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1 Introduction

The approximation of multivariate functions from scattered data is an im-
portant theme in numerical mathematics. One of the methods to attack this
problem is quasi-interpolation. One takes values u(x;) of a function u on a set
of nodes {x;};c; and constructs an approximant of u by linear combinations

> ulx;)n;(x)

JjeJ

where 7;(x) is a set of basis functions. Using quasi-interpolation there is no
need to solve large algebraic systems. The approximation properties of quasi-
interpolants in the case that x; are the nodes of a uniform grid are well-
understood. For example, the quasi-interpolant

> U(hj)w<xzhj> (1.1)

jezn

can be studied via the theory of principal shift-invariant spaces, which has been
developed in several articles by de Boor, DeVore and Ron (see e.g. |3], [4]).
Here ¢ is supposed to be a compactly supported or rapidly decaying function.
Based on the Strang-Fix condition for ¢, which is equivalent to polynomial re-
production, convergence and approximation orders for several classes of basis
functions were obtained (see also Schaback/Wu [22], Jetter/Zhou [8]). Scat-
tered data quasi-interpolation by functions, which reproduce polynomials, has
been studied by Buhmann, Dyn, Levin in |2] and Dyn, Ron in [5] (see also [26]
for further references). Other methods for scattered data approximation in-
clude Moving Least Squares (see [6], [10]), which among others have attracted
attention in the context of approximate solutions of partial differential equa-
tions as so—called meshless methods (see |[1| and the references therein). As a
rule, the methods reproduce polynomials, at least locally, but the shape func-
tions 7); are not available analytically in simple forms. The computation of the
approximant requires for each point x € R" the solution of a linear system.

In order to extend the quasi-interpolation (1.1) to general classes of approxi-
mating functions with good analytical properties, another concept of approxi-
mation procedures, called Approximate Approzimations, was proposed in |11|
and [12|. These procedures have the common feature, that they are accu-
rate without being convergent in a rigorous sense. Consider, for example, the
quasi-interpolant on the uniform grid

Maulx) = D 3 uiriyn(3—). (1.2

where n is sufficiently smooth and of rapid decay, h and D are two positive
parameters. It was shown that if 7 — 1 has a zero of order N at the origin



(Fn denotes the Fourier transform of 7), then M u approximates u pointwise
[Mu(x) = u(x)| < eny (W D)N [Vt @) + € [Vv-ru(x)| (1.3)

with a constant ¢y, not depending on u, h, and D, and the positive number ¢
can be made arbitrarily small if D is sufficiently large (see [14], [15]). In general,
there is no convergence of the approzimate quasi-interpolant Mu(x) to u(x) as
h — 0. However, one can fix D such that up to any prescribed accuracy Mu
approximates u with order O(h"). The lack of convergence as h — 0, which
is not perceptible in numerical computations for appropriately chosen D, is
compensated by a greater flexibility in the choice of approximating functions
7. In applications, this flexibility enables one to obtain simple and accurate
formulae for values of various integral and pseudo-differential operators of
mathematical physics (see |14], [16], [18] and the review paper [23]) and to
develop explicit semi-analytic time-marching algorithms for initial boundary
value problems for linear and non linear evolution equations ([13], [9]).

Up to now the approximate quasi-interpolation approach was extended to
nonuniform grids in two directions. The case that the set of nodes is a smooth
image of a uniform grid was studied in [17]. It was shown that formulae simi-
lar to (1.2) preserve the basic properties of approximate quasi-interpolation. A
similar result for quasi-interpolation on piecewise uniform grids was obtained
in [7]. Tt is the purpose of the present paper to generalize the method of approx-
imate quasi-interpolation to functions with values given on a rather general
grid {x,};e; by modifying the approximating functions. More precisely, we
consider approximations of the form

MuG) =3 S ) Paslx) (757 ) (1.4)

j€J x,,€ST (Xj)

where ST (x;) is some finite set of nodes near x; (see Definition 3.1). The func-
tions P; j, are polynomials and h; are scaling parameters. We show that one can
achieve the approximation of u with arbitrary order N up to a small satura-

~ X — X
tion error, as long as an "approximate partition of unity" {Pj (X)T]( . J )}
J

with other polynomials 75]- exists. Here we mean that for any € > 0 one can
find polynomials such that

jeJ J

Zﬁj(x)n@;’g) —1' <e. (1.5)

sup
Rn
Then one can choose the polynomials P; in (1.4) such that pointwise

|IMu(x) —u(x)| < C sgp hé-v IVnullr., + ¢ lu(x)|.



This estimate is valid as long as

ST

jeJ J

and 7 is sufficiently smooth and of rapid decay, but is not subjected to ad-
ditional requirements as the Strang-Fix condition. Moreover, for the special
case of scattered nodes close to a piecewise uniform grid we propose a method
to construct polynomials P; such that the sum

Z P;(x) o~ =2/ (h3D)

jed

approximates the constant function 1 up to an arbitrary prescribed accuracy.
This method does not require solving a large system of linear equations. In-
stead, in order to obtain locally the analytic representation of the partition of
unity and consequently of the quasi interpolant (1.4), one has to solve a small
number of linear systems of moderate size.

We give a simple example of formula (1.4). Let {z,} be a sequence of points
on R such that 0 < z;4; — x; < 1. Consider a sequence of functions ¢; on R
supported by a fixed neighborhood of the origin. Suppose that the sequence
{¢j(x — z;)} forms an approximate partition of unity on R,

1= Gl —a))l <e.

One can easily see that the quasi-interpolant

Myu(z) = u(ha)) <MCJ<% - Ij) ¢ Rt Cj—1(% - %‘—1))

J Tjy1 — Tj Tj — Tj-1

satisfies
| Myu(z) = u(@)| < eh® 0| + € [u(@)],
where the constant ¢ depends on the functions (;.

Note, that by a suitable choice of 7 it is possible to obtain explicit semi-analytic
or other efficient approximation formulae for multi-dimensional integral and
pseudo-differential operators which are based on the quasi-interpolant (1.4).
So the cubature of those integrals, which is one of the applications of the
approximate quasi-interpolation on uniform grids, can be carried over to the
case when the integral operators are applied to functions given at scattered
nodes.

