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1 Introdu
tionThe approximation of multivariate fun
tions from s
attered data is an im-portant theme in numeri
al mathemati
s. One of the methods to atta
k thisproblem is quasi-interpolation. One takes values u(xj) of a fun
tion u on a setof nodes {xj}j∈J and 
onstru
ts an approximant of u by linear 
ombinations
∑

j∈J

u(xj)ηj(x) ,where ηj(x) is a set of basis fun
tions. Using quasi-interpolation there is noneed to solve large algebrai
 systems. The approximation properties of quasi-interpolants in the 
ase that xj are the nodes of a uniform grid are well-understood. For example, the quasi-interpolant
∑

j∈Zn

u(hj)ϕ
(
x − hj

h

) (1.1)
an be studied via the theory of prin
ipal shift-invariant spa
es, whi
h has beendeveloped in several arti
les by de Boor, DeVore and Ron (see e.g. [3℄, [4℄).Here ϕ is supposed to be a 
ompa
tly supported or rapidly de
aying fun
tion.Based on the Strang-Fix 
ondition for ϕ, whi
h is equivalent to polynomial re-produ
tion, 
onvergen
e and approximation orders for several 
lasses of basisfun
tions were obtained (see also S
haba
k/Wu [22℄, Jetter/Zhou [8℄). S
at-tered data quasi-interpolation by fun
tions, whi
h reprodu
e polynomials, hasbeen studied by Buhmann, Dyn, Levin in [2℄ and Dyn, Ron in [5℄ (see also [26℄for further referen
es). Other methods for s
attered data approximation in-
lude Moving Least Squares (see [6℄, [10℄), whi
h among others have attra
tedattention in the 
ontext of approximate solutions of partial di�erential equa-tions as so�
alled meshless methods (see [1℄ and the referen
es therein). As arule, the methods reprodu
e polynomials, at least lo
ally, but the shape fun
-tions ηj are not available analyti
ally in simple forms. The 
omputation of theapproximant requires for ea
h point x ∈ R
n the solution of a linear system.In order to extend the quasi-interpolation (1.1) to general 
lasses of approxi-mating fun
tions with good analyti
al properties, another 
on
ept of approxi-mation pro
edures, 
alled Approximate Approximations, was proposed in [11℄and [12℄. These pro
edures have the 
ommon feature, that they are a

u-rate without being 
onvergent in a rigorous sense. Consider, for example, thequasi-interpolant on the uniform grid

M u(x) = D−n/2
∑

j∈Zn

u(hj) η
(
x − hj

h
√

D

)
, (1.2)where η is su�
iently smooth and of rapid de
ay, h and D are two positiveparameters. It was shown that if Fη − 1 has a zero of order N at the origin2



(Fη denotes the Fourier transform of η), then M u approximates u pointwise
|Mu(x) − u(x)| 6 cN,η (h

√
D)N‖∇Nu‖L∞(Rn) + ε |∇N−1u(x)| (1.3)with a 
onstant cN,η not depending on u, h, and D, and the positive number ε
an be made arbitrarily small ifD is su�
iently large (see [14℄, [15℄). In general,there is no 
onvergen
e of the approximate quasi-interpolantMu(x) to u(x) as

h → 0. However, one 
an �x D su
h that up to any pres
ribed a

ura
y Muapproximates u with order O(hN). The la
k of 
onvergen
e as h → 0, whi
his not per
eptible in numeri
al 
omputations for appropriately 
hosen D, is
ompensated by a greater �exibility in the 
hoi
e of approximating fun
tions
η. In appli
ations, this �exibility enables one to obtain simple and a

urateformulae for values of various integral and pseudo-di�erential operators ofmathemati
al physi
s (see [14℄, [16℄, [18℄ and the review paper [23℄) and todevelop expli
it semi-analyti
 time-mar
hing algorithms for initial boundaryvalue problems for linear and non linear evolution equations ([13℄, [9℄).Up to now the approximate quasi-interpolation approa
h was extended tononuniform grids in two dire
tions. The 
ase that the set of nodes is a smoothimage of a uniform grid was studied in [17℄. It was shown that formulae simi-lar to (1.2) preserve the basi
 properties of approximate quasi-interpolation. Asimilar result for quasi-interpolation on pie
ewise uniform grids was obtainedin [7℄. It is the purpose of the present paper to generalize the method of approx-imate quasi-interpolation to fun
tions with values given on a rather generalgrid {xj}j∈J by modifying the approximating fun
tions. More pre
isely, we
onsider approximations of the form

Mu(x) =
∑

j∈J

∑

xk∈ST (xj)

u(xk)Pj,k(x) η
(
x − xj

hj

)
, (1.4)where ST (xj) is some �nite set of nodes near xj (see De�nition 3.1). The fun
-tions Pj,k are polynomials and hj are s
aling parameters. We show that one 
ana
hieve the approximation of u with arbitrary order N up to a small satura-tion error, as long as an "approximate partition of unity" {P̃j(x)η

(
x − xj

hj

)}with other polynomials P̃j exists. Here we mean that for any ε > 0 one 
an�nd polynomials su
h that
sup
Rn

∣∣∣∣
∑

j∈J

P̃j(x)η
(
x − xj

hj

)
− 1

∣∣∣∣ < ε . (1.5)Then one 
an 
hoose the polynomials Pj,k in (1.4) su
h that pointwise
|Mu(x) − u(x)| 6 C sup

j
hN

j ‖∇Nu‖L∞
+ ε |u(x)| .3



This estimate is valid as long as
∑

j∈J

η
(
x − xj

hj

)
≥ c > 0and η is su�
iently smooth and of rapid de
ay, but is not subje
ted to ad-ditional requirements as the Strang-Fix 
ondition. Moreover, for the spe
ial
ase of s
attered nodes 
lose to a pie
ewise uniform grid we propose a methodto 
onstru
t polynomials Pj su
h that the sum

∑

j∈J

Pj(x) e−|x−xj |2/(h2

j
D)approximates the 
onstant fun
tion 1 up to an arbitrary pres
ribed a

ura
y.This method does not require solving a large system of linear equations. In-stead, in order to obtain lo
ally the analyti
 representation of the partition ofunity and 
onsequently of the quasi�interpolant (1.4), one has to solve a smallnumber of linear systems of moderate size.We give a simple example of formula (1.4). Let {xj} be a sequen
e of pointson R su
h that 0 < xj+1 − xj 6 1. Consider a sequen
e of fun
tions ζj on Rsupported by a �xed neighborhood of the origin. Suppose that the sequen
e

{ζj(x − xj)} forms an approximate partition of unity on R,
|1 −

∑

j

ζj(x − xj)| < ε .One 
an easily see that the quasi-interpolant
Mhu(x) =

∑

j

u(hxj)

(
xj+1 − x/h

xj+1 − xj
ζj

(
x

h
− xj

)
+

x/h − xj−1

xj − xj−1
ζj−1

(
x

h
− xj−1

))satis�es
|Mhu(x) − u(x)| 6 c h2 ‖u′′‖L∞(R) + ε |u(x)| ,where the 
onstant c depends on the fun
tions ζj.Note, that by a suitable 
hoi
e of η it is possible to obtain expli
it semi-analyti
or other e�
ient approximation formulae for multi-dimensional integral andpseudo-di�erential operators whi
h are based on the quasi-interpolant (1.4).So the 
ubature of those integrals, whi
h is one of the appli
ations of theapproximate quasi-interpolation on uniform grids, 
an be 
arried over to the
ase when the integral operators are applied to fun
tions given at s
atterednodes.The outline of the paper is as follows. In Se
tion 2 we show that, under somemild restri
tions on the s
attered nodes, an approximate partition of unity
an be obtained from a given system of rapidly de
aying approximating fun
-tions if these fun
tions are multiplied by polynomials. Using the approximate4



partition of unity, one 
an 
onstru
t quasi-interpolants of high order approx-imation rate up to some pres
ribed saturation error. This will be shown inSe
tion 3. Se
tion 4 
ontains an appli
ation to the 
ubature of 
onvolutionintegral operators. A 
onstru
tion of the approximate partition of unity forthe 
ase of Gaussians and some numeri
al examples are given in Se
tion 5.2 Approximate partition of unityIn this se
tion we show that an approximate partition of unity of R
n 
an beobtained from a given system of approximating fun
tions 
entered at s
at-tered nodes {xj}j∈J if these fun
tions are multiplied by polynomials. Here Jdenotes an in�nite index set. We are mainly interested in rapidly de
ayingbasis fun
tions whi
h are supported on the whole spa
e. But we start with thesimpler 
ase of 
ompa
tly supported basis fun
tions.2.1 Basis fun
tions with 
ompa
t supportLemma 2.1 Let {B(xj , hj)}j∈J be an open lo
ally �nite 
overing of R

n byballs 
entered in xj and radii hj. Suppose that the multipli
ity of this 
overingdoes not ex
eed a positive 
onstant µn and that there are positive 
onstants c1and c2 satisfying
c1hm 6 hj 6 c2hm (2.1)provided the balls B(xj , hj) and B(xm, hm) have 
ommon points. Further-more, let {ηj} be a bounded sequen
e of 
ontinuous fun
tions on R

n su
h that
supp ηj ⊂ B(xj, hj). We assume that the fun
tions R

n ∋ y → ηj(hj y) areuniformly 
ontinuous with respe
t to j and
s(x) :=

∑

j∈J

ηj(x) > c on R
n , (2.2)where c is a positive 
onstant. Then for any ε > 0 there exists a sequen
e ofpolynomials {Pj} with the following properties:(i) the fun
tion

