsﬁ (—2ir/d;t) e Bl +2i6x) — o c R
X;€EX [Bl=

only if v; 3 = 0 for all j and 3.

This will be established in the following way: Suppose that o(t) = 0 for all
t € R™ and denote the minimal value of the scaling parameters d; for all x; € £
by x = mind;. Then the function

fe(x) :/(3("””752)'”2 o(t) e ~246X) g

R~
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is identically zero for all x and € > 0. Using the representation (11.55) of o we have

L;

xj €% [B]1=0 Rn
L;
= Y3 Sl V) [ e
xj €% [B]1=0 Rn

L
. nj2 22
= Z (dﬂ—id‘]2> Z ’ijﬁ Sﬁ(\/d—va) e_‘X—Xj|2/(dj—n+g2) '
x; €L i—hRte (8120

Let us denote the subset of nodes x; for which d; = x by ¥;. We will show that
fe(x) = 0 implies v; g = 0 for all x; € 3¥; and 8 with 0 < [8] < L.
The sum over these nodes can be written as

L.
fe@) =Y (7755) D weSa(/d Ve o)

x,;€8, 7 8]1=0
n/2
:( ) 3 vagg (\/d; V) e/
x;€3 [B]=

We note that
Sp(v/dj Vi) o)l L0 as e -0

uniformly outside any ball centered at x;, i.e., uniformly in x € R™ \ B(x,, p) for
any radius p. Hence, for arbitrary p > 0

lin(l) fi,e(x) =0 uniformly in x € X, =R"\ U B(x;,p).
E—>
X; €Y1

Moreover, d; — k > 0 for all x; € £9 = 3\ X1, and therefore
7de )"/2 |2 o 2
7% Sa(\/d; Vy) e 1x=xi17/(dj—r+e”)
(d] — K + &_2 ,5( J )e
converge uniformly to

(dwd_ﬁ)n 3(\/d; V) e~ x=xil*/(di=r)

if ¢ — 0. Hence, f.(x) =0 implies

Z (d —H)n/z Zk v]wBSﬁ \/_v e —|x—x;|*/(d;—r) -0

X,; €32 [B]=0

for all x € X,. Since this function is real analytic, it vanishes for all x.

We conclude that fi .(x) — 0 uniformly for all x € R™ if £ tends to zero.
Applying the subsequent Lemma 11.15, we derive that v; g = 0 for all x; € ¥; and
B with 0 < [B] < L;.
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So we are left with the problem to show that v; 3 = 0 for all x; € ¥3 and 3
with 0 < [B] < L; if

Z dn/ Z ’UJﬁSﬁ 27,\/71] —d; It‘ +2i(6,x;) =0

X; €32 [B]=

for all t, which is solved by repeating the above procedure until all different scaling
parameters d; and nodes x; are covered. O

LEMMA 11.15. Let ¥ = {xj} be a finite collection of nodes. If

li H Sp(Vy) e~ Ix—xil"/e?
lim || > Z v Sa(V

x; €Y [B]=0
then v; g =0 for all x; € ¥ and B with 0 < [B] < L;.

207

PROOF. Let us fix a node x; € ¥ and consider

= Z vy 8(Vi) e Pxil?/<?

x; €X [B]=
on the ball B(xy, €) for sufficiently small € > 0. If there exists another node x; € ¥,
then obviously
S3(Vx) e il 0 as e 0
uniformly on any sufficiently small ball around xj. Since ||ge||z.. — 0, for any
d > 0 there exists gg such that for all € € (0,£9) and x € B(x,¢)

(11.56) ‘ Z ve3 S(V e S
[B]=0

Setting t = (x — x;)/e, the last inequality transforms to

Ly
} > vpSp(eT V) eIt ]Pﬁ(t)‘ <4
=0
for all |t| <1 and e € (0,g¢), where pg are certain polynomials of degree Ly not
depending on ¢. The inequality is valid for any d > 0 only, if these polynomials
vanish, which implies for ¢ = 1 that
Ly
> kg Sp(Vx) e Pxel/di = .
[B]=0
Since by (11.27)
Sp(Vx) el = (x — xp )P e ’
we deduce that vy g = 0 for all 3. (]

In the following two subsections, we show that under certain assumptions on
the parameters d; < D and the given finite point set ¥ in R”, the approximation
error satisfies

(11.57) min
P EHLj

— 0
Lo

’e—|-|2/D -3 7 o=l —xi*/d;

x;€X

if the degrees L; tend to infinity.
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11.4.6. Approximation error in the case d; = D.

THEOREM 11.16. Suppose that there exists xi € X with d, = D. Then

’eu/D ZPGI—XH/d

x;€X

min
Pj EHLj

Lo
(11.58)
(ﬂ-’D)n/2 |x [2(LRtD)

S R

2 Z)Lk"‘l(l/;C + 1)! '
PROOF. Since
Z P; e~lx=xil?/d; — po=lx—xul?/D Z P; e—\x—xj\2/d17
X; €3 XjFEX)

we have, obviously,

min ‘eu/D Sopeh —x;|*/d;
PjEHLj X;EX L2
J
2 2 2
< min /(e_‘x‘ /P _P(x) e Ix—xx /D) dx .
PellL,
R’n

The last integral can be transformed to

2
min /(e*|x|2/D —P(x)e*|x*x’“‘2/D) dt

PGHL,C
Rn
D n/2 2 2 2
= (= i —It7/2 _p(g) e~ It—tkl /2> dt
(11.59) (3)" i [ (e (t)e
RTL
_ (g)"/Q min /e—\tF (P) — il o=Vt )th
ellr,
R’n

with t, = xk/\/ﬁ It is well known that the Hermite polynomials

{Ho(x), Bez2}

form a closed orthogonal system in the weighted space La(R™, w; 2) with the norm

o= ([eireorax)

Rn

(see (11.7)) and that
2818172 a=p,

0, otherwise .

(HOHH,B)Q,’LUL2 = /67|X|2 Ha(x) Hﬁ(x) dx = {

R™

(See for example [93, Ch. 5.5].) Since e ~V2(-t) € Ly(R", uy 2), the minimum of
(11.59) is attained, when

ﬁ;o \/2 ﬁ] ﬁ'ﬂ'n/2
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with the coefficients

—|tx|?

ag = ————
/2181 B! /2
281 B! o

It ?
o /efﬂum(_vt)ﬁefm? it

NG CN T
281 Bl A

Integrating by parts, we obtain

e _It‘2Hg(t) e Vb gt

(11.60)

which together with

2 oo
T
T B! Pt 2! (L + 1)!
leads to the inequality
(11.61) lag|®> < 72l —
[ﬁ]—ZLkJrl (L + 1)!

Since tj, = x;,/V/D, inequality (11.58) follows. Note that

Ly

Z ﬁ]/2 5! Hp(t). O

B]=0

11.4.7. Approximation error in the case d; < D. Now we assume that
all scaling factors d; in (11.57) satisfy d; < D and we suppose first that d; = d for
all Xj; € X

THEOREM 11.17. Let, for given ¢ > 0, the scattered nodes {x;} satisfy the
following condition: There exists 0 < d < D such that the ball Br with the minimal
radius R given by

(162 (50m0) <3(p) ()

can be partitioned into subdomains T, which contain at least one node x; and

satisfy maxyer; [x — x| < kVd with some positive constant k. Then there exist
polynomials of sufficiently large degree L such that the sum

ij(x) o~ lx—x;|?/d
J

approximates the Gaussian e~ IXI*/D with

’ e IXI*/P ij(x) e~ Ix=xsl*/d ‘ < min (g, (1 +¢/2) e~ IxI*/D )
J

for all x € R™.
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Here, I'(a, ) denotes the upper incomplete Gamma function
(11.63) I(a,z) =T(a) —vy(a,z) = /T“_l e " dr
with y(a,x) defined in (4.15).

The proof of Theorem 11.17 consists of several steps. It is based on a simple
cubature formula for the integral

~p_ (D "/2/ —x-y?/d o~lyl?/(D—d) 4
¢ (wd(D—d)) ¢ ¢ Y-
Rn

For a given ¢ > 0, we choose R = R(D, h) such that
(B)"” / o WIP/D=R) g o

T
ly|>R

where we set

B D
P=am—a)-
Note that

n/2 2
o IvI2/(D=a) gy _ Mp(" R ).
I'(n/2)
ly|>R
so R has to be chosen such that

') <5 (5) ()
Then the function

SR(x) :(£>n/2 /e—lx—y\2/d e—ly\2/(D—d) dy
T
Br
is subject to
0<e X/P_gr(x) <e/2

for all x € R™. Here, we set Bg = B(0, R) = {|y| < R}. Because

(11.64) e~ =Y/ o=y */(D=d) _ o=IxI*/D o=p (x/(pd)=¥)*
we can write
(11.65) Sn(x) = (B)"/2e—\x\2/73 /efmx/(pd)fy)? dy .
™
Br

and therefore
e—Ix*/D g (x) = (B)"” / R (.
o
ly|>R

_ o X/ (ﬁ)"” / P LDy o o—Ix*/D
™
ly|>R

This implies the estimate

(11.66) 0 < e ™YP _Sp(x) < min (¢/2,e" /7).
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We subdivide the ball Br into the subdomains 7} with the property that each
T} contains one node x; and

max |x — x;| < kVd.
xeTy

Then

0 n/2 k2 T _
sux) =(£) > /e by 2/d oIy 2/ (D=0) 4o
J 7.

:(B)”/2 e /P 3 /e—p </ )37 gy
s )
J Ty

LEMMA 11.18. There exists a polynomial p; of degree L such that

’ / e P LDV Gy () o O/ (o) =) ’

1167y

2\ (L+1)/2
< ¢ meas T} max e—P (x/(pd)=y)*/2 (%) Z %
Y€T; - [a]=L+1 «

with a constant ¢ depending only on n.

PROOF. Put
Fxly) = eP O/ (pd)=y)?

and expand this function into its Taylor series around y = x;, i.e.,

L o X
Ry = 3 EEG) e Ry

o!
[a]=0
with the remainder
(y — %)~
Rpa(y,x;) = Z T‘J 9y fx(2)
[a]=L+1

for some z = x; + s(y — x;), s € [0,1] (cf. (2.3)). Then

L a X
(11.68) /fx(Y)dy = ({)yf%!(”/(y—xj)a dy+/RL+1(YvXj)dY-

T; [o]=0 T; T;
Note that by (7.7),

—p(x —y)? X Co(x N2
02 fly) = g e~ &/ rd=y) :p[a]mHa(\/ﬁ(m_y)) 0P (x/(pd)—y)

with the multi-variate Hermite polynomial H,. Hence, we set in (11.68)

T [y ) ay

ol
T;
ple/? x /(o) —x)° o
= ol Ha(\/ﬁ(m _Xj)) e’ r / /(y_xj) dy

T;
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If [a] = L 4 1, then we have to estimate
_ (L+1)/2 x —p (x/(pd)—y)*
05 Fx(0)] = o2 Ha (VA (25 =) ) e O/
for y € T;. We apply Cramer’s inequality for Hermite polynomials [1, 22.14.17]
(11.69) |H; (1) < K29/%\/j1 /2
with a constant K =~ 1.086435, which gives
X 2
Ha( x _ ) < Kolel/2 /ol o X/ (pd)=¥)%/2
Vo( o y)) < ale
Thus, we obtain

05 Fx(y)| < (20) 5072 KMol ee /092,

implying
R (y,))] < (20) D2 Ko may oo /o022 3~ 10 =%0)7
= yeT; — Va!
[a]=L+1
and the estimate
‘/fx(y) dy — p;(x) e " (x/(pd)—x;)?
T
1
< (2p)EHD/2 gn max P </ (pd)=y)?/2 |(y —x;)%| dy
yET; (]=L41 \/a!Tj
with the polynomial
Lo led/2
p x «
200 = Y o (Vi =) [ = %)) dy.
[a]=0 ) T

J
Since
b)

(2p)L+1/2:d_(L+1)/2( 2D )(L+1)/2

D—d

the assumption max Ix — x;| < KV/d implies
xeTy

(2p) 02 5O %a_, / Iy - x;)|dy
y

[a]=L+1

2Dk? \ (L+1)/2
<(p-a)

1
meas T} Z —_—,
D—-d [a]=Lt1 Va!

and therefore, the estimate (11.67) is valid with the constant ¢ = K™. O

LemMA 11.19. For any ¢ > 0, the sum

1
N/2
c g — —0 as N — 0.
va!

[a]=N :
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PROOF. Since the number of multi-indices o € Z%, of length [a] = N is
N+n—-1\ (N+n-1)
N ~ Nl(n—-1!"

from

Nl
= ¥ M
[a]l=N
and Cauchy’s inequality

Z 1 (N—i-n—l)( i)l/QZnN/2 (N +n—1)!
2 Val N 2ol M AT o)

we obtain

N+n—1
oN/2

Z N 2(n—1)!
with ¢; = ¢n. From

sny1 | (N +n) n—l
sy o\l (N +1)2 N+1\/ N+1’

we see that sy decays like

N
gl

(N +1)!
for large . ]

COMPLETION OF THE PROOF OF THEOREM 11.17. By Lemmas 11.18 and
11.19, there exist polynomials p; of degree L such that

‘ / o0 O/ D=3)" G () o0 6/ (o) x)? ‘ < 61 measT;
T;

with a sequence 61, — 0 if L — oco. Setting

n/2 o(x )2
(11.70) Pr(x) = (;) o IxI? /sz o= (x/ (pd)—x;)*
we then obtain from (11.65) that

|Sr(x) — Pr(x)| < e~ xI*/D g5, ( )n/QZmeasT

n/2
e IxI? P§, ( ) meas Bg .
T
Thus, one can choose the degree L of the polynomials p; such that
|SR(x) — Pr(x)| < e X*/Pe/a

Note that, in view of (11.64), we can rewrite

(11.71) Pg(x) = ij(x) o Pxxil?/d



11.4. CONSTRUCTION OF THE ©-FUNCTION WITH GAUSSIANS 273

with the polynomials

n/2
Pi(x) = (B) e ~IiIP/(D=d) o (x)
7r
—Ix1*/(P=d) L (nt[a])/2
e p x o
e Y P (VR - x)) [ w7 dy,
[a]=0 T;

where p = D/d(D — d). This together with (11.66) completes the proof of Theo-
rem 11.17. O

COROLLARY 11.20. Suppose that, for a given € > 0, the assumptions of The-
orem 11.17 are satisfied. There exist polynomials P; of sufficiently large degree L;

such that , ,
||e7|'| /D_ij e~ l—xil7/d ||Lp <e
J

for all p € [1,00].

11.4.8. Summary. Theorem 11.16 and Corollary 11.20 provide sufficient con-
ditions under which

2
ot
winQ(e) = iy,

’ o |12/ _ S opel —t;|*/d;
J

Lo

(see (11.50)) can be made arbitrary small if the degrees L; of the polynomials are
large enough. Applied to the discrepancy

W) = 3 Pi(Fgpt) e — e,

h2
X; €3 J

we obtain the following conditions on the nodes x; and parameters h;.
To apply Theorem 11.16, we require d, = D, which is equivalent to h? = D.
Then

. aD\"/2 [ty [2ERtD)
min Q(e) < (7) DL+ (L, + 1)1

From (11.49) we have
D

th = —
k Do Xk
with x; € 3. Hence,
2 Dy DL, + 1)
Corollary 11.20 can be applied if we assume that d; = d < D, which means
that h; = h. Moreover, by (11.48),
(h? —o)D(D — o)
DD —-o0)—(h?—o0)o
with 0 = D — Dy < h?, which implies
B2 dD(D — o) d*o

Incin Qc) < (

(11.72) d=

" do+DD-0) = do+D(D-o0)

and, in particular, h < +/D. Additionally, it is required that there exists a partition
of a sufficiently large ball Br into subdomains 7}, which contain at least one node
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t; and satisfy maxeer, [t — t;| < £v/d with some positive constant . From (11.62)
and (11.72), we derive that the radius R is given by the minimal value such that

(5 SO o) (S ) )

2(’D('D—U)—(h2—0

2’ D2(D — h?) 2
which is obviously satisfied if R is chosen to satisfy
n R? e (h®\"/2_/n
11. S )<= (= 2).
(1173 MG <:(5) TG)
Furthermore, by (11.49),
D(D —o0) (h? —0)o

b= DD —-o0)—(h?—o0)o i :Xj+'D('D—0)—(h2—U)UXj

where x; € 3. Using (11.72), one can see that the condition

(11.74) x; € T; and mez%rx|x—xj|§mh
x€T)

ensures that the assumptions of Theorem 11.17 are fulfilled.
Thus, we obtain the following result:

THEOREM 11.21. Let ¥ be a finite set of points x; in R", and let D and ¢
be given positive numbers. For the positive parameters h; < VD and ¢ < min h?,
there exist degrees L; of the polynomials

Ls X —x;\B
Pi) = Y eip(=2L) .
[81=0 !
where the coefficients c; g satisfy the linear system (11.45), such that
|3 Py e e | < i
X, €S

with
o

D(D—o0)+ 02’
if one of the following two conditions is satisfied:
(i) h;= VD for at least one of the parameters,

(ii) there exists h < VD and X' C ¥ with hj = h, x; € ¥', such that the ball Bp,
with the radius given by (11.73), can be subdivided into subsets T; which satisfy
(11.74).

T =

Now, we are in a position to describe the construction method for the approx-

imate partition of unity
Py )

for the set of scattered nodes X = {x;},cs close to a piecewise uniform grid G in
the sense of Condition 11.9.

