Approximate Approximations on nonuniform grids

Flavia Lanzara, Vladimir Maz’ya, Gunther Schmidt

We present an extension of approximate quasi-interpolation on uniformly dis-
tributed nodes, to functions given on a set of nodes close to an uniform, not neces-
sarily cubic, grid.

1 Introduction

The method of approximate quasi-interpolation and its first related results were proposed in
[5] and [6]. The method is characterized by a very accurate approximation in a certain range
relevant for numerical computations, but in general the approximations do not converge in
rigorous sense. For that reason such processes were called approzimate approzimations.
Suppose we want to approximate a smooth function u(x), x € R", when we prescribe the
values of u at the points of an uniform grid of mesh size h. We fix a positive parameter D
and we choose a sufficiently smooth and rapidly decaying at infinity function 7 - the generating
function - such that the linear combination of dilated shifts of 1 forms an approximate partition

of the unity i.e.
D2 (5—_ m) ~1.
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meZ"

The method consists in approximating the function « at the point x by a linear combination of
the form

X — hm
My, pu(x) = D™"/? Z u(hm)n (7> , x € R". (1.1)
i hvD

This type of formulas is known as quasi-interpolants and they have the property that M}, pu(x)
approximates u(x), but My pu(x) does not converge to u(x) as the grid size h tends to zero.
However one can fix D such that the approximation error is as small as we wish so that the non-
convergence is not perceptible in numerical computations (see [9], [10]). On the other hand, the
simplicity of the generalizations to the multi-dimensional case together with a great flexibility
in choosing the generating function 7 compensate the lack of convergence.

The above mentioned flexibility is important in the applications because the generating func-
tion 7 can be selected so that integral and pseudo-differential operators of mathematical physics
applied to n have analitically known expressions, obtaining semianalytic cubature formulas for
these operators (see [8], [11], [13] and the review paper [14]). In some cases, e.g. for potentials,
the cubature formulas converge even in a rigorous sense.

Another important application of the method is the possibility to develop explicit semi-
analytic time marching algorithms for initial boundary value problems for linear and non linear
evolution equations (see [7], [2]).

Quasi-interpolation formulas similar to (1.1) preserve the fundamental properties of approx-
imate quasi-interpolation if the grid is a smooth image of the uniform one (see [12]) or if the
grid is piecewise uniform (see [1]). The method of approximate quasi-interpolation has been



generalized to functions given on a set of nodes close to a uniform, not necessarly cubic, grid in
[3]. More general scattered grids have been considered in [4].

To illustrate the unusual behavior of approximate approximations we assume n(z) = o=’ /T
as generating function and the following quasi-interpolant for a function » on R:

o0

Mh,D?lf(m):\/i_D Z u(hm)e=E=hm)* (PR 4 e . (1.2)

The application of Poisson’s summation formula to the function

m=—00

O, D) =

mz S

m=—00

yields to these equivalent representations for

OK,D)=1+2 Z e~ P cos 2mut

v=1
and

o0
D)= —4r Z ve™™ PV gin 27 v,
We deduce that

0 D) -1 <2) e P <2¢(D);  |O(E,D)[ <4An Y ve P < dme(D)

v=1 v=1

with

e(D)=e""P 4 O P).

The rapid exponential decay ensures that we can choose D large enough such that ¢(D) can

be made arbitrarly small, for example less that the needed accuracy or the machine precision.
e—(&—m)?/D

Therefore the integer shifts of the Gaussian { ———,m € 7} form an approximate partition
of unity for large D.

If the approximated function w is smooth enough, the quasi-interpolant (1.2) can be repre-
sented in the form (see [6])

My pu(z) = u(z)+
x hD
u(@) (6(3,D) = 1) + u'(2)=5-0'(3, D) + Rap(2)

where the remainder term admits the estimate
|Rip(z)| < ¢ Dh* max |u”(z)|
xem
with a contant ¢ not depending on h, D, u.
The difference between M), pu(z) and u(z) can be estimated by
| My pu(z) — u(z)| < ¢Dh? maﬁ(|u”(m)|—}—
re

(D) (2lu(z)] + %DIU'(w)I)- (1.3)



This means that, above the tolerance (1.3), the quasi-interpolant (1.2) approximates u like
usual second order approximations and, if D is chosen appropriately, any prescribed accuracy
can be reached. Then the non-convergent part - called saturation error because it does not
converge to 0 - can be neglected and the approximation process behaves like a second order
approximation process.