Θ :=
∑

j∈J

Pj ηj (2.3)satis�es
|Θ(x) − 1| < ε for all x ∈ R

n ; (2.4)(ii) the degrees of all Pj are bounded (they depend on the least majorant of the
ontinuity moduli of ηj and the 
onstants ε, c, c1, c2, µn);(iii) there exists a 
onstant c0 su
h that |Pj(x)| < c0 for all j and x ∈ B(xj , hj).5



PROOF. Sin
e the fun
tions B(xj , 1) ∋ y → s(hj y) are 
ontinuous uni-formly with respe
t to j, for an arbitrary positive δ there exist polynomials
Pj subje
t to ∣∣∣∣Pj(x) − 1

s(x)

∣∣∣∣ < δ on B(xj , hj) ,and the degree of Pj , degPj , is independent of j. Letting δ = ε (µn‖η‖L∞
)−1we obtain ∣∣∣∣ηj(x)

(
Pj(x) − 1

s(x)

)∣∣∣∣ ≤
ε

µn

.Then
sup
Rn

∑

j∈J

∣∣∣∣ηj(x)
(
Pj(x) − 1

s(x)

)∣∣∣∣ ≤ ε , (2.5)sin
e at most µn terms of this sum are di�erent from zero. But
∑

j∈J

ηj(x)
(
Pj(x) − 1

s(x)

)
=
∑

j∈J

ηj(x)Pj(x) − 1

s(x)

∑

j∈J

ηj(x)

=
∑

j∈J

ηj(x)Pj(x) − 1 ,whi
h proves (2.4). 2Remark 2.2 Let the fun
tions {ηj}j∈J in Lemma 2.1 satisfy the additionalhypothesis ηj ∈ Ck(Rn). Then one 
an �nd a sequen
e of polynomials {Pj} ofdegrees Lj su
h that
sup

B(xj ,hj)

∣∣∣∣Pj(x) − 1

s(x)

∣∣∣∣ 6 C(k)
hk

j

Lk
j

sup
B(xj ,hj)

|∇ks(x)|(see, e.g., [19℄). This shows that it su�
es to take polynomialsPj with degPj >
c(k) ε−1/k in order to a
hieve the error ε in (2.5).2.2 Basis fun
tions with non
ompa
t supportHere we 
onsider approximating fun
tions supported on the whole R

n. Wesuppose that the fun
tions {ηj}j∈J , are s
aled translates
ηj(x) = η

(
x − xj

hj

)of a su�
iently smooth fun
tion η with rapid de
ay.First we formulate a result on weighted polynomial approximation whi
h fol-lows from [20, Theorem 4.2℄. If we denote by wδ,p, δ > 1, p > 0, the weight6



fun
tion
wδ,p(x) = exp

(
− p

n∑

k=1

|xk|δ
)

, (2.6)then for any g ∈ W r
∞(Rn) there exists a polynomial P of degree at most 2N−1in ea
h variable x1, . . . , xn, su
h that

‖wδ,p(g − P)‖L∞
≤ c N (1−δ)r/δ

(
‖wδ,pg‖L∞

+
n∑

k=1

‖wδ,p∂
r
kg‖L∞

) (2.7)with a 
onstant c depending only on the weight fun
tion.Lemma 2.3 For any ε > 0 there exists Lε and polynomials Pj of degree
degPj ≤ Lε su
h that the fun
tion Θ de�ned by (2.3) satis�es (2.4) underthe following assumptions on η, the nodes {xj}j∈J and the s
aling parameters
{hj}:1. There exists K > 0 su
h that

cK :=
∥∥∥∥
∑

j∈J

(
1 + h−1

j | · − xj |
)−K

∥∥∥∥
L∞

< ∞ . (2.8)2. There exist δ > 1 and p > 0 su
h that
∥∥∥∥
(1 + | · |)K

wδ,p
η

∥∥∥∥
L∞

,

∥∥∥∥
(1 + | · |)K

wδ,p
∇η

∥∥∥∥
L∞

≤ cδ,p < ∞ (2.9)with the weight fun
tion wδ,p de�ned in (2.6).3. There exists C > 0 su
h that for all indi
es j, m ∈ J

hj

hm
wδ,p

(
xj − xm

hj + hm

)
≤ C . (2.10)4. (2.2) is valid.PROOF. From (2.8) and (2.9) the sum

∑

j∈J

η
(
x − xj

hj

)
= s(x)
onverges absolutely for any x to a positive, smooth and bounded fun
tion s.Suppose that we have shown that for any ε > 0 and all indi
es j there existpolynomials Pj su
h that

∣∣∣∣η
(
x − xj

hj

)(
Pj

(
x − xj

hj

)
− 1

s(x)

)∣∣∣∣ ≤
ε

cK

(
1 +

|x − xj |
hj

)−K

, (2.11)7



(cK is de�ned in (2.8)) and degPj ≤ Lε. Then
sup
Rn

∑

j∈J

∣∣∣∣η
(
x − xj

hj

)(
Pj

(
x − xj

hj

)
− 1

s(x)

)∣∣∣∣ ≤ ε ,and as in the proof of Lemma 2.1 we 
on
lude
sup
Rn

∣∣∣∣
∑

j∈J

η
(
x − xj

hj

)
Pj

(
x − xj

hj

)
− 1

∣∣∣∣ ≤ ε .Let us �x an index j and make the 
hange of variables y = hj
−1(x − xj). Then(2.11) is proved if we show that there exists a polynomial Pj su
h that for all

y ∈ R
n

∣∣∣∣η(y)
(
Pj(y) − 1

s̃(y)

)∣∣∣∣ ≤
ε

cK

(
1 + |y|

)−K (2.12)with s̃(y) = s(hjy +xj). Sin
e s̃−1 ∈ W 1
∞(Rn) a

ording to the estimate (2.7)we 
an �nd a polynomial Pj satisfying

sup
Rn

∣∣∣∣Pj(y) − 1

s̃(y)

∣∣∣∣wδ,p(y) <
ε

cδ,p cKwith the 
onstant cδ,p in the de
ay 
ondition (2.9). Now (2.12) follows imme-diately from
|η(y)|(1 + |y|)K ≤ cδ,p wδ,p(y) .By (2.7), the degree of the polynomial Pj depends on the weighted norm

sup
Rn

wδ,p(y)
∣∣∣∣∇

1

s̃(y)

∣∣∣∣ = hj sup
Rn

wδ,p

(
x − xj

hj

)∣∣∣∣∇
1

s(x)

∣∣∣∣

≤ sup
Rn

1

(s(x))2
wδ,p

(
x − xj

hj

) ∑

m∈J

hj

hm

∣∣∣∣∇η
(
x − xm

hm

)∣∣∣∣ .
(2.13)Sin
e by (2.9)