Assign a finite set of nodes X(gy) to each grid point g € G with |x; — gg| <
k1v/ Dk, xj € X(gk). The scaling parameters h; > 0 of the set of functions

11.75 P.(x) e~ 1xxs*/h]
(11.75) {Pix) by st

which approximate e ~1x=8xI*/Pr should be chosen in the following way:
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1. hj </Dy.
2. If there exists hy < /Dy, such that the ball B(gy, Ry,) = {x : e ~*~8:*/Dx > ¢}
can be partitioned into subsets T} such that

(11.76) x; € T; and max|x —x;| < kohy
XET]'

for x; € ¥'(gr) & X(gk), then take h; = hy, if x; € ¥'(gy).
3. If (11.76) is not possible for hy < /Dy, then choose h; = /Dy, for at least one
node x;.
4. If x; belongs to X(gy) for different grid points gy, then h; has to be the same
for all sets (11.75).
Then we fix positive o < h}, denote Dy = Dy, — ¢ and 67 = h3 — o, and solve,
for a common degree Ly, of the polynomials P;, the system

Lk . )
1t 3N eeCilxx) = BY (), x€2(gr), 0< [v] < Ly,
x;€2(gk) [B]=0

where
) 7w h? D32 n/2 (D), — 20)|x|?
BY (x) = 7170 Sa(—h;Vy - r
5 (%) (5§(Dopk+9k—20)) p(=hy )eXp( 5;(Dopk+pk—2a))’
) n/2hnhn,D3n/2
l 7T l
Cg;z(xv y) = . 2

D2 (DyDy (8% + 62) — 206262)7/2
20 (07 x> + 67|y|*) — DoDx|x — y|2>
DDy (07 + 67) — 200367

% 8g(=h;Vx)Sy(—hiVy) exp (

Following (11.46), define the polynomials

X—Xj

Ly, 8
(11.78) PG = 3 eip(T2)
[8]=0 J

and, by Theorem 11.21, we have

DO L e
X; €3

<de —Tilx—grl®

with

T =

if Ly is sufficiently large. Then

| > a3 P el <5

greG x;€5(8k)
where the constant
C = E czke*”“leg’“‘2
grLeG

does not depend on the scattered nodes x; and the degrees Lj of the polynomials.
Hence, for sufficiently large L, the function

(11.79) Zak Z p;k)(x)e—lx—x]'lz/h?

grLeG xX; €X(8k)
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is the required approximate partition of unity.

11.4.9. Numerical experiments. We have tested the construction given by
(11.77), (11.78) in the one- and two-dimensional cases for randomly chosen nodes
with the parameters D = 2, h = 1, kK1 = 1/2, and Dy = 1 and Dy = 3/2. To
show the dependence of the approximation error on the number of nodes in ¥(m),
m € Z, and the degree of polynomials, we provide graphs of the difference to 1 for
the following one-dimensional cases :

Y (m) consists of 1 point, L = 3 and L =4 (Fig. 11.1);

Y (m) consists of 3 points, L = 3 and L = 4 (Fig. 11.2);

Y (m) consists of 5 points, L =2 and L = 3 (Fig. 11.3).
In all cases, the choice Dy = 3/2 gives better results as can be seen from Fig. 11.1.
All other figures correspond to Dy = 3/2.

- N . —0.0004 |-
. 0.001 /7 \
A / \
1 1 1 1 ’ 0.0002 - N
T -0.5 \\ 05 /1 / \

_050\1 i / 1 /’ 1 /\n |
N / A /" N 0\<1

0002k ) -0.0001 - \

0.002 N N

@ (b)

Ficurr 11.1. The graph of ©(x) — 1 when X(m) consists of 1
point, D = 2, (a) L = 3 and (b) L = 4. Solid and dot-dashed
lines correspond to Dy = 3/2 and Dy = 1, respectively.

As expected, the approximation becomes better with increasing degree L and
more points in the subsets X(m). The use of only one node in X(m) reduces the
approximation error by a factor 107! if L increases by 1. The cases of 3 and 5
points indicate that enlarging the degree L of the polynomials by 1 gives a factor
102 for the approximation error.

Note that the plotted total error consists of two parts. Using (11.77), (11.78),
we approximate the ©O-function

(11.80) (2m)~Y/2 Z e~ (@=m)?/2 gy 226_2”2j2 cos 2Ty .

meZ j=1
Hence, the plotted total error is the sum of the difference between (11.79) and
(11.80) and the function

oo
(11.81) 2267277%‘2 cos2mjz,

j=1
which is the saturation term obtained for the uniform grid. The error plots in the
right-hand side in Figs. 11.2 and 11.3 show that the total error is majorized by the
saturation term (11.81), which is shown by dashed lines.
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2e-7

1e-7

@) (b)

Ficure 11.2. The graph of ©(x) — 1 when X(m) consists of 3
points, D =2, Dy = 3/2, (a) L = 3 and (b) L = 4. The saturation
term obtained on the uniform grid is depicted by dashed lines.

3e-7

1e-7

e-7

@) (b)

Ficaurr 11.3. The graph of ©(x) — 1 when X(m) consists of 5
points, D =2, Dy = 3/2, (a) L = 2 and (b) L = 3. The saturation
term obtained on the uniform grid is depicted by dashed lines.

In Figs. 11.4 and 11.5, we depict the difference Mu(z) — u(x) for the quasi-
interpolation formula defined by (11.22) with Gaussian basis functions constructed
via (11.46), (11.45) with X (m) consisting of 5 points, and the approximation orders
N =2 and N = 4. For N = 2, we have used the parameters L = 4 (the degree
of the polynomials P;), D = 2, Dy = 3/2, and for N = 4, we have chosen L = 6,
D=4,Dy=3.

The h¥-convergence of these one-dimensional quasi-interpolants is confirmed in
Table 11.1, which contains the uniform error of Mu — u on the interval (—1/2,1/2)
for the function u(z) = (1 4+ 2?)~! with different values of h.

Similar experiments have been performed for the two-dimensional case. Here

we provide graphs of
1- Z P;(x) e P */P
x;€X
for the following cases:

degP; = 1 and X(m) consists of 1 or 5 points (Fig. 11.6);
degP; = 4 and X(m) consists of 1 or 5 points (Fig. 11.7).
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FiGure 11.4. The graph of Mu(z) — u(z) with N = 2, u(x)
(1+2%)~!. Dashed and solid lines correspond to (a) h = 1/16 and
h=1/32 and (b) h = 1/64 and h = 1/128.

AN 266 | /
-2e-6 - \ s
-0.5 N\ o ———  / 05
\ 2e6f /
\ /
-6e-6 S /
\ /
\ , P r\ L Ve
\ \ \ N \ /
~7 N / \ / A )\ N/
S\ws5h \
\ \ - v o5t 7
(@) (b)

FIcurr 11.5. The graph of Mu(x) — u(z) with N = 4, for
(a) u(x) = (1+2%)~! and (b) u(x) = 2*. Dashed and solid lines
correspond to h = 1/32 and h = 1/64, respectively.

h N=2 N =14
23 1.89-102 1.81-1073
24 5.72-1073 1.38-1074
2-5 1.51-1073 1.01-107°
2-6 3.81-10* 6.65- 10"
27 9.65-107° 4.20-108

TABLE 11.1. Ly -approximation error for the function u(z) = (1+
22)~1 in the interval (—1/2,1/2) using Mu with N = 2 (on the
left) and N = 4 (on the right).

11.5. Notes

Interpolation and quasi-interpolation by radial basis functions are promising
methods for approximating multi-variate functions from scattered data. Various
aspects of interpolation by radial functions are well developed; see, for example,
the monograph by Buhmann [15] and the numerous papers referred to therein.



11.5. NOTES 279

277
cZz A FFZTTT
e e i o e e
e e e
e

FiGureE 11.6. The graph of ©(x) — 1 when L = 1 and X(m)
consists of (a) 1 point and (b) 5 points.
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Ficure 11.7. The graph of ©(x) — 1 when L = 4 and X(m)
consists of (a) 1 point and (b) 5 points.

Since the construction of interpolants requires solving large systems of linear
equations, it is very interesting to go over to quasi-interpolation. Scattered data
quasi-interpolation by functions, which reproduce polynomials, has been studied by
Buhmann, Dyn, Levin in [16] and Dyn, Ron in [24] (see also [15], [97] for further
references).

Other methods for scattered data approximation include Moving Least Squares
(see [28], [67]), which have attracted attention in the context of approximate so-
lutions of partial differential equations as so-called meshless methods (see [6] and
the references therein). As a rule, the methods reproduce polynomials, at least
locally, but the shape functions n; are not available analytically in simple forms.
The computation of the approximant requires solving a linear algebraic system for
each point x € R".

In this chapter we gave a detailed presentation of the recent paper [56]; see also
the preliminary version [54]. The aim of the approach is an analytic representation
of the quasi-interpolant, which similarly to the case of uniformly distributed nodes
can be used for the approximation of integral and pseudodifferential operators.






CHAPTER 12

Numerical algorithms based upon approximate
approximations — linear problems

The real power of the approximate approximation is in the capability to treat
multi-dimensional integral operators very efficiently. Therefore, it is natural to
use it as an underlying approximation method in numerical algorithms for solving
problems with integro-differential equations. Another very important application
of approximate approximations is in the large field of integral equations methods for
solving initial and boundary value problems for partial differential equations. For
such problems, the method should be applied not directly to the partial differential
formulation but to equations which involve potentials or other pseudodifferential
operators.

In this chapter we describe three applications to the numerical solution of par-
tial differential problems. Section 12.1 is devoted to the solution of Lippmann-
Schwinger type equations, which involve volume integral operators and occur in
scattering theory. We propose a collocation method which uses dilated shifts of
the Gaussian as trial functions. Since the action of the volume potential can be
given analytically, the computation time for the discrete system can be significantly
reduced. We prove that the method provides spectral convergence order up to sat-
uration errors.

As another example, in Section 12.2 we consider the boundary point method
(BPM) as an application of approximate approximations to the solution of boundary
integral equations, which are solved by collocation with dilated shifts of a rapidly
decaying function. If the surface integrals are approximated by the integrals over
the corresponding tangential plane, then the coefficients of the resulting discrete
systems depend only on the coordinates of a finite number of points at the boundary
and the direction of the normal at these points.

The accuracy of BPM is determined by the best approximation of the solution
and by the approximation error of the surface integrals. The last problem is closely
connected with cubature of integral operators over surfaces. The main idea is to
combine the approximate quasi-interpolation of the surface density with the inte-
gration of the basis functions over the tangential plane by the use of appropriate
asymptotic expansions. As an example, in Section 12.3, we discuss the computa-
tion of multi-dimensional single layer harmonic potentials and prove O(h?|log h|)
approximation rate if the values of the normal and of the curvature of I' at the
nodes are used.

281
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12.1. Numerical solution of the Lippmann-Schwinger equation by
approximate approximations

Here, we apply an approximation method to the numerical solution of an inte-
gral equation of Lippmann-Schwinger type in diffraction theory

(12.1) u(x) + q(x) /Sk(x —y)uly)dy = f(x), Q CR",
Q

where the kernel & is the fundamental solution of the Helmholtz equation defined
in (5.2). Many scattering problems in inhomogeneous media can be transformed
to volume integral equations of this form. Their numerical solution with standard
cubature methods is very expensive because of the singularity of the kernel &, and
its fast oscillations (for large k), especially in the multi-dimensional case.

In our approach, the approximate solution is sought as a linear combination of
scaled and shifted Gaussians. We saw in Section 5.1 that the diffraction potential
of the Gaussian can be expressed by special functions; hence the discrete system
can be computed very efficiently.

It turns out that our method provides spectral convergence up to some negli-
gible saturation error. To be more precise, under the assumption that the solution
u satisfies the smoothness condition

/|.7-'u()\)| (L+]ADNVdX < o0,
R
we show that
(12.2) Ju(x) — up(x)| < co WY + c1eh?
with small €, negligible in numerical computations. This estimate does not depend

on the wave number k, which is confirmed in numerical tests.

12.1.1. Problem. Consider, for example, the scattering problem
(12.3) Aw+ (k* —qw =g, x € R",

where k > 0 is a constant and the potential ¢(x) and the right-hand side g(x) are
compactly supported complex-valued functions. The radiated field w has to satisfy
Sommerfeld’s radiation condition (5.4). The application of the diffraction potential

(12.4) Su(x) = Syu(x) = / Ex(x — y) uly) dy ,
R’n

leads to the integral equation for the radiated field
(12.5) w(x) + S(qu)(x) = =Sg(x) .
In the following, we omit the index n, which indicates the space dimension of the
diffraction potential S,,.

In the special case when an incident field w?, i.e., a given entire solution of the
Helmholtz equation Aw® + k2w = 0, is scattered by the potential g(x), the right-

hand side of (12.3) is given by g = quw’, and equation (12.5) leads to the well-known
Lippmann-Schwinger equation for the total field w'** = w + w’

(12.6) w (%) + S(qw'?)(x) = w'(x) , x € R"™.

We refer to [20] for more details concerning this equation.
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In the following, we consider the equation (12.5). Multiplying both sides with
the potential ¢, we derive an integral equation of the form

(12.7) u(z) + q(x) Su(x) = —q(x)Sg(x)

for the function u = qw. If a solution u of (12.7) is found, then from (12.5), one
obtains the solution w of the original problem by the formula

(12.8) w(x) = — / Ex(x— y) (gy) +u(y)) dy -
J

So the partial differential equation (12.3), given on the whole space R", is trans-
formed into an integral equation over a bounded domain ) containing supp g.

We propose a collocation method for solving (12.1), which is based on the direct
computation of integrals of the basis functions. To solve (12.1), we choose as basis
functions the elements of the set

(12.9) X}, = {e—\X—hm|2/Dh2, hm € Q. m € Zn} ,

where 0}, is some domain containing the support of the potential ¢, 2 C €, the
parameter D is a fixed positive number, and h is the discretization parameter. Thus
the approximating functions are linear combinations of scaled Gaussians centered
at the grid points {hm € Q}.

It was shown in Section 5.1 that in the one- and three-dimensional cases, we
have analytic formulas for the diffraction potential of Gaussians (see (5.13) and
(5.18)).

Other basis functions commonly used for solving three-dimensional problems,
finite elements for example, do not give such simple formulas. Here special cubature
formulas have to be utilized. The use of the Gaussian reduces the numerical ex-
penses of discretizing the integral equation significantly. Moreover, since any point
value of the integral operator applied the approximating functions can be computed
exactly (of course, within the computer’s precision), no cubature errors occur.

The integral equation (12.7) is solved by collocation: Find uj € X} such that

(1210)  un(hm) + g(hm) Sun(bm) = ~qg(hm) [ &.(hm - y)g(y) dy
R’Vl
for all grid points hm € Qj,. Hence, the coefficients {upm} of the discrete solution
up(x) = Z Um e~ [x—hm|*/Dh?
hmeQy,

are determined from the linear system

(12.11) Um + ¢(hm) Z am—juj = —q(hm) /Sk(hm —y)g(y)dy.
hieQ, in
for hm € Qj,, where
12.12 a; =X hj with x(x) = Er(x —y ef|y\2/Dh2 dy.
J
R’Vl

In the one-dimensional case, (5.20) gives for j € Z

WDh eijz/,DL(kh\/ﬁ_Flﬂ) _ZeikzDh2/4eZkh‘J‘
o% s D :

a; =
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whereas in R3 we obtain

VrDih? (e—k2Dh2/4 Gikhlil _ o—lil*/D K(’f’“@ n ﬂ))

4)j| 2 VD
Dh?  ikvVaD3h3  khVD

@000 = 5 T W ( 2 ) :

a5 =

Here |j| denotes the Euclidean norm of j € Z3.

Note that, in general, the right-hand side of the system (12.11) cannot be
determined exactly. Hence, in order to obtain an estimate of the form (12.2), we
use the high-order cubature formulas discussed in Section 5.1. We approximate Sg
by

Shg(x) =D "/? Z (hm)xp(x — hm)
hme)
with
() = (VB [ Eulox = VBhy) mans 5) dy
R’Vl
The following approximation theorem holds:
THEOREM 12.1. Assume that u € WY, N = 2M, has compact support and let

the mesh width satisfy hk < k < 2w with k the wave number in (12.3). Then for
any € > 0, there exists D > 0 such that

[Shu(x) — Su(x)| < c(VDR)N D HBOL& + h2el|u]

[a]=N

ProoFr. We use the expansion (2.50) of the quasi-interpolant

_n X — hm
p—n/2 m%ﬁ u(hm) nzM(W)7

which approximates the density u. Obviously, the remainder

/2 x—hmye x—hm\ Ua(x, hm)
Ry n(x) [O;ND hmezsu:ppu( VDh ) 772M( Nl ) =

satisfies

max [SRy (%) < c(VDR)N Y oz,

]
=N a!

Since the sums of the fast oscillating functions in (2.50), which represent the satu-
ration error, converge absolutely, it remains to estimate the value of the diffraction
potential applied to functions of the form v(z) e 27 X)/h 1 ¢ 7"\ {0}, with
a compactly supported and sufficiently smooth function v. The pseudodifferential
operator S has the symbol (k? — 472|A|?)~1. Let us introduce the set

(47?2 — k?)k?

B={XeR": |4n?|\|* — k*| < p} with p= 5
K
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and a smooth function a(\) satisfying a()\) (k? — 42| A|?)~! for XA ¢ B. Then

S( 27 (- v /h // 27 (X—y, A )\)v(y)e—%ri(y,u)/h d)\dy
R"R™
+//( 1 _a()\)> e27ri<x,)\> —27i(y,v/h—X) ( )d)\ dy
K2 — dnZAP
R"B
://GQWi(x—y,)\> a()\)v(y) e—2m’(y,u>/h d)\dy
R™»R™

1 271 (X, ) _
+/(k2 — 5T a(A)) €N Fu(x — v/h) dx
B

The integral

I = //e2wi(x7y,k> a()\)v(y) 6727ri(y,u)/h d\ dy
RPR™
is a pseudodifferential operator with smooth symbol a € S~2(£2); hence the expan-
sion

; 0%a(v/h)0*v(y)
2ni{z,v)/h E
Il =e z[a] I +RN(X, h)
[a]<N

holds (see [29, Sect. 3.3.4]), where
|[Rn(x,h)| < Cyoh®*N.
Since the number p is chosen so that v/h ¢ B for all v € Z" \ {0}, we obtain

1 1
0% a(v/h) = 05— x| LT S—
a(v/h) A k2 — 42| A2 )\:u/h Y h2k2 — 4m2|v)?
which leads to the asymptotics
- rlel 9w (y) 1
— o2mi(x,v)/h 2 o
Li=e DY olal ¥ pERE = rIER B (x,h).

[a]<N
To estimate the second integral, we note that |A|Y|Fv(A)| — 0 as |A| — oo. Using

spherical coordinates, one easily sees that the integral is a principal value integral
of a compactly supported smooth function. Therefore

| / (ﬁﬁzmz —a(N)) 20N Fu(A—v/h)dA| < e,h. O
B

12.1.2. Error analysis for the collocation method. To estimate the as-
ymptotic error of the collocation method, we introduce an interpolation projection
Qp, satistying Qp, f(hm) = f(hm) for all hm € Q. Then the discretization (12.10)
of the integral equation (12.5), which has the form

(12.13) u+qSu = —qSyg,
can be written as
(12.14) Qnun + Qrg Sup = —QrgShy

where S}, is an appropriately chosen cubature for S. The linear systems (12.14) are
uniquely solvable for all sufficiently small h. This follows from the fact that S is a
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compact operator in any reasonable function space over bounded domains. Hence,
under certain smoothness assumptions on g, the operator ¢ S remains compact if
the domain under consideration contains the support of q.