The outline of the paper is as follows. In Section 2 we show that, under some
mild restrictions on the scattered nodes, an approximate partition of unity
can be obtained from a given system of rapidly decaying approximating func-
tions if these functions are multiplied by polynomials. Using the approximate



partition of unity, one can construct quasi-interpolants of high order approx-
imation rate up to some prescribed saturation error. This will be shown in
Section 3. Section 4 contains an application to the cubature of convolution
integral operators. A construction of the approximate partition of unity for
the case of Gaussians and some numerical examples are given in Section 5.

2 Approximate partition of unity

In this section we show that an approximate partition of unity of R™ can be
obtained from a given system of approximating functions centered at scat-
tered nodes {x;},c; if these functions are multiplied by polynomials. Here .J
denotes an infinite index set. We are mainly interested in rapidly decaying
basis functions which are supported on the whole space. But we start with the
simpler case of compactly supported basis functions.

2.1 Basis functions with compact support

Lemma 2.1 Let {B(xj, hj)};es be an open locally finite covering of R™ by
balls centered in x; and radii hj. Suppose that the multiplicity of this covering
does not exceed a positive constant , and that there are positive constants c;
and cy satisfying

Clhm < hj < Cghm (21)

provided the balls B(x;, h;) and B(Xp, hy) have common points. Further-
more, let {n;} be a bounded sequence of continuous functions on R™ such that
suppn; C B(xj, hj). We assume that the functions R” 3y — n;(h;y) are
uniformly continuous with respect to j and

s(x) :==>_nj(x) = ¢ on R", (2.2)

jeJ

where ¢ is a positive constant. Then for any € > 0 there exists a sequence of
polynomials {P;} with the following properties:

(i) the function

©:=2 P (2.3)
jed
satisfies
O(x) — 1| <e forall x € R"; (2.4)

(ii) the degrees of all P; are bounded (they depend on the least magjorant of the
continuity moduli of n; and the constants €, ¢, ¢1, 2, fin);
(iii) there exists a constant ¢y such that |P;(x)| < co for all j and x € B(x;, h;).



PROOF. Since the functions B(x;,1) > y — s(h;y) are continuous uni-
formly with respect to j, for an arbitrary positive § there exist polynomials
P; subject to
1

P, ——'<5 B(x;,hy)

J(X) S(X) on (X] J)
and the degree of P;, deg P;, is independent of j. Letting 6 = & (un||nllr..) ™"
we obtain

n60 (P - =5 )< —

Then

sup Z

jeJ

n;(x ( %)’ <eg, (2.5)

since at most u,, terms of this sum are different from zero. But

3 0,00(Pi00 - 755) = LR ) = 55 X ()

jed JjEJ jGJ

:anx jX—l,

jeJ
which proves (2.4). O
Remark 2.2 Let the functions {n;};c; in Lemma 2.1 satisfy the additional

hypothesis n; € C*(R™). Then one can find a sequence of polynomials {P;} of
degrees L; such that

sup
B(x;,hj)

Pi) = o | SOW E s [Vastx)
3 Bxjh

(see, e.g., [19]). This shows that it suffices to take polynomials P; with deg P; >
c(k) e~Y* in order to achieve the error ¢ in (2.5).

2.2 Basis functions with noncompact support

Here we consider approximating functions supported on the whole R™. We
suppose that the functions {n;};c;, are scaled translates

n;(x) = n(x ijj)

of a sufficiently smooth function n with rapid decay.

First we formulate a result on weighted polynomial approximation which fol-
lows from |20, Theorem 4.2|. If we denote by ws,, 0 > 1, p > 0, the weight



function
Ws,p(X) = exp ( pZ || ) (2.6)

then for any g € W (R") there exists a polynormal P of degree at most 2N —1
in each variable x4, ..., x,, such that

Juso(g =Pl < N (fwsygle + 3 lwssdigle.) 27
k=1

with a constant ¢ depending only on the weight function.

Lemma 2.3 For any € > 0 there ewists L. and polynomials P; of degree
degP; < L. such that the function © defined by (2.3) satisfies (2.4) under
the following assumptions on n, the nodes {x;};c; and the scaling parameters

{h;}:

1. There exists K > 0 such that

Z(1+h;1|-—xj|)_KHL < 0. (2.8)

jeJ o

CK =

2. There exist 0 > 1 and p > 0 such that

H(H‘")Kn

Ws,p

A+]-D*

Ws,p

)

Lo

VnH <csp <00 (2.9)

with the weight function ws, defined in (2.6).
3. There exists C' > 0 such that for all indices j,m € J

hj X; — Xm
<C. 2.1
h “"“’(h T h, ) ¢ (210)

4. (2.2) is valid.

PROOF. From (2.8) and (2.9) the sum

S 0(*57) =5

jeJ

converges absolutely for any x to a positive, smooth and bounded function s.
Suppose that we have shown that for any £ > 0 and all indices j there exist
polynomials P; such that

)T -l s (5 552) T e




(ck is defined in (2.8)) and deg P; < L.. Then

() (P52 - o) <=

R™ JjeJ
and as in the proof of Lemma 2.1 we conclude

X—Xj ‘ X—Xj _ <
Z”( I, >PJ< I > 1‘—5‘

jedJ

sup
RTL

Let us fix an index j and make the change of variables y = hj_l(x —%;). Then
(2.11) is proved if we show that there exists a polynomial P; such that for all

y € R" .
£ -K
) (P) — 557) < (1 ) (212

with 5(y) = s(h;y +x;). Since §7! € WL (R") according to the estimate (2.7)
we can find a polynomial P; satisfying

1

PY) ~ 5y 0¥ <

sup

Rn Csp CK

with the constant ¢, in the decay condition (2.9). Now (2.12) follows imme-
diately from

()L +1y))"™ < cspwsp(y) -
By (2.7), the degree of the polynomial P; depends on the weighted norm

sup w(;,p(y)‘V%' = h;sup w(;,p(x XJ)'V '

R R

1 X — X, h- X —X
<sw e () S w5
=R <s<x>>2“"*p< ) 2V

eJ

(2.13)

Since by (2.9)

X — X, X — X, Ix — x|\ 7
‘Vn( i )’SC‘*”’W’”( o I o )

a uniform bound of (2.13) with respect to j can be established if the sums

Zﬁw <x—xj>w (X—Xm><1+\x—xm‘)—K
i P\ Ry )P By, I

meJ

are uniformly bounded for all 5. In view of

) |a—b|5

= (096D 4 78/(G-1))5-1 =

r—a

x—bld
+
-

g



for any x € R and 6 > 1 we obtain the inequality

X —X; X — X, X; — X,
“"5”’( I, )“"5”’( h >§w6’p(h-+h )
J m 7 m

Therefore, the condition (2.10) on the nodes {x;} and the corresponding pa-
rameters {h;} guarantees that the degree of the polynomials P; can be chosen
not depending on 5. O

3 Quasi-interpolants of a general form

In this section we study the approximation of functions u € W2 (R") by the
quasi-interpolant (1.4). We will show that within the class of generating func-
tions of the form polynomial times compactly supported or rapidly decaying
generating function it suffices to have an approximate partition of unity in
order to construct approximate quasi-interpolants of high order accuracy up
to some prescribed saturation error.