∣∣∣∣∇η
(
x − xm

hm

)∣∣∣∣ ≤ cδ,p wδ,p

(
x − xm

hm

)(
1 +

|x − xm|
hm

)−K

,a uniform bound of (2.13) with respe
t to j 
an be established if the sums
∑

m∈J

hj

hm

wδ,p

(
x − xj

hj

)
wδ,p

(
x − xm

hm

)(
1 +

|x − xm|
hm

)−Kare uniformly bounded for all j. In view of
∣∣∣∣
x − a

σ

∣∣∣∣
δ

+

∣∣∣∣
x − b

τ

∣∣∣∣
δ

≥ |a − b|δ
(σδ/(δ−1) + τ δ/(δ−1))δ−1

≥
∣∣∣∣
a − b

σ + τ

∣∣∣∣
δ8



for any x ∈ R and δ > 1 we obtain the inequality
wδ,p

(
x − xj

hj

)
wδ,p

(
x − xm

hm

)
≤ wδ,p

(
xj − xm

hj + hm

)
.Therefore, the 
ondition (2.10) on the nodes {xj} and the 
orresponding pa-rameters {hj} guarantees that the degree of the polynomials Pj 
an be 
hosennot depending on j. 23 Quasi-interpolants of a general formIn this se
tion we study the approximation of fun
tions u ∈ W N

∞(Rn) by thequasi-interpolant (1.4). We will show that within the 
lass of generating fun
-tions of the form polynomial times 
ompa
tly supported or rapidly de
ayinggenerating fun
tion it su�
es to have an approximate partition of unity inorder to 
onstru
t approximate quasi-interpolants of high order a

ura
y upto some pres
ribed saturation error.De�nition 3.1 Let xj ∈ X. A 
olle
tion of mN =
(N − 1 + n)!

n!(N − 1)!
− 1 nodes

xk ∈ X will be 
alled star of xj and denoted by st (xj) if the Vandermondematrix {
(xk − xj)

α
}
, |α| = 1, . . . , N − 1 , xk ∈ st (xj) , (3.1)is not singular. The union of the node xj and its star st (xj) is denoted by

ST (xj) = xj ∪ st (xj).Let us assume the following hypothesis 
on
erning the grid {xj}j∈J :Condition 3.1 For any xj there exists a ball B(xj , hj) whi
h 
ontains mNnodes xk ∈ st (xj) with
| detVj,hj

| =

∣∣∣∣ det
{(

xk − xj

hj

)α}N−1

|α|=1,xk∈st (xj)

∣∣∣∣ > c , (3.2)with c > 0 not depending on xj .3.1 Compa
tly supported basis fun
tionsTheorem 3.2 Suppose that the fun
tion system {ηj}j∈J satis�es the 
ondi-tions of Lemma 2.1, let u ∈ W N
∞(Rn) and ε > 0 arbitrary. There exist polyno-mials Pj,k, independent of u, whose degrees are uniformly bounded, su
h that9



the quasi-interpolant
Mu(x) =

∑

k∈J

u(xk)
∑

ST (xj)∋xk

Pj,k(x)ηj(x) (3.3)satis�es the estimate
|Mu(x) − u(x)| 6 ChN

m sup
B(xm,λ hm)

|∇N u| + ε |u(x)|, (3.4)where xm is an arbitrary node and x is any point of the ball B(xm, hm). By λwe denote a 
onstant greater than 1 whi
h depends on c1 and c2 in (2.1). The
onstant C does not depend on hm, m and ε.PROOF. For given ε we 
hoose polynomials Pj(x) su
h that the fun
tion(2.3) satis�es
|Θ(x) − 1| < ε for all x ∈ R

n ,and introdu
e the auxiliary quasi-interpolant
M (1)u(x) =

∑

j∈J

( N−1∑

|α|=0

∂αu(xj)

α!
(x − xj)

α

)
Pj(x)ηj(x) . (3.5)We use the Taylor expansion u around y ∈ R

n

u(x) =
N−1∑

|α|=0

∂αu(y)

α!
(x − y)α + RN(y,x) (3.6)with the remainder satisfying

|RN(y,x)| 6 cN |x− y|N sup
B(y,|x−y|)

|∇Nu| . (3.7)Taking y = xj we write M (1)u(x) as
M (1)u(x) = u(x)Θ(x) −

∑

j∈J

RN (xj,x)Pj(x)ηj(x) ,whi
h gives
|M (1)u(x) − u(x)| 6

∑

j∈J

|RN(xj ,x)Pj(x)ηj(x)| + |u(x)| |Θ(x)− 1| .This, together with the estimate for the remainder (3.7), shows that for x ∈
B(xm, hm)

|M (1)u(x) − u(x)| 6 C1h
N
m sup

B(xm,λ hm)
|∇N u| + ε|u(x)| , (3.8)10



where the ball B(xm, λ hm) 
ontains all balls B(xj , hj) su
h that B(xj , hj)and B(xm, hm) interse
t.In the next step we approximate in M (1)u the values of the derivatives ∂αu(xj)by a linear 
ombination of u(xk), where xk ∈ st (xj). Let {a(j)
α }16|α|≤N−1 bethe unique solution of the linear system with mN unknowns

N−1∑

|α|=1

a(j)
α

α!
(xk − xj)

α = u(xk) − u(xj) , xk ∈ st (xj) . (3.9)Denoting by {b(j)
α,k} the elements of the inverse of Vj,hj

, 
f. (3.1), the solutionof (3.9) is given by
a(j)

α =
α!

h
|α|
j

∑

xk∈st (xj)

b
(j)
α,k (u(xk) − u(xj)),If the derivatives {∂αu(xj)} in (3.5) are repla
ed by {a(j)

α }, then we obtainthe formula
Mu(x) =

∑

j∈J

{
u(xj)

(
1 −

∑

xk∈st (xj)

N−1∑

|α|=1

b
(j)
α,k

(
x − xj

hj

)α)

+
∑

xk∈st (xj)

u(xk)
N−1∑

|α|=1

b
(j)
α,k

(
x − xj

hj

)α}
Pj(x)ηj(x)

=
∑

j∈J

∑

xk∈ST (xj)

u(xk)Pj,k(x) ηj(x) ,whi
h 
an be rewritten as the quasi-interpolant (3.3). From (3.6) and (3.9)follows that
N−1∑

|α|=1

h
|α|
j

α!
(a(j)

α − ∂αu(xj))
(
xk − xj

hj

)α

= RN (xj,xk) ,hen
e the boundedness of ‖V −1
j,hj

‖ from Condition 3.1 and the estimate of theremainder (3.7) imply
|a(j)

α − ∂αu(xj)| 6 α! C2 h
N−|α|
j sup

B(xj ,hj)
|∇Nu|.Therefore we obtain the inequality

|Mu(x) − M (1)u(x)| 6 C2

∑

j∈J

hN
j sup

B(xj ,hj)
|∇Nu|

N−1∑

|α|=1

∣∣∣∣
x − xj

hj

∣∣∣∣
|α|

|Pj(x)ηj(x)|and, for any x ∈ B(xm, hm),
|Mu(x) − M (1)u(x)| 6 C3 hN

m sup
B(xm,λ hm)

|∇Nu|.11



This inequality and (3.8) lead to (3.4). 23.2 Quasi-interpolants with non
ompa
tly supported basis fun
tionsTheorem 3.3 Suppose that in addition to the 
onditions of Lemma 2.3 theinequality ∥∥∥∥
∑

j∈J

(
1 + h−1

j | · − xj |
)N−K

∥∥∥∥
L∞

< ∞ (3.10)is ful�lled, let u ∈ W N
∞(Rn) and ε > 0 arbitrary. There exist polynomials

Pj,k, independent of u, whose degrees are uniformly bounded, su
h that thequasi-interpolant
Mu(x) =

∑

k∈J

u(xk)
∑

ST (xj)∋xk

Pj,k

(
x − xj

hj

)
η
(
x − xj

hj

) (3.11)satis�es the estimate
|Mu(x) − u(x)| 6 C sup

m∈J
hN

m ‖∇N u‖L∞
+ ε |u(x)| . (3.12)The 
onstant C does not depend on u and ε.PROOF. Analogously to (3.5) we introdu
e the quasi-interpolant

M (1)u(x) =
∑

j∈J

( N−1∑

|α|=0

∂αu(xj)

α!
(x − xj)

α

)
Pj

(
x − xj

hj

)
η
(
x − xj

hj

)and obtain the estimate
|M (1)u(x)−u(x)| 6

∑

j∈J

∣∣∣∣RN(x,xj)Pj

(
x − xj

hj

)
η
(
x − xj

hj

)∣∣∣∣+ |u(x)(Θ(x)−1)|.From (2.12) we have
∣∣∣∣Pj

(
x − xj

hj

)
η
(
x − xj

hj

)∣∣∣∣ ≤
1

c

∣∣∣∣η
(
x − xj

hj

)∣∣∣∣+
ε

cK

(
1 +

|x − xj |
hj

)−Kwith the lower bound c of s(x) (see (2.2)). Together with (2.9) and (3.7) thisprovides
∣∣∣∣RN (xj,x)Pj