Furthermore, the interpolation problem with Gaussian functions is uniquely
solvable (see [79] and Section 7.3). Moreover, by (11.54),

e—(j—k)2/D — (ﬂ_D)n/2/e—ﬂ'2D\x\2 e27ri<j—k,x) dx,
RTL

which shows that

(Av,o) = 3 e WM/ g — (Wp)n/z/ DI | § g g2l 2

hj,hkeQ, B hjeQy,

dx

for any vector v = (vj)njeq,, v; € C. Therefore, we obtain the inequality

A
TV ol < iy < x| 3 P

meznr

[

with bounds not depending on the mesh size h and the number of unknowns of the
interpolating sum of scaled and shifted Gaussians. Hence, the condition number of
A can be estimated by (7D)~"/2 ¢™ Pn/4 This means that the numerical solution
of the interpolation problem can cause stability problems for large D. However,
since the scaling of the trial functions coincides with the mesh width h, the condition
number of A does not depend on the number of grid points and does not become
worse for finer meshes. In practical calculations for three-dimensional problems,
direct solvers from LAPACK are stable up to the parameter D = 4.

Since the equations (12.14) are compact perturbations of the uniquely solvable
interpolation problems, standard results for projection methods imply that these
equations are solvable provided that (12.13) (or equivalently the original problem
(12.3)) is uniquely solvable; see for example the monograph [80]. The approximate
solution wy, to (12.3) is obtained then from the relation

(12.15) wp(x) = =Spg(x) — Sup(x), x € R™,

where again the analytic formulas (5.13) or (5.18) for the diffraction operator can
be used. Hence, by (12.14), one has

Qnun — Qnq(Shg +wn) = —QnaSng,

and therefore,
Qnrqwn = Qnup -
On the other hand, putting
Sup = SQrup + S(I — Qh)uh

into (12.15), we see that wy, solves the integral equation
(12.16) wp, + SQrqwp, = —Spg — S(I — Qh)uh
Since by (12.5)
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we obtain, under the assumption that the operator (I + SQnq)~!

wyp —w=—(I +8Qnq) " (Shg + S — Qn)un) — w
(12.17) = —(I+8Qng) ™" (Sng + w + SQnqw + S(I — Qn)un)

= (I+8Qng) " ((S = 8n)g +S(I — Qn)qw — S(I — Qn)un).

Therefore, to estimate the error, we have to show that (I + SQpq)~! exist and
are uniformly bounded for sufficiently small h as well as finding upper bounds for
the three terms inside the brackets. The first term (S — Sj)g does not depend
on the choice of the interpolation operator @;, and has been estimated already
in Theorem 12.1. The term S(I — Qp)uy vanishes if we choose @) to be the
interpolation projection onto the space of Gaussians X}, defined in (12.9).

Before dealing with the second term and the operators (I +SQyq) ™", we briefly
recall the result of Theorem 7.10. Roughly speaking, it was shown that the inter-
polant from the set of Gaussians X}, at the lattice {hm, m € Z"} approximates
continuous functions with optimal order up to some saturation error. The satura-
tion error of the interpolation can be represented in the form

exists,

N 9ou(x) s o

with smooth h-periodic functions aq(x) given by (7.35). It was shown that the
saturation error can be made arbitrarily small for sufficiently large D (for the exact
formulation see Theorem 7.10).

Note that, obviously, these properties remain valid if we restrict the interpola-
tion nodes to the set {hm € Q;,,m € Z"}, where the domain Q;, D Q D suppgq is
chosen so that the basis functions with centers at ) are smaller than the saturation
error outside 2y,

e —Px—hm|?/Dn* oo ¢ Qp and hm € Q.

Now, we are in a position to treat the remaining terms in (12.17). First, we show
that the operators I + SQrq have uniformly bounded inverses for all sufficiently
small h. Since the set ||Qprql| is bounded and S is compact, the operators SQpq are
collectively compact (cf., [4]). Since the saturation error of the interpolant consists
of rapidly oscillating functions, we conclude as in the proof of Theorem 12.1 that

IS(I — Qr)qul| =0 as h—0

for the dense subset of functions u with [Jul|’y s < co. Therefore, all conditions
of the collectively compact operator theory are satisfied and we obtain, under the
assumption that I4+Sgq is invertible, that for sufficiently small & the inverse operators
(I +8Qnq)~! exist and are uniformly bounded. On the other hand, if the solution
w satisfies the condition

(12.18) lqwlly = / [F(qw)N)] (1 + AN dX < oo,
R’Vl
then the same arguments lead to the estimate

ST = Qn)a(x)w)| < e (VDN quy + e1 hPellqullox-1
which bounds the second term inside the brackets in (12.17).
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Summarizing all arguments above, we obtain the following convergence result:

THEOREM 12.2. Suppose that the solution w of equation (12.3) satisfies the
smoothness condition (12.18) with N = 2M and suppose the cubature formula for
the right-hand side of (12.7) is generated by the function naps. Then the difference
between w and the solutions wy, of the system (12.11) can be estimated as follows:

lw(x) — wp(x)] < o (VDN + creh?.

12.1.3. Numerical example. As a simple test, we consider the one-dimen-
sional problem:

(12.19) w4+ (k* + pg(z))w = —6(z) , = € R.
Here, p is some constant parameter and the potential g is given as

_ v(x)
- uSu(z) + eiklel 24k

q(z)

with some function v(z), |x| < 1, which is obviously a solution of the integral
equation

T 1 - x) etklel
(12.20) u(z) — %(k) /em‘m_y‘ u(y) dy = % .

Then (12.19) has the solution
elk\z\
2ik

In Tables 12.1 and 12.2, we give convergence rates for max |w(x) — wy ()|, where

w(z) = pSv(x) +

eik\m\
2ik
with the approximate solution w; of (12.20). In the tests, we tried different values

of the parameter y and the wave number k. The obtained convergence rates should
correspond to the smoothness of v.

wp(x) = pSup(x) +

Rt k=1|k=10]k=20|k=50

20 | 5.1519| 6.5723 | 8.1984 | 7.8392
30 | 1.1945 | 1.0650 | 0.8227 | 2.2741
40 | 1.0463 | 1.0665 | 0.9640 | 0.6128
50 | 1.0244 | 1.0482 | 0.9853 | 1.1107
60 | 1.0186 | 1.0462 | 0.9894 | 0.9759
70 | 1.0155 | 1.0417 | 0.9912 | 1.0305
80 | 1.0134 | 1.0292 | 0.9925 | 0.9321
90 | 1.0118 | 1.0303 | 0.9934 | 0.9793
100 | 1.0106 | 1.0263 | 0.9941 | 1.0000

TABLE 12.1. Convergence rates for v € C*
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h~1 k=1| k=10 k=20| k=50

20 | 16.5432 | 17.1947 | 21.2600 | 17.3789
30 4.4344 | 3.8187| 3.3097 | 2.9959
40 4.0306 | 3.9816 | 6.3844 | 3.2325
50 4.0015 | 3.9991 | 4.1470| 4.0169
60 3.9999 | 4.0020 | 3.4357 | 3.6604
70 3.9998 | 4.0029 | 4.7079 | 3.8351
80 3.9998 | 4.0033 | 4.0115| 3.9777
90 3.9999 | 4.0000 | 4.0088 | 4.1684
100 | 3.9999 | 3.9982 | 4.0069 | 4.0862

TABLE 12.2. Convergence rates for v € Cj[—1,1]

12.2. Applications to the solution of boundary integral equations

The possibility of obtaining explicit formulas for values of various integral and
pseudodifferential operators of mathematical physics applied to the new classes of
basis functions also makes approximate approximations attractive for the cubature
of those integral operators over surfaces.

One important example is multi-dimensional surface potentials associated with
elliptic differential operators. They are defined by surface integrals involving fun-
damental solutions of the differential operators which become singular when the
observation point approaches the surface.

The numerical treatment of these integrals with singular kernels is an essen-
tial part of boundary integral methods, which have been established as efficient
numerical procedures for solving boundary value problems for partial differential
equations, which occur in mechanics, acoustics, electromagnetics, and other fields
of mathematical physics.

In this section, we apply ideas of approximate approximations to the numerical
solution of boundary integral equations. Owing to the rapid decay of the basis func-
tions used in approximate approximations, the integration surface of the boundary
integral operators for acting on these functions can be replaced by another surface,
more suitable to the approximation of the boundary integral operator. The method,
discussed below, replaces the integration surface by tangential planes, supported
at certain boundary points. Therefore the coefficients of the resulting algebraic
system depend only on the coordinates of a finite number of boundary points and
the direction of the normal at these points; hence the name boundary point method
seems quite natural ([63]).

12.2.1. Boundary integral equations. The methods of boundary integral
equations reduce boundary value problems for partial differential equations with
known fundamental solutions to equations with boundary integral operators with
kernels involving the fundamental solution. Consider, for example, the second-order
partial differential operator L = —A+c in R™, where A is the Laplacian and ¢ € C,
and denote by v(x) its fundamental solution. Using Green’s formulas the Dirichlet
and Neumann boundary value problems for the equation

(12.21) Lu(x) =0
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in a bounded domain  or in the exterior R” \ Q can be transformed to equations
on the boundary I' = 9Q with integral operators of the form

(12.22) V() = / V() 7(x — ) doy ,
N

(12.23) Kib(x) = / DY) On(y)y(x — y) doy
I

(12.24) K'yp(x) = /w(y) On(x)y(x —y) doy ,
T

where x € T". Here 0,,(x) denotes the derivative in direction of the normal n(x) to
I" which points into the exterior of 2.

The operator V has a weakly singular kernel, whereas K exists as a principal
value singular integral, in general. The operator K’ is the adjoint of (12.23) in
L (T). These operators appear as limits of the well-known single and double layer
potentials

/ $() 1z — y) doy / DY) On(¥)y(@ — y) doy |
I I

if z ¢ T approaches x € T'. Note that both integrals are solutions of the differential
equation outside I' and the two-sided limits for z — x € T" satisfy well-known jump
relations, which, for sufficiently smooth T', are as follows: If the deusity ¢ € C(T'),
then the single layer potential

u(z) = / $(y) 1(z — y) doy ,
T

is continuous in R™ and on I' it holds that

(12.25) u(x) = V(x)

and

(12.26) O () = K'(x) F gih(x0),
where

Onut (x) = hli%l+<n(x)’ grad u(x £ hn(x))) .

Since h > 0, we have x + hn(x) € R” \ Q and x — hn(x) € Q. The double layer
potential

v(x) = / V() On(y)y(x —y) doy

with density 1 € C(T') can be continuously extended from  to 2 and from R™\ Q
to R™\ Q with the limits

(12.27) hl_i)r&v(x + hn(x)) = Ky(x) + %w(x)

and the normal derivatives of v are continuous on T, i.e.,

(12.28) Opvt (%) = 0,07 (%).
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Let us consider some boundary integral formulations of the Dirichlet problem
(12.29) Lu=0 in Q, ulr=g.

The solution of the differential equation can be represented as

u(x) = /¢(Y) On(y)v(x—y)doy, x€Q,
r

with the density ¢ which satisfies because of (12.27) the integral equation of the
second kind

(12.30) %w(x) - Ky(x) =—g(x), xeTl.

One can also use the representation

u(x) = [ P(y)v(x—y)doy, x€Q,
/

which leads, in view of (12.25), to the integral equation of the first kind
(12.31) Vip(x) =g(x), xeT.

Moreover, from the representation formula

u) = [ (30x = 3) uy) ~ uly) 0,31 x ~ 3) ) doy

(12.32) "

+ [ Lu(y)v(x —y)dy,
/

which follows from Green’s formula and is valid for all reasonable functions wu,
domains  and all x € Q, one obtains the solution of (12.29) in the form

ux) = [ (45 9(x = ¥) = 9(3) 0u(¥)1x - 3) ) doy
r
Here, 9 is a solution of the integral equation of the first kind

(12.33) Vi(x) = %g(x) +Kg(x), xeTl,

which is a consequence of the jump relations for the potentials (12.25) and (12.27).
Another classical example is given by the exterior Neumann problem

(12.34) Lu=0 in R"\Q, dyulr=g,

with certain prescribed behavior at infinity. If the solution can be represented in the

form of a single layer potential, then the density i can be found from the integral
equation of the second kind

(12.35) S0~ K'(x) = —g(x), x€T,

where the jump relation (12.26) is used.
Finally, we mention boundary integral formulations for the mixed boundary
value problems

Lu=0,

12.36
( ) U|FD = 9o, anu|FN =0
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in  or the exterior R™\Q and the boundary I' is split into two parts, where Dirichlet
or Neumann boundary conditions are imposed, I'p UTy = I'. For example, if the
problem (12.36) is stated in ), then (12.32) together with the jump relations lead
to the boundary integral equations for the unknown data u|r, and Opul|r,: for
xel'y

5060 + [ u)0u)30x =y oy — [ 26x = y) Duuly) dor

FN r‘D

. / 00(¥) D (y)1(x — y) doy + / (x—y) 01(y) doy

FD r‘N

(12.37)

and for x e I'p

FD 1—‘N

= 59060+ [ 00N x =) doy — [ 26— 3)ga(y) doy

FD 1—‘N

If a solution of these integral equations is found, representation (12.32) can be used
to determine the solution to (12.36) at any point x € .

We see that in using boundary integral equation techniques, different elliptic
boundary value problems can be reduced to equations on the boundary of the
domain, which involve integral operators with singular kernel functions. Here we
do not consider the mathematical problems of these techniques, which include the
equivalence of the integral equations to the boundary value problem, the solvability
and uniqueness of these equations, and similar questions. Instead, in the next
subsection we will discuss a certain application of approximate approximations to
the numerical solution of boundary integral equations.

12.2.2. Boundary point method. Since boundary integral equations meth-
ods can treat both interior and exterior boundary value problems and reduce the
dimension of the original problem by one, the numerical solution of the correspond-
ing boundary integral equations became popular since the 1980s.

The widely used boundary element method (BEM), for example, is based on
the application of finite element techniques, developed originally for solving partial
differential equations. For the use of the BEM, the boundary surface is divided
into a finite number of subareas and in every subarea the unknown functions are
approximated by standard (as a rule polynomial) functions. After applying a col-
location or Galerkin method, the boundary integral equations are reduced to the
solution of a finite system of algebraic equations. Because it requires calculating
only boundary values, rather than values throughout the domain, where the boun-
dary value problem is formulated, the BEM is significantly more efficient in terms
of computational resources for problems where there is a small surface/volume ra-
tio. However, for many problems boundary element methods are less efficient than
domain-based methods. This is caused by the need to construct a mesh of the sur-
face and to compute the values of the integrals over the subareas at different points,
distributed on the whole surface. In many cases, these integrals are singular and
the complexity of their calculation depends on the type of approximating functions.
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Since, especially in higher-dimensional problems, a great portion of computer
time is spent in calculating the matrix elements, there is ongoing research to develop
new effective algorithms. For example, compression techniques (e.g., multipole or
wavelet expansions, panel clustering) can help to accelerate the BEM, though at
the cost of added complexity.

Now, we describe an alternative approach for the discretization of boundary
integral equations, which is not based upon the decomposition of the boundary
into surface elements. The approximation on surfaces which have been studied in
Section 10.3 and the possibility of obtaining explicit formulas for classical integral
operators acting on generating functions of approximate approximations suggest
using these functions also for the numerical solution of boundary integral equa-
tions. Then the coefficients of the resulting discrete systems depend only on the
coordinates of a finite number of points at the boundary, which are the centers of
the generating functions, and some surface characteristics near these points.

Let {xx}2_, be a collection of boundary points and let {hx}2_, be a collection
of positive constants, having the dimension of length. For example, hy may be
chosen as the average distance from x; to the neighboring points of {x;}&. The
approximate solution of the boundary integral equation

(12.39) Ap(x) = f(x), xeT,

is sought as a linear combination

N
ON(x) =) crpr(x), x€T,

k=1

with basis functions

Pr(x) Zn(%),

where 7 is a radial, rapidly decaying function used in approximate approximations
and the parameter D > 0 controls the saturation error.

