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1. Introduction

Let Ω be a arbitrary bounded domain in R
n. The Green function for the polyhar-

monic equation is a function G : Ω × Ω → R which for every fixed y ∈ Ω solves
the equation

(−∆x)mG(x, y) = δ(x − y), x ∈ Ω, (1.1)

in the space W̊m,2(Ω), a completion of C∞
0 (Ω) in the norm given by ‖u‖W̊ m,2(Ω) =

‖∇mu‖L2(Ω). The case m = 2 corresponds to the biharmonic equation, and respec-
tively, (1.1) gives rise to the biharmonic Green function.

In dimension two the biharmonic Green function can be interpreted as a
deflection of a thin clamped plate under a point load. Numerous applications in
structural engineering, emerging from this fact, have stimulated considerable inter-
est to the biharmonic equation and its Green function as early as in the beginning
of 20th century. In 1908 Hadamard has published a volume devoted to properties
of the solutions to the biharmonic equation [8], where, in particular, he conjec-
tured that the corresponding Green function must be positive, at least, in convex
domains. However, several counterexamples to Hadamard’s conjecture have been
found later on ([5], [6], [7], [12], [20], [3], [9]) and it was proved that the biharmonic
Green function may change sign even in a smooth convex domain, in a sufficiently
eccentric ellipse ([7], [3]). Moreover, in a rectangle the first eigenfunction of the
biharmonic operator has infinitely many changes of sign near each of the vertices
([2], [9]).
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During the past century, the biharmonic and more generally, the polyhar-
monic Green function has been thoroughly studied, and a variety of upper esti-
mates has been obtained. In particular, we would like to point out the results in
smooth domains [4], [11], [18], [19], in conical domains [16], [10], and in polyhedra
[17].

The objective of the present paper is to establish sharp estimates on the poly-

harmonic Green function and its derivatives without any geometric assumptions,

in an arbitrary bounded open set.

For example, we show that, whenever the dimension n ∈ [3, 2m + 1] ∩ N is
odd, the regular part of the Green function admits the estimate

|∇
m−n

2 + 1
2

x ∇
m−n

2 + 1
2

y (G(x, y) − Γ(x − y))| ≤
C

max{d(x), d(y), |x − y|}
, x, y ∈ Ω,

(1.2)
where Γ(x) = Cm,n|x|

2m−n, x ∈ Ω, is a fundamental solution for the polyharmonic
operator, d(x) is the distance from x ∈ Ω to ∂Ω and the constant C depends on n
and m only. Hence, in particular,

|∇
m−n

2 + 1
2

x ∇
m−n

2 + 1
2

y G(x, y)| ≤
C

|x − y|
, x, y ∈ Ω, (1.3)

and similar results are established for the lower order derivatives.
Furthermore, the estimates on the Green function allow us to derive optimal

bounds for the solution u of the Dirichlet boundary value problem

(−∆)mu =
∑

|α|≤m−n
2 + 1

2

cα∂αfα, u ∈ W̊m,2(Ω). (1.4)

Specifically,

|∇m−n
2 + 1

2 u(x)| ≤ C
∑

|α|≤m−n
2 + 1

2

∫

Ω

d(y)m−n
2 + 1

2−|α| |fα(y)|

|x − y|
dy, x ∈ Ω,(1.5)

whenever the integrals on the right-hand side of (1.5) are finite. In particular,
there exists a constant CΩ > 0 depending on m, n and the domain Ω such that

‖∇m−n
2 + 1

2 u‖L∞(Ω) ≤ CΩ

∑

|α|≤m−n
2 + 1

2

‖d(·)m−n
2 − 1

2−|α|fα‖Lp(Ω), (1.6)

for p > n
n−1 .

The bounds above are sharp, in the sense that the solution of the polyhar-
monic equation in an arbitrary domain generally does not exhibit more regularity.
Indeed, assume that n ∈ [3, 2m + 1] ∩ N is odd and let Ω ⊂ R

n be the punc-
tured unit ball B1 \ {O}, where Br = {x ∈ R

n : |x| < r}. Consider a function
η ∈ C∞

0 (B1/2) such that η = 1 on B1/4. Then let

u(x) := η(x) ∂
m−n

2 − 1
2

x Γ(x) = Cη(x) ∂
m−n

2 − 1
2

x (|x|2m−n), x ∈ B1 \ {O}, (1.7)

where ∂x stands for a derivative in the direction of xi for some i = 1, ..., n. It

is straightforward to check that u ∈ W̊m,2(Ω) and (−∆)mu ∈ C∞
0 (Ω). While
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∇m−n
2 + 1

2 u is bounded, the derivatives of the order m− n
2 + 3

2 are not, and more-

over, ∇m−n
2 + 1

2 u is not continuous at the origin. Therefore, the estimates (1.5) are
optimal in general domains.