(
x − xj

hj

)
η
(
x − xj

hj

)∣∣∣∣

≤ cNhN
j ‖∇N u‖L∞

∣∣∣∣
x − xj

hj

∣∣∣∣
N(cδ,p

c
wδ,p

(
x − xj

hj

)
+

ε

cK

)(
1 +

∣∣∣∣
x − xj

hj

∣∣∣∣
)−K

,12



resulting in
|M (1)u(x) − u(x)| 6 |u(x)| |Θ(x) − 1| + cN sup

m∈J
hN

m ‖∇N u‖L∞

×
(

cδ,p

c

∥∥∥wδ,p|x|N
∥∥∥

L∞

∑

j∈J

(
1 +

∣∣∣∣
x − xj

hj

∣∣∣∣
)−K

+
ε

cK

∑

j∈J

(
1 +

∣∣∣∣
x − xj

hj

∣∣∣∣
)N−K)

.Now we 
an pro
eed as in the proof of Theorem 3.2. 2Remark 3.4 Let for �xed x the parameter κx be 
hosen su
h that
∑

|xj−x|>κx

wδ,p

(
x − xj

hj

)∣∣∣∣
x − xj

hj

∣∣∣∣
N(

1 +
∣∣∣∣
x − xj

hj

∣∣∣∣
)−K

< ε .Then the estimate (3.12) 
an be sharpened to
|Mu(x) − u(x)| 6 C max

|xj−x|≤κx

hN
j sup

B(x,κx)
|∇N u| + ε

(
|u(x)| + ‖∇N u‖L∞

)
.4 Appli
ation to the 
omputation of integral operatorsHere we dis
uss a dire
t appli
ation of the quasi-interpolation formula (3.11)for the important example η(x) = e−|x|2. Suppose that the density of theintegral operator with radial kernel

Ku(x) =
∫

Rn

g(|x − y|)u(y) dy (4.1)is approximated by the quasi-interpolant
Mu(x) =

∑

j∈J

∑

xk∈ST (xj)

u(xk)Pj,k

(
x − xj

hj

)
e−|x−xj |2/h2

j . (4.2)Using the following lemma it is easy to derive 
ubature formulae for (4.1).Lemma 4.1 Any P(x) =
L∑

|β|=0

cβ xβ 
an be written as
P(x) = e |x|2

L∑

|β|=0

cβ Sβ(∂x) e−|x|2with the polynomial Sβ(t) being de�ned by
Sβ(t) =

(
1

2 i

)|β|
Hβ

(
t

2 i

)
, (4.3)13



where Hβ denotes the Hermite polynomial of n variables
Hβ(t) = e |t|2(−∂t)

βe−|t|2 .PROOF. We are looking for the polynomial Sβ(t) de�ned by the relation
xβe−|x|2 = Sβ(∂x)e

−|x|2, x ∈ R
n. (4.4)Taking the Fourier transforms

F(Sβ(∂x)e−|x|2)(λ) = πn/2e−π2|λ|2Sβ(2πiλ)and
F(xβe−|x|2)(λ) = πn/2

(
− ∂λ

2πi

)β

e−π2|λ|2we obtain (4.3). 2In view of Lemma 4.1 we 
an write Pj,k(x) e−|x|2 = Tj,k(∂x) e−|x|2 with somepolynomials Tj,k(x). Then (4.2) 
an be rewritten as
Mu(x) =

∑

j∈J

∑

xk∈ST (xj)

u(xk) Tj,k(hj ∂x) e−|x−xj |2/h2

j .The 
ubature formula for the integral Ku is obtained by repla
ing u by itsquasi-interpolant Mu

K̃u(x) = KMu(x)

=
∑

j∈J

∑

xk∈ST (xj)

u(xk) Tj,k(hj ∂x) hn
j

∫

Rn

g(hj|z|) e−|z−tj|2 dz , (4.5)where tj = (x−xj)/hj . By introdu
ing spheri
al 
oordinates in R
n we obtain

∫

Rn

g(hj|z|)e−|z−tj|2dz = e−|tj |2
∞∫

0

̺n−1g(hj̺) e−̺2

d ̺
∫

Sn−1

e2̺|tj | cos(ωtj
,ω) dσω ,where Sn−1 is the unit sphere in R

n. The integral over Sn−1 
an be representedby means of the modi�ed Bessel fun
tions of the �rst kind In in the followingway
∫

Sn−1

e2̺|tj | cos(ωtj
,ω)dσω =

2 π(n−1)/2

Γ(n−1
2

)

π∫

0

e2̺|tj | cos ϑ(sin ϑ)n−2 dϑ

= 2πn/2(̺ |tj|)1−n/2I(n−2)/2(2̺|tj|)14



(see [24, p.154℄ and [25, p.79℄). Using the notation
Lj(r) = 2 πn/2 r1−n/2e−r2

∞∫

0

̺n/2 e−̺2

g(hj ̺) I(n−2)/2(2̺ r) d̺ ,relation (4.5) leads to the following 
ubature formula for the integral Ku

K̃u(x) =
∑

j∈J

hn
j

∑

xk∈ST (xj)

u(xk) Tj,k(hj ∂x)Lj

( |x − xj |
hj

)
.

5 Constru
tion of the Θ-fun
tion with GaussiansIn this se
tion we propose a method to 
onstru
t the approximate partitionof unity for the basis fun
tions
ηj(x) = (π D)−n/2e−|x−xj |2/(h2

jD)if the set of nodes X = {xj}j∈J satisfy the following 
ondition pie
ewise withdi�erent grid sizes hj .Condition 5.1 There exist a domain Ω, h > 0 and κ1 > 0 su
h that for any
j ∈ Z

n ∪ Ω the ball B(hj, hκ1) 
entered at hj with radius hκ1 
ontains nodesof X.5.1 S
attered nodes 
lose to a pie
ewise uniform gridLet us explain the assumption on the nodes: Suppose that the nodes are lo-
ated in some domain Ω1 ∈ R
n and satisfy Condition 5.1 with h = h1. Asubset of nodes xk ∈ X2 lie in a bounded subdomain Ω2 ⊂ Ω1 and satisfyCondition 5.1 with h = h2 = Hh1 for some small H . To keep good lo
al prop-erties of quasi-interpolants one wants to approximate the data at these nodesby fun
tions of the form polynomial times e−|x−xk|2/(h2

2
D), whereas outside Ω2quasi-interpolants with fun
tions of the form polynomial times e−|x−xj |2/(h2

1
D)should be used.Our aim is to develop a simple method to 
onstru
t polynomials Pj su
h that

Θ(x) = (π D)−n/2
{ ∑

xj∈X1

Pj

(
x − xj

h1

√
D

)
e−|x−xj |2/(h2

1
D)

+
∑

xk∈X2

Pk

(
x − xk

h2

√
D

)
e−|x−xk|2/(h2

2
D)
} (5.1)

15



is almost the 
onstant fun
tion 1 for x ∈ Ω1. Here X2 denotes the set of nodes
xk ∈ Ω2 and the X1 
ontains the remaining nodes X \ X2 and possibly someauxiliary nodes outside the domain Ω1.First we derive a pie
ewise uniform grid on R

n whi
h is asso
iated to thesplitting of the set of s
attered nodes into X1 and X2. We start with Poisson'ssummation formula for Gaussians
(π D)−n/2

∑

m∈Zn

e−|x−h1m|2/h2

1
D =

∑

k∈Zn

e−π2D|k|2e 2πi(x,k)/h1 ,whi
h shows that
∣∣∣∣1 − (π D)−n/2

∑

m∈Zn

e−|x−h1m|2/h2

1
D

∣∣∣∣ ≤ C1 e−π2Dwith some 
onstant C1 depending only on the spa
e dimension.Obviously, for any ε > 0 there exists D > 0 and a subset Z ∈ Z
n su
hthat the fun
tion system {e−|x−h1m|2/h2

1
D}m∈Z forms an approximate partitionof unity on the domain Ω1 with a

ura
y ε. We 
an represent any of thesefun
tions very a

urately by a linear 
ombination of dilated Gaussians due tothe equation (see [16℄)

e−|x|2/D1 =
(

D1

πD(D1 − h2D)