The coefficients {cx} can be determined in different ways: for example, by the
collocation method

(12.40) A¢N(Xj) :f(Xj), j: 1,...,N,
or by Galerkin’s method
(12.41) (AN, @) oy = (fr05) ey, F=1,...,N,

with the scalar product
(F9) 1) = [ £60 GG dor
r

For the evaluation of A¢y, i.e., the action of the integral operator on the basis
functions ¢y, we use the fact that ¢y decreases rapidly with the distance from
the center x;. The simplest variant of the BPM replaces surface integration by
integration over the tangent plane I'y to I' at xj.
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12.2.3. BPM for single layer potentials. Let A be the single layer poten-
tial V defined by (12.22). Then for the BPM discretization, we approximate

(1242) Vo)~ [ax=y) ey dny = [ sfox=x—0y)n() dy'

where y = (y’,0) € R” and O is the matrix of an orthogonal transformation of R™
that directs the normal n(xy) into the direction of the z,,-axis,

On(xg) = (0,...,0,1).
Since the fundamental solution ~ is a radial function, we can write
(12.43) Y(x =%k = 0y) =707 (x —xi) —y) = g(12 — '], z0)

with the vector

Fk Rn—1

(2, 2,) = O (x — xz).
Note that
2

(12.44) 2y = m(xp),x —x3) and |2'|? = |x — xx|? — 22,
For n > 3, formula (2.15) applied to convolutions in R"~! has the form

/

/ 9(|2" =¥, z0) n(y') dy

Rn—1
(12.45)

2 Vi e
= e [ Falrz) Fale) f0E Ty ol i
0

where now F denotes the (n — 1)-dimensional Fourier transform of radial functions,
ie.,

2m T -
Fy(r, zn) = ey v /g(t,zn) J(n—3)y2(2mrt) t =D/2 g
0

(see (2.12)). Thus, using (12.42) in the case n > 3, the value of V. (x) is approxi-
mated by the one-dimensional integral

Ver(x) = /W(X—Xk—OY)W(\/'%;'Lk)dyI

Rnfl
or(VDhy)" ! | .
= |(Z,|(n—§))/2/-7:9(7”, 2n) Fn(VDhyr) J(n—S)/2(27TT|Z/|)T( D2 qr
0

whereas for n = 2
oo

Vor(x) ~ VDhy, / g(z1 — VDhyt, 22) n(t) dt

— 00

with (21,22) = O~} (x — xp).
If the integral equation of the first kind (12.31) or (12.33) is solved by the
collocation method (12.40), then the BPM approach approximates the elements of

the collocation matrix N

(V%(Xj))

Jik=1
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by the values

«  2x(VDhy)"t [
ij = % /.7:9(7“, Zj;g) fﬁ(\/l_)hkf‘) J(n,g)/2(27TTij) T(nil)/Q dr
ik
(12.46) ’ 0 for n >3,
ﬁjk = ﬁhk / g(ij — \/Bhkt, ij) n(t) dt, for n = 2,

where we denote, in accordance with (12.44)

3

(12.47) zik = (n(xk), x; —x) and  Zjp = /|x; — xx|? — sz

12.2.4. BPM for double layer potentials. The BPM simplifies the collo-
cation equations

(12.48) %(ZSN(X]‘)—K:(]SN(X]‘): —g(Xj), j: 1,...,N,

for solving the integral equation of the second kind (12.30) by replacing the surface
integrals iy (x;) by integrals over the tangent planes at xi. In view of the jump
relations (12.27) for the double layer potential, we make the substitution

(12.49) Kiou(3) = [ 9u() D3y =) dry = 5 s (moe) 35— xk)) ).
Ty

where

, t=0,
which can be obtained by the following plausible argument.
Let v~ (x;) and v*(x;) be the interior and exterior limit values of

v(x;) = /cpk(y) On(y)y(x —y)doy
T

iy { Y0 140

as x — x;. By x; and x;r we denote two points inside and outside € close to x;,
placed on the normal n(x;). Then in the case (n(xy),x; — x;) < 0, we have

v ) 2 06) % [ () ()l — y) oy
Ty
which along with the identity (12.27)
_ 1
v (x5) = Koon (%) = 50n(xy)
leads to (12.49). If (n(xx),x; — xx) > 0, then

ot (%)~ 0(x) ~ / o (¥) O (¥ (x; — ) doy
Ty
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and by the relation
1
vh(x;) = Ker(x;) + 5%k (%))

we arrive again at (12.49). In the third case when (n(xy),x; — xx) = 0, we have

v (xg) & limfonr(y) On(y)y(x; — hn(x;) —y) doy

™
= / er(y) On(y)v(x; —y) doy — %sﬁk(xj)-
Ty
Since
v (55) = Kpu(xs) — on(x)
we obtain relation (12.49) from
Keor(x;) ~ / Pr(y) On(y)y(x; —y) doy .
Ty

The same argument applies to the approximation for the integral

/ ©k(y) On(y)v(x —y) doy

(12.50) "

~ [ ) n)r(x = y) oy, — 5 (14 sl x - %))
Ty

if x € ), which is used to determine the approximate solution

un(x) = / on () O (y)1(x — y) dory
I

of the Dirichlet problem (12.29) in 2 if the solution ¢y of the discrete system
(12.48) is found.
We note that in view of (12.43)

/ o(¥) O (9)7(x — y) doy = - / (@) g2(12 — ¥'], z0) dy’

Fk ]Rnfl
with
9g(t1,t2)
t1,02) = ——=.
92(t1,t2) Oty
Hence, using (12.49) and (12.46), the BPM approximation of the elements

1 N

((5 = K)en(x))

of the linear system of the collocation method (12.48) is given by

k=1
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R — 1+ sgn(<n(x2k),x3‘ — X)) on(x;) — /%(y) 0 (y)1(x; — y) do,

(12.51) T

1+sgn(zjk) /x5 — Xk
— WA Zin 2
2 (\@m>+ i 238)

with Zjk, 2, defined by (12.47) and for n > 3 the function W (Z, z) is given by the
one-dimensional integral

- 27T(\/5hk)n_l

W(Z, z) = Zn=3)/ /]—"gg(r, 2) fn(\/fhkr) Jn—3)/2(2m1Z) rn=1/2 qp
0

In the case n = 2, we have

W(Z,z) = VDh, / n(t) g2((Z — VDhyt), z) dt .

For example, let i be the Gaussian and let L = —A. Then

gl 2) = I'(3) z
’ 2mn/2 (r2 4 22)n/2

In the case n = 2, we get from (5.12)

1 i Zik
12.52 W(Zjg,zjk) = = K | —=22—, —Z
( ) ( Jk Jk) 2 (@hk \/5hk)

with the Voigt function K (z,y). For n = 3 we obtain

T ) 27 .t
12.53 W(Z;k, zir) = sgn(z; /e_t2_2‘zﬂ’“‘t/(\/5h’“)J (—])ﬁdt7
( ) ( ik Jk) g (Jk)o 0 \/,Ehk

where Jj is the Bessel function of the first kind and of order zero.

Finally, by the same arguments, the values of K't4(x;), which appear in the
collocation method for solving the integral equation (12.35), can be approximated
by

(1250) K'00(x5) ~ [ 6n(3) 00 (30735 —) doy + 5 sgn(n(x1). 55— x0)) ¥ ).
Ty

12.2.5. Numerical experiments. Here, we provide the results of some nu-
merical tests for solving the Dirichlet problem for the Laplace equation in two-
and three-dimensional cases via the boundary integral equation of the second kind
(12.30).

Let Q C R? be an elliptic domain with the boundary

X@—{Zgiﬁiﬁﬁitewﬁh
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with 0 < ¢ < 1. Easy calculations show that (12.30) is given by

27
1-¢ ¥(7) _
v+ 2m / 14+ ¢%—2ccos(t — 1) dr ==29(t).

0

Letting

1 1
g1(t) = —1, ga(t) = ——Zcost, ga(t) = ——sint,

the exact solutions are
Y1(t) =1, ¥2(t) = cost, 3(t) = sint,

respectively.
As a basis for the collocation procedure the functions

pr(x) = emPexl*/PRE k=1, N,

have been chosen, where the centers xj are also the collocation points, chosen
through a uniform subdivision of the parameter interval x; = x(¢x) with

_ 2m(k—1)
N

The parameter D = 2 and for each k, hi is given as an approximation of the
distance between neighboring points:

k ,k=1,...,N.

2 2m(k — 1
hk:—w 1+02—2CCOS%

Table 12.3 provides the maximum errors between the exact solution ; and the
solution of the BPM equation

L k=1,...,N.

N

Z CLPk »

k=1
where {cy} is the solution of the linear system

N
ZKjka = _gl(tj)a .]: 157N7
k=1

with the coefficients /Ejk given by (12.51) and (12.52).

c=0 c=1/3
N g1 g2 g3 g1 g2 g3
16 || 0.1493 | 0.3012 | 0.3012 || 0.4761 | 0.5543 | 0.1624
32 || 0.0411 | 0.0923 | 0.0923 || 0.1738 | 0.2177 | 0.0812
64 || 0.0107 | 0.0247 | 0.0247 || 0.0443 | 0.0581 | 0.0229
128 || 0.0027 | 0.0063 | 0.0063 || 0.0109 | 0.0145 | 0.0059
256 || 0.0007 | 0.0016 | 0.0016 || 0.0027 | 0.0036 | 0.0015

TABLE 12.3. The maximum errors between the exact and the
BPM solutions to (12.30)
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In Table 12.4, we give the maximum errors in ) for the BPM solution of the
interior Dirichlet problem with the exact solution u = 22 — 2. This approximate

solution is obtained, using the formula (12.50), in the form

N
2k

1 Zy,
un(x) ~ = K| —,
wx) 2; * (\/th VDhy

), X € Q,

where z;, = (n(xy),x — Xi), Zi, = \/|x — x|> — 27, and ¢1, ..., ¢y solve the corre-

sponding collocation equations.

N c=0 c=1/3
16 || 1.45-1073 | 1.25- 102
32 || 8.83-107% | 6.72-104
64 || 3.61-1076 | 4.01-10°°
128 || 2.85-1077 | 2.57-1076
256 || 5.33-107% | 2.71-10~7

TABLE 12.4. The maximum error for the interior Dirichlet prob-
lem with eccentricity ¢ using N collocation points

In the present form, the BPM needs only the coordinates of boundary points
and normal vectors associated with these points, which makes this method attrac-
tive for higher-dimensional problems. As a model problem, we consider ellipsoidal
domains € in R? with the boundary

2 2 2
F:{xeR?’: ﬁ+@+ﬁ:1},
a b c

a,b,c > 0. The N = 6M? collocation points are obtained by projecting the mid-
points of the M? rectangles on each side of the box with side lengths (2a,2b, 2c)
onto I'. The error from the exact solution

u(x) = ] + 23 — 223

is calculated inside 2. The parameters hj are determined as the average distance
to the neighboring points and D = 2. In Table 12.5, numerical results are shown
for the casesa=b=c=1anda=4/3,0=2/3,c=1.

REMARK 12.3. If p(x) = e~ then by using formula (5.15), the integrals
over the tangent planes can be transformed to the one-dimensional integrals

/ 912 —y'|, z) e T¥I/PHD) gy
Rnfl
oo

_12'12 2y 2 WDhQ n—1 _Dh2s2 n—
= |17/ (Dhi) (|\£—’|("—_§))/2 /g(Dhir, 2,) e~ Phi I(y—3)/2(2]2|r) r(=1/2 gy
0
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a=b=c=1 a=4/3,b=2/3,c=1
M| N Error M| N Error
3 54 | 2.78-1072| 3 54 7.43-1072
5 5
7 7

150 | 3.35-1073 150 | 1.83-1072
294 | 8.47-107* 294 | 1.03-1072
9 | 486 |3.19-107*| 9 | 486 | 9.37-103
11| 726 [ 1.94-107%| 11| 726 | 8.18-103
13 | 1014 | 9.73-1075 || 13 | 1014 | 7.08-103
15| 1350 | 1.12-10~* || 15 | 1350 | 5.14-103
17 | 1734 | 4.51-1075 || 17 | 1734 | 4.31-103

TABLE 12.5. The maximum error for the interior Dirichlet prob-
lem inside the ellipsoid using N = 6M?2 collocation points

12.2.6. Stability analysis. We restrict ourselves to some partial results ob-
tained for the integral equations (12.31), (12.33), and (12.30) in the case of a simply
connected smooth boundary I'. Even for this relatively simple situation the stabil-
ity analysis of the BPM offers many unsolved problems. This is caused by the fact,
that the standard discretization method is collocation, which is theoretically less
understood compared with the Galerkin method, especially if n > 3. Moreover,
because of the choice of the approximating functions, we cannot expect the strong
convergence of projection operators, required in the standard theory of projection
methods.

The other peculiarity of BPM is the approximation of the integral operators.
Whereas in the BEM the collocation or cubature points lie at the integration surface,
either the boundary or some suitable approximation, in the BPM, the integration
domain is approximated by a set of tangential planes supported at the collocation
points. This leads to the additional terms in the formulas (12.49) and (12.54) for
the approximation of K and K’.

12.2.6.1. Integral equations of the second kind. Let us consider the equation

(12.55) %u(x) —Ku(x) = f(x), xeTl,

with the double layer potential I defined by (12.22)

3

Kut) = [/ -¥) @Y %) oy dy.
I

Ix -yl

If T is a closed smooth surface, then this integral operator has a weakly singular
kernel and therefore, it is compact in the space C(I") of continuous functions on I.
It is well known that the solutions uy € Xy of the collocation equations

1 .
(12.56) §uN(xj)—ICuN(xj):f(xj), j=1,...,N,
exist for all sufficiently large N and converge to a solution of (12.55), if this equation
is uniquely solvable and the N-dimensional subspaces X C C(T') have the property
that the interpolation projections

Qnf(xj)=f(x;), j=1,...,N,
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with Qn f € Xy exist and [|(/ — Qn)K||¢r) — 0 as N — oo.

As mentioned above, projection operators onto the linear span of basis functions
of the BPM do not converge strongly. Instead, we make the following assumption
on the function 7 and on the parameters {x;}Y, {hx}¥, and D, which define the
finite-dimensional spaces

(12.57) Sn(n,D) = {n(%) k=1,.. .,N} :

ConDITION 12.4. For a given € > 0, the parameters are chosen so that the in-

terpolation operator Qn : C(I') — Sn(n, D) with Qn f(x;) = f(x;), j=1,...,N,
exists and

(1258) Jim (7 = Qu)Kulleqy < ellulle)

for any u € C(T).

For a given parametrization of I', one can apply Theorems 10.5 or 10.13 to
choose sequences of nodes {x;}_, and scaling parameters {h;}1_, such that the
quasi-interpolants

X—X

un (x) = DU n/2z w(x) (|\/_hk|)
approximate Holder continuous functlons u e C*(T") with
lu(x) — un (x)| < e N~ + elu(x)]

and the saturation error ¢ is determined by D. Since the operator  maps C(T")
into C*(T"), we see that D can be chosen so that (12.58) holds.

THEOREM 12.5. Suppose that the operator %I — K is invertible in C(T) and
that the spaces Sy (n, D) satisfy Condition 12.4 with e < 1/|(31—K)~'||. Then the
collocation equations (12.56) have unique solutions un € Sn(n, D) for sufficiently
large N, which approach the solution u of (12.55) with
(12.59) lu —unller) < eI =@n)uller,
where the constant ¢ does not depend on f.

PROOF. We write the collocation equations in the form

1
(51 - QN’C)UN =Qnf.
Because

Souk=(31-Kk)(1- (3r-K) - QuK),

the collocation equations are uniquely solvable if N is subject to
1
(7 -x) "~ aw]

Since the solution of (12.55) satisfies

1
JU~ QnKu =

c(r)

N | =

we obtain ) )
(57— @nK)(u—ux) = 5 = Qu)u
and the estimate (12.59) follows. O
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REMARK 12.6. A similar result is also valid for integral equations of the second
kind with the adjoint of the double layer potential K'.

The error estimate (12.59) indicates that similarly to Theorem 12.2 the col-
location method can provide spectral convergence up to some saturation error if
the spaces Sy (n, D) are chosen properly. However, the interpolation with functions
from Sy (n, D) with parameters hy, proportional to the average distance from xy
to the neighboring nodes of {x;}¥_,, has not been considered yet. Therefore, the
error estimations of the BPM is still an open problem.

This problem becomes more difficult because of the approximation of the inte-
grals. If the coefficients

1 N

(G-Retx) |

in the collocation matrix are replaced by /Ejk given in (12.51), then we make an ad-

ditional error, which has no influence on the solvability of the collocation equations,

but on the approximation error of the BPM. Up to now only pessimistic estimates

of the form O(h) can be proved, which do not explain the O(h?) rate on the bo-

undary and the order O(h3) in the interior, which is obtained in the numerical
experiments.

12.2.6.2. Integral equations of the first kind. For the stability analysis of the
BPM for solving the equation

(12.60) Vu(x) = f(x), xeT,
we use the well-known representation
V=W+K
with a bounded, symmetric operator 1 : W271/2(1") — V[/21/2(1")7 which is positive
definite, i.e.,

(12.61) (Vou, u)r,(r) = CO||U||§VQ—1/2(F) ;
and a compact operator K : W271/2(1") — W21/2(1"). The definition of the Sobolev
spaces Wzilm(l“) has been given in Subsection 4.5.1.

It is a classical result that by (12.61), the Galerkin approximation for equation
(12.60) with invertible ¥V converges for any system of approximating functions Xy
with the property

lim dist (u, Xn; W2_1/2(F)) =0 foranyue W2_1/2(F),

N —oc0
(cf., e.g., [80]). Let us show that the Galerkin equation
(1262) (VUN7UN)L2(F) = (f7 UN)L2(F) ) VUN € SN(T]7D)7

has a unique solution for all sufficiently large IV and that the approximate solutions
provide quasi-optimal errors, if the following condition is satisfied:

CoNDITION 12.7. For a given € > 0, the parameters are chosen so that for any
u € VV271/2(1")7 the best approximation by elements of Sy (n, D) satisfies

. . —1/2
Jim_dist (u, S (. D); W, (1) < ellully 12 -
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LEMMA 12.8. Suppose that the single layer potential V : W2_1/2(F) — W21/2(F)
is invertible and suppose Condition 12.7 holds. There exist parameters for the spaces
Sn(n, D) such that for any sufficiently large N, the Galerkin equations (12.62) are
uniquely solvable and the difference of the solutions uy € Sn(n,D) and u =V~ f
is quasi-optimal, i.e.,

. ~1/2
[lw — “N||W;1/2(F) < cdist (u, Sn(n,D); W, / T).
PRrooOF. First, we show that for suitable parameters and N large enough
|(VUN5 UN)LQ(F) ‘

(12.63) sup > c1l[un o1z
N €SN (n,D) ||UN||W;1/2(F) W, (M)

for any uny € Sy (n, D). Indeed, suppose the existence of a sequence uy € Sy(n, D),
sl gy 72y = 1, with

Vun,
(12.64) sup Qun, o8 ) 1s(0)

vnesn(nD) 10Ny 172

We choose a subsequence, again denoted by {uy}, weakly converging in W;l/z (I

to some element u. There exists v € W271/2(1") with ||v =1 such that

hwvrzy
[Vl iy = Vi, 0) yry

and we choose a sequence vy € Sy(n, D) with lim |lv—vn]||;;,-1/2,1 < €. Because
N—oco W, @)

Vun,v) L,y = Vun,vn) L,y + Vun, v — o) L)
and
(Vun, ),y — Vu,v) )
we derive ||u||W271/2(F) < ecy, where we denote

cy = ||V||W271/2(F)~>W21/2(F) ||V_l||W21/2(F)~>W271/2(F) .
On the other hand,
Voun, un)pyry = Vun, un) oy — (Kun, un) Ly(r)

and, because of K being a compact operator,

(Kun, un)p,r) — (Ku,u)p,r) -
This implies, together with (12.64)

3

|(VOUN7 uN)Lz(F)| < 2||K||W;1/2(p)_,W21/2(p) ||u||‘2/‘/;1/2(r)

for all N large enough. Hence, if € is chosen such that

262”K”W{1/2 C?} < Cp,

D—-w,/* (1)

we obtain the required contradiction to the coerciveness (12.61) of V.
Thus, for suitably chosen parameters,

|(V(UN —WN), UN)L2(F)| > cil|lun — wN”W;l/Q(F)”vNHW;l/Z(F)

for all un, wn,vn € Sy(n, D) and N large enough. Since the solutions u of (12.60)
and uy € Sy(n, D) of (12.62) satisfy

(V(un —wn),vN) L) = V(U — wN),UN) Ly(r)s
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we obtain
c1||uN - wN||W271/2(F) < ||V||W271/2(F)*>W21/2(F) ||u - wNHW;l/Z(F) y
which together with the triangle inequality
||u — UNHW;UQ(I‘) S Hu — wN||W;1/2(P) + ||UN — wNHW;l/Z(F)

establishes the error estimate. O

A similar result for the collocation method is not known in the general case.
However, in some special situations, the collocation equations can be analyzed by
using Lemma 12.8.