We also derive full analogues of (1.2), (1.3), (1.5), (1.6) and accompanying
lower order bounds in even dimensions. In that case, the optimal regularity turns
out to be of the order m − n

2 .

Finally, we would like to mention that the Green function estimates in this
paper generalize the earlier developments in [13], where the biharmonic Green
function was treated, and [15], where the pointwise estimates on polyharmonic
Green function have been established in dimensions 2m + 1 and 2m + 2 for m > 2
and dimensions 5, 6, 7 for m = 2.

2. Preliminaries

The Green function estimates in the present paper are based, in particular, on
the recent results for locally polyharmonic functions that will appear in [14]. We
record them below without the proof. Here and throughout the paper Br(Q) and
Sr(Q) denote, respectively, the ball and the sphere with radius r centered at Q

and Cr,R(Q) = BR(Q) \ Br(Q). When the center is at the origin, we write Br in
place of Br(O), and similarly Sr := Sr(O) and Cr,R := Cr,R(O). Also, ∇mu stands
for a vector of all derivatives of u of the order m.

Proposition 2.1. Let Ω be a bounded domain in R
n, 2 ≤ n ≤ 2m + 1, Q ∈ R

n \Ω,

and R > 0. Suppose

(−∆)mu = f in Ω, f ∈ C∞
0 (Ω \ B4R(Q)), u ∈ W̊m,2(Ω). (2.1)

Then

1

ρ2λ+n−1

∫

Sρ(Q)∩Ω

|u(x)|2 dσx ≤
C

R2λ+n

∫

CR,4R(Q)∩Ω

|u(x)|2 dx for every ρ < R,

(2.2)

where C is a constant depending on m and n only, and

λ = m − n/2 + 1/2 when n is odd, λ = m − n/2 when n is even. (2.3)

Moreover, for every x ∈ BR/4(Q) ∩ Ω

|∇iu(x)|2 ≤ C
|x − Q|2λ−2i

Rn+2λ

∫

CR/4,4R(Q)∩Ω

|u(y)|2 dy, 0 ≤ i ≤ λ (2.4)

where λ is given by (2.3).

In addition, using the Kelvin transform, estimates near the origin for solutions
of elliptic equations can be translated into estimates at infinity. In particular,
Proposition 2.1 leads to the following result (also proved in [14]).
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Proposition 2.2. Let Ω be a bounded domain in R
n, 2 ≤ n ≤ 2m + 1, Q ∈ R

n \Ω,

r > 0 and assume that

(−∆)mu = f in Ω, f ∈ C∞
0 (Br/4(Q) ∩ Ω), u ∈ W̊m,2(Ω). (2.5)

Then

ρ2λ+n+1−4m

∫

Sρ(Q)∩Ω

|u(x)|2 dσx ≤ C r2λ+n−4m

∫

Cr/4,r(Q)∩Ω

|u(x)|2 dx, (2.6)

for any ρ > r and λ given by (2.3).

Furthermore, for any x ∈ Ω \ B4r(Q)

|∇iu(x)|2 ≤ C
r2λ+n−4m

|x − Q|2λ+2n−4m+2i

∫

Cr/4,4r(Q)∩Ω

|u(y)|2 dy, 0 ≤ i ≤ λ. (2.7)

3. Estimates for the Green function

Following [1] we point out that the fundamental solution for the m-Laplacian is a
linear combination of the characteristic singular solution (defined below) and any
m-harmonic function in R

n. The characteristic singular solution is

Cm,n|x|
2m−n, if n is odd, or if n is even with n ≥ 2m + 2, (3.1)

Cm,n|x|
2m−n log |x|, if n is even with n ≤ 2m. (3.2)

The exact expressions for constants Cm,n can be found in [1], p.8. For the purposes
of this paper we will use the fundamental solution given by

Γ(x) = Cm,n











|x|2m−n, if n is odd,

|x|2m−n log diamΩ
|x| , if n is even and n ≤ 2m,

|x|2m−n, if n is even and n ≥ 2m + 2.