)n/2 ∑

m∈Zn

e−h2|m|2/(D1−h2D) e−|x−hm|2/h2D

− e−|x|2/D1

∑

k∈Zn\{0}
e 2πi(D1−h2D)(x,k)/hD1 e−π2D(D1−h2D)|k|2/D1 ,

(5.2)whi
h is valid for any D1 > h2D > 0. Applied to our setting with h = h2 and
D1 = h2

1D we obtain the approximate re�nement relation
∣∣∣∣e

−|x|2/h2

1
D −

∑

k∈Zn

ak e−|x−h2k|2/h2

2
D
∣∣∣∣ ≤ C2 e−|x|2/h2

1
D e−π2D(1−H2) (5.3)(be
ause by assumption h2 = Hh1) with the 
oe�
ients

ak =
e−H2|k|2/(1−H2)D

(πD(1 − H2))n/2
.Again, the 
onstant C2 depends only on the spa
e dimension. De�ne by S ∈ Z

nthe minimal index set su
h that
∑

k∈Zn\S
ak < e−π2D(1−H2) .16



Then it is 
lear from (5.3) that for any disjoint Z1 and Z2 with Z1 ∪ Z2 = Z

max
x∈Ω1

∣∣∣∣1 − (π D)−n/2
( ∑

m∈Z1

e−|x−h1m|2/h2

1
D +

∑

m∈Z2

∑

k∈S

ak e−|x−h1m−h2k|2/h2

2
D
)∣∣∣∣

≤ C3 e−π2D(1−H2) . (5.4)Condition 5.2 Denote Z2 = {m ∈ Z : h1m + h2k ∈ Ω2 for all k ∈ S}. The
onstant κ1 of Condition 5.1 and the domain Ω2 are su
h that for all nodes
xk ∈ Ω2, i.e. the nodes belonging to X2, one 
an �nd m ∈ Z2, k ∈ S with
|xk − h1m− h2k| < κ1h2.Setting Z1 = Z \Z2 we 
onne
t the index sets Z1, Z2 with the splitting of thes
attered nodes into X1, X2, where the set X1 is formed by the nodes X \X2and, additionally, the nodes h1m /∈ Ω1, m ∈ Z1.By this way we 
onstru
t an approximate partition of unity on the domain
Ω1 using Gaussians with the "large" s
aling fa
tor h1 
entered at the uniformgrid G1 := {h1m}m∈Z1

outside Ω2 and using Gaussians with s
aling fa
tor h2and the 
enters G2 := {h1m + h2k}m∈Z2,k∈S in Ω2.It is obvious, that the above de�nition of pie
ewise quasi-uniformly distributeds
attered nodes and the 
onstru
tion of an asso
iated approximate partitionof unity on pie
ewise uniform grids 
an be extended to �nitely many s
alingfa
tors hℓ. Sin
e there will be no di�eren
e for the subsequent 
onsiderationswe will restri
t to the two-s
ale 
ase.From (5.4) we see that for any ε > 0, and given h1 and h2 there exists D > 0su
h that the linear 
ombination
(π D)−n/2

( ∑

g1∈G1

e−|x−g1|2/(h2

1
D) +

∑

g2∈G2

ãg2
e−|x−g2|2/(h2

2
D)
) (5.5)with ãg2

= ak for g2 = h1m + h2k, m ∈ Z2,k ∈ S, approximates in Ω1 the
onstant fun
tion 1 with an error less than ε/2. The idea of 
onstru
ting the
Θ−fun
tion (5.1) is to 
hoose for ea
h g1 ∈ G1 and g2 ∈ G2 �nite sets of nodes
Σ(g1) ⊂ X1 and Σ(g2) ⊂ X2, respe
tively, and to determine polynomials Pj,gℓsu
h that
∑

xj∈Σ(gℓ)

Pj,gℓ

(
x − xj

hℓ

√
D

)
e−|x−xj |2/(h2

ℓ
D) approximate e−|x−gℓ|2/(h2

ℓ
D) , ℓ = 1, 2 .Note that in the 
ase g1 /∈ Ω1 by 
onstru
tion g1 ∈ X1, then trivially Σ(g1) =

g1 with the 
orresponding polynomial P1,g1
= 1. Therefore in the following wealways assume gℓ ∈ Ω1. 17



If the L∞-error of the sums over gℓ 
an be 
ontrolled, then we get
∑

g1∈G1

e−|x−g1|2/(h2

1
D) ≍

∑

xj∈X1

Pj

(
x − xj

h1

√
D

)
e−|x−xj |2/(h2

1
D)with the polynomials

Pj =
∑

g1∈G(xj)

Pj,g1
(5.6)and

∑

g2∈G2

ãg2
e−|x−g2|2/(h2

2
D) ≍

∑

xk∈X2

Pk

(
x − xk

h2

√
D

)
e−|x−xk|2/(h2

2
D)with the polynomials

Pk =
∑

g2∈G(xk)

ãg2
Pk,g2

, (5.7)where we denote G(xj) = {g : xj ∈ Σ(g)}. Note that we have to 
hoose thesets of nodes Σ(gℓ) su
h that G(xj) ⊂ Gℓ are nonempty �nite sets for any node
xj ∈ Xℓ. Additionally, one has to 
hoose these sets su
h that for some κ1 > 0and any gℓ ∈ Gℓ the ball B(gℓ, κ1hℓ) 
ontains at least one node xj ∈ Xℓ. Thisis always possible, sin
e Conditions 5.1 resp. 5.2 are valid.The proposed method for 
onstru
ting an approximate partition of unity doesnot require solving a large algebrai
 system. Instead, to obtain the lo
al rep-resentation of Θ one has to solve a small number of approximation problems,whi
h are redu
ed in the next subse
tion to linear systems of moderate size.After this preparation we write Θ as

Θ(x) =(π D)−n/2
∑

g1∈G1

e−|x−g1|2/(h2

1
D) +

∑

g1∈G1

ωg1
(
x

h1
)

+ (π D)−n/2
∑

g2∈G2

ãg2
e−|x−g2|2/(h2

2
D) +

∑

g2∈G2

ãg2
ωg2

(
x

h2
) ,where

ωgℓ
(y) = (π D)−n/2

{ ∑

hℓyj∈Σ(gℓ)

Pj,gℓ

(
y − yj√

D

)
e−|y−yj |2/D − e−|y−gℓ/hℓ|2/D

}(5.8)with yj = xj/hℓ, xj ∈ Xℓ. Hen
e for su�
iently large D and all x ∈ Ω1

∣∣∣Θ(x) − 1
∣∣∣ <

ε

2
+

∑

g1∈G1

∣∣∣∣ωg1

( x

h1

)∣∣∣∣+
∑

g2∈G2

ãg2

∣∣∣∣ωg2

( x

h2

)∣∣∣∣ . (5.9)18



5.2 Constru
tion of PolynomialsLet us introdu
e
ω(y) := (π D)−n/2

{ ∑

yj∈Σ

Pj

(
y − yj√

D

)
e−|y−yj |2/D − e−|y|2/D

}
, (5.10)where Σ is some �nite point set in R

n. We will des
ribe a method for 
on-stru
ting polynomials Pj su
h that e ρ|y|2|ω(y)| for some ρ > 0 be
omes small.In what follows we use the representation
Pj(x) =

Lj∑

|β|=0

cj,β xβ .Hen
e by Lemma 4.1
Pj

(
y − yj√

D

)
e−|y−yj |2/D =

Lj∑

|β|=0

cj,β Sβ(
√

D∂y) e−|y−yj |2/D ,and ω 
an be written as
ω(y) = (πD)−n/2

( ∑

yj∈Σ

Lj∑

|β|=0

cj,β Sβ(
√

D∂y) e−|y−yj |2/D − e−|y|2/D
)
. (5.11)To estimate the L∞-norm of ω we represent this fun
tion as 
onvolution.Lemma 5.1 Let P be a polynomial and let 0 < D0 < D. Then

P(∂x) e−|x−y|2/D = c1 e−|x|2/(D−D0) ∗ P(∂x) e−|x−y|2/D0 ,where ∗ stands for the 
onvolution operator and
c1 =

(
D

πD0(D − D0)