(N —1+n)!
n!(N —1)!
x, € X will be called star of x; and denoted by st (x;) if the Vandermonde

matrix

Definition 3.1 Let x; € X. A collection of my = — 1 nodes

{Gn =%}l =1,... N =1, x; € st(x;), (3.1)

is not singular. The union of the node x; and its star st (x;) is denoted by
ST (x;) = x; Ust (x;).

Let us assume the following hypothesis concerning the grid {x;};e

Condition 3.1 For any x; there exists a ball B(x;, h;) which contains my

nodes x;, € st (x;) with
_ N ay N-—-1
e f(257) )
h; o =1,x€st (x;)

with ¢ > 0 not depending on x;.

| det ‘/j7hj| =

> ¢, (3.2)

3.1  Compactly supported basis functions

Theorem 3.2 Suppose that the function system {n;};c; satisfies the condi-
tions of Lemma 2.1, let u € WY (R™) and & > 0 arbitrary. There exist polyno-
mials Pj, independent of u, whose degrees are uniformly bounded, such that



the quasi-interpolant

Mu(x) = > ulx) D> Pix(x)n;(x) (3-3)

keJ ST (x;)23x
satisfies the estimate
|Mu(x) —u(x)] <CRY  sup |Viyu| +elu(x)], (3.4)
B(Xm A him)

where X, is an arbitrary node and x is any point of the ball B(Xp,, hy). By A
we denote a constant greater than 1 which depends on ¢; and co in (2.1). The
constant C' does not depend on h,,, m and ¢.

PROOF. For given ¢ we choose polynomials P;(x) such that the function
(2.3) satisfies
O(x) — 1] <e forall x € R",

and introduce the auxiliary quasi-interpolant
N-1 Oau(xj)

MWy(x) = > ( >

J€J " |af=0

(x=x)®)Pm(x). (35)

ol

We use the Taylor expansion u around y € R”

N—1
0%u(y o
u) = Y W iyt Ryl x) (3.6)
|ax|=0 :
with the remainder satisfying
[Ry(y. %) < enlx—y["  sup [Vyul. (3.7)
B(y,|x=yl)

Taking y = x; we write MMu(x) as

MWu(x) = u(x)0(x) — X;RN(Xj, x)P; (x)n; (%) ,
JE
which gives
[MDu(x) — u(x)| < g} | B (x5, x)P5(x);(x)| + [u(x)| [©(x) = 1]
J
This, together with the estimate for the remainder (3.7), shows that for x €
B(xpm, hin)

|MWu(x) — u(x)| < C1AY

m

sup  |Vyu|+elu(x)|, (3.8)
B(xm A hum)

10



where the ball B(x,,, A h,,) contains all balls B(x;, h;) such that B(x;, h;)
and B(X,, hy,) intersect.

In the next step we approximate in MMy the values of the derivatives 9®u(x;)
by a linear combination of u(xy), where x; € st (x;). Let {a¥)}1¢aj<n—1 be
the unique solution of the linear system with my unknowns

N-1 40)
—F (%6 —x) % =ulxp) —u(x;),  xp €st(x;). (3.9)

|a|=1

Denoting by {bg)k} the elements of the inverse of Vj , cf. (3.1), the solution
of (3.9) is given by

ad = 3 b0, (ulxy) — ulx;)),
j  Xk€st(x;)

If the derivatives {0%u(x;)} in (3.5) are replaced by {al)}, then we obtain
the formula

i) = S fu)(1- % S (2"

jeJ xp€st (x5) |al=1

b Y ) X () Pno

xpEst (x;) |ax|=1
=D D> ulx) Pislx) (%),
J€J x,€8T (x;)

which can be rewritten as the quasi-interpolant (3.3). From (3.6) and (3.9)
follows that

> () — orulxg)) () = Raxiox)
|a|=1 : J

hence the boundedness of ||V]_hlj|| from Condition 3.1 and the estimate of the
remainder (3.7) imply

a9 — 0%u(x;)| < @l Oy hj»v_w sup |Vyul.
B(xj,h;)
Therefore we obtain the inequality

o

[P (x)m; (x)]

X—Xj

h;

N-1
|Mu(x) — MWu(x)| < Co Y hY sup [Vyu| Y

jed  Bxjhy) lal=1

and, for any x € B(Xp, hun),

|Mu(x) — MOu(x)| < CshY  sup  |Vyul.

B(Xm X hm)

11



This inequality and (3.8) lead to (3.4). O

3.2 Quasi-interpolants with noncompactly supported basis functions

Theorem 3.3 Suppose that in addition to the conditions of Lemma 2.3 the
inequality

Z(1+h;1\~—xj|)N_KH < 0 (3.10)

= Loo

is fulfilled, let v € WY (R"™) and € > 0 arbitrary. There exist polynomials
Pk, independent of u, whose degrees are uniformly bounded, such that the
quasi-interpolant

Mux) = Yub) Y Pj,k<x ;jxj )n(x ;jxj ) (3.11)

keJ ST (x;)3x
satisfies the estimate
|Mu(x) —u(x)| < Csul?] WY NVl +elu(x)]. (3.12)
me

The constant C' does not depend on u and €.