2  Quasi-interpolation on uniform grids

One of the advantages of the method is that quasi-interpolants in arbitrary space dimension
n with approximation order larger than two, up to some prescribed accuracy, have the same
simple form as second order quasi-interpolants. The quasi-interpolant in R™ has the form

_ ] x — hj
Mipu(x) =D 3" u(hj) n | —= (2.1)
P jezz; ( /D )

with the generating function 7 in the Schwartz space S(R") of smooth and rapidly decaying func-
tions. Maz’ya and Schmidt have proved that formula (2.1) provides the following approximation
result.

Theorem 2.1 ([12]) Suppose that
/n n(y)dy =1, /IR" vin(y)dy=0,Va:1<|a|< N (2.2)

and w € WY (R?). Then

| Mipu(x) = u(x)| < e, (VDR)Y||Vvu

Loo T

Nl * u(x
> (#) 2. 7|Vka,( ! > |0 Fu(v/D)
0 || =k veZM0

with the constant ¢, n not depending on u, h and D.
Moreover for any ¢ > 0, there exists D > 0 such that for all o, 0 < |a] < N,

Z 0% Fn(vVDv)| < e.
veZ"\0
Viu(r) denotes the vector of all partial derivatives {0%u(z)}|q=x and Fn denotes the Fourier

transform of . We deduce that for any ¢ > 0 there exists D > 0 such that M}, pu(x) approxi-
mates u(x) pointwise with the estimate (see [9],[10])

N-1
Lo € 3 (BWD)H|Viu(x)].

k=0

My pu(x) = u(x)| < e (VDR[| iu

Therefore My, pu behaves like an approximation formula of order N up to the saturation term
that can be ignored in numerical computations if D is large enough. Similar estimates are also
valid for integral norms (see [8]).

Several methods to construct generating functions satisfying the moment conditions (2.2)
for arbitrarly large N have been developed (see [10], [12]). In fact any sufficiently smooth and
rapidly decaying function n with Fn(0) # 0 can be used to construct new generating functions
nn satisfying the moment conditions for arbitrary large NV as shown in the next theorem.



Theorem 2.2 ([10]) Let n € S(R"™) with Fn(0) # 0. Then

N-1

v (x) =
|e|=0

0 (Fn ()
a!(2mi)lel

0°n(x)

satisfies the moment conditions (2.2).

An interesting example is given by the Gaussian function n(x) = e=Ix* where the application
of Theorem 2.2 leads to the generating function

& (-1 2 2
mar(x) = 72 37 e A = LA (e
7=0

with N = 2M and the generalized Laguerre polynomial

vy~ [ d\"
0 = L (1) et s -,

Hence the quasi-interpolant

.12
x — hj
D

My pu(x) = (D)2 3" u(hj) L)
JEZ™

is an approximation formula of order N = 2M plus the saturation term.

The quasi-interpolation formula and the corresponding approximation results have been
generalized in [1] and [3] to the case when the values of u are given on uniform grids, not
necessarily cubic, of this type

Api={hAj, jez"}

with a real nonsingular n x n-matrix A.
Under the same assumptions on the generating function 7, it is always possible to choose
D > 0 such that the quasi-interpolant

dot A x — hAj
Mu,ulx) = De:/zz (hati) n(*=) (2.3)

satisfies an estimate similar to that obtained in Theorem 2.1 for uniform cubic grid i.e.

N-1
(M, u(x) = u(x)] < e n (VDN [Vivull1, + ¢ Y (hWVD)F[Viu(x)| (2.4)
k=0

for any € > 0.

The first application of formula (2.3) is the construction of quasi-interpolants on a regular
triangular grid in the plane, as indicated in Figure 1. The vertices yjA of a partition of the plane
into equilateral triangles of side length 1 are given by

1 1/2
8 = Aj; A:( )
0 3/2

The application of formula (2.3) to the nodes of the regular triangular grid of size A
A = {hyi} = {hAj} ;e
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Figure 1: Tridiagonal grid
gives the following quasi-interpolant

x — hy2

M) = 5537wy n(= )

X — yJA
VD

forms an approximate partition of unity. Using Poisson’s summation formula one can bound the
main term of the saturation error by

\/§ X_y'A —2mi “lyv
13 S| T | Laree ey,
J

e’ VEZQ\O

3
The system of functions {%n( )}, centered at the points of the uniform triangular grid,

1o —lx/?

By assuming as generating function the Gaussian n(x) = 77"'e we obtain

| V3 oy PD
27D
€7’
< Z e—47r2D(yf—y1y2+y§)/3 — 6e—47r2D/3 + 0(e—4rr2'D) )
(v1,12)#(0,0)

ST " : V3 —|x—y.A|2/D_ . . .
In Figure 2 the graph of the difference 225 3. -2 e i 1 is plotted with two different

values of D.