)n/2

.PROOF. From
e−|x−y|2/D = c1

∫

Rn

e−|x−t|2/(D−D0) e−|t−y|2/D0 dtwe obtain
P(∂x)e−|x−y|2/D = P(−∂y)e−|x−y|2/D

= c1

∫

Rn

e−|x−t|2/(D−D0) P(∂t)e
−|t−y|2/D0 dt . 219



Using Lemma 5.1 and (5.11) we write ω as
ω(y) =

c1

(πD)n/2

∫

Rn

e−|y−t|2/(D−D0)Gc(t) dt , (5.12)where we denote for c = {cj,β}

Gc(t) =
∑

yj∈Σ

Lj∑

|β|=0

cj,β Sβ(
√

D∂t)e
−|t−yj |2/D0 − e−|t|2/D0 . (5.13)Then, by Cau
hy's inequality, we obtain

‖ω‖L∞
6 c2 ‖Gc‖L2 ,where

c2 = (πD0)
−n/2(2π(D − D0))

−n/4 .An estimate for the sum of |ωgℓ
| 
an be derived fromLemma 5.2 Let 0 < D0 < D and denote ρ =

D − D0

(D − D0)2 + DD0
. Then theestimate

sup
Rn

|ω(y)| e ρ|y|2
6 c3

√
Q(c) (5.14)is valid, where for c = {cj,β} the quadrati
 form Q(c) is de�ned by

Q(c) =
∫

Rn

e2(D−D0)|t|2/(DD0)
(
Gc(t)

)2
dt (5.15)with Gc from (5.13) and

c3 =
Dn/4

(2π3D0(D − D0)((D − D0)2 + DD0))n/4
.PROOF. Starting with (5.12) and using

|x − t|2 =

∣∣∣∣
√

ax − t√
a

∣∣∣∣
2

+ (1 − a)|x|2 +
a − 1

a
|t|2for a > 0, we derive the representation

ω(y) = c1
e−(1−a)|y|2/(D−D0)

(πD)n/2

∫

Rn

e−|t−ax|2/a(D−D0) e(1−a)|t|2/a(D−D0)Gc(t) dt .20



Then Cau
hy's inequality leads to
∣∣∣∣ω(y) e(1−a)|y|2/(D−D0)

∣∣∣∣ ≤ c3

( ∫

Rn

e2(1−a)|t|2/a(D−D0)
(
Gc(t)

)2
dt
)1/2 (5.16)with

c3 = (πD0)
−n/2

(
a

2π(D − D0)

)n/4

.If we 
hoose the parameter a su
h that
(1 − a)|t|2
a(D − D0)

− |t|2
D0

= −|t|2
D

, i.e. a =
D D0

(D − D0)2 + D D0

,then the right hand side of (5.16) takes the form (5.15). 2Next we �nd an expli
it expression of the quadrati
 form Q(c). Using (5.13),after elementary 
al
ulations one obtains
Q(c) =

(
πD

2

)n/2(
1 − 2

∑

yj∈Σ

Lj∑

|β|=0

cj,β Cβ,0(yj, 0)

+
∑

yj ,yk∈Σ

Lj∑

|β|=0

Lk∑

|γ|=0

cj,β ck,γ Cβ,γ(yj ,yk)
)

,where the fun
tion Cβ,γ is given by
Cβ,γ(x,y) = Sβ(−

√
D∂x)Sγ(−

√
D∂y) e−(D|x−y|2/2−(D−D0)(|x|2+|y|2))/D2

0 (5.17)and the polynomials Sβ are de�ned in (4.3). Hen
e the minimum of Q(c) isattained by the solution c = {cj,β} of the linear system
∑

yj∈Σ

Lj∑

|β|=0

cj,β Cβ,γ(yj ,yk) = C0,γ(0,yk) , yk ∈ Σ , 0 ≤ |γ| ≤ Lk . (5.18)Then by Lemma 5.2 the sum
∑

yj∈Σ

Pj

(
y − yj√

D

)
e−|y−yj |2/D =

∑

yj∈Σ

Lj∑

|β|=0

cj,β

(
y − yj√

D

)β

e−|y−yj |2/D (5.19)approximates e−|y|2/D with
(π D)−n/2

∣∣∣∣e
−|y|2/D −

∑

yj∈Σ

Pj

(
y − yj√

D

)
e−|y−yj |2/D

∣∣∣∣ ≤ c3 e−ρ|y|2r1/2 ,21



where ρ and c3 are given in Lemma 5.2 and
r := min

c
Q(c) . (5.20)In the next se
tion we show that (5.18) has a unique solution and give anestimate of r.5.3 Existen
e and estimatesLet us give another representation of Q(c) de�ned by (5.15). We de�ne poly-nomials Tβ by

Tβ(x) = e |x|2/D0Sβ(
√

D∂x)e
−|x|2/D0 (5.21)and introdu
e the transformed points

tj =
D

D0
yj , yj ∈ Σ .Then, be
ause of

D − D0

D D0
|t|2 − 1

D0
|t − yj |2 = − 1

D
|t − tj |2 +

D − D0

D2
0

|yj |2and in view of (5.13) the quadrati
 form Q(c) 
an be written as
Q(c) =

∫

Rn

(
e−|t|2/D −

∑

yj∈Σ

Lj∑

|β|=0

c̃j,βTβ(t − yj) e−|t−tj |2/D
)2

dt (5.22)with
c̃j,β = e(D−D0)|yj |2/D2

0cj,β .Sin
e Tβ are polynomials of degree β, the minimum problem for Q(c) is equiv-alent to �nding the best L2−approximation
min
dj,β

∫

Rn

(
e−|t|2/D −

∑

yj∈Σ

Lj∑

|β|=0

dj,β(t − tj)
β e−|t−tj|2/D

)2

dt .Lemma 5.3 Let {xj} a �nite 
olle
tion of nodes. For all Lj ≥ 0 the polyno-mials Pj of degree Lj, whi
h minimize
∥∥∥∥e

−| · |2 −
∑

j

Pj( · − xj) e−| ·−xj |2
∥∥∥∥

L2

, (5.23)are uniquely determined. 22



PROOF. The appli
ation of Lemma 4.1 gives for Pj(x) =
Lj∑

|β|=0

dj,β xβ

∥∥∥∥e
−| · |2 −

∑

j

Pj( · − xj)e
−| ·−xj |2

∥∥∥∥
2

L2

=
∫

Rn

(
e−|x|2 −

∑

j

Lj∑

|β|=0

dj,β Sβ(∂x) e−|x−xj |2
)2

dx

=
(

π

2

)n/2(
1 − 2

∑

j

Lj∑

|β|=0

dj,βBβ,0(xj , 0) +
∑

j,k

Lj ,Lk∑

|β|,|γ|=0

dj,βdk,γBβ,γ(xj ,xk)
)
,where we use the notation

Bβ,γ(x,y) = Sβ(−∂x)Sγ(−∂y) e−|x−y|2/2 .The 
oe�
ients {dj,β} minimize (5.23) if they satisfy the system of linearequations
∑

j

Lj∑

|β|=0

dj,β Bβ,γ(xj ,xk) = B0,γ(0,xk). (5.24)Hen
e the uniqueness of the polynomials Pj is equivalent to the invertibilityof the matrix ‖Bβ,γ(xj,xk)‖ of the system (5.24). In the following we showthat this matrix is positive de�nite. We use the representation
e−|x−y|2/2 = (2π)−n/2

∫

Rn

e−|t|2/2ei(t,x)e−i(t,y) dt ,whi
h implies
Bβ,γ(x,y) = (2π)−n/2

∫

Rn

Sβ(−it)Sγ(−it) e−|t|2/2ei(t,x)e−i(t,y) dt .Let {vj,β} be a 
onstant ve
tor and 
onsider the sesquilinear form
∑

j,k

Lj ,Lk∑

|β|,|γ|=0

Bβ,γ(xj ,xk) vj,β vk,γ

= (2π)−n/2
∑

j,k

Lj ,Lk∑

|β|,|γ|=0

vj,β vk,γ

∫

Rn

Sβ(−it)Sγ(−it) e−|t|2/2e i(t,xj−xk) dt

= (2π)−n/2
∫

Rn

e−|t|2/2

∣∣∣∣
∑

j

Lj∑

|β|=0

vj,β Sβ(−it) ei(t,xj)

∣∣∣∣
2

dt ≥ 0 .The 
hange of integration and summation is valid be
ause the integrand is ab-solutely integrable and the sums are �nite. We have to show that the inequality23



is stri
t when {vj,β} 6= 0. This is equivalent to showing that
σ(t) =

∑

j

Lj∑

|β|=0

vj,β Sβ(−it) ei(t,xj) = 0identi
ally only if vj,β = 0 for all j and β. To this end similar to [21, Lemma 3.1℄we introdu
e the fun
tion
fε(x) :=