Let us consider the following problem on the unit circle in R2. We use the
standard parametrization I' = {x(t) = (cos2wnt,sin27t)}, 0 < ¢t < 1, and the
approximating functions

or(x(t) = S e~tmtmmon gy N
mEZ

where t;, = (k —1)/N and h = N—!. The approximation properties of the set

Sy (D) = {(pk(x),k - 1,...,N}

coincide obviously with those of the Gaussians on a uniform grid in R.
The single layer potential of these functions takes the form

1
Vor(x(t)) =2r [ v(]x(t) — x(s)|) Z o —(s—ta=m)*/Dh*

0 mEZ
=27 / v(4 sin’ 7(t — s)) e ~(s=tk)*/Dh* g

The collocation equations at the nodes x; = x(t;), i.e.,
(12.65) V¢N(Xj) :f(Xj), j: 1,...,N,

lead to a system of linear equations with the matrix

. N
t )
(Vertx)) |
with the elements
Vor(x(t;)) = 27 / ~(4sin’® 7s) e (st —t)*/Dh* g
Since
—(s+t;—tx)2/Dh> _ 2 / —2(r—s—1;)/Dh? ~2(r—1x)?/Dh?
e = — € (S T,
V7 Dh

— 00



12.2. SOLUTION OF BOUNDARY INTEGRAL EQUATIONS 305

we can write

Veor(x;) // 4sin? s) e ~2ATms0)Y/ PR o =2T—t)* /DR g g

o0

= 4T efQ(Tftk)z/th dr / v(4 sin® (7 — s)) e ~2s=1y)*/Dh? g
VDh

1 =~ ~

=y | F100 [ (¥ ) doy do

r r

with the functions

= 26_2(t_t"_m)2/ph2, k=1 . ...N.
mez

Hence, except for a factor, the collocation matrix coincides with the matrix of the
Galerkin method with the function system {@}&_, for the same integral equation
of the first kind on the unit circle, i.e.,

N 1 ~ N
(12.66) (V@k(xj))jﬁkzl = m(("%%)mw))j,k:l'

In view of
/f x) ;(x da—27r/f 20=13)* /P gt ~ 73/2\/2Dh f(x;)

it is not hard to see that the collocation method with the set Sy (D) of approxi-
mating functions has similar properties as the Galerkin method with Sy (D/2).
To this end, we introduce discrete Sobolev norms for z = (z1,...,2,) € RY,

N
INS o 1/2
llz|s,n =N_1( Z (1—}—4N2sin2 %) e 2rillG=k)/N zkzj) .
jik =1

Since the nodes xj, are uniformly spaced, the discrete norm |/z|| n is equivalent to

N
[DIREL .
k=1 w2 (D)

Moreover, the stability of the Galerkin method

(12.67) sup |V, on) o) |

onesn(@/2) lonlly-1e )

> cllunlly-12py . un € Sn(D/2),

is equivalent to the two-sided inequality for the Galerkin matrices

N
Crllll sy < [N (X V080 aeyt) |y < Colall o
k=1

1/2,N

with constants independent of N and z (see [80]). Now, the circulant structure of
the matrices implies that the last relation holds for arbitrary s € R; in particular,
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because of (12.66)
N N
Cillzlon < || (D vert)a)

k=1

| < Collzllo
j=11l1,N

Thus, writing the collocation equations (12.65) in the form

QnVon =Qnf, on € Sn(D),

with suitable interpolation operators @y onto Sy (D), we see that the collocation
operators QnV|g, (p) satisfy the stability estimate

1@nVun|wrry 2 cllunllrory, unv € Sn(D),
if and only if (12.67) holds.

Since the approximation properties of the set Sy (D) are controlled by the pa-
rameter D, we obtain from Lemma 12.8 the convergence of the collocation method.

LEMMA 12.9. Suppose that the single layer potential V is invertible. For any
e > 0, there exists D such that collocation equations (12.65) are uniquely solvable
for all sufficiently large N and the approzimate solutions ux approach u = V=1 f
with

— < inf — .
[|lu UN||L2(F)_CUN€12N(D) [|u UN||L2(F)

Similarly to the conclusions of Theorem 12.5, the collocation method for the
single layer potential provides spectral convergence up to some saturation error.
However, replacing the value of Vi (x;) by

9jk =Dh / 9(Zjr — \/’Z_)ht,zjk) et dt

gives an approximation of the discrete operator QnV|g, (py of the order O(h?),
which can deteriorate high convergence orders. Therefore, it is of interest to find
higher-order approximations of the discrete operators by using the curvature of the
boundary, which is considered in the next section.

12.3. Computation of multi-dimensional single layer harmonic
potentials

In this section, we study higher-order cubature formulas for the single layer
harmonic potential as an example of surface potentials. We combine the approx-
imate approximation of the surface layer density with the integration of the basis
functions over the tangential space by the use of appropriate asymptotic expan-
sions. Our approach leads to cubature formulas involving only nodes of a regular
grid. These formulas turn out to be efficient provided the saturation error of the
approximate approximation is a priori chosen sufficiently small.

Consider the computation of multi-dimensional surface potentials of the form

/Q(x —y)f(y)doy,
T

where ' is a sufficiently smooth manifold in R™. It is well known that owing to
the singularity of the kernel @ at x = y, the case when x is located on or close
to the surface I' requires special attention. This problem is usually addressed by
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sophisticated methods like special variable transformations or singularity subtrac-
tion combined with high order cubature formulas and mesh refinement near to the
singularity (see [5], [31], [50], [84], [87], and the references therein).

Here we propose cubature formulas for these singular or nearly singular in-
tegrals which use only the density values at the nodes of a regular grid and the
corresponding surface parametrization. The underlying ideas are the following:

1. The density f is approximated by quasi-interpolation formulas using locally
supported smooth radial functions which are centered at regularly distributed nodes
on the surface. These approximations have been studied in Chapter 10, where we
have shown that it is possible to construct formulas which provide arbitrarily high
order approximations up to any prescribed accuracy.

2. The potentials of local basis functions over curved surfaces are approximated
by a linear combination of integrals over the tangential space. This approximation
is obtained from an asymptotic expansion of the potential by the use of the local
parametrization of the surface at the center of the basis function. Again, arbitrarily
high approximation orders can be achieved by taking into account the smoothness
of the surface.

3. Since approximate approximations are very flexible concerning the choice
of local basis functions, those are chosen so that the resulting integrals over the
(n — 1)-dimensional tangential space can be transformed to efficiently computable
one-dimensional integrals. Thus, the proposed formulas are particularly well-suited
for the cubature of integral operators on high-dimensional surfaces.

Since, in principle, both the approximation of the density and the approxima-
tion of the potentials can be performed with arbitrarily high order, the proposed
cubature formulas can provide very accurate approximations even for moderate grid
sizes.

Let us consider this approach for the example of the single layer harmonic
potential

T2 —1)
(12.68) Vix) = 47Tn/2 /|x yi /IX yrz

We derive a cubature formula which uses only the values of the normal and of the
curvature of I at the nodes {y;,} of a regular grid. It is proved that this formula
approximates the single layer potential uniformly with the order O(h3|log h|), where
h denotes the grid size. It will be clear from the constructions given below how this
approach can be applied to other types of potential operators and how higher-order
formulas can be obtained by incorporating more smoothness data of T'.

We may assume after applying a partition of the unity that the function f has
compact support on I' parametrized by z, = p(X'), X' = (21,...,2p_1), with a
sufficiently smooth function given on a bounded domain ¢ : v C R*~! — R. Then
(12.68) becomes

%) = w fy' e(y)) INI2NL/2 gt
VF(x) = wn / R e s (14 (Ve 2 ay
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with x = (x/, ). To approximate the value of V f(x), we introduce a uniform grid
{hm’ € v : m’ € Z"'} and consider the cubature by the midpoint rule

f(hm', p(hm)) (1 + [Vep(hm')[?)!/2

(30— P (s — () )75 T

(12.69) Vif(x) = w,h" ! Z

hm'e~y
Due to the well-known error estimate for the cubature of smooth integrands on
uniform grids

/ o) dy' — 1t S g(hm')| < e b / Veg(y)ldy', £=1,2,...

’
5 hm’ey

(see [23]), we have
(12.70) V(%) = Vi f(x)| < o h(dist(x,T)) ¢

if dist(x,I") > 0 for sufficiently smooth f and ¢. In the case when dist(x,I") is
small, formula (12.69) has to be modified. Usually, the cubature of potentials is
based on special variable transformations or high-order cubature formulas and mesh
refinement in the vicinity of the point x.

To retain the grid and the simple structure of (12.69), we use the results of
Section 10.3 on quasi-interpolation on surfaces. More precisely, we choose the quasi-
interpolant (10.19) with a sufficiently smooth radial function 7(x) = 9(|x|?/2),
(12.71)

o ’ Ny _ y—n ’ yl_¢(hml)
B = 1l o) =2 3 slotem ko ).

where, specified to the above-considered case, the mapping ¢ is of the form ¢(x’) =

(x', p(x)) and thus [¢'(x)] = /1 + [V (x)[2.

By Theorem 10.5, we have the following approximation result:

Y

LEMMA 12.10. Assume that the radial function n € S(R"~!) satisfies the mo-
ment conditions (2.47) and that ¢ € CN*L(y). If f € CIV(T), then for any ¢ > 0
there exists D > 0 such that at any point y € T’

N-—1
(12.72) n(¥) ~ FO) < (VDN [ fllowgry +& 3 e (VDR
k=0

where ¢ does not depend on f, h, and D, and the numbers c; depend on the values
0% f(y) for [a] < k.

Let us use the quasi-interpolant (12.71) of the density to obtain a cubature of
the single layer potentials (12.68),
(12.73)

- Wn ’ y— ¢(hml) doy
Vel = g 3 St (i) e
m r

Since V is a bounded mapping between suitable function spaces, the differences
Vf(x) — Vi f(x) behave like estimate (12.72). To obtain efficient methods for com-
puting the integrals appearing in the sums over I', which, in general, has a small
but curved integration domain, we approximate these by integrals over the tangen-
tial space at the points y, = ¢(hm'). We are interested in the accuracy of this
approximation if in addition to the first derivatives of ¢, i.e., the direction of the
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normal, second derivatives also, i.e., the curvatures of I, are used to determine the
integrals over the tangential space.

12.3.1. Asymptotic formulas. In the following, we derive asymptotic for-
mulas of the single layer potential acting on local basis functions

(12.74) Vin(x) = wn / x =y (20 _hyo) doy
r

as h — 0. Given the normal n to I" at yo, we choose a new coordinate system such
that yo becomes the origin 0 and the normal coincides with e, = (0,...,0,1).
Multiplying with a suitable cut-off function, we assume first that 7 is supported
in the ball Bs = {|x| <}, x € R", y = (y', yn) € I'. Without loss of generality we
can assume that in a neighborhood U of the origin 0, the boundary I" is given by

(12.75) yn = @(y’) with ¢(0) =0 and Vy(0) =0.

We choose h such that BpsNT' C U and we denote Uy, = ¢~ (U). Then (12.74)
takes the form

(1+ |Vo(y')*)!/? (y’ o(y')

127 ) = | G e 1

h

)dy'.

First, we show that Vj,n(x) allows an asymptotic expansion in powers of h. Let the
parametrization ¢(y’) be a real analytic function and denote the curvature tensor
by K = ||0jk¢(0)] 7%;1 Then, in view of (12.75),

o) = 25y )+ Y o),
[@]>3

IVo(y)|* = [Ky' P+ ) daly')>.
S

(12.77)

Therefore, near 0 the area element is of the form

1
L+ Vo))" =14 Ky + ) m(y).
k>3

where 7, are homogeneous polynomials of degree k. Hence, for Y = h~ 'y’ € R* !
we have
1
dsy = W1 (1 +5IKYh h37rk(Y))dY .
k>3

Analogously, for the radial basis function n(x) = (|x|?/2), one obtains from Tay-
lor’s expansion

oG 2 -y %W‘)uw/whls@(w))”
3>0 '
(KY.,Y)?

VAYP/2)+ Y WY, Sy )

Jj=3
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d
with certain differential operators p; (Y, E) of order j/2, having polynomial coef-

ficients of degree < 2j. Thus,

2 Ay |w<y’>|2>1/2

(278)  =w(YP/2)+ e (10(Y ) KV 4w (YR /2) (KY.Y)?)
+Y WP(Y dﬁ YY1 /2)
>3

d
with differential operators P; (Y, a) of order j/2, having polynomial coefficients.
Similarly, the kernel function can be expanded in powers of h. We consider two
zones, the far field |x|? > 462h? and the near field |x|? < 962h?, where the kernel
function is singular. In the far field we use the Taylor expansion

(1% =y + (o — oy )02 = 3 2V !

R R T R

Since |x —y| > |x|/2, we obtain that

»” 1 oy
AVIE~Y] J
<P(y ) an (|X/ _ y/|2 4 I%)n/Qfl ‘ S

If |x'|2 + |2,|? < 952h2, we expand the kernel with respect to p(x') — @(y'):
(|x" =y [P+ (zn — w(Y’))Q)l’”/Z’
_ Z 20 5 ! .
" =y o — ol
We denote Z,, := z, — ¢(x’). Then
Y] J

o= 0k gl < Gy s

where the maximum of |V is taken for |x’| < 36h. Hence,
o B

(06 =5 04 | < G A
Thus, V,n(x) can be expanded, at least formally, into a power series with respect
to h. The coefficients are given as integral operators over domains in R"~!.

In what follows, we determine the approximations of V,n(x) by using the cur-
vature tensor K = [|0;k¢(0)(7 . !, of T at 0. Due to (12.78), we obtain

1o o\ (Y o)\ Yy 3
(Hley' )"(h’ h >_0(h’h)+0(h)
with the function
h2
(12.79) o(y',h) = wly'2/2) + - (46 2/2) [Ky P + /(¥ 2/2) (K. ¥)?) |
and we have to analyze the integral

(12.80) Vun(x) = wy, /(IX’ ¥ PP+ (@ —(y)?) " 0(%, h)dy',
Un

2— n+J
(|x/|> + 22)(n=2+9)/2 sch
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which differs from the original one by

—~ X & 3 dy
(1281)  Van(x) = Van(x)| < ch U/ (% —y'P+ (@n — o)D"

12.3.1.1. Far field |x'|? + |z,|? > 462h%. Since in this area |x —y| > |x|/2, we
obtain

(12.82) Vin(x) — Van(x)| < c B2 x>

/

The expansion of the kernel gives
1
(X =y + (zn — 0(y)?)/2
_ 1 (n—=2)xn o(y')
(5 =y P+ " (=5 P a2 P

+ R2 (Xu y)
with

1
(' =y P + (20 — to(y)?)"/271

dt , where pu(t) =

I
O\,_.
=

Note that

1 (1) = (2 — n)e(y')? X —y' |2+ (1 —n)(x, —to(y'))?
(|x' = y'|2 + (2, — t(y’))2)/2+1
and therefore,
2

()] < lo(y')]

X[

which implies in view of |y’| < ch the estimate

hn+3
wn/Rg(x,y) U( yh)doy| <ec—.

|x|"

Thus, it remains to consider the integrals

w / ! (y_’ h) dy’
") =y Py e

Un
(n—2)wnzn / (Ky'.y') y’ /
— h)d
i 2 (b = y'[2 +ad)m/2 o k) dy
Un
3(y’) y' :
+(n_2)wnx’ﬂ/(|X/_y/|2+x721)n/2 0’(%7h)dy 9
Un
. ’ ’ . x' In y/
with 3(y') = > (4153 0a(y')®. In the new variables X = R X, = W Y = T

the first two integrals transform to

o(Y,h) (n—2) hX (KY,Y)o(Y,h)
Wh dY + ay
¢ (/ (IX = Y[2+ X2)n/2-1 / (IX - Y|2+X2)”/2 >

s
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whereas the third integral can be estimated by

2s(y) y N
(12.83) (n—2)wn x”/ (Jx' — y'|2 + 22)7/2 U(ﬁ’ h)dy'| < ch™ x| .

Un

Here By = Bs NR™"~! denotes the support of the radial function 1 in R"~!. From
(12.79) we obtain as an approximation to V,7(x) in the far field

~ Y|2/2
Vin(x) = th/ (X - Y(||2 —i|- é@))n/z pdY

(n—2)h%X, [ (KY,Y)¥(Y|?/2)
(12.84) /

(IX - Y2+ Xx2)7/2

+wnh3/4IKYl2 V(Y /2) + (Y, Y)Y [/2)

3 (X - Y2 + x2)n/21 Y,
B;

which, in view of (12.82), approximates uniformly the far field V,7n(x) with the
order O(h™*2|x|1=™). Note that the third integral in formula (12.84) is of the order
O(h"*+1|x|2~™), which for |x| = O(h) is the same as for the error term (12.83).

12.3.1.2. Near field |x'|? + |z,|? < 96°h%. Now, (12.81) leads to

(12.85) Van(x) - Dun(x)| < ch® / Wsm%

As mentioned before, we use the Taylor expansion of the kernel about the point
(x' =y, &), where &, = x, — p(x’). From (12.79), we obtain the integrals

! ' Y|2/2) d
wn/ / /|2 %2 \n/2—1 U(y_,h) dyl = wnh/ w(' | / )~ Yy
(Ix' = y'|?> +22) h 2 (X —hY|2 + X?l)"/?—l

h

)

+wnh3/4|KY|2¢(|Y|2/2) (KY, Y0/ ([Y[/2)
8 (X hY|2+X2)n/2 1

B;
where X = h™'x' |, X,, = h™'(2, — ¢(x')). The succeeding term in Taylor’s

expansion gives
- p(y) =) Y :
wp(n —2) xn/ (% -yt )2 U(Z, h)dy'.