JEZ

As second example we construct quasi-interpolants with functions centered at the nodes of
a regular hexagonal grid in the plane, as depicted in Figure 3. We obtain a hexagonal grid if,
from the nodes of a regular triangular grid of side length 1, the nodes of another triangular
grid of side length /3 are removed (see Figure 4). Therefore the set of nodes X° of the regular
hexagonal grid are given by

X" = {Aj}jEZQ \ {Bj}jeyﬁ

( 3/2 0 )
B =
32 V3

and Bj, j € 7%, denote the removed nodes.

where
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Figure 2: The graph of 2\1<”§D ZJ.EZz e =Y 1P _ | when D =2 (on the left) and D = 3 (on the right).
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Figure 3: Hexagonal grid

The quasi-interpolant on the hA-scaled hexagonal grid
hX® = {hAj}j522 \ {th}jeZ2 (2.5)

is defined as

o . 3V3 o X — hy*
Miu(x) = Ey;(ou(hy )n(W) .

For (2.5) the quasi-interpolant Mju can be written in an equivalent way

Min() = 20 ( 5 uhayn () - 5wy (T
jez?

jez?

Therefore we derive that under the decay conditions and the moment conditions on 7 the quasi-
interpolant Mju provides the estimate (2.4) for sufficiently large D.
From Poisson’s summation formula

> n(x\;gh» = d:t)A <1+ Y fn(\/ﬁ(At)"1V)em("’(“)_l”)),
jeZQ VEZ2\O




Figure 4: Nodes of a hexagonal grid. The eliminated triangular grid Bj is depicted with dashed
lines.

we obtain an approximate partition of unity centered at the hexagonal grid:

V3 x—y° x — Aj x — Bj
L) - B L -

cexe JeZ je

Z fn(\/ﬁ(Af)—l,,)e?wi(x,(At)‘lv) _% Z fn(\/fB(Bt)—ly)e?rri(x,(Bt)—ly).
veZ\o veZA\0

DN o

In the case of the exponential n(x) = 7~ 'e =" we have estimated the main term of the

saturation error by

1 — ﬂ —x-y°|*/D (2.6)
47D ¢ '
yoEX®
< 1 (36 —4m*D(vi—va+1i) /3 +e—4Tr2D(uf—u1u2+u§)/9)
-2

_ 36—47T2D/9 + O(e—4vr2D/3) )
In Figure 5 the difference (2.6) is depicted for two different values of D.
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Figure 5: The graph of BV~ e XY 1D _ | when D = 4 (on the left) and D = § (on the right).
g 47D y°eX



3 Results for nonuniform grids

Next we consider an extension of the approximate quasi-interpolation formulas on uniform grid
to the case that the data are given on a set of scattered nodes X = {x;} C R” close to a uniform
grid in the sense that we specify in Condition 1.

Condition 1 There exists a uniform grid A such that the quasi-interpolants

x — hy.
M u —n/2 hy Y
o= 52

approzimate sufficiently smooth functions u with the error
N-1
[Mhpu(x) = u(@)| < eny (WD) [Vl @y +¢ D (VD) [ Viu(x)] (3.7)
k=0

for any ¢ > 0.
Let X3, be a sequence of grids with the property that for k1 > 0 not depending on h and any
y; € A the ball B(hy;, hky) contains nodes of Xj,.

For example, if n satisfies the conditions of Theorem 2.1, we may assume as A the cubic grid
{j} or, in the plane, the triangular grid {y2} or the hexagonal grid {y°}.

In order to construct an approximate quasi-interpolant which use the data at the nodes of
X}, we introduce the following definition.

(N —14n)!
n(N = 1)!
called star of x; and denoted by st (x;) if the Vandermonde matriz

Vin={ (=)} Jal =1, N - 1,

Condition 2 Denote by X; € X}, the node closest to hy; € hA. There exists ky > 0 such that
for anyy; € A the star st (X;) C B(X;, hky) with |det V;,| > ¢ > 0 uniformly in h.

Definition 3.1 Let x; € X;. A collection of my = — 1 nodes x;, € X}, will be

is not singular.

Let us denote by {bajk}, la| =1,...,N — 1, x4 € st (X;), the elements of the inverse matrix
of V; », and consider the functional

i (u) = u(%; (1 ( ) 3 ba])k)
|a]=1 xp €st (X;)
N 1 ~
+ Z u bak<yj )
xkest(ij) |a|=1

The functional F};(u) depends on the values of u at the nodes of st (X;) UX; i.e. my + 1 points
close to hyj.
Let us define the following quasi-interpolant which uses the values of u on X},

My, pu(x _”/ZZF7 ) ( \/}%y]> (3.8)
YJEA

The following theorem states that, under the above mentioned conditions on the grid, My, pu
has the same behavior as in the case of uniform grids.