(3.3)

Theorem 3.1. Let Ω ⊂ R
n be a bounded domain. Then there exist constants C, C′

depending on m and n only such that for every x, y ∈ Ω the following estimates

hold. If n ∈ [3, 2m + 1] ∩ N is odd then

|∇i
x∇

j
yG(x, y)| ≤ C min







1,

(

d(x)

|x − y|

)m−n
2 + 1

2−i

,

(

d(y)

|x − y|

)m−n
2 + 1

2−j






×
1

|x − y|n−2m+i+j
, (3.4)
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whenever 0 ≤ i, j ≤ m − n
2 + 1

2 are such that i + j ≥ 2m − n, and

|∇i
x∇

j
yG(x, y)| ≤ C min







1,

(

d(x)

|x − y|

)m−n
2 + 1

2−i

,

(

d(y)

|x − y|

)m−n
2 + 1

2−j






×

×
1

|x − y|n−2m+i+j
min

{

|x − y|

d(x)
,
|x − y|

d(y)
, 1

}n−2m+i+j

,(3.5)

if 0 ≤ i, j ≤ m − n
2 + 1

2 are such that i + j ≤ 2m − n.

If n ∈ [2, 2m] ∩ N is even, then

|∇i
x∇

j
yG(x, y)| ≤ C min







1,

(

d(x)

|x − y|

)m−n
2 −i

,

(

d(y)

|x − y|

)m−n
2 −j






×

×
1

|x − y|n−2m+i+j
min

{

|x − y|

d(x)
,
|x − y|

d(y)
, 1

}n−2m+i+j

×

× log

(

1 +
min{d(x), d(y)}

|x − y|

)

, (3.6)

for all 0 ≤ i, j ≤ m − n
2 .

Furthermore, the estimates on the regular part of the Green function S(x, y) =
G(x, y) − Γ(x − y), x, y ∈ Ω, are as follows. If n ∈ [3, 2m + 1] ∩ N is odd then

|∇i
x∇

j
yS(x, y)| ≤

C

max{d(x), d(y), |x − y|}n−2m+i+j
, (3.7)

whenever 0 ≤ i, j ≤ m − n
2 + 1

2 are such that i + j ≥ 2m − n, and

|∇i
x∇

j
yS(x, y)| ≤

C

|x − y|n−2m+i+j
min

{

|x − y|

d(x)
,
|x − y|

d(y)
, 1

}n−2m+i+j

, (3.8)

if 0 ≤ i, j ≤ m − n
2 + 1

2 are such that i + j ≤ 2m − n.

If n ∈ [2, 2m] ∩ N is even, then

|∇i
x∇

j
yS(x, y)| ≤

C

|x − y|n−2m+i+j
min

{

|x − y|

d(x)
,
|x − y|

d(y)
, 1

}n−2m+i+j

×

× log

(

1 +
diamΩ

max{d(x), d(y), |x − y|}

)

, (3.9)

for all 0 ≤ i, j ≤ m − n
2 .

Proof. Let us start with some auxiliary calculations. Let α be a multi-index of
length less than or equal to λ, where λ is given by (2.3). Then ∂α

y Γ(x− y) can be
written as

∂α
y Γ(x − y) = Pα(x − y) log

diamΩ

|x − y|
+ Qα(x − y). (3.10)
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When the dimension is odd, Pα ≡ 0. If the dimension is even (and less than
or equal to 2m by the assumptions of the theorem) then Pα is a homogeneous
polynomial of order 2m − n − |α| as long as |α| ≤ 2m − n. In any case, Qα is a
homogeneous function of order 2m − n − |α|.

Consider a function η such that

η ∈ C∞
0 (B1/2) and η = 1 in B1/4, (3.11)

and define

Rα(x, y) := ∂α
y G(x, y) − η

(

x − y

d(y)

)(

Pα(x − y) log
d(y)

|x − y|
+ Qα(x − y)

)

,

(3.12)
for x, y ∈ Ω. Also, let us denote

fα(x, y) := (−∆x)mRα(x, y)

= −

[

(−∆x)m, η

(

x − y

d(y)

)](

Pα(x − y) log
d(y)

|x − y|
+ Qα(x − y)

)

. (3.13)

It is not hard to see that for every α as above

fα(·, y) ∈ C∞
0 (Cd(y)/4,d(y)/2(y)) and |fα(x, y)| ≤ Cd(y)−n−|α|, x, y ∈ Ω.

(3.14)
Then for every fixed y ∈ Ω the function x 7→ Rα(x, y) is a solution of the boundary
value problem

(−∆x)mRα(x, y) = fα(x, y) in Ω, fα(·, y) ∈ C∞
0 (Ω), Rα(·, y) ∈ W̊m,2(Ω),

(3.15)
so that

‖∇m
x Rα(·, y)‖L2(Ω) = ‖Rα(·, y)‖W m,2(Ω) ≤ C‖fα(·, y)‖W−m,2(Ω), 0 ≤ |α| ≤ λ.

(3.16)

Here W−m,2(Ω) stands for the Banach space dual of W̊m,2(Ω), i.e.