∫

Rn

e−ε2|t|2/4 σ(t) e−i(t,x) dt =
∑

j

Lj∑

|β|=0

vj,β Sβ(∂x)
∫

Rn

e−ε2|t|2/4 e i(t,xj−x) dt

= ε−n
∑

j

Lj∑

|β|=0

vj,β Sβ(∂x)
∫

Rn

e−|t|2/4 e i(t,xj−x)/ε dt

=
(

4π

ε2

)n/2∑

j

Lj∑

|β|=0

vj,β Sβ(∂x)e
−|x−xj |2/ε2

.Let us �x an index k and 
onsider the fun
tion fε(x) on the ball B(xk, ε)for su�
iently small ε > 0. If x ∈ B(xk, ε) and xj 6= xk, then obviously
Sβ(∂x)e−|x−xj |2/ε2 → 0 as ε → 0. Sin
e fε(x) = 0, for any δ > 0 there exists
ε0 su
h that for all ε ∈ (0, ε0) and x ∈ B(xk, ε)

∣∣∣∣
Lk∑

|β|=0

vk,β Sβ(∂x)e−|x−xk|2/ε2

∣∣∣∣ < δ . (5.25)Setting t = (x − xk)/ε we obtain therefore from (5.25)
∣∣∣∣

Lk∑

|β|=0

vk,β Sβ(ε−1∂t)e
−|t|2

∣∣∣∣ = e−|t|2
∣∣∣∣

Lk∑

|β|=0

ε−|β| pβ(t)
∣∣∣∣ < δfor all |t| ≤ 1 and ε ∈ (0, ε0), where pβ are 
ertain polynomials of degree

Lk not depending on ε. The inequality is valid for any δ > 0 only if thesepolynomials vanish, whi
h implies for ε = 1

Lk∑

|β|=0

vk,β Sβ(∂x)e−|x−xk|2 = 0 .Sin
e by (4.4)
Sβ(∂x)e−|x−xk|2 = (x − xk)

βe−|x−xk|2 ,we 
on
lude vk,β = 0 for all β. 2Let now for given Σ and degrees Lj the 
oe�
ient ve
tor c = {cj,β} be aunique solution of the linear system (5.18). To estimate r = Q(c) we denoteby yk ∈ Σ the point 
losest to 0 and by Lk the degree of the polynomial Pk.24



Lemma 5.4 The minimal value of (5.20) 
an be estimated by
r ≤

(
π

2

)n/2 DLk+1+n/2 |yk|2(Lk+1)

D
2(Lk+1)
0 (Lk + 1)!

.PROOF. It follows from the representation (5.22) that
r =

∫

Rn

( ∑

yj∈Σ

Lj∑

|β|=0

c̃j,βTβ(t− yj) e−|t−tj|2/D − e−|t|2/D
)2

dt

≤ min
P∈ΠLk

∫

Rn

(
P(t)e−|t−tk|2/D − e−|t|2/D

)2

dt

=
(

D

2

)n/2

min
P∈ΠLk

∫

Rn

e−|t|2
(
P(t) − e−|zk|2e−

√
2(t,zk)

)2

dtwith tk = Dyk/D0, zk =
√

Dyk/D0, and ΠLk
denotes the set of polynomialsof degree Lk. The minimum is attained when

P(t) =
1

√
2|β|β!πn/2

Lk∑

|β|=0

aβHβ(t)with the 
oe�
ients
aβ =

e−|zk|2
√

2|β| β! πn/2

∫

Rn

e−|t|2Hβ(t)e−
√

2(t,zk) dt

=
e−|zk|2

√
2|β|β!πn/2

∫

Rn

e−
√

2(t,zk)(−∂t)
βe−|t|2 dt .Integrating by parts, we obtain

aβ = πn/4 (−1)|β|zβ
k√

β!
e−|zk|2/2 ,whi
h together with

∞∑

|β|=Lk+1

z
2β
k

β!
=

∞∑

s=Lk+1

|zk|2s

s!
6

|zk|2(Lk+1)

(Lk + 1)!
e|zk|2leads to

r ≤
(

D

2

)n/2 ∞∑

|β|=Lk+1

|aβ|2 = πn/2
(

D

2

)n/2 |zk|2(Lk+1)

(Lk + 1)!
. 225



5.4 Approximate partition of unity with GaussiansNow we are in position to prove the main result of this se
tion. Suppose thatthe nodes {xj}j∈J are as des
ribed in subse
tion 5.1 and let G1 ∪ G2 be theasso
iated pie
ewise uniform grid with stepsizes h1 and h2. Assign to ea
h gridpoint gℓ ∈ Gℓ, ℓ = 1, 2, a �nite set of nodes Σ(gℓ), �x a 
ommon degree Lfor all polynomials Pj in (5.1) and a positive number D0 < D, and solve thelinear system
∑

xj∈Σ(gℓ)

L∑

|β|=0

Cβ,γ

(
xj − gℓ

hℓ
,
xk − gℓ

hℓ

)
cj,β(gℓ) = C0,γ

(
0,

xk − gℓ

hℓ

) (5.26)for all xk ∈ Σ(gℓ) and 0 ≤ |γ| ≤ L. Following (5.19) de�ne the polynomials
Pj

(
x − xj

h1

√
D

)
=

∑

g1∈G(xj)

L∑

|β|=0

cj,β(g1)
(
x − xj

h1

√
D

)β

, xj ∈ X1,

Pk

(
x − xk

h2

√
D

)
=

∑

g2∈G(xk)

L∑

|β|=0

ãg2
ck,β(g2)

(
x − xk

h2

√
D

)β

, xk ∈ X2.

(5.27)Re
all that if xj ∈ X1 is an additional node xj = h1m /∈ Ω, m ∈ Z1, then
G(xj) = xj and the 
orresponding polynomial Pj = 1Theorem 5.5 Under Conditions 5.1 and 5.2 on the set of s
attered nodes Xfor any ε > 0 there exist D > 0 and L su
h that the fun
tion (5.1) is anapproximate partition of unity satisfying

|Θ(x) − 1| < ε for all x ∈ Ω1 ,if the polynomials {Pj} of degree L are generated via (5.27) by the solutions
{cj,β(gℓ)} of the linear systems (5.26) for all gℓ ∈ G1 ∪ G2.PROOF. From (5.9) we have to show that

sup
Rn

( ∑

g1∈G1

∣∣∣∣ωg1

( x

h1

)∣∣∣∣+
∑

g2∈G2

ãg2

∣∣∣∣ωg2

( x

h2

)∣∣∣∣
)
≤ ε

2
(5.28)if L is su�
iently large. We start with estimating the �rst sum

∑

g1∈G1

∣∣∣∣ωg1

( x

h1

)∣∣∣∣ ,where g1 = h1m, m ∈ Z1 ⊂ Z
n. Using (5.10) we 
an write

ωg1

( x

h1

)
= ω

( x

h1
− m

)
,26



where the points yj in (5.10) are given by yj = xj/h1 − m, xj ∈ Σ(g1). ByLemmas 5.2 and 5.4 we have
∑

g1∈G1

∣∣∣∣ωg1

( x

h1

)∣∣∣∣ ≤ c4

∑

m∈Z1

e−ρ|x/h1−m|2 D(Lµm+1+n/2)/2

D
Lµm+1
0

√
(Lµm

+ 1)!