PROOF. Analogously to (3.5) we introduce the quasi-interpolant

MOu(x) = 3 ( Nz—:l 80‘#(!)9)(34 — xj)"‘>73j<x ;jxj>n<x ijj)

jeJ |al=0

and obtain the estimate

X—Xj

|M(1)u(x)—u(x)| < Z n

jed

Ra(x. xj)Pj( >17<X_Xj>‘+|u(x)(@(x)—1)|.

h
From (2.12) we have

X — X; X — X; 1] /x—x; £ |x —x; |\ K
75 R = b ) S (e 55
J hj " hj Cn hj CK hj

with the lower bound ¢ of s(x) (see (2.2)). Together with (2.9) and (3.7) this
provides

X — X X — X5
‘RN(X]',X)P]‘( W ]>77< iy ]>‘
j j

N resp X — X 5 X — X,
%P (1 J
(c w(;,p( h; )+CK)( +‘ h;

12

X—Xj

< enh |V ull, Iy
)

)




resulting in

|MWu(x) — u(x)| < [u@x)][O(x) = 1] + ex sup b [V L.,
meJ

% (@Hw@pIXINH Z(1+‘X % )_K+iZ( +‘X %
¢ ey

CK jeJ

)

Now we can proceed as in the proof of Theorem 3.2. O

Remark 3.4 Let for fixed x the parameter x5 be chosen such that

X — X; x—xjN( 'X—Xj)_K
1 .
2 w‘“’( h; )’ hy - <<

|xj—%|>kx hj

Then the estimate (3.12) can be sharpened to
|Mu(x) —u(x)] <C max hY sup |[Vyu| +e (|u(x)\ + HVNuHLoo> :

Ix;j—x|<rx (x,kx)

4 Application to the computation of integral operators

Here we discuss a direct application of the quasi-interpolation formula (3.11)
for the important example 5(x) = e *°. Suppose that the density of the
integral operator with radial kernel

= [ 9(x=yDuly)dy (4.1

is approximated by the quasi-interpolant

=2 > ulx) Pj,k<x ;jxj) e/ (4.2)

J€J x3,€8T (x5)

Using the following lemma it is easy to derive cubature formulae for (4.1).

L
Lemma 4.1 Any P(x) = Y cgxP can be written as
18]=0

L
P(x) = e’ > c3Ss(0x) e I
18|=0

with the polynomial Sg(t) being defined by
1\ 8l t
So0= (L) (L), s
o) = (57) Hal5: (43)

13



where Hg denotes the Hermite polynomial of n variables

Hg(t) = et (—8,)Pe 1t

PROOF. We are looking for the polynomial Sg(t) defined by the relation
eI — Sg(ﬁx)e_‘xF, x € R". (4.4)
Taking the Fourier transforms
F(Sa(d)e M)(N) = 72 ™M S5(2miN)
and

2 ﬁ 2 2
FxPe ) (1) = 7Tn/z( _ ﬂ) o

2mi
we obtain (4.3). O

In view of Lemma 4.1 we can write P;x(x) e X’ = 7, ,(dy) e with some
polynomials 7; ;(x). Then (4.2) can be rewritten as

=3 X ula) Tia(hy ) e

Jj€J x,€ST (x;5)

The cubature formula for the integral Ku is obtained by replacing u by its
quasi-interpolant Mu

KU(X) = KMu(x)
=2 > wu k(hj Ox) b} /g(hj‘z‘)e—|z_tj|2 dz (4.5)

Jj€J x,,€ST (xg) R™
where t; = (x —x;)/h;. By introducing spherical coordinates in R we obtain
o
/g(hjIZI)e_‘Z_”‘QdZ = e_‘tj‘z/gn—lg(hm) e %do / ettt <) dg,
Rn 0 n—1

where S™~! is the unit sphere in R". The integral over S"~! can be represented
by means of the modified Bessel functions of the first kind 7, in the following
way

™
. 2 r(n=1)/2

/ e2g\tj|cos(wtj ,w)do_ /e2g\t \cosz? SlIl 19)" 2d19

Sn—1



(see [24, p.154] and |25, p.79]). Using the notation
n —n —7‘2 n —0?
L;(r) =2n"?pl="2e /Q 2e9 g(hj 0) In_2)/2(207) do,
0

relation (4.5) leads to the following cubature formula for the integral Ku

Rux) =S h0 30 u(xk)fj,k(hjax)cj(%)

JjeJ x, €8T (x;)

5 Construction of the ©-function with Gaussians

In this section we propose a method to construct the approximate partition
of unity for the basis functions

n;(x) = (7 D)2 P/ (15 D)

if the set of nodes X = {x;},c satisfy the following condition piecewise with
different grid sizes h;.

Condition 5.1 There exist a domain €2, A > 0 and x; > 0 such that for any
j € Z™ U the ball B(hj, hky) centered at hj with radius hx; contains nodes
of X.

5.1 Scattered nodes close to a piecewise uniform grid

Let us explain the assumption on the nodes: Suppose that the nodes are lo-
cated in some domain ; € R" and satisfy Condition 5.1 with h = h;. A
subset of nodes x;, € X3 lie in a bounded subdomain 25 C 2; and satisfy
Condition 5.1 with h = hy = Hh, for some small H. To keep good local prop-
erties of quasi-interpolants one wants to approximate the data at these nodes
by functions of the form polynomial times e~*=*sI>/(h2D) \whereas outside €y
quasi-interpolants with functions of the form polynomial times e~ P=x;|*/(hi D)
should be used.

Our aim is to develop a simple method to construct polynomials P; such that

o) = (r D)2 3 By (3 )ertersoin

Xj€X1 h’l\/b (5 1)
X = X —|x—xy|2/(h2D) )

s 'pk< >e W2/ 03 }

X E€EXo h2\/5

15



is almost the constant function 1 for x € ;. Here X, denotes the set of nodes
x; € s and the X; contains the remaining nodes X \ X5 and possibly some
auxiliary nodes outside the domain €2;.

First we derive a piecewise uniform grid on R™ which is associated to the
splitting of the set of scattered nodes into X; and X,. We start with Poisson’s
summation formula for Gaussians

— lx— 2/p2 _ -2 2 :
(7‘(‘ D) n/2 Z e |x—himl|?/hRID _ Z e DIk| e27rz(x,k)/h1 ’
mezZn kezZn

which shows that

L= (D) Y ebeommn] < gy

mezmn

with some constant C; depending only on the space dimension.