‖fα(·, y)‖W−m,2(Ω) = sup
v∈W̊ m,2(Ω): ‖v‖W̊ m,2(Ω)=1

∫

Ω

fα(x, y)v(x) dx. (3.17)

Recall that by Hardy’s inequality
∥

∥

∥

∥

v

| · −Q|m

∥

∥

∥

∥

L2(Ω)

≤ C ‖∇mv‖L2(Ω) for every v ∈ W̊m,2(Ω), Q ∈ ∂Ω. (3.18)

Then for some y0 ∈ ∂Ω such that |y − y0| = d(y) and any v in (3.17)
∫

Ω

fα(x, y)v(x) dx ≤ C

∥

∥

∥

∥

v

| · −y0|m

∥

∥

∥

∥

L2(Ω)

‖fα(·, y)| · −y0|
m‖L2(Ω)

≤ Cd(y)m ‖∇mv‖L2(Ω) ‖fα(·, y)‖L2(Cd(y)/4,d(y)/2(y)), (3.19)

and therefore, by (3.14)

‖∇m
x Rα(·, y)‖L2(Ω) ≤ Cd(y)m−|α|−n/2. (3.20)
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Now we split the discussion into a few cases.

Case I: |x− y| ≥ Nd(y) or |x− y| ≥ Nd(x) for some large N to be specified later.
Let us first assume that |x − y| ≥ Nd(y). As before, we denote by y0 some

point on the boundary such that |y−y0| = d(y). Then by (3.14)–(3.15) the function
x 7→ Rα(x, y) is m-harmonic in Ω \ B3d(y)/2(y0). Hence, by Proposition 2.2 with
r = 6d(y)

|∇i
xRα(x, y)|2 ≤ C

d(y)2λ+n−4m

|x − y0|2λ+2n−4m+2i

∫

C3d(y)/2,24d(y)(y0)

|Rα(z, y)|2 dz, (3.21)

provided that 0 ≤ i ≤ λ and |x − y| ≥ 4r + d(y), i.e N ≥ 25. The right-hand side
of (3.21) is bounded by

C
d(y)2λ+n−2m

|x − y0|2λ+2n−4m+2i

∫

C3d(y)/2,24d(y)(y0)

|Rα(z, y)|2

|z − y0|2m
dz

≤ C
d(y)2λ+n−2m

|x − y0|2λ+2n−4m+2i

∫

Ω

|∇m
z Rα(z, y)|2 dz

≤ C
d(y)2λ−2|α|

|x − y|2λ+2n−4m+2i
, (3.22)

by Hardy’s inequality and (3.20). Therefore,

|∇i
xRα(x, y)|2 ≤ C

d(y)2λ−2|α|

|x − y|2λ+2n−4m+2i
, when |x−y| ≥ Nd(y). 0 ≤ i, |α| ≤ λ.

(3.23)

Since for N ≥ 25 the condition |x − y| ≥ Nd(y) guarantees that η
(

x−y
d(y)

)

= 0

and hence, Rα(x, y) = ∂α
y G(x, y) when |x − y| ≥ Nd(y), the estimate (3.23) with

j := |α| implies

|∇i
x∇

j
yG(x, y)|2 ≤ C

d(y)2λ−2j

|x − y|2λ+2n−4m+2i
, when |x−y| ≥ Nd(y), 0 ≤ i, j ≤ λ.

(3.24)
Also, by the symmetry of the Green function we automatically deduce that

|∇i
x∇

j
yG(x, y)|2 ≤ C

d(x)2λ−2i

|x − y|2λ+2n−4m+2j
, when |x−y| ≥ Nd(x), 0 ≤ i, j ≤ λ.

(3.25)
In particular, (3.24) and (3.25) combined give the estimate

|∇i
x∇

j
yG(x, y)| ≤

C

|x − y|n−2m+i+j
, when |x − y| ≥ N min{d(x), d(y)}, (3.26)

for 0 ≤ i, j ≤ λ.
Now further consider several cases. If n is odd, then

|∇i
x∇

j
yΓ(x − y)| ≤

C

|x − y|n−2m+i+j
for all x, y ∈ Ω, i, j ≥ 0, (3.27)
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while if n is even, then

|∇i
x∇

j
yΓ(x−y)| ≤ C1 |x−y|−n+2m−i−j log

diam (Ω)

|x − y|
+C2 |x−y|−n+2m−i−j , (3.28)

for all x, y ∈ Ω and 0 ≤ i + j ≤ 2m − n.
Combining this with (3.26) we deduce that for n ≤ 2m + 1 odd

|∇i
x∇

j
yS(x, y)| ≤

C

|x − y|n−2m+i+j
when |x − y| ≥ N min{d(x), d(y)}, (3.29)

while if n is even, then

|∇i
x∇

j
yS(x, y)| ≤ C |x − y|−n+2m−i−j

(

C′ + log
diam(Ω)

|x − y|

)

(3.30)

provided that |x − y| ≥ N min{d(x), d(y)} and 0 ≤ i, j ≤ λ.