Un
If we replace ¢(y’) by (Ky’,y’), the error satisfies

wn(n—2)fn/( e U(y—lah)dy'

X —yP+a) 7 h

</ (' + Xy )

|X/ _ yI|2 + i‘%)"/2_1

h

h

Thus, for points x = (hX, hX,,) in the near field we obtain the formula
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Pan(x) :wnh/( Y(Y[/2)

X — Y2 + X2)n/2-1
(12.86)

L wnln—2) h2X (KY,Y) = (KX, X)) (| Y[*/2)
(X — Y|2+X2)n/2

)

which, by (12.85), provides uniform approximations of Vj,n(x) of order h3.
Thus, the single layer potential of the Laplacian is approximated by (12.84)
and (12.86) for all x € R™ with the uniform error O(h"+2/(|x| + h)"~1).

12.3.1.3. Matching in the area 26h < |x| < 3dh. According to the remark at the
end of Subsection 12.3.1.1, we have to show that the sum of the first two integrals
in (12.84) differs from (12.86) by higher-order terms, if the point x = (hX, hX,)
lies in the matching area. Since X, = X,, + ¢(x')/h and (|X — Y|? + X2)1-"/2 ig
smooth for y = (hY,y,) € Uy, we have

1
(IX = Y2+ X2)n/2-1
(12.87) v 2
_ 1 _wa(n —2)p(hX) X, (so(hX) )
(K=Y +X2)2"0 WX =Y+ X72)~"/2 h?

Thus, replacing ¢(hX) by h?(KX,X)/2 in (12.87), we see that formula (12.84)
differs from (12.86) by terms of the order O(h?3), i.e., in the overlapping region
both formulas generate the same asymptotic error.

12.3.2. Approximation error. The approximation of V}, f(x) is now given
by

(12.88) Vif(x) =D/ N f(g(hm')) Vs, n(x — ¢(hm')),

hm'cy

where the parameter hyy = vDh|¢'(hm')|Y/ (=1 and the formulas for lA)hm,n are
determined by (12.84) or (12.86) in dependence on the value of |x — ¢(hm’)|. By
the uniform error estimate, the difference |V, n(x) — Vin(x)| can be majorized by

n , (VDh ¢/ (/= 2
B, 2 O v o Gt 7

hm’cy
|¢/(y/)|(n+2)/(n71)

c 3 !
(V'Dh) /|f(¢(y ) (% — 6(y")| + VDh [¢' (y")|/ =D yn—1

)
o / (x| + VD

< || fll o (VDR)? | log(max(v'Dh, dist(x, T)))| -

(12.89)

Note that the integrals appearing in the formulas (12.84) or (12.86) are re-
stricted to the domain Bj, which is the support of the basis function 5 in R"~!
after multiplication with a suitable cut-off function. Owing to the rapid decay of
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7, one can obviously extend the integration domain to the whole of R"~!, making
an error less than a prescribed tolerance ¢.
Thus, let us fix ¢’ > 0 such that

ly'Pln(y")ldy’ <e,
Rn=1\ By

with ¢ the saturation error from Lemma 12.10. To compute the approximation of
(12.68), we choose a local coordinate system with the origin at the point ¢(hm’)
such that the x,-axis is directed as the normal to I' at this point. In the new
coordinate system, the surface T' is given locally by the mapping x, = ¢(x )

x' € R"~!. We denote the corresponding curvature tensor by K = ||0;,¢(0 )||J -

Let x—¢(hm') = (x/, z,) = (hX, hX,), and consider the approximations of V,n(x—
¢(hm)):

1. If |x — ¢(hm)| > hd', then

WY
(|X Y|2+X2)n/2 1

Vin(x — ¢(hm')) = wph /

(n —2)h2X, / (KY,Y)%(Y?/2)

(12.90) (X Y2 + X2)n/2

L walt? / 4IKY|2 ([Y1%/2) + (KX, Y)? ' (Y [/2)

8 (|X Y|2 +X2)n/2 1
Rn—1

2. If |x — ¢(hm')| < hd’, then

Y([Y[?/2)
|X Y|2_|_X2)n/2 1

Vun(x — ¢(hm’)) = wyh / (

(12.91)
(n—2 WX, [ (EY.Y) - (KX X)e(Y[P/2)

(X — Y|2+X2)n/2

)

where X,, = X,, — h~'o(hX). Then, from Lemma 12.10 and (12.89), we derive

THEOREM 12.11. Suppose that the radial function n € S(R™) satisfies the mo-
ment condition (2.47) with N = 4. Then the single layer potential

_ SN
x)_W"F/IX—YI"Qd v

is approzimated by the sum (12.88) with the order
(1292)  VF(x) = Vhf(x)| = O((\/fh)?’] log(max(vDh, dist(x,T)))| + 5)

provided the surface T' has C*-smoothness and f € C3(I'). The saturation term ¢
can be made negligibly small if D is large enough.

12.3.3. Cubature formula. Let us note that we use formula (12.90) only if
|x — ¢(hm’)| is small; otherwise, we can take the simple midpoint rule (12.69). To
give the corresponding bounds for |x — ¢(hm’)|, we introduce a cut-off function yp,
with the property that x,(y) = 1 for |y| < 2 and x,(y) = 0 for [y| > (h® + h'/%)
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with some 8 € (0,1) to be specified later. We split the single layer potential into
two integrals

(12.93) /f|x’ihx 23’ do +wn/f (1 —xn(x-y)) dor,

= x =y

and we apply Theorem 12.11 to the first one. Note that f(y)xn(x—y) #0,y €T,
only for dist(x,T') < (h? 4 h'/*). Since |Vxa| < ch~"/* | we have

I1f xn(x — ')||c4(F) < Chil”f”m(?) :
Thus, in view of Theorem 12.10, the function f(y)xr(x —y) can be approximated
on I' by the quasi-interpolant
(12.94)

- — ¢(hm’)
|x¢(hr§<h51/4 (\/Dh|¢’(hm’)|1/(n*1))

with the error

3
¢ (VDI |l sy + 2 e (VDR
k=0

Consequently, if f € C§(T), then we can argue, as in Theorem 12.11, to derive the
estimate

DO=m/2 ST f((hm))xa(x — G(hm)Vh,, n(x — o(hm’))

|[x—¢(hm’)|<hB+h1/4

Iy XhX—)
Cx -y

((vVDh)?|log(VDh)| +¢).

Thus, it remains to choose 8 such that the second integral in (12.93) is approximated
with the order O(h%) by

"2 e d

If dlst(x T) > hP 4+ A4 then x5 (x — ¢(y’)) = 0 and

J |7 (D TR ) oy

¢

S;Cg y')) 1+|V80 ‘/|x oy |n+] 2

, dlam'y o

<o YIWIFIVeP)| | s
Therefore,

i [ oL e VIR0 o < 100y~

Y
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If dist(x,T) < h? 4+ h'/*, we have

Vs (£ = xalx = oy DVIT VAT | < eti=0/1

and /
dy (1
/ oy Sent
[x—¢(y’)|>hB
so that
1 — ’
he/‘ < — (Xh§|n 2¢(y ))) 1_|_ |Vg0(y’)|2> dy/ S Chl(lfﬁ)hﬁ_

Hence, depending on the smoothness f € C§(T') with £ > 4, the value of the
parameter

B=1-2/(—1)

provides the following estimate of the cubature error:

B 1 Z f hm 1 - Xh(X - d)(h’m/))) |¢/(hm/)|

_ n—2
2 e g
Jy) (1 —xn(x—y))
jf |X__ o doy | < el ey

Therefore, Theorem 12.11 remains valid if, for instance, f € C§(I') and x4 (y) is

chosen such that x5 (y) = 1 for |y| < h'/? and xu(y) = 0 for |y| < h'/? + h'/4,

Then formula (12.90) is applied in the region hd’ < |x — ¢p(hm’)| < (h'/2 + h1/4)§

with the function values f(hm’)x;(x — hm’). The midpoint rule with the values

f(hm’)(1 — x5, (x — hm')) is applied in the region |x — ¢(hm’)| > h'/2§'.
Summarizing, we obtain the following result:

THEOREM 12.12. Suppose that the surface T is C**1, f € C{(T), £ > 4, and
set $=1—2/(€—1). Then the single layer potential

VE(x) :wn/ f(y)

Ix —y|"—2

doy

is approzximated by the sum of
DUy f(@(hm!))xu(x — (hm')Vy,, (x — ¢(hm))
|x—¢(hm’)|<hP+h1/4

and

- J(@(hm)(1 = i (x = ()
LTS e S o ()|

|x—¢(hm’)|>hbB
with the order

(\/_h ‘logmax(\/—hdlstxl" |+5)

Here, xn(y) is a sufficiently smooth cut-off function in R™, vanishing outside the
ball |y| > h® +hY* and equal to 1 for |y| < h®. The saturation term e can be made
negligibly small if D is large enough.
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12.3.4. Basis functions. We show here that the integrals appearing in the
formulas (12.90) and (12.91) can be converted into one-dimensional integrals. There-
fore, the proposed integration procedure for surface integration is well-suited for
higher-dimensional cases. Since the basis function 7 is radial, one can use the
formulas mentioned in Subsections 2.1.4 and 12.2.2 for the convolution of radial
functions.

In the following, we use (12.45) to give explicit formulas for the integrals ap-
proximating the single layer harmonic potential, if the Gaussian is chosen as the
local basis function. Since this function satisfies the moment condition (2.47) only
with N = 2, one can take linear combinations of Gaussians as described in Subsec-
tion 3.4.1 in order to achieve the higher order for the quasi-interpolants as required
in Theorem 12.11. In the numerical tests, we chose the generating function

2e_|x|2 e_|x|2/2
n(x) = an-1/2 (2m) (D72

which satisfies (2.47) in R"~! with N = 4.
Next, we give the formulas based on (12.45) for the integrals appearing in
(12.90) and (12.91) with ¢ (y) = e~ Y. Since

e—27ri(x/,)\/) e—27r|)\/||mn| , L
! n—
Wn / (|X/|2—|—I721)n/271 dx’ = —47T|)\I| 5 A eR )

Rn—1
formula (12.45) yields
e—Iy'1/2

(5 =y P+ a2/

/

To(x',zn) = wy / dy

n—1
(12.95) B

(2ﬂ.)(n—l)/2

_ —2nr(mr+|z, n—3)/2 /
T |32 /e (rrtlenl) p(n=3)/ Jin—3)/2(2mr|x'|) dr .

0
Then we consider the integral
(Ky',y') e IY'1P/2 ’
(CEIEErATC

T ) = (0= 202, [

Rr—1
Here, we use that

(Ky'.y") e V2 = (KV, V) + trK) e ¥17/2,
where V = (01,...,0,-1) and trK = Ap(0). Hence,

T e_ly/‘2/2 ,
(< —y Ty

Ti(X',2n) = wn (n —2)((KV,V) + trK) /

Rn—1
Since
/ Tn e—27ri(x/,)\/> J 7T.n/2 Sgn(xn) e—27r|)\'||mn\
X =
(%[> + a3 )/ I(n/2) ’

Rn—1
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we derive

T (X, ) =7(2m) " D/2 sgn(x,)

T mrtmrsiont) ntys )2 2rrix])
X ((KV,V)+trK)/e 2mr(rrtlan]) p(n=1)/2 2 |X/)|/('n,73)/2 dr
0

The series expansion

o0

o —1)7 (r|x'|)?
Jn 2mr|X'|) = (7wr|x']) j;o TGrnsl)

shows that the function

J(n—3)/2(27mr[x'])
|X/|(n73)/2

(12.96) (KV,V)

is smooth. Let us consider a radial function g(|x’|) and denote w = x'/|x’|. Then
9" (X' g1
x| x|

Therefore, (12.96) can be expressed by using the values of (Kw,w), trK, and either
trigonometric functions (n even) or the Bessel functions Jy and J; (n odd) . For
example, if n = 3, then

(K, 9)g(Ix']) = (Kw,w) (g" (%)) = £ 52) + ok

(KV,V)Jo(2mr|x'])

= 4nr(Kw,w) (m‘Jo(27rr|x'|) — %) +2mrtrK J (2|:,a||XI|) )
whereas for n =4
o L
CwK 2n|2! |r COS(2;T7;|/};/||3(,|_3 sin(27r|x'|)
(4m2r?|x' |2 — 3) sin(2mr|x'|) + 67r|x’| cos(2mr|x'|) .

— (Kw,w)

Tri/2[x/|3
Counsider finally the integral

/ “|Ky']2 - (Ky',y')?) e W'*/2

/
(W —yFrare

RA—1
appearing in formula (12.90). It is easy to see that
(41KY'P = (Ky'y')) e T2
—((KV,V)? +2|KV|? — (trK)? + 2detK (A +2)) e ¥1°/2
Therefore one has to determine

Jn—3)/2(2mr|x|)
|32

—((KV,V)? +2|KV]* — (trK)? + 2 detK (A +2))
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For the radial function g(|x’|), we get

- ((Kv, V)2 + 2|KV[? — (trK)? + 2detK (A + 2))g(|x’|)

(3) (|~ 1 (|~e! (1~
2 4 g () g (XD g (XD
=(Kw,w) (_g( (IX'|) + 6 ] —15 2 +15 e )
(3) (|~ 1 (|~e! 1 (1~e! . (<!
+|Kw|2(_49 |)(<|,T|) +129|}({|/>|<2|) _129|§(|/)|<3I) oy (|X/|)+29|(}|(>/<||))
(3) (|~ 1 (1! 1 (1~!
g () (971X g (XD
+trK(Kw,w)(—2 +6 —6 )
x| [x'[? [x'[?
17 ( |/ 1(lse! (<!
of _o9" (XD g (X)) g (X)) :
+(trK)( 3 o +3 PE 2 ] +9(x I))

g"(X'D) 9 XD o g 9" (X)) /
detK (4 —4 —2 2 —dg(x'D))
e (4 5 4 =g () + 255 — ()
The differential expressions can easily be calculated by using computer programs
for symbolic calculations.

12.3.5. Numerical examples. The proposed approach was tested numeri-
cally in the computation of single layer potentials for the three-dimensional Lapla-
cian. We applied the combined formulas to obtain the integral

1 e—lyl?
12.97 — [ ——d
( ) i | |x—y] 7

r
for a paraboloid T' given by z3 = kj12% + 2k127122 + k1123, Using the quasi-
interpolation formula (12.94) with the local function
2e_|)"2 e_‘)’l2/2
n(y) = -

™ 27

the approximation error of the density e ~¥!" is O((v/Dh)* + £). The same rate is
shown for the cubature of the potential for flat I, i.e. k;; = 0. In Table 12.6, we
give the approximation order obtained by halving the step size h for a randomly
chosen point x with prescribed distance from I'. We have taken the parameter
D = 3.0 in formula (12.71) in order to keep the saturation error less than 10~1.

dist(x,T) [h=04] h=02[h=01]h=005

2.0 12.55 12.47 7.48 0.0000
0.1 3.66 3.91 3.87 3.92
0.01 3.70 4.09 3.99 3.85
0.001 3.71 4.25 3.85 3.84

0.0001 3.71 4.37 3.74 3.86
0.00001 | 3.33 3.71 3.85 3.97
0.0 3.33 3.70 4.04 3.86

TABLE 12.6. Approximation order for different distances and the
flat surface
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The high orders for dist(x,I") = 2.0 result from the fact that the simple mid-
point is used for all mesh points. In the other cases, we approximate the density
by a fourth-order quasi-interpolant. Since I' is flat, the formulas (12.90), (12.91)
provide the exact values of the potentials of the basis functions. Therefore, the
single layer potential is approximated with the same order as the density.

In Table 12.7, we provide the approximation orders for the curved surface
x3 = 23 + 2m179 + 223, which are in agreement with the assertion O(h®|logh|) of
Theorem 12.12.

dist(x,T) [ h=04] h=02|h=01]h=005

2.0 4.04 17.96 1.84 0.00
0.1 3.42 3.09 2.90 2.92
0.01 3.38 3.23 3.05 2.71
0.001 3.11 2.51 2.85 2.98

0.0001 3.18 2.82 3.18 2.82
0.00001 | 2.80 2.55 3.09 2.88
0.0 4.85 3.10 2.64 2.84

TABLE 12.7. Approximation order for different distances in the
case of the paraboloid z3 = x% + 2x129 + 2;10%

12.4. Notes

The material of Section 12.1 is taken from [53]. Two other approximation
methods for solving the Lippmann-Schwinger equation were recently studied by
Vainikko in [95]. The first one is a simple cubature method of second order, which
can be applied in the case of piecewise smooth potentials. The second method
is a sophisticated trigonometric collocation applied to periodized versions of the
Lippmann-Schwinger equation. The values of the periodized diffraction operator on
the trigonometric polynomials are computed via Fourier techniques and it is shown
that this method provides optimal convergence orders if ¢(x) is smooth on R™.
Utilizing the convolution structure of the problems, Vainikko showed that by using
FFT and two grid iterations, the discrete problems can be solved in O(N"log N)
operations. The same approach can also be applied to the Gaussian collocation
method considered in Section 12.1.

The BPM described in Section 12.2 was proposed in [63] and [64] for the
numerical solution of the integral equations of the second kind for two- and three-
dimensional potential problems with smooth boundary. Here we provide some of
the numerical results obtained in the thesis [3] of H. Akermark. Let us note that
in a series of papers Kanaun and coworkers applied the BPM for solving problems
from elasticity (cf., e.g., [41], [42], [43]).

In Section 12.3 we followed the paper [73]. The more accurate computation
of boundary integrals by using the values of the normal and of the curvature of
the boundary, which is considered here, improves the accuracy of the BPM. In [3]
this is demonstrated by numerical tests for two-dimensional examples, where the
surface integral of the basis function is replaced by the integral over the sphere
which touches smoothly the boundary at the center of the basis function.



CHAPTER 13

Numerical algorithms based upon approximate
approximations — non-linear problems

This chapter surveys some applications of the approximation method to the
solution of evolution equations. In Section 13.1, we report on new semi-analytic
time-marching algorithms for the numerical solution of quasi-linear parabolic equa-
tions. In Section 13.2 we extend these algorithms to obtain an explicit method
for solving non-stationary Navier-Stokes equations. Section 13.3 gives an overview
on the solution of Cauchy problems for non-linear evolution equations involving
pseudodifferential operators.