Obviously, for any € > 0 there exists D > 0 and a subset Z € Z" such
that the function system {e"x_hlm‘z/h%D}mez forms an approximate partition
of unity on the domain €); with accuracy . We can represent any of these
functions very accurately by a linear combination of dilated Gaussians due to
the equation (see [16])

o~ Ix2/D1 :( D, . )"/2 S o HImP/(D1=h2D) o —x—hml/KD
*D(D, — 12D)) . 52)

_e—|x\2/D1 Z e2m'(1:>1—hZD)(x,k)/the—7r2D(D1—h21:))|k\2/D17

keZm\ {0}

which is valid for any D; > h?D > 0. Applied to our setting with h = hy and
D; = h?D we obtain the approximate refinement relation

'e—x|2/h§D — Y e Rhek/mD| < @ o IxP/HED DO 1) (5.3)

kezZmn

because by assumption hoy = Hhy) with the coefficients
Yy

o~ H2[K[2/(1-H?)D

(rD(1 — H2))"2

ax —

Again, the constant Cy depends only on the space dimension. Define by S € Z"
the minimal index set such that

2 2
Z a < e D(1-H*=) )
keZn\S
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Then it is clear from (5.3) that for any disjoint Z; and Zy with Z; U Zy = Z

max |1 — (m D)_n/2< Yo el hmE/RD NN e_lx_hlm_thWh%D)‘

xeh meZ; meZs kes

< Cye ™ PO (5.4)

Condition 5.2 Denote Z; = {m € Z : hym + hok € Q5 for all k € S}. The
constant x; of Condition 5.1 and the domain )y are such that for all nodes
X, € )y, i.e. the nodes belonging to Xy, one can find m € 75, k € S with
|Xk — hlm — h2k| < K,lhg.

Setting Z; = Z '\ Zy we connect the index sets Z1, Zy with the splitting of the
scattered nodes into Xy, Xy, where the set X; is formed by the nodes X\ Xy
and, additionally, the nodes hym ¢ )y, m € Z;.

By this way we construct an approximate partition of unity on the domain
), using Gaussians with the "large" scaling factor h; centered at the uniform
grid G := {him} ez, outside s and using Gaussians with scaling factor hy
and the centers Gy := {hym + hok}mez, kes in .

It is obvious, that the above definition of piecewise quasi-uniformly distributed
scattered nodes and the construction of an associated approximate partition
of unity on piecewise uniform grids can be extended to finitely many scaling
factors hy. Since there will be no difference for the subsequent considerations
we will restrict to the two-scale case.

From (5.4) we see that for any € > 0, and given h; and hy there exists D > 0
such that the linear combination

(n D)_n/2< T e nPD Ly G e—x—922/<h%D>) (5.5)

g91€G1 92€G2

with a4, = ax for go = hym + hok, m € Zy, k € S, approximates in §; the
constant function 1 with an error less than £/2. The idea of constructing the
©—function (5.1) is to choose for each g; € G and gy € Gy finite sets of nodes
Y(g1) C X5 and X(g2) C Xy, respectively, and to determine polynomials P; ,
such that

> Pjvgz(x — Xj)e_|x_xj2/(h§m approximate e X~9/(BiD) 1 o
x;€X(g¢) hev'D

Note that in the case g; ¢ €1 by construction g; € Xy, then trivially 3(g;) =
g1 with the corresponding polynomial P ;, = 1. Therefore in the following we
always assume g, € €)y.

17



If the L.-error of the sums over g, can be controlled, then we get

—|x—g1|?/(h1D) — ( > —|x=x;|*/(h1D)
e P; e
Z Z hl /

g1€G1 x;€X1

with the polynomials
Pi= > Pia (5.6)

g1€G(x5)

and

S g el/08D) oy pk<x—\/>ﬁﬂ>e—x—xk|2/(h%D>

g2€Ga X, EXo h2 D

with the polynomials
Pk == Z &gzpk,gg ) (57)

92€G(xy)

where we denote G(x;) = {g : x; € ¥(g)}. Note that we have to choose the
sets of nodes X(g,) such that G(x;) C G, are nonempty finite sets for any node
x; € X. Additionally, one has to choose these sets such that for some x; > 0
and any g, € Gy the ball B(gy, k1hs) contains at least one node x; € X,. This
is always possible, since Conditions 5.1 resp. 5.2 are valid.

The proposed method for constructing an approximate partition of unity does
not require solving a large algebraic system. Instead, to obtain the local rep-
resentation of © one has to solve a small number of approximation problems,
which are reduced in the next subsection to linear systems of moderate size.

After this preparation we write © as

X
O(x) =(x D)™/? 3 o~ Ix—a1?/(r3D) | S wgl(h_)
91€G1 91€G1 1
+ (7 D)_n/2 Z g, e~Px=a:*/(hD) + Z dgzwgz(hi) )
92€G2 g2€Ga 2

where

wye(y) = (7T D)_n/z{ Z Pj ge (y _ Yj>e_y_yJ2/D _ e—|y—ge/h22/D}

hey;j€%(ge) ’ vD
(5.8)
with y; = x;/h, x; € X,. Hence for sufficiently large D and all x €
X
or) -1 <+ 3 u)gl(hl) + Y wgz(hQ)\. (5.9)

91€G1 g2€G2
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5.2 Construction of Polynomials

Let us introduce

w(y) == (n D)—n/2{ ZE:E P, (%)e—ly—yjl2/D _ e—|y|2/D}’ (5.10)

where ¥ is some finite point set in R™. We will describe a method for con-
structing polynomials P; such that e”¥*|w(y)| for some p > 0 becomes small.
In what follows we use the representation

L;
Pi(x)= > ¢jpx’.
181=0

Hence by Lemma 4.1

L

Y —Yi\ —ly-y;1?/D _ —ly-y,l*/D

7’j<7>e YWD = 3" ¢ 3Sp(V DOy ) e YYD
vD B1=0

and w can be written as
L
2 2
w(y) = (WD)_"/2< o> cjﬂSg(\/Bay) e~ Y=Yil' /D _ oIyl /D). (5.11)
y;€X(B8|=0
To estimate the L.,.-norm of w we represent this function as convolution.
Lemma 5.1 Let P be a polynomial and let 0 < Dy < D. Then

P(0x) e~ =YPP/D _ o o=IxI?/(D=Do) P(0y) o~x-yE/Do

where x stands for the convolution operator and

D n/2
a= (wo(p - D0)> '

PROOF. From
e YI/D _ / o~ 1x—t1?/(D=Do) o~It=yI*/Do g4
Rn
we obtain
p(ax)e—lx—ylz/D — p(_ay)e—\x—Y\z/D

— ¢ /e—\x—tF/(D—Do) P(8y)e [tYF/Do g 0
R”
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Using Lemma 5.1 and (5.11) we write w as

C lv—t|2 _
wly) = (7TD1)"/2 /e ly=tI*/(D=Do)cy_(t) dt , (5.12)

Rn
where we denote for ¢ = {¢; g}
L;
2 2
Ge(t) = S N ¢;5Ss(VD,)e It7vil /Do o=t/ Do (5.13)
y;€%|8|=0
Then, by Cauchy’s inequality, we obtain
lwllLoe < c2l|Gellz2

where
Cy = (WDQ)_H/2(27T(D — Do))_n/4 .