Case II: |x − y| ≤ N−1d(y) or |x − y| ≤ N−1d(x).

Assume that |x−y| ≤ N−1d(y). For such x we have η
(

x−y
d(y)

)

= 1 and therefore

Rα(x, y) = ∂α
y G(x, y) − Pα(x − y) log

d(y)

|x − y|
− Qα(x − y). (3.31)

Hence, if n is odd,

Rα(x, y) = ∂α
y (G(x, y) − Γ(x − y)) , when |x − y| ≤ N−1d(y), (3.32)

and if n is even,

Rα(x, y) = ∂α
y (G(x, y) − Γ(x − y)) + Pα(x − y) log

diamΩ

d(y)
, (3.33)

when |x−y| ≤ N−1d(y). By the interior estimates for solutions of elliptic equations

|∇i
xRα(x, y)|2 ≤

C

d(y)n+2i

∫

Bd(y)/8(x)

|Rα(z, y)|2 dz, for any i ≤ m, (3.34)

since the function Rα is m-harmonic in Bd(y)/4(y) ⊃ Bd(y)/8(x). Now we bound
the expression above by

C

d(y)n+2i−2m

∫

Bd(y)/4(y)

|Rα(z, y)|2

|z − y0|2m
dz ≤

C

d(y)n+2i−2m
‖∇m

x R(·, y)‖
2
L2(Ω)

≤
C

d(y)2n−4m+2i+2|α|
, (3.35)

with 0 ≤ |α| ≤ λ.
Let us now focus on the case of n odd. It follows from (3.32) and (3.34) –

(3.35) that

|∇i
x∇

j
yS(x, y)| ≤

C

d(y)n−2m+i+j
, 0 ≤ i ≤ m, 0 ≤ j ≤ λ, |x − y| ≤ N−1d(y),

(3.36)
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and hence, by symmetry,

|∇i
x∇

j
yS(x, y)| ≤

C

d(x)n−2m+i+j
, 0 ≤ i ≤ λ, 0 ≤ j ≤ m, |x − y| ≤ N−1d(x).

(3.37)
However, we have

|x − y| ≤ N−1d(y) =⇒ (N − 1) d(y) ≤ Nd(x) ≤ (N + 1) d(y), (3.38)

i.e. d(y) ≈ d(x) whenever |x−y| is less than or equal to either N−1d(y) or N−1d(x).
Therefore, when the dimension is odd,

|∇i
x∇

j
yS(x, y)| ≤

C

max{d(x), d(y)}n−2m+i+j
, (3.39)

provided that |x − y| ≤ N−1 max{d(x), d(y)}, 0 ≤ i, j ≤ λ, i + j ≥ 2m− n, and

|∇i
x∇

j
yS(x, y)| ≤ C min{d(x), d(y)}2m−n−i−j , (3.40)

for |x − y| ≤ N−1 max{d(x), d(y)}, 0 ≤ i, j ≤ λ, i + j ≤ 2m − n.
As for the Green function itself, we then have for |x−y| ≤ N−1 max{d(x), d(y)}

|∇i
x∇

j
yG(x, y)| ≤

C

|x − y|n−2m+i+j
, if i + j ≥ 2m − n, (3.41)

and

|∇i
x∇

j
yG(x, y)| ≤ C min{d(x), d(y)}2m−n−i−j , if i + j ≤ 2m − n, (3.42)

with i, j such that 0 ≤ i, j ≤ λ.
Similar considerations apply to the case when the dimension is even, leading

to the following results:

|∇i
x∇

j
yS(x, y)| ≤

C

d(y)n−2m+i+j

(

C′ + log
diamΩ

d(y)

)

, (3.43)

for 0 ≤ i ≤ m, 0 ≤ j ≤ λ, |x − y| ≤ N−1d(y), and

|∇i
x∇

j
yS(x, y)| ≤

C

d(x)n−2m+i+j

(

C′ + log
diamΩ

d(x)

)

, (3.44)

for 0 ≤ i ≤ λ, 0 ≤ j ≤ m, |x− y| ≤ N−1d(x). In particular, in view of (3.38), and
the fact that 2m− n − i − j ≥ 0 whenever 0 ≤ i, j ≤ λ and n is even, we have

|∇i
x∇

j
yS(x, y)| ≤ C min{d(x), d(y)}2m−n−i−j

(

C′ + log
diamΩ

max{d(x), d(y)}

)

,

(3.45)
for |x − y| ≤ N−1 max{d(x), d(y)}, 0 ≤ i, j ≤ λ.