13.1. Time-marching algorithms for non-linear parabolic equations

Some semi-analytic time-marching algorithms for the numerical solution of
quasi-linear parabolic equations based upon approximate approximations are con-
sidered in this section. An important feature of the algorithms is that they are both
explicit and stable under much milder restrictions to the time step, depending on
the size of the grid, in comparison with the usual explicit difference schemes (cf.,
e.g., Richtmyer and Morton [83]). The algorithms give the time step approxima-
tion up(x,47) in analytic form, which enables one to differentiate the approximate
solution explicitly with respect to x.

13.1.1. One-step time-marching algorithms. We start with the initial
value problem for the semi-linear heat equation

(13.1) ut—l/um:g—f(x,t,u) for zeR, t>0,
T
u(z,0) = ¢(z) .

For any T >t > 0, the equation (13.1) can be rewritten in the equivalent form

u(z, T) =u(z,t) + /P(x —&T —t)(u(é,t) —u(z,t))d
(13.2) -
9

+8x

T
/ / P(x— €T — X) f(6, X u(€, \)) dé dA,
t R

where P is the Poisson kernel

1
P(.I t) — \/ﬁe—m2/4ut

321
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(cf., e.g., [75, Kapitel 25]). To derive a time-marching algorithm, we fix a time step
7 and note that the solution u(x,t) for t = ir, i = 1,..., can be obtained from

I),
x, (i —1)7)

—~

u(z,0) = ¢

u(z,iT) = u

—~

+ /P(l’ —&,7) (w(&, (i — 1)7) — ulz, (i — 1)7)) d€
(13.3) )
* o | [ Pa-cir- e dear.
(i—1)7 R

Representing the function u(z, (i — 1)7) by the simple Gaussian-based quasi-
interpolant (1.7) and using (1.16), the first integral on the right-hand side can be
approximated by

h s 2 2
u mh, i— 17 e—(w—mh) /(4vT+Dh*)
/7 (4vT + Dh?) m:Z_OO ( ( 7
L i u(mh, (i — 1)) e~ (@=mh)*/Dh*
VD

(13.4)

m=—0o0

Using again the quasi-interpolant (1.7), we approximate the third term on the
right-hand side of (13.3) by

1 a T
(13.5) (i-Dr k

x> flmh, A u(mh, X)) e ~EmIYPEE ge gy

m=—0o0

making an error O(7h?) up to the saturation error. Here and in the following,
we assume that the data and the solutions are sufficiently smooth. The one-step
explicit time-marching procedure consists in replacing (13.5) by

I= \/% m;m f(mh, (i — 1), u(mh, (i — 1)7))
(13.6) i
x a% / /P(;v —&ir— A)eEmWY/DR® ge gy
(i—1)r R

which provides an error of order 72. The inner integral over R is equal to

h'D o —(@=mh)?/(4v(it—X)+Dh?)
VAu(it —\) + Di2

)
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which along with the identity

X

J (& — mh)e ~(@=mh)*/(4rA+Dh?)
/ (4v\ + Dh2)3/2

= vm (erf (;v — mh) —erf (730 —mh ))
4v VDh VAvT + Dh?
leads to the explicit form of (13.6)

_h
o

> f(mh, (i = D)7, ulmh, (i — 1)7))

m=—0o0

1

x( f( x —mh ) f(a:—mh))
erf [ —m——) —erf ([——— ) | .
VA4vT + Dh? VDh
Thus we have arrived at the step-by-step formula for determining the approximate
solution up(z,i7), i1 =1,2,...,

up(z, i) = up(z, (i — 1)7)

h > e_E?n()‘)

(13.7) T 2, unlmh (= 1)) (4vA + Dh2)1/2

m=—0o0

A=0

h

+ % Z f(mh, (i — V)1, up(mh, (i — 1)7)) erf (E,,(N))

m=—0o0

with up(z,0) = ¢(x). Here and in the sequel, we use the notation
A=T x —mh
N = F0) = 10), En() = e
O =50 - 10, 2000 =

A=0
By summarizing what was said on error estimates, we conclude that the algorithm
just constructed gives the error O(72 + 7h?) at each time step.
To obtain similar, but more precise, procedures, one can use the quasi-interpo-
lants of higher approximation order. For example, the generating function

mia) = = (5 ~a?) e

provides the explicit time-marching procedure

up(z,i7) = up(z, (i — 1)7)

A=T
J— , Dh2(3 — 2E2,(N)) e =m
+ﬁ m;muh(mh, (i—1)7) <4u)\ + 5 ) (dvx + D2} -
J— _ :
(13.8) + 5 m;w f(mh, (i — 1)1, up(mh, (i — 1)7))
A=T
Dh? _ e —EmN) _
x {7 = g T E g

with accuracy O(72 + 7h?).
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The above algorithms can be modified for the more general equation

(13.9) Up — Vigy = 8_

3 flz,t,u) + F(z,t,u) for zeR,t>0.
x

The only difference in comparison with (13.7) is the appearance of the term

_% mz F(mh, (i — 17, up(mh, (i — 1)7))

=—00

x \/Av\ + Dh2 (e =) 4 T B, () erf (Em(A))) ‘

A=T

A=0

The analogous extra term for the algorithm (13.8) takes the form

h = , .
W m;m F(mh, (i — V)1, up(mh, (i —1)7))
SU\+ Dh? A=T
V4 Dh2 [ 22T o mEnN 4o /7, f(Z,, .
X VAU + <41/)\ ok +2¢TEn () erf (2, (N)) L

13.1.2. Higher-dimensional case. All the algorithms introduced above have
direct analogs to the initial value problem for multi-dimensional equations

(13.10) ug — vAu =div f(x,t,u), u(x,0)=p(x), xeR", t>0.

We rewrite the heat equation as

u(x,T) = u(x,t) + /P(X —&T —t)(u(&,t) —u(x,t)) dE

R’n
(13.11)

T
+divx//73(x—£,T—)\) (&, N, u(€,N)dEdX,

t R™

with the Poisson kernel P (see (6.12)) and we employ the approximate quasi-
interpolation with Gaussians in R" to evaluate the integrals. We approximate

£(& A u(g, A)) by

(xD)™2 3 f(mh, A, u(mh, \)) e 1E-mA/ DR

mezZm
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and we note that

(WD)_nﬂ divx / /P(X — €01 — )\) e_ls_’f’“h|2/Dh2 dg d\
(i—1)7R™

T

hn e—\x—mh|2/(Dh2+4V)\)
= v, X
iz Y / (Dh2 + dv\)/2
0
vT 2
hn(x_ mh) 474 Dh e—\x—mh|2/>\
T o /2 / NLtn/2 d
Dh?
hn B
X —m
_ n/2—1 , —¢& d
2unn/2 |x — mh|” ¢ e de
zm (0)
with
|x — hm|?
13.12 _ X hmf
(13.12) mN) = T onz

Using the upper incomplete Gamma function defined by (11.63), we obtain

(7D) "2 divy / /P(x—g,T— A) e 1E-mhI?/DRZ g g

(i-1)r R"
N _21/?;/2 |;__;1n:|n (F(gazm(f)) - F(g,zm(o)))

By the same arguments as in Subsection 13.1.1 and using formula (6.13) for the
heat equation, we arrive at the computational formula

up(x,i7) = up(x, (i —1)7)
K e —#m(}) A=T
13.13 +— hm, (i —1)7) — 00— _
( ) 7_‘_”/2 m%ﬂ uh( (7/ )T) (4V)\+Dh2)n/2 A=0
w5 (ettm, = 1y, - 1), 2B N (2 o)
-— i— u i— - — . Zm
Qumn/2 = ’ T, Up y 7)), |X — hm|n 9’ o

where uy(x,0) = p(x). The accuracy is O(72 + 7h?) modulo saturation errors at
each time step.

We note that in the case of even n the computational formulas (13.13) include
only elementary functions, whereas for odd n the error function erf has to be
evaluated (see Subsection 4.3.1).



326 13. NUMERICAL ALGORITHMS FOR NONLINEAR PROBLEMS

—X

For example, because I'(1, ) = e ™, we obtain for n = 2

. | h? . s
up(X,47) = up(x, (i —1)1) + o Z un(hm, (0 —1)7) 4v\ + Dh? =0
meZ? B
h2 ) . X — hm —2Zm (A AT
~%um <f<hm, (i = V)7, un (o, (i = 1)7)), m> R N
meZ?

Since

F(g,x) =e " Vx4 gerfc(ﬁ),

in the case of R3, we derive the computational formula

B3 o—#m(A) A=T
up(x,i7) = up(x, (i — 1)7) + —= up(hm, (i — 1)7) —————
h3 . ) X — hm
T 9,32 %B <f(hm, (¢ — 1)1, up(hm, (i — 1)7)), T~ — m[? hm|3>
A=T
Cam(y) X~ hm| VT )
x (e —————— + ~—erfc(v/2Zm(A
( 4v\ + Dh? 2 ( ) A=0
The higher-order approximate quasi-interpolants
— hm
M u(x) = D72 3 u(hm) nQM( ) M=23.. .
mezm @h
with

naar(x) = 72 L3 (1x?) e X

(cf. (3.18)) provide computational formulas of the order O(72 4 7h2M).
We know from (6.15) that

/P(X =& N) 2 (%) d§

hnef|xfhm\2/(4v)\+Dh2)M*1 Dh2

w2 (4vA+ D22 £ \dvA + DI?

R™

)1 (i)

One has only to determine

divy g2 2
Iy = 1Vn/2 / /Px ¢ir — \) LY (ﬂ)e &%/ g )

R’Vl
o e — x>/ (Dh*+avx) M1 Dh? jL(n/2—1) [x[? d\
= —7-‘—71/2 / (Dh2 4 41/)\)11/2 = 4]/)\ —+ Dh,2) i (m)
4vT+Dh? Cixl2/x M—1 ;
o div e —1xI#/A Z (th)JL(_nﬂ—l)(@) d\
Py x /2 ~ A J A .
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By (4.38), we obtain

vT 2
I s T ek A ML ppe /) |x|? d\
M= oy gn/2 Al+n/2 ( A ) J (T)
Dh2

(1)

h™ X JWZ 'th) /efE gn/271+j Lgn/Q)(g)dé-

= 2umn/2 [x[n = |x|2
- 2(0)
= g7t (- E(320) +e Z oL )|
2umn/2 |x|" 2’ |x|2J A<D

with z()\) = |x|?/(4v\ + Dh?), where in the last step, the formula

4 1.
/x]"'o‘_l e L;a)(a:) dx = ; pItre " L;Oi)l (z)

(see [82, 1.14.2.9]) is used. After elementary transformations we derive

Iy = __n ir(ﬁvz(/\)) A=T
2umn/2 |x|m T\ 2 =0

N h" xe*N AL (pp2y L2 (2(0) =

2ur™/2 (4 + Dh?)"/? = j(4vA + Dh2)i i1 N

This leads to the time step algorithm

up(x,47) = up(x, (i — 1)7)
M- (Dh2)i e —#m()

(n/2-1)
—72 Z {uh hm, (i — 1)1 Z (AT D) L (zm(N)

mezm Jj=

+

(13.14)
— (£(hm, (i — 1)7,up(hm, (i — 1)7)),x — hm)

- Dh?' —zm(V)
) £ i)

A=T

S

A=0

X (|x - hm|’”I‘(g,zm

J

with zm(A) defined by (13.12). As mentioned above, this formula provides an
approximate solution of (13.10) and has the order O(72 +7h?M) at each time step.

13.2. Application to the non-stationary Navier-Stokes equations

The Navier-Stokes equations describe the motion of a fluid in R™ (n = 2 or 3).
They are to be solved for an unknown velocity vector u(x,t) = (ui(x,t))1<i<n € R®
and pressure p(x,t) € R, defined at the point x € R™ and time ¢ > 0. We restrict
our attention to incompressible fluids filling all of R™. Then the equations are given
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by

8’[1,1 i 8’[14 8[)
13.15 —_— — =vAu; — — t R™ t+>0
( ) 5 —I—;ukaxk vAuy; 6$l+fl(x’ ), xeR",t>0,
(13.16) divu=0, X €R".£>0,

with the initial conditions
(13.17) u(x,0) = p(x), xeR".

Here, ¢ = (¢1,...,¢n) is a given smooth divergence-free vector field in R™, the
viscosity v is a positive coefficient, f;(x,t) are the components of a given externally
applied force.

13.2.1. Integral equation formulation. In the following we describe a time-
marching algorithm for the numerical solution of this Cauchy problem for the
Navier-Stokes equations. For simplicity, we assume that no external force is ap-
plied, i.e., f; = 0. Using (13.16), which just says that the fluid is incompressible,

equation (13.15) can be written in the vector form
(13.18) u; —vAu= -V —ii(u u)
. t p — a.Ik k )

or, for any 0 < ¢ < T, analogously to (13.11), as

u(x,T) =u(x,t) + /P(X —& T —t)(u(&,t) —u(x,t))d€

Rn

T
(13.19) —V//P(X—S,T—A)p(éw\) dg dx

t Rn
T
"9
: ;a—”t/R[P(x_g’T_ A) (upu) (€, A) d€ d.

The second and third integrals on the right-hand side can be combined by the
following observation: If we apply the divergence operator to (13.18), then we find
by the continuity equation (13.16) that

n 82
Ap = — — T (wiuk).
P Z dx; 0y, (ujur)
J,k=1

Hence the pressure is expressed by

13.20 =_A"! — (ujuy).
( ) p j;l B0 (uju)
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Then the [-th component of the second integral in (13.19) transforms to

o // x — &,T — \) pl&, A) d€ dA

t R7

= A lzﬁx]&vl Zaxk // (x =& T = N)(ujur)(§, ) d§ dX

t R™

- A 128%3171 dlv//P (X — &, = N (uyu)(€, \) dé dA.

t Rm

Moreover, the I-th component of the vector function

Zai//Px—g,T A) (upu)(€, N) d€ dX

t R»

can be written in the form

T
div //P(x — &, T — N)(wu)(€, ) d€ d.

t R7

This leads to

T
div//P(x—é,T—)\)(ulu)(é,/\)dédA

t R»

T
0
+6—W//P<x—s,T—A)p(£,A)dsdA

t R7

:i(” - 8x‘?8xl>dw//7>x €7 — N)(uyu)(€, \) dé dX .

Thus, by (13.19), the components u;, 1 <1 < n, of the solution u(x,t) satisfy the

equations

ul(X7 T) ZU[(X, t) + /P(X -&T - t)(ul(gvt) - ’U,[(X, t)) d§
R’Vl

(13.21) . 5
)

- 5 —AZL
j:zl ( it * 8$j8$l

with the functions

T
—div [ [Pex- 6T - NN dgdr, 1<i<n

t R7
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13.2.2. One-step time-marching algorithm. As before, we split the time

interval into the subintervals [(i — 1)7,i7], i = 1,2,... , and obtain
i) = wlx, = 1))+ [ Pl &) €, (i~ 1)) — (. (i~ 1)7)) dg
Rn
n 82 iT
-3 (@-l - ALt )div/ /P(X—S,iT—)\)(uju)(S,)\) dé dX.
— 8$j8$l
i=1 (i—1)7 Rn

Now, we use (13.13) to approximate the functions

FO (x fdw// (x — &, i — \)(uyw) (€, A) d€ dA

(i—1)r R™
in the form
(13.22)
_ x — hm n |x —hm|?\|*"
- 1 3 T 1 F(_, 7) 3
2uﬂ'”/2 Z < uju)(hm, (i = 1)7) |x — hm|"> 2 K(N) =0

mezZm

where k(\) = (4v\ + Dh?) and ['(a, z) is the incomplete Gamma function (11.63).
Hence, we obtain the approximation

0 :
3 — Ay F
( * 8{E 817[)

(13.23) ~ M—n/g Z Z(ujuk)(hmv (i—1)7)

meZ" k=1

xy —hmy n |x — hm]?
. —hm) = b1 ——— (5 —F5—
. (Wakl(/\’x m) — 91 |x — hm|" (2, K(A) )

A=T

3

A=0

where the abbreviation

L 9? T — hmy n |x —hml?
13.24 4% — hm) =A"! {5
(13.24) e (A, x ) Ox ;0 <|x—hm|" (2’ K(A) ))

is used. By setting y = x — hm and noting that

oo

0 noN dt 1 Uk ly[?
o n o n/2—1_Jk
Ay / F(2’t) 2 = 720 IYI"P(2 ’f(/\))’
lyl2/5(X)
we get
1 o3 7 n dt
Wi\ y) = — A1 D(5:t) s
k(A ) 26(N\)/2-1 Ay, 0yrOyl / (27 )tn/z
lyl2/6(X)
1 9 (IyIQ)
= v )
26(N)"/272 Oy;0yrdyr  \K(N)

with the function v defined by

oo

oy ==at [ r(50) 2

x|
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Turning to spherical coordinates, we obtain

oo

(i) < Jr(3)

r2

which leads to the equation

oo

" / — 2 _dt
470" (1) 4+ 2n0' (1) = /F(Z’t) ok
or, equivalently, to
n/2, 1\ _ _ _n/2-1 n ) dt
(13.25) ATy = —1 /I‘(2,t 7

T

Note that the right-hand side of (13.25) can be given as

/2 T

2
T n_2(7"/2_le_T—F(g,T)), n>2.

Now we are in a position to derive analytic formulas for the functions Wj;. Since

1 o3 ly[?
W]kl()\,Y) - 2/45()\)77'/2_2 8y]8ykaylv(l<,()\))

= 1 o v/( |Y|2 )yl
K(A)"/271 Oy 0y \K(N)
2 ly|?
BORE “”(—) (6r1y; + Syk + Ojku1)

K(N)

4 v///(|Y|2 )y'ykyz
e ey v

it suffices to find the second and third derivatives of the solution of (13.25).

dt
[e’e} —t _ —
_/p(ﬁ t) L _/e 7 =10, n=2
27

(13.26)

+

13.2.3. Formulas for the plane problem. Let us start with the case n = 2.
The derivative of the solution of the equation

A" + 40’ = —/e_t "
is given by
e 7 -1 T dt
A (1) = _ —t
v'(7) . /e

Hence one has only to insert

2
2 H(|y|2) _ 1_6_‘}’| /K(N)
— " =Z— ) =k - - 00

k(A \k(N) 2[y | ’
4 ///( |Y|2 ) _ 67‘y|2/“(>‘) —1 n e*|y\2/"”~(>\)
Ii()\)z ,Ag()\) |y|6 |y|4
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into (13.26), which implies

o —l¥[2/K(3)
Wikt (A Y) =yiyey YT
1 — e~ ¥I?/r(N) 4y;
+ K(A) TayE (5klyi + duyk + Gikyr — yljl’;yl)
Recall (13.23) and that we approximate
0? ;
5 — A 7)1?.(”
( it Ox;0x; /Y
h,2 2 A=T1
~ o S (wjur) (hm, (i - D)) 25 (0 x — hm)|
v meZ2? k=1 ‘ A=0
where the coefficients Zj(ig are given by
2
Z80y) = Woa(hy) - (1, 20)
gkl( ) J ( ) J |y|2 H(/\)
(L 5) e ~I¥I*/x(Y)
I e
1 _ei‘y|2/’i(>‘) 4yykyl
+ k() BT (5klyj + 051Yk + kY1 — |Jy|2 )

It remains to notice that by (13.13) the first integral on the right-hand side of
(13.19) can be approximated by the sum

A=T
12 e —|x—hm|*/(4vA+Dh?)