An estimate for the sum of |wy,| can be derived from

D — D,

Lemma 5.2 Let 0 < Dy < D and denote p = (D= Do)+ DDy’ Then the
estimate
sup [w(y)| ™" < e51/Q(e) (5.14)

is valid, where for ¢ = {c; g} the quadratic form Q(c) is defined by

O(c) = /e2(D—D0)|t|2/(DD0)(Gc(t)>2dt (5.15)
R”
with G from (5.13) and

D4
(277Do(D = D)((D — Do) + DD/

C3 —

PROOF. Starting with (5.12) and using

2 a—1
F -l e

t
|x—t|2:‘\/5 —%

for a > 0, we derive the representation

o—(1-0)|y[2/(D~Do)

(wD)"/?

/ e_‘t_axlz/a(D_DO) e(l_a)ltlz/a(D_DO)Gc(t) dt.
R’!L

w(y) =c

20



Then Cauchy’s inequality leads to

(1=a)ly[*/(D—Do)

, 1/2
< 03(/62(1—a)|t| /a(D—DO)(GC(t))zdt) (5.16)

Rn

w(y)e

with

cs = (mDy) /2 (myﬂ{

If we choose the parameter a such that

(L—alt® 2 P D Dy

a(D—-Dy) Dy D’ vl (D = Do)+ DDy’

then the right hand side of (5.16) takes the form (5.15). O

Next we find an explicit expression of the quadratic form Q(c). Using (5.13),
after elementary calculations one obtains

D n/2 Lj
Q) = (7) (1 =23 > ¢pCp0(y;,0)
Y;€X|8|=0
Ly Ly
+ > > chﬁck,‘vcﬂ,'y(YjaYk)>>

Y5,¥k€Z |B|=0 |v|=0

where the function Cg, is given by
Co~(%,y) = Sg(—VDdy)S,(—V Do) e ~(PP=y[2/2=(D=Do)(Ix*+y*)/D5 (5.17)

and the polynomials Sg are defined in (4.3). Hence the minimum of Q(c) is
attained by the solution ¢ = {¢; g} of the linear system

L
> > ¢8Co4Y,¥E) =Con(0,¥k), yr€X,0< |y <Ly, (5.18)
y;i€X|B|=0

Then by Lemma 5.2 the sum

- ) L N .
e S o i) ST

yjEX D y;j€X|B|=0
i =I¥1?/D ;3
approximates e with

(m D)~"/?

LD Pj<7y — Yj)e_ly_Yj|2/D' < cge M2

Y;€EX \/E
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where p and c3 are given in Lemma 5.2 and
r:=minQ(c). (5.20)

In the next section we show that (5.18) has a unique solution and give an
estimate of 7.

5.8 FEzistence and estimates

Let us give another representation of Q(c) defined by (5.15). We define poly-
nomials Tj3 by

Ta(x) = eX/PoSg(v/ Doy )e X7/ Po (5.21)

and introduce the transformed points

tj: ijE.

F(]yj ;
Then, because of

D—Dy,

1 1
71;2 by = — et =t

and in view of (5.13) the quadratic form Q(c) can be written as

Q(c) = / (e—tz/D—Z Z ¢ pTp(t —y;)e 4l /D) dt (5.22)

R" yjGE ‘:6‘ 0

with

g = ePDONE/Dy e
Since Tz are polynomials of degree 3, the minimum problem for Q(c) is equiv-
alent to finding the best Lo—approximation

Lj 2
min [ (0= 0 S diglt— ;)P U ) at.
2B g y;€218|=0

Lemma 5.3 Let {x;} a finite collection of nodes. For all L; > 0 the polyno-
mials P; of degree L;, which minimize

—].2 L xil2
H N Zp _x;)e

(5.23)

)
Lo

are uniquely determined.
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PROOF. The application of Lemma 4.1 gives for P;(x Z d]gx

18|=0
el — ZP —x;)e sl ’
J Ly
—|x|? x—x 2 2
- / (e - Z d; 5 Sp(0x) e~ 7% ) dx
En i 1B|=0
7\ /2 L Lj,Ly
= (5) (1—22 Y dipBao(x,0)+> . > dj,ﬁdmzaﬁq(xj,xk)>,
i |B|=0 gk 1B, l4]=0

where we use the notation
Bs~(X,y) = Sa(—0x) Sy(—0y) e /2,

The coefficients {d; g} minimize (5.23) if they satisfy the system of linear
equations

L;
> > dipBa~(xj,xk) = Boy(0,%p). (5.24)
7 1B/=0

Hence the uniqueness of the polynomials P; is equivalent to the invertibility
of the matrix ||Bg(x;,xx)| of the system (5.24). In the following we show
that this matrix is positive definite. We use the representation

o~ PxVIP/2 = (o) /2 / o 82/2i(6) o =i(6Y) g
R

which implies

Bon(ox.y) = (2m) ™ [ Sp(—it) Sy (i) e #2600 g

Let {v; g} be a constant vector and consider the sesquilinear form

Lj,Ly
Yo > Bay(x5,%k) vj8Thn
ik 1Bl,71=0
Lj,Ly
2 .
271' n/2z Z v]gv,m/Sg ’Lt Zt) —It] /2el(t’xj_xk)dt
ik 1Bl,71=0
= (2m)~"/? / eItP2 50 Z 01,5 8a(—it) )| g > 0.