Passing to the Green function estimates, (3.31) and (3.34)–(3.35) lead to the
bound

|∇i
x∇

j
yG(x, y)| ≤ C d(y)2m−n−i−j

(

C′ + log
d(y)

|x − y|

)

, (3.46)
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for 0 ≤ i, j ≤ λ, |x − y| ≤ N−1d(y). Hence, by symmetry,

|∇i
x∇

j
yG(x, y)| ≤ C d(x)2m−n−i−j

(

C′ + log
d(x)

|x − y|

)

, (3.47)

for 0 ≤ i, j ≤ λ, |x − y| ≤ N−1d(x), and therefore,

|∇i
x∇

j
yG(x, y)| ≤ C min{d(x), d(y)}2m−n−i−j

(

C′ + log
min{d(x), d(y)}

|x − y|

)

,

(3.48)
for all 0 ≤ i, j ≤ λ, and |x − y| ≤ N−1 max{d(x), d(y)}.

Finally, it remains to consider

Case III: |x − y| ≈ d(y) ≈ d(x), or more precisely, the situation when

N−1 d(x) ≤ |x − y| ≤ Nd(x) and N−1 d(y) ≤ |x − y| ≤ Nd(y). (3.49)

In this case we use the m-harmonicity of x 7→ G(x, y) in Bd(x)/(2N)(x). Let
x0 ∈ ∂Ω be such that |x − x0| = d(x). By the interior estimates,

|∇i
x∇

|α|
y G(x, y)|2 ≤

C

d(x)n+2i

∫

Bd(x)/(2N)(x)

|∇|α|
y G(z, y)|2 dz

≤
C

d(x)n+2i

∫

Bd(x)/(2N)(x)

|∇|α|
y Γ(z − y)|2 dz

+
C

d(x)n+2i−2m

∫

B2d(x)(x0)

|Rα(z, y)|2

|z − x0|2m
dz

≤
C

d(x)n+2i

∫

Bd(x)/(2N)(x)

|∇|α|
y Γ(z − y)|2 dz

+
C

d(x)n+2i−2m

∫

Ω

|∇m
z Rα(z, y)|2 dz

≤
C

d(x)2n−4m+2i+2|α|
+

C

d(x)n−2m+2id(y)n−2m+2|α|
, (3.50)

provided that 0 ≤ i ≤ m, 0 ≤ |α| ≤ λ and n is odd. The right-hand side of (3.50)
also provided the estimate on derivatives of the Green function holds when n is
even, upon observing that

C

d(x)n+2i

∫

Bd(x)/(2N)(x)

|∇|α|
y G(z, y)|2 dz ≤

C

d(x)n+2i

∫

Bd(x)/(2N)(x)

|Pα(z − y)|2 dz

+
C

d(x)n+2i

∫

Bd(x)/(2N)(x)

|Qα(z − y)|2 dz

+
C

d(x)n+2i−2m

∫

B2d(x)(x0)

|Rα(z, y)|2

|z − x0|2m
dz, (3.51)
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since the absolute value of log |z−y|
d(y) is bounded by a constant for z, x, y as in (3.51),

(3.49).
Hence, for x, y satisfying (3.49) we have

|∇i
x∇

j
yG(x, y)| ≤

C

min{d(x), d(y), |x − y|}n−2m+i+j

≈
C

max{d(x), d(y), |x − y|}n−2m+i+j
, (3.52)

for 0 ≤ i, j ≤ λ.
When n is odd, the same argument implies the following estimate on a regular

part of Green function

|∇i
x∇

j
yS(x, y)| ≤

C

min{d(x), d(y), |x − y|}n−2m+i+j

≈
C

max{d(x), d(y), |x − y|}n−2m+i+j
, (3.53)

for 0 ≤ i, j ≤ λ, and x, y satisfying (3.49). If n is even, however, we are led to a
bound

|∇i
x∇

j
yS(x, y)| ≤

C

min{d(x), d(y), |x − y|}n−2m+i+j
×

×

(

C′ + log
diamΩ

max{d(x), d(y), |x − y|}n−2m+i+j

)

≈
C

max{d(x), d(y), |x − y|}n−2m+i+j
×

×

(

C′ + log
diamΩ

max{d(x), d(y), |x − y|}n−2m+i+j

)

(3.54)

for 0 ≤ i, j ≤ λ.