— up, (hm, (n — 1)7) N DI

meZ?

A=0
Combining this with (13.21), we arrive at the time-marching algorithm for the
velocity components

Uh,l(x, ZT) = Uh,l(X, (Z _ 1)7_)
h o —x—hm|?/(4vx+Dn?) |7
+ — Z up,(hm, (i — 1)7) _
(13.27) [ileptt 4v) + Dh L
h2 2 o s
 wm Z Z (wn,junk)(hm, (i — 1)7)Zj;; (A, x — hm) 7
mez? j,k=1 o

with up(x,0) = (%), 1 = 1,2,

i — hm;)(z; — hmy) T — hmg  _
Z(2) Ax—h _ (IJ J 'y Zm(X)
ki (A, x = hm) |x — hm|? it |x — hm|? ¢
T; — hm; T — hmy x; — hmy
ppL— L 4 6y 4 g —————
+{kﬂ “hm| " T hmm| "

(xj — hm;)(zk — hmy)(z; — hmy) } 1—e2m)

|x — hm|3 2|x — hm| zm(A)
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and zm(A) is given by (13.12).
When the approximate velocity is found, we apply (13.20) to the quasi-interpolant

. 1 . —|x—hm
Mo g (up jun k) (%, 97) = s Z (up,up,k)(hm,iT)e x—h ‘Z/th,

meZ?

i.e., the approximation of the pressure is computed from

AflMg,h(uh,jumk)(x, iT) .

Now, we apply formula (6.4) stating that

9? _ 2xjap — Sk |x|?

|-
0, 0x La(eT)(X) L

el2 LT ]2
(1—e \x\)_&? L

which leads to the approximation formula for the pressure

2
_ 1 . e =m0 1
prlxin) =5 30 () hmir) (0 S

(13.28) mez? j. k=1 22m(0)
n (xj — hm;)(zk — hmy) (1 — e —#m(0) Jp— )
|x — hm|? Zm(0) :

Since uy, approximates the solution u with the order O(72 + 7h?), the pressure is
approximated by (13.28) with the same order.

13.2.4. Numerical example. The two-dimensional algorithm (13.27), (13.28)
was implemented and tested for different values of the viscosity v, the discretization
parameters 7 and h as well as for different initial functions ¢.

In the Figs. 13.1 — 13.4 we depict the velocities ug(x,t) and the pressure p(x,t)
at the time stamps t = 0.0, 0.6, 1.2, 2.0 for the Navier-Stokes equation

2
0
u, — vAu=—-Vp— —(ugu),
t p ;axk(k)

with v = 0.1 and the initial conditions
u1(x,0) = z129 e IxI*/2 us(x,0) = (1 —23) e X2 x e R2.

For this example, the time and spatial discretization parameters are 7 = 0.01 and
h = 0.05.

13.2.5. Formulas for R™, n > 2. Using the relation
(13.29) e+ 1,7)=al(a,7)+ 7% 7,

one can easily check that the function

w0 = (0 1) - (37)

is a solution of

= (e r(3),
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upper
(

(

= 0.0

FiGURE 13.1. Evolution of the velocity field for ¢

left), t = 0.6
right)

lower

.2 (lower left), and t = 2.0

1

(upper right), ¢

Hence, the derivative of the solution of (13.25) is equal to

/N
/N
~
ISl
N——
= .
© =
+ —
- +
| S lew
N—
/N
. —
- —
— &
i
+ T
S K =
P I
—~
N— /N
~ =
s Sl
[
—

r(

2
n—2
n+2

27-n/2+2

(
1
Tn/?

)
) =

T

40’ (

which gives after elementary transformations
"

'3

(

"
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= 0.6

F1GURE 13.2. Evolution of u; for t = 0.0 (upper left), ¢
(upper right), t = 1.2 (lower left), and ¢ = 2.0 (lower right)

Inserting

2n/zv,,(lyl2)_ 1 F(Q Iyl2) k() F(QH’ |y|2>7

K(A) k(N 2yt \27 k(N 2ly[rt2 T \2 k()
4 w( Y2y (n+2)k(\) /n ly|? n n |lyl?
r(\)/2+ Y (H(A))_ 2y [+ P(§+17li(/\))_2|y|"+2r(§7n()\)>

into (13.26), we derive

_ k() n yI? \ ¢ (0 + 2)y;yu L. ‘
Wik(Ay) = WF(Z +1, H()\))( mE (Or1y; + djuyk + 5Jkyz))

1 (ﬁ IYIQ)(nyjykyz
2yl \27 k()N Jy[?

— (Oray; + 0iyx + 5jkyl))-
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F1GurE 13.3. Evolution of us for t = 0.0 (upper left), ¢
(upper right), t = 1.2 (lower left), and ¢ = 2.0 (lower right)

Hence, in R™ we obtain the approximation

0? ;
AL (@)
<5]l A O0x;0x, > E;

hn n . .
N s D O () (b, (i = D)2 (O x — )

mezZ" k=1

where

2
n n
Z_§kl)()\5y) =Win(Ay)—4¢ Yk I‘(_ ﬂ)

Tyl \27 k()
k(N n lyI? \ ¢ (n+ 2)y;uku
1330) =zt (5 L oy) g

1 (ﬁ |y|2>(nyjykyz
2lyf» \27 k(NN |y[?

= 0.6

A=T

)

A=0

— (Oray; + 01yx + 5jkyl))

— (Oryj + Syt — 6jlyk))-
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F1GURE 13.4. Evolution of pressure for ¢ = 0.0 (upper left), ¢t =
0.6 (upper right), ¢t = 1.2 (lower left), and ¢t = 2.0 (lower right)

In particular, the formulas
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provide the following expression in the 3-dimensional case:

—l¥1?/r(N) .
3 € Yiy Yk
ZH0y) = ((—J )

ly[? ly[? k(N
3vE(N) (5y‘jykyl Ory; + 051y + kY ))
+ o
4yl lyl lyl

VT vl a2y YiYRYL
+ 51T erfc(m)((l&i(/\) oy ) A

Sriyj + 0k d51Yk
+ 2yl - 350\))# — (2ly]* + 3k()) J|y| :

By (13.13), the first integral on the right-hand side of (13.19) can be approxi-
mated as

A=T
h" e—\x—hm|2/(4u>\+Dh2)

7-‘-77,/2 Z uh(hm’ (Z - 1)7) (4VA + ’DhQ)n/Q
mezn A=0
Hence, we derive the time-marching algorithm for the velocity components in R™

'UJh_’l(X, ZT) = uh,l(x, (Z - 1)7’)

h™ e —Ix—hm|?/(4vA+Dh?) |7

+ —F Z Up, [(hl’n, (Z — 1)7’)
n/2 ’ 2\n/2

(13.31) w2 = @A+ DR |

h" 2 (n) A=T

— G 2 2w ) (hm, (i = D7) Z) (A x —~ hm)

mezZn j,k=1 A<D

n)

and the coefficients ZJ(.M given in (13.30).
Finally, we give an approximation formula for the pressure p which is obtained
in accordance with (13.20) from
pn(x,it) = — . i il AT (upjun ) (hm i) ~Px—hml®/DhY
’ (nD)n/2 et O0x;0xy, R ’ '

mezZn

By (6.4) we have

0? 2 nrTe — 6k |X[? /n TiTh 2
L, (e _ NEiTk — Oik|X|” (_, 2)_1_ x|
Ox;0xy, (e )6) 2|x|n+2 2 x| |x|? ¢

which implies the formula

pr(x,i7) = W Z Z (un,jun, k) (hm,iT)

mez" i k=1
(13.32) {(pl=imloe 2t gy ) v (m )

-2

(xj — hmy)(xe — hmk) _._ (o)
|x — hm|? ¢ ’
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approximating the pressure with the accuracy O(72 + 7h?).

13.3. Non-local evolution equations

Approximate approximations can be successfully applied for solving non-local
evolution equations. Consider the Cauchy problem for equations of the general
form

Ut — Pl(Dx)u = PQ(DX)F(XatvuaPL’)(DX)u) s t>0 , X € R™ )
U(X, O) = cp(x) )
where Dy = (—i0/0x1,...,—10/0x,). We suppose that the operators Py(Dx)
are convolutions with the symbol Py (27€), k = 1,2,3, and that F is a smooth
function. The equation is discretized in time by a two-parameter finite-difference
approximation with a time step 7. Then u(x,t) is approximated by a sequence of
functions u;(x) = u(x,j7), j =0,1,2,..., satisfying
7wy —uj1) — 01Py(Dx)uy — (1= 01)Py(Dy)uj
= PQ(DX)((l + 92)Fj,1(X> — 92Fj,2(X)) )

where Fj(x) = F(x,j7,u;, P3(Dx)u;) and 0 < 6; < 1. With the notation

p=rTb1,
y=u;+ (07" —Du_q,
f:@fluj,l,

g=7((1+62)Fj—1 = 6:2F; ),
we derive the linear problem
—uPi(Dx)y+y=[f+P(Dx)g, x€R",
which has the solution
y=f+(R-If+P,Rg with R=(I—-puP)".

Replacing f and g by its approximate quasi-interpolants (2.23), one obtains the
approximate solution

yn=f+(R—-DMppf+ P.RM) pg

D Y plm (e (SR (X

mezn
— hm
+ D2 hm)(PyRn) (X

Thus, the values of y;, at the grid points xx = hk are linear combinations of

() (*5%) and - (PoF) (<22

which may be effectively computed for a suitably chosen generating function n. By
this way one derives the following explicit scheme for computing the approximate
solution u; 5 of the Cauchy problem:

Ujh = Uj—1,h + 01’1(R — I)Mh)p’ug‘,lyh =+ TPQRMh)’D((l + 92)Fj,1 — 92Fj,2) .

For 61 = 62 = 1/2 the scheme is of second-order accuracy.
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Compared with other explicit schemes for solving time-dependent problems,
the proposed method is very robust with respect to variations of the ratio between
time and spatial discretization. Numerous numerical tests for different equations
have shown, that, of course, the non-linearity in the original equation imposes
restrictions to the time step 7, but there exists no strict connection between 7
and the mesh size h. In these tests the present method provides an accuracy
of O(r%2 + 7h™V) at each time step, where N is the approximation order of the
approximate quasi-interpolation with the generating function n. For 6; = 62 = 1/2
the numerical accuracy increases to O(73 + 7h"). However, the rigorous error
analysis of this quite general method remains open. The estimation of the saturation
errors, which occur at each time step, is rather involved and is understood at present
only for some special equations. Here again for D sufficiently large, the saturation
errors can be kept below a given error level, as expected also from the numerical
experiments. In the following, we report on two examples of non-linear non-local
evolution equations, to which the method was applied.

13.3.1. Joseph equation. The Joseph equation

(13.33) wp + 6 tug + (26) 7 / Uyy coth% dy = —(u?),

describes the unidirectional propagation of small-amplitude, non-linear, dispersive,
long waves in stratified fluids.

Note that the shallow water approximation (6 << 1) of (13.33) is the Korteweg-
de Vries equation, whereas the deep water approximation (6 >> 1) is the Benjamin-
Ono equation

wp + Htgy = —(u2)m

with the Hilbert transform H. In Fig. 13.5 the computational results for Joseph’s
equation with the initial data p(z) = dexp(—2?) for § = 0.1, 0.333, 1, and 10,
corresponding to shallow, intermediate, and deep water, are shown. In these com-
putations 1 was the Gaussian function, D = 3, h = 0.1, and 7 = 0.001.

13.3.2. Sivashinsky equation. Another interesting example which is dif-
ficult to solve by using finite-difference or finite-element methods represents the
two-dimensional equation of flame front propagation

t 1
(13.34) ut—|—aA2u+eAu—|—bA/ |u(y, )l dy + cu = —§(Vu)2, t>0, x € R
X-Yy
R2

Here
Pl(f) = _a|§|4 + 6|§|2 + b|§| -G P2(€) = 17 P3(€) = 267 F(x,t,u,v) = _|V|2/2 .

With the two-dimensional radial generating functions, the occurring integrals are
transformed to the zero-order Hankel transform with smooth and rapidly decaying
integrands and may be computed using standard quadrature procedure.

In Fig. 13.6, the results of the numerical solution of (13.34) with the initial
data

1
px) =1+ 3 sin 2z sin 2z,
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FIGURE 13.5. Solution of the Joseph equation for different §

o
L5 0] © < N o
T T T
o
N
L O
L
:
X
L O
N
S SEReLt
|
{Hrere
: o
! [ ®
T v
:
,
W
: )
I T T <
M N o O o '
S o © S 10
o O O n_u ﬂ_v
o - -
— o] © < N o o
, | | | | A ® © < N
e e
- O
=
o | o i
, L
! ;
:
,
W x Q 3
t L O (o] )
W N ;
” ) [ 3
| o _
m )
W - )
i : oS
:
,
W
” o 25
, /RN 5y SR
o o e o o T
s © <) w o
] o Q Q
_ 3 S

The given parameters correspond to a linear flame instability and the compu-

tations result in a corrugated flame front.
The material of Section 13.1 extends results from the papers [65], [64]. Note

that we restrict ourselves to the simplest finite-difference approximation of the time

-40
and the parameters a = 107%, ¢ = 0.05, b = 0.005, and ¢ = 1/6 are given for

different time values. The 27-periodic solution was computed for the discretization

parameters h = 7/32 and 7 = 1073.
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s(s]=[s]
sisl=]s

I

FIGURE 13.6. Level lines of the surface of the flame front for ¢ =
0.0 (upper left), ¢ = 1.0 (upper right), ¢t = 5.0 (lower left), and
t =10.0 (lower right)

derivative. In the papers mentioned, higher-order finite-difference approximations
are considered as well, and numerical results for different model equations are given.

The approach presented in Subsection 13.1.1 is applied in [45] to the solution
of initial boundary value problems for semi-linear heat and wave equations

Up — Uge = F(z,t,u), ulz,0)=po(z), u(ta,t) = 1/1i(t) ,
and
Ut — Uz = F(z,t,u),  u(z,0) = po(x), u(z,0) =p1(z), u(ta,t) = @[Ji(t) ,

where x € [—a,a], t > 0. Explicit analytic formulas for the approximate solution at
each time step are obtained for the case of quasi-interpolation with the generating
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function 74 and first- and second-order finite-difference time approximations. Nu-
merical tests with smooth functions F, ¢;, and 1+ confirm that at each time step
the accuracy of the algorithms is O(73 + Th?).

The solution method for Navier-Stokes equations described in Section 13.2 was
proposed in [64] for the two-dimensional case. The numerical tests were performed
by V. Karlin.

The material of Section 13.3 is taken from [46]. Algorithmic and numerical
aspects of solving the Sivashinsky equation, using approximate approximations,
are discussed in more detail in [48].

In the dissertation [76] J. Niebsch studied error estimates for the algorithms
considered in Sections 13.1 and 13.3. In particular, it is shown that the algorithm
(13.14) for solving the semi-linear heat equation (13.10) provides the error estimate

(13.35) (-, NT) —un(-, NT)||, < er(r+ (VDh)*M + 5) elle

where T'= N7, f and ¢ are sufficiently smooth functions, and L¢ is the Lipschitz
constant
Hf(-,t,u) — f(-,?ﬁ,v)HL2 < Lellu—v|,, te€(0,T).

The saturation error € is sufficiently small if the parameter D is chosen large enough.
In special cases, for example linear problems or right-hand sides of (13.10) which
ensure the existence of a global solution u(x,t) — 0 if t — oo, the factor e 7Lt in
(13.35) can be omitted.

Further applications of approximate approximations are given in [47], where
the method is used to solve hypersingular integral equations of the Peierls type

/ K(z—y)uy)dy = Flu(z)), K@) =22+ s(z)

with x being smooth and the integral is defined as Hadamard finite-part integral.
Integral equations of this type occur in dislocation theory. By the efficient cubature
formulas, critical Peierls stresses were calculated with very high accuracy for a
variety of dislocations.
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Bessel potential space, 83 generating function, 80

Bessel transform, 22

boundary element method, 292 mask function, 170

i h 292
boundary point method, 29 Poisson integral, 8, 120

convolution, 21 Poisson’s summation formula, 3, 22
continuous, 21, 29 on affine lattice, 227
discrete, 21 on hexagonal grid, 230
gg?gﬁgf}unctions, 22 quasi-interpolant, 4, 12
semi-discrete, 21, 23 refinement equation, 166
diffraction potential, 93 saturation error, 5
of anisotropic Gaussian, 130 scaling function, 165
of approximate wavelets, 194 sinc function, 11
of Gaussian, 94, 96 approximate, 155
double layer potential, 290 single layer potential, 290

Sommerfeld’s radiation condition, 93
star, 231, 249
Strang-Fix conditions, 46

error function, 71
complementary, erfc, 95
erf, 71
of imaginary argument, erfi, 71 Taylor formula, 20
scaled complementary, w, 94

Voigt functions, 95

Faddeeva function, w, 95

Fourier transform, 20 Young’s inequality, 21
of radial functions, 22 for semi-discrete convolutions, 23

Gamma function, 74
lower incomplete, 74
upper incomplete, 269

Gaussian, 6
anisotropic, 56
orthotropic, 129

harmonic potential, 74
of anisotropic Gaussian, 129
of approximate wavelets, 193
of Gaussian, 74
heat equation, 8, 120
Hermite polynomial, 52
Hermite polynomial of n variables, 145, 253
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