Rn J 18|=0

The change of integration and summation is valid because the integrand is ab-
solutely integrable and the sums are finite. We have to show that the inequality
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is strict when {v; g} # 0. This is equivalent to showing that
Lj
O'(t) = Z Z ;.8 85(—’Lt) el(t’xj) =0
J 1B8|=0

identically only if v; g = 0 for all j and 3. To this end similar to [21, Lemma 3.1]
we introduce the function

Lj
fe(x) r=/e‘EQ't'2/4a(t)e"'(t”‘) dt =33 v;585(0%) /6—62\t\2/4ei(t,xj-—x) gt

R” J |B|:O R
L;
—e YY" uSaldh) [ it gy
J 18]=0 R»
47T n/2 Lj _‘x_x_|2/52
:<€—2) Y > viSa(Ok)e ¥ IE
J 1BI=0

Let us fix an index k and consider the function f.(x) on the ball B(xy,¢)
for sufficiently small ¢ > 0. If x € B(xy,¢) and x; # Xy, then obviously
Sp(dy)e X%l 0 as ¢ — 0. Since f.(x) = 0, for any § > 0 there exists
go such that for all € € (0,¢¢) and x € B(xy,¢€)

Lk 2/.2
|8|=0

<9. (5.25)

Setting t = (x — x;)/e we obtain therefore from (5.25)

42
oIt

Ly )
Z Uk, Sg(s_lﬁt)e_“'
|B|=0

Ly,
> e Ppg(t)] < 6
|B|=0

for all |t| < 1 and ¢ € (0,e0), where pg are certain polynomials of degree
Ly, not depending on e. The inequality is valid for any 6 > 0 only if these
polynomials vanish, which implies for ¢ = 1

Ly,

Z Uk,,@ Sﬁ(&x)e_‘x_xk‘2 =0.
|B|=0

Since by (4.4)
SalBe)e 7 = (x = x) el

we conclude v, g =0 for all 3. O

Let now for given ¥ and degrees L; the coefficient vector ¢ = {c¢;g} be a
unique solution of the linear system (5.18). To estimate r = Q(c) we denote
by yi. € X the point closest to 0 and by L the degree of the polynomial P.
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Lemma 5.4 The minimal value of (5.20) can be estimated by

2) PN, )

PROOF. It follows from the representation (5.22) that

L; 2
o / > > Gela(t—yy)e P - e—tz/D> dt
g Y€ B0

2
< min /<’P(t)e—t—tk2/D_e—|t|2/D) dt
_PEHLk

Rn

_ (9)"/2 min /e—t2<p(t) _e—z;c2e—\/é(t7zk>>2dt

2 Pelly,

Rn

with t, = Dy/Dy, 2, = V' Dyy/Dy, and II;, denotes the set of polynomials
of degree L;. The minimum is attained when

P(t) = ——— 3" apHlt)

,/2|/3|/6!7T"/2 IGZ:()

with the coefficients

e_|zk|2

g = —————
SN TR

e_‘zk‘2

/ e_‘t‘QHg(t)e_\/i(t’zk) dt
R”

/ e V267k) (g )Be It gt |

/28812 ),

Integrating by parts, we obtain

ws COPE e

ag =T \/E

which together with

00 2 0o s
2 7 _ 5ol PR
senen B o S (Lg + 1)!
leads to
DA\"/?2 X DA\ /2 2(Ly+1)
< ()" 5 ko en(2) B
2 Bl=L+1 2 (Ly +1)!
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5.4  Approzimate partition of unity with Gaussians

Now we are in position to prove the main result of this section. Suppose that
the nodes {x;};e; are as described in subsection 5.1 and let G; U G be the
associated piecewise uniform grid with stepsizes hy and hy. Assign to each grid
point g, € Gy, £ = 1,2, a finite set of nodes ¥(g;), fix a common degree L
for all polynomials P; in (5.1) and a positive number Dy < D, and solve the
linear system

L X;— g Xk — Ge Xk — e
> > Cﬁﬂ( Jh S )Cj,ﬁ(gé) - Co,w<07 . ) (5.26)
4 4 4

x;€%(g¢) |BI=0
for all x5, € ¥(g,) and 0 < || < L. Following (5.19) define the polynomials

X — X; x —x;\P
J hl /D Z Z C]’@ gl hl / X] 1

g1€G(x )IBl 0

X — Xj, . x —x;\P
P ( ) - 2 ( ) . x e Xo.
k hg\/ﬁ Z Z Qg Ck:ﬁ(g2) hg\/ﬁ Xk 2

92€G(x) |B|=0

(5.27)

Recall that if x; € X, is an additional node x; = hym ¢ Q, m € Z;, then
G(x;) = x; and the corresponding polynomial P; = 1

Theorem 5.5 Under Conditions 5.1 and 5.2 on the set of scattered nodes X
for any € > 0 there exist D > 0 and L such that the function (5.1) is an
approximate partition of unity satisfying

O(x)— 1| <e forall x €y,

if the polynomials {P;} of degree L are generated via (5.27) by the solutions
{c;8(ge)} of the linear systems (5.26) for all go € G1 U Ga.

PROOF. From (5.9) we have to show that
sup( Z wgl(h ) + Z g,
R™ N gieay 1 92€G2
if L is sufficiently large. We start with estimating the first sum
X
> Jen(50)]

91€G1
where g = hym, m € Z; C Z". Using (5.10) we can write

o () =0~ m).

wgg(;)’) <§ (5.28)




where the points y; in (5.10) are given by y; = x;/h; —m, x; € X(g1). By
Lemmas 5.2 and 5.4 we have

Z wgl(hi)‘ <y Z o—plx/h1—m]?
1

Ly i1
91€G1 meZ; Dy* (Lum +1)!

DT+ 140/2) /2 Ly +1

X firm

h

—1m

where ¢y = ¢z (7/2)"4, x,,, € Z(g1) is the node closest to g; = hym and
L, is the degree of the polynomial P, _ . . Since |x,. — him| < k1hy by
Condition 5.1 and L, = L for all p, we conclude that

D(L+1+n/2)/2 I{f—i_l

X 2
wo (— )| < ca sup e PRx/h—mf* (5.29)
glezc:;l ’ (hl) Dyt (L+ 1)1 R mél
From
D—-D
p= 0 € (0,D) forany Dye€ (0,D),

(D — Dy)?+ DDy
we see, that for fixed D and D,

>

g1€G1

wg(%)‘ 0 if L—oo. (5.30)

We turn to
Z dgz Waa (hi)’
92€G2 2
with go = hym + hok, m € Z5, k € S. Using (5.10) we have

() = o (o ).

and the points y; in (5.10) are given by y; = (x;—mbh,)/he—k with x; € £(g2).
Hence

> g,
g2€G2

)

DL +14n/2)/2

<o Y Y aeelemi/h k=
meZy kes Dy™ "\ /(Ly, +1)!

wn(p)|= X T

meZs keS

— Ly +1
Xy, — mhy |

hy

Here x,, € 3(g2) is the node closest to go = hym + hok and L, is the degree
of the polynomial P,_,,. By Condition 5.2 for fixed D and Dy

D(L+1+n/2)/2
DL+ 1)!