The final bounds for the Green function are a combination of estimates
(3.24), (3.25), (3.41), (3.42), (3.48), (3.52). It helps to observe that the regions
of (x, y) ∈ Ω × Ω in (3.24), (3.25) are disjoint from those in (3.41), (3.42),
(3.48). The condition |x − y| ≤ N−1 max{d(x), d(y)} excludes the possibility of
|x − y| ≤ N−1 max{d(x), d(y)}. This is, in particular, due to (3.38). Also, the
bound (3.52) is the same as (3.24), (3.25), (3.41), (3.42) for the case when d(x),
d(y) and |x − y| are all comparable. Hence, it can be suitably absorbed. Finally,
it is straightforward to check that

C′ + log
min{d(x), d(y)}

|x − y|
≈ log

(

1 +
min{d(x), d(y)}

|x − y|

)

(3.55)

for |x − y| ≤ N−1 max{d(x), d(y)}.
Analogously, the desired estimates on the regular part of the Green function

can be drawn from (3.29), (3.30), (3.39), (3.40). (3.45), (3.53), (3.54). �
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4. Applications: estimates on solutions of the Dirichlet problem

Green function estimates proved in Section 3 allow us to investigate the solutions
of the Dirichlet problem for the polyharmonic equation for a wide class of data.

Proposition 4.1. Let Ω ⊂ R
n be a bounded domain and assume that n ∈ [3, 2m +

1] ∩ N is odd. Consider the boundary value problem

(−∆)mu =
∑

|α|≤m−n
2 + 1

2

cα∂αfα ∈ W−m,2(Ω), u ∈ W̊m,2(Ω). (4.1)

Then the solution satisfies the estimate

|∇m−n
2 + 1

2 u(x)| ≤ C
∑

|α|≤m−n
2 + 1

2

∫

Ω

d(y)m−n
2 + 1

2−|α| |fα(y)|

|x − y|
dy, x ∈ Ω,(4.2)

whenever the integrals on the right-hand side of (4.2) are finite. The constant C
in (4.2) depends on m and n only.

In particular, there exists a constant CΩ > 0 depending on m, n and the

domain Ω such that

‖∇m−n
2 + 1

2 u‖L∞(Ω) ≤ CΩ

∑

|α|≤m−n
2 + 1

2

‖d(·)m−n
2 − 1

2−|α|fα‖Lp(Ω), (4.3)

for p > n
n−1 , provided that the norms on the right-hand side of (4.3) are finite.

Proof. Indeed, the integral representation formula

u(x) =

∫

Ω

G(x, y)
∑

|α|≤m−n
2 + 1

2

cα∂αfα(y) dy, x ∈ Ω, (4.4)

follows directly from the definition of Green function. It implies that

∇m−n
2 + 1

2 u(x) =
∑

|α|≤m−n
2 + 1

2

cα(−1)|α|

∫

Ω

∇
m−n

2 + 1
2

x ∂α
y G(x, y)fα(y) dy.(4.5)

Furthermore, due to the estimate (3.4) with i = j = m − n
2 + 1

2 we have
∫

Ω

∣

∣

∣
∇

m−n
2 + 1

2
x ∇

m−n
2 + 1

2
y G(x, y)

∣

∣

∣
|f(y)| dy ≤ C

∫

Ω

|f(y)|

|x − y|
dy, (4.6)

while the bounds in (3.5) can be used to show that for every j ≤ m − n
2 − 1

2

∫

Ω

∣

∣

∣
∇

m−n
2 + 1

2
x ∇j

yG(x, y)
∣

∣

∣
|f(y)| dy ≤ C

∫

Ω

min







1,

(

d(y)

|x − y|

)m−n
2 + 1

2−j






×

×
1

|x − y|
n
2 −m+ 1

2 +j
min

{

|x − y|

d(x)
,
|x − y|

d(y)
, 1

}
n
2 −m+ 1

2+j

|f(y)| dy. (4.7)
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We split the latter integral to the cases |x− y| ≤ N−1d(y) and |x− y| ≥ N−1d(y)
with N ≥ 25 (as in Theorem 3.1). Recall that according to (3.38) in the first case
d(x) ≈ d(y) and therefore

min

{

|x − y|

d(x)
,
|x − y|

d(y)
, 1

}

≈
|x − y|

d(y)
when |x − y| ≤ N−1d(y), (4.8)

while in the second case d(x) ≤ |x − y| + d(y) ≤ (1 + N)|x − y|, so that

min

{

|x − y|

d(x)
,
|x − y|

d(y)
, 1

}

≈ C when |x − y| ≥ N−1d(y). (4.9)

Hence, the expression on the right-hand side of (4.7) can be further estimated by

C

∫

y∈Ω: |x−y|≤N−1d(y)

1

|x − y|
n
2 −m+ 1

2+j

(

|x − y|

d(y)