Theorem 3.1 ([3]) Under the Conditions 1 and 2, for any € > 0 there exists D > 0 such that
the quasi-interpolant (3.8) approzimates any u € WL (R?) with

N-1
M pu(x) — u(x)] < e AVITwally gy + X (WD) T5u()],
k=0

where ¢y, p does not depend on u and h.

One of the motivations of approximate approximations is the construction of cubature for-
mulas for integral operators of convolution type

Kulx) = [ kex = y)uly) dy. (3.9

A cubature formula of the multi-dimensional integral (3.9) can be obtained if the density u is
replaced by the quasi-interpolant My pu. Then

K My, pu(x) = D"/ Z / k(x=y)n (yh\/h_y]>d

Y, €A

= A" Z Fjn(u) /Rnk(h\/ﬁ(xh_i\/}%yj —Y))W(Y)dy

Y, EA

is a cubature formula for (3.9) with a generating function 5 chosen such that 7 can be computed
analytically or at least by some efficient quadrature method.

In (3.8) the generating function is centered at the nodes of the uniform grid hA. This can
be helpful to design fast methods for the approximation of (3.9). If we define

ol = /m" k(h(yr —y; = VDy)) n(y)dy

we reduce to the computation of the following sums

1=

KMy pu(hye) = b" Z Fyn(u)all
y;EA

which provide an approximation of (3.9) at the mesh points hyy.
A generalization of the method approximate approximations to functions with values given
on a rather general grid was obtained in [4].

4 Numerical Experiments

The quasi-interpolant My, pu in (3.8) was tested by one- and two-dimensional experiments and
the results of the numerical experiments confirm the predicted approximation orders. In all
cases the grid X}, is chosen such that any ball B(hj,h/2), j € Z", n =1 or n = 2, contains one
randomly chosen node, which we denote by x;.

The one-dimensional case. Figures 6 — 9 show the graphs of M pu — u for different

smooth functions u using the basis function 5(z) = 7=/2e~*" (Fig. 6 and 7) for which N = 2,
and n(z) = 7='/2(3/2 - mQ)e_IZ) (Fig. 8 and 9) for which N = 4, for different values of h. We
have chosen the parameter D = 4 in order to keep the saturation error less than 1076
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Iigure 6: The graphs of M} pu—u with n(z) = 7% D = 4 st (z;) = {41}, when u(z) = sin(xz)
(on the left) and u(z) = cos(z). Dashed and solid lines correspond to h = 1/32 and h = 1/64.
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Figure 7: The graphs of M, pu—u with n(z) = 712" D =4 st (x;) = {x;41}, when u(z) = sin(z)
(on the left) and u(x) = cos(z). Dashed and solid lines correspond to h = 1/128 and h = 1/256.

The two-dimensional case. We depict in Figures 10 and 11 the quasi-interpolation error
My, pu — u for the function u(x) = (1 + |x|?)~! and different & if generating functions of second
(with D = 2) and fourth (with D = 4) order of approximation are used. The h2- and respectively
h*-convergence of the corresponding two-dimensional quasi-interpolants are confirmed by the
L,— errors which are given in Table 1.

h D=2 D=4 h D=1 D=6
2= 18751072 | 1.57 1072 2741 4.42.107* | 9.59 .10~
27°12.21-1073 | 4.00-1073 2751295-107° | 6.61-107°
26 | 551-10"* | 1.01-1073 276 11.92.107% | 4.24-107°
27 1 1.42.10~* | 2.52.10~* 2-7 11241077 | 2.68-1077
278 13.56-10"° | 6.50-107° 2781 7.80-107% | 1.71-107%

Table 1: L., approximation error for the function u(x) = (14 [x|*)~" using My, pu with n(x) =
7= le=X N =2 (on the left), and (x) = 7=1(2 — |x|2)e=X", N = 4 (on the right).
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Iigure 8: The graphs of M pu—u with n(z) = 7r_1/2(3/2—x2)e_“”2, D =4,
when u(z) = sin(z) (on the left) and u(z) = cos(z). Dashed and solid lines
h=1/64.

st (zj) = {zj-2,xj-1, 841},
correspond to h = 1/32 and
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Figure 9: The graphs of M pu—u with n(z) = 7r_1/2(3/2—x2)e_“”2, D =4,

st (zj) = {xj2, xj-1, 2541},

when u(z) = sin(z) (on the left) and u(z) = cos(z). Dashed and solid lines correspond to A = 1/128 and

h = 1/256.

Iigure 10: The graph of My, pu —u with D = 2, n(x) = rle=Ix® N =
(on the left) and A = 277 (on the right).
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