L+1

Xy, — Wy <6(L)—0 if L—o0

ha

-k

uniformly for all go € G5. Hence we obtain

S o ()| € C0(0) X X el miakt )

g2€Ga2 meZs keS
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because of L, = L for all py. The sum

e 2
Z axe pl(x—mh1)/ha—k|
kezZn

(h—?>n/2 S IR/ AE)D o phemin ok 1]
7wD(h2 — h3)

keZn

can be easily estimated by using equation (5.2). Setting
(hi = h3)D = WDy = hs/p

we derive 21 D2
Di=D+ 2 (== D) =D+ H 0
1 + 2\ 5 + D_ Dy

and after some algebra

S eI (B -h3)D = pl—hak? /13
kezn

_ (ﬂ'D(lD_ H2)>n/2e—x|2/h%D1 <1 —|—O(e_ﬂ2D2(1_H2)/D1)),
pL

Therefore we obtain

_ _ _K|2 e 2/p2
sup Z Z axe pl(x—mh1)/ha—k| S 02 sup Z e |x—mh1|*/hiD1 S 03
R™ meZz) kes R" mez,

with some constant C5 depending on D, Dy and the space dimension n. Now
(5.28) follows immediately from (5.30) and (5.31). O

5.5 Numerical Experiments

We have tested the construction (5.27, 5.26) in the one- and two-dimensional
case for randomly chosen nodes with the parameters D =2, h =1, k; = 1/2,
and Dy =1 and Dy = 3/2. To see the dependence of the approximation error
on the number of nodes in ¥(m), m € Z, and the degree of polynomials we
provide graphs of the difference to 1 for the following one-dimensional cases :

- ¥(m) consists of 1 point, L = 3 and L =4 (Fig.1);
- 3(m) consists of 3 points, L = 3 and L = 4 (Fig. 2);
- 3(m) consists of 5 points, L = 2 and L = 3 (Fig. 3).

In all cases the choice Dy = 3/2 gives better results as can be seen from Fig.1.
All other figures correspond to the parameter Dy = 3/2.

As expected, the approximation becomes better with increasing degree L and
more points in the subsets X(m). The use of only on reduces the approximation
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L= - . —4x107*
A N 0.001 / N
\ ,
/
. ‘\ , 2410 N
0.5 0.5 1 N
\ / / \
-0.d01 / /' _\\
: 1 0 o 1
-0.002} . / ~1«107* N\
~ S -

Fig. 1. The graph of ©(x) — 1 when 3(m) consists of 1 point, D = 2,L = 3 (on the
left) and L = 4 (on the right). Solid and dot-dashed line correspond to Dy = 3/2
and Dy = 1, respectively.

error by a factor 107! if L increases by 1. The cases of 3 and 5 points indicate,
that enlarging the degree L of the polynomials by 1 gives a factor 1072 for the
approximation error.

241077

141077

Fig. 2. The graph of ©(x) — 1 when X(m) consists of 3 points, D = 2, Dy = 3/2,
L = 3 (on the left) and L = 4 (on the right). The saturation term obtained on
uniform grid is depicted by dashed lines.

341077

141077

~21077

Fig. 3. The graph of ©(x) — 1 when X(m) consists of 5 points, D = 2, Dy = 3/2,
L = 2 (on the left) and L = 3 (on the right). The saturation term obtained on
uniform grid is depicted by dashed lines.

One should notice, that the plotted total error consists of two parts. Using
(5.27, 5.26) we approximate the ©-function

2m) V2 Y e — 1 4 93 672 cos 2 (5.32)

mez j=1
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Hence, the plotted total error is the sum of the difference between (5.1) and
(5.32) and the function

226_2“2j2 cos 2mjx, (5.33)
j=1
which is the saturation term obtained on the uniform grid. The error plots on
the right in Figures 2 and 3 show that the total error is already majorized by
the saturation term (5.33), which is shown by dashed lines.

In the following two figures 4 and 5 we depict the difference Mu(z) —u(x) for
the quasi interpolation formula defined by (3.11) with Gaussian basis func-
tions constructed via (5.27, 5.26) with ¥(m) consisting of 5 points, and the
approximation orders N = 2 and N = 4. For N = 2 we have used the param-
eters L = 4 (the degree of the polynomials P;), D = 2, Dy = 3/2, and for
N =4 we have chosen L =6, D =4, Dy = 3.

B i
"3 008 \
/ N Oﬂolif
/ 0.004\\ }\P v
/ — \7
~ ~ N7 \
/7 /
0. 003 \ I v 0.0002 \
/ \ hy Vi
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Fig. 4. The graph of Mu(z) — u(z) with N = 2, u(z) = (1 + 2?)~!. Dashed and
solid lines correspond to h = 1/16 and h = 1/32 (on the left) and to h = 1/64 and
h =1/128 (on the right).
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Fig. 5. The graph of Mu(z) — u(z) with N = 4, u(z) = z* (on the right) and
u(x) = (1 +2%)7! (on the left). Dashed and solid lines correspond to h = 1/32 and
h = 1/64, respectively.

The h¥-convergence of these one-dimensional quasi-interpolants is confirmed
in Table 1, which contains the uniform error of Mu — w on the interval
(—1/2,1/2) for the function u(z) = (1 + x?)~! with different h.
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23 1.89 - 1072 1.81-1073
24 5.72-1073 1.38-10~*
275 1.51-1073 1.01-107°
26 3.81-107% 6.65- 107
2-7 9.65-107° 4.20-1078
Table 1
Loo—approximation error for the function u(z) = (1 + 22)~! in the interval

(—=1/2,1/2) using Mu with N = 2 (on the left) and N =4 (on the right).

Similar experiments have been performed for the two-dimensional case. Here
we provide graphs of

X —Xj Clx—x |2
-y pj<ﬁ1>e =2/ D

XjEX
for the following cases :

- degP; =1 and ¥(m) consists of 1 or 5 points (Fig.6);
- degP; = 3 and X(m) consists of 1 or 5 points (Fig.7);

Fig. 6. The graph of ©(x) — 1 when L = 1 and X(m) consists of 1 point (on the left)
and 5 points (on the right).

Fig. 7. The graph of ©(x) — 1 when L = 3 and X(m) consists of 1 point (on the left)
and 5 points (on the right).
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