)
n
2 −m+ 1

2+j

|f(y)| dy

+ C

∫

y∈Ω: |x−y|≥N−1d(y)

(

d(y)

|x − y|

)m−n
2 + 1

2−j
1

|x − y|
n
2 −m+ 1

2 +j
|f(y)| dy

≤ C

∫

y∈Ω: |x−y|≤N−1d(y)

d(y)m− n
2 − 1

2−j |f(y)| dy

+ C

∫

y∈Ω: |x−y|≥N−1d(y)

d(y)m−n
2 + 1

2−j |f(y)|

|x − y|
dy

≤ C

∫

Ω

d(y)m−n
2 + 1

2−j |f(y)|

|x − y|
dy, (4.10)

as desired.

This finishes the proof of (4.2) and (4.3) follows from it via the mapping
properties of the Riesz potential. �

Proposition 4.1 has a natural analogue for the case when the dimension is
even. The details are as follows.

Proposition 4.2. Let Ω ⊂ R
n be a bounded domain and assume that n ∈ [2, 2m]∩N

is even. Consider the boundary value problem

(−∆)mu =
∑

|α|≤m−n
2

cα∂αfα ∈ W−m,2(Ω), u ∈ W̊m,2(Ω). (4.11)

Then the solution satisfies the estimate

|∇m−n
2 u(x)| ≤ C

∑

|α|≤m−n
2

∫

Ω

d(y)m−n
2 −|α| log

(

1 +
d(y)

|x − y|

)

|fα(y)| dy, (4.12)

for all x ∈ Ω, whenever the integrals on the right-hand side of (4.12) are finite.

The constant C in (4.12) depends on m and n only.
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In particular, for every ε ∈ (0, 1) there exists a constant CΩ,ε > 0 depending

on m, n, ε and the domain Ω such that

‖∇m−n
2 u‖L∞(Ω) ≤ CΩ,ε

∑

|α|≤m−n
2

∥

∥

∥
d(y)m− n

2 −|α|+εfα

∥

∥

∥

Lp(Ω)
, (4.13)

for all p > n
n−ε , provided that the norms on the right-hand side of (4.13) are finite.

Proof. The argument is fairly close to the proof of Proposition 4.1. We write

∣

∣∇m−n
2 u(x)

∣

∣ ≤ C
∑

|α|≤m−n
2

∫

Ω

∣

∣

∣
∇

m−n
2

x ∇|α|
y G(x, y)

∣

∣

∣
|fα(y)| dy, (4.14)

for every x ∈ Ω, and split the integrals on the right-hand side according to whether
|x − y| ≤ N−1d(y) or |x − y| ≥ N−1d(y), N ≥ 25. Then using (4.8) and (4.9) we
bound each term on the right-hand side of (4.14) by

C

∫

y∈Ω: |x−y|≤N−1d(y)

1

|x − y|
n
2 −m+|α|

(

|x − y|

d(y)

)
n
2 −m+|α|

×

× log

(

1 +
d(y)

|x − y|

)

|fα(y)| dy

+ C

∫

y∈Ω: |x−y|≥N−1d(y)

(

d(y)

|x − y|

)m−n
2 −|α|

1

|x − y|
n
2 −m+|α|

×

× log

(

1 +
min{d(y), d(x)}

|x − y|

)

|fα(y)| dy, (4.15)

However, if |x − y| ≥ N−1d(y) and hence, d(x) ≤ (N + 1)|x − y|, we have

log

(

1 +
min{d(y), d(x)}

|x − y|

)

≈ C ≈ log

(

1 +
d(y)

|x − y|

)

. (4.16)

Therefore, both terms in (4.15)are bounded by

C

∫

Ω

d(y)m− n
2 −j log

(

1 +
d(y)

|x − y|

)

|fα(y)| dy, (4.17)

which leads to (4.12).

Finally, for every 0 < ε < 1 there is Cε > 0 such that log(1 + x) ≤ Cεx
ε,

x > 0, which implies that

|∇m−n
2 u(x)| ≤ Cε

∑

|α|≤m−n
2

∫

Ω

d(y)m−n
2 −|α|

(

d(y)

|x − y|

)ε

|fα(y)| dy, (4.18)

for all x ∈ Ω, 0 < ε < 1.



Polyharmonic Green function 15

Then, by the mapping properties of the Riesz potential we recover an estimate

‖∇m−n
2 u‖L∞(Ω) ≤ CΩ,ε

∑

|α|≤m−n
2

∥

∥

∥
d(y)m−n

2 −|α|+εfα

∥

∥

∥

Lp(Ω)
, p >

n

n − ε
, (4.19)

which leads to (4.13). �
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