∣∣∣∣
xµm

h1

− m

∣∣∣∣
Lµm+1where c4 = c3 (π/2)n/4, xµm

∈ Σ(g1) is the node 
losest to g1 = h1m and
Lµm

is the degree of the polynomial Pµm,g1
. Sin
e |xµm

− h1m| ≤ κ1h1 byCondition 5.1 and Lµm
= L for all µm we 
on
lude that

∑

g1∈G1

∣∣∣∣ωg1

( x

h1

)∣∣∣∣ ≤ c4
D(L+1+n/2)/2 κL+1

1

DL+1
0

√
(L + 1)!

sup
Rn

∑

m∈Z1

e−ρ|x/h1−m|2 . (5.29)From
ρ =

D − D0

(D − D0)2 + DD0

∈ (0, D) for any D0 ∈ (0, D) ,we see, that for �xed D and D0

∑

g1∈G1

∣∣∣∣ωg1

(x
h

)∣∣∣∣→ 0 if L → ∞ . (5.30)We turn to ∑

g2∈G2

ãg2

∣∣∣∣ωg2

( x

h2

)∣∣∣∣with g2 = h1m + h2k, m ∈ Z2,k ∈ S. Using (5.10) we have
ωg2

( x

h2

)
= ω

(x −mh1

h2
− k

)
,and the points yj in (5.10) are given by yj = (xj−mh1)/h2−k with xj ∈ Σ(g2).Hen
e

∑

g2∈G2

ãg2

∣∣∣∣ωg2

( x

h2

)∣∣∣∣ =
∑

m∈Z2

∑

k∈S

ak

∣∣∣∣ω
(x −mh1

h2
− k

)∣∣∣∣

≤ c4

∑

m∈Z2

∑

k∈S

ake
−ρ|(x−mh1)/h2−k|2 D(Lµk

+1+n/2)/2

D
Lµ

k
+1

0

√
(Lµk

+ 1)!

∣∣∣∣
xµk

− mh1

h2

− k

∣∣∣∣
Lµ

k
+1

.Here xµk
∈ Σ(g2) is the node 
losest to g2 = h1m + h2k and Lµk

is the degreeof the polynomial Pµk,g2
. By Condition 5.2 for �xed D and D0

D(L+1+n/2)/2

DL+1
0

√
(L + 1)!

∣∣∣∣
xµk

− mh1

h2
− k

∣∣∣∣
L+1

≤ δ(L) → 0 if L → ∞uniformly for all g2 ∈ G2. Hen
e we obtain
∑

g2∈G2

ãg2

∣∣∣∣ωg2

( x

h2

)∣∣∣∣ ≤ C1δ(L)
∑

m∈Z2

∑

k∈S

ake−ρ|(x−mh1)/h2−k|2 (5.31)27



be
ause of Lµk
= L for all µk. The sum

∑

k∈Zn

ake−ρ|(x−mh1)/h2−k|2

=
(

h2
1

πD(h2
1 − h2

2)

)n/2 ∑

k∈Zn

e−h2

2
|k|2/(h2

1
−h2

2
)D e−ρ|x−mh1−h2k|2/h2

2
an be easily estimated by using equation (5.2). Setting
(h2

1 − h2
2)D = h2

1D1 − h2
2/ρwe derive

D1 = D +
h2

2

h2
1

(
1

ρ
− D

)
= D + H2 D2

0

D − D0

.and after some algebra
∑

k∈Zn

e−h2

2
|k|2/(h2

1
−h2

2
)D e−ρ|x−h2k|2/h2

2

=
(

πD(1 − H2)

ρD1

)n/2

e−|x|2/h2

1
D1

(
1 + O(e−π2D2(1−H2)/D1)

)
.Therefore we obtain

sup
Rn

∑

m∈Z2

∑

k∈S

ake
−ρ|(x−mh1)/h2−k|2 ≤ C2 sup

Rn

∑

m∈Z2

e−|x−mh1|2/h2

1
D1 ≤ C3with some 
onstant C3 depending on D, D0 and the spa
e dimension n. Now(5.28) follows immediately from (5.30) and (5.31). 25.5 Numeri
al ExperimentsWe have tested the 
onstru
tion (5.27, 5.26) in the one- and two-dimensional
ase for randomly 
hosen nodes with the parameters D = 2, h = 1, κ1 = 1/2,and D0 = 1 and D0 = 3/2. To see the dependen
e of the approximation erroron the number of nodes in Σ(m), m ∈ Z, and the degree of polynomials weprovide graphs of the di�eren
e to 1 for the following one-dimensional 
ases :- Σ(m) 
onsists of 1 point, L = 3 and L = 4 (Fig.1);- Σ(m) 
onsists of 3 points, L = 3 and L = 4 (Fig. 2);- Σ(m) 
onsists of 5 points, L = 2 and L = 3 (Fig. 3).In all 
ases the 
hoi
e D0 = 3/2 gives better results as 
an be seen from Fig.1.All other �gures 
orrespond to the parameter D0 = 3/2.As expe
ted, the approximation be
omes better with in
reasing degree L andmore points in the subsets Σ(m). The use of only on redu
es the approximation28



-1 -0.5 0.5 1

-0.002

-0.001
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-1 -0.5 0.5 1

-1*10-4

2*10-4

4*10-4

Fig. 1. The graph of Θ(x) − 1 when Σ(m) 
onsists of 1 point, D = 2,L = 3 (on theleft) and L = 4 (on the right). Solid and dot-dashed line 
orrespond to D0 = 3/2and D0 = 1, respe
tively.error by a fa
tor 10−1 if L in
reases by 1. The 
ases of 3 and 5 points indi
ate,that enlarging the degree L of the polynomials by 1 gives a fa
tor 10−2 for theapproximation error.
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-4*10-9

-8*10-9
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Fig. 2. The graph of Θ(x) − 1 when Σ(m) 
onsists of 3 points, D = 2, D0 = 3/2,
L = 3 (on the left) and L = 4 (on the right). The saturation term obtained onuniform grid is depi
ted by dashed lines.
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-1 -0.5 0.5 1

-2*10-9

-4*10-9

-6*10-9

2*10-9

4*10-9

6*10-9

Fig. 3. The graph of Θ(x) − 1 when Σ(m) 
onsists of 5 points, D = 2, D0 = 3/2,
L = 2 (on the left) and L = 3 (on the right). The saturation term obtained onuniform grid is depi
ted by dashed lines.One should noti
e, that the plotted total error 
onsists of two parts. Using(5.27, 5.26) we approximate the Θ-fun
tion

(2π)−1/2
∑

m∈Z

e−(x−m)2/2 = 1 + 2
∞∑

j=1

e−2π2j2

cos 2πjx . (5.32)29



Hen
e, the plotted total error is the sum of the di�eren
e between (5.1) and(5.32) and the fun
tion
2

∞∑

j=1

e−2π2j2

cos 2πjx , (5.33)whi
h is the saturation term obtained on the uniform grid. The error plots onthe right in Figures 2 and 3 show that the total error is already majorized bythe saturation term (5.33), whi
h is shown by dashed lines.In the following two �gures 4 and 5 we depi
t the di�eren
e Mu(x)−u(x) forthe quasi�interpolation formula de�ned by (3.11) with Gaussian basis fun
-tions 
onstru
ted via (5.27, 5.26) with Σ(m) 
onsisting of 5 points, and theapproximation orders N = 2 and N = 4. For N = 2 we have used the param-eters L = 4 (the degree of the polynomials Pj), D = 2, D0 = 3/2, and for
N = 4 we have 
hosen L = 6, D = 4, D0 = 3.
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Fig. 4. The graph of Mu(x) − u(x) with N = 2, u(x) = (1 + x2)−1. Dashed andsolid lines 
orrespond to h = 1/16 and h = 1/32 (on the left) and to h = 1/64 and
h = 1/128 (on the right).
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Fig. 5. The graph of Mu(x) − u(x) with N = 4, u(x) = x4 (on the right) and
u(x) = (1 + x2)−1 (on the left). Dashed and solid lines 
orrespond to h = 1/32 and
h = 1/64, respe
tively.The hN -
onvergen
e of these one-dimensional quasi-interpolants is 
on�rmedin Table 1, whi
h 
ontains the uniform error of Mu − u on the interval
(−1/2, 1/2) for the fun
tion u(x) = (1 + x2)−1 with di�erent h.30



h N = 2 N = 4

2−3 1.89 · 10−2 1.81 · 10−3

2−4 5.72 · 10−3 1.38 · 10−4

2−5 1.51 · 10−3 1.01 · 10−5

2−6 3.81 · 10−4 6.65 · 10−7

2−7 9.65 · 10−5 4.20 · 10−8Table 1
L∞−approximation error for the fun
tion u(x) = (1 + x2)−1 in the interval
(−1/2, 1/2) using Mu with N = 2 (on the left) and N = 4 (on the right).Similar experiments have been performed for the two-dimensional 
ase. Herewe provide graphs of

1 −
∑

xj∈X

Pj

(
x − xj√

D

)
e−|x−xj |2/Dfor the following 
ases :- degPj = 1 and Σ(m) 
onsists of 1 or 5 points (Fig.6);- degPj = 3 and Σ(m) 
onsists of 1 or 5 points (Fig.7);
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