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Abstract

We prove that nonsmooth quasilinear parabolic systems admit a local solution in
Lp strongly differentiable with respect to time over a bounded three-dimensional
polyhedral space domain. The proof rests essentially on new elliptic regularity
results for polyhedral Laplace interface problems for anisotropic materials. These
results are based on sharp pointwise estimates for Green’s function, which are also
of independent interest. To treat the nonlinear problem, we then apply a classi-
cal theorem of Sobolevskii for abstract parabolic equations and recently obtained
resolvent estimates for elliptic operators and interpolation results. As applications
we have in mind primarily reaction-diffusion systems. The treatment of such equa-
tions in an Lp context seems to be new and allows (by Gauss’ theorem) the proper
definition of the normal component of currents across the boundary.

1. Introduction

Various phenomena in physics, chemistry and biology are described by systems
of evolution equations like

u′
k − ∇ · (µkJk(u)∇uk) = Rk(u,∇u) , u(T0) = u0 ; u = (u1, . . . , um) (1.1)

(see [1] and the references therein). In many applications, the data describing the
properties of the medium involve discontinuities. The aim of this work is to estab-
lish conditions on the piecewise constant coefficients µk under which (1.1) admits
a unique solution from a space

C([T0, T ], Lp(�; R
m)) ∩ C1((T0, T ], Lp(�; R

m)).

Throughout this paper we impose Dirichlet boundary conditions which may depend
suitably on time. The underlying three-dimensional domain � is a Lipschitz poly-
hedron, which means that � is a bounded Lipschitz domain with piecewise plane
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boundary. Further, we assume that � is partitioned into a finite set of Lipschitz
polyhedra �1, . . . , �J such that the (3 × 3)-matrix functions µk are constant on
these subdomains. The dependence of the functions Rk on ∇u is not stronger than
quadratic.

The theory of systems of the form (1.1) is well developed if � and the coeffi-
cient functions µk are smooth (see, e.g., [9] or [33]). Furthermore, existence and
uniqueness are studied exhaustively in the weak context; e.g., Hölder estimates
have long been known also in this case (see [21] or [31]).

Note that the original formulation of (1.1) in terms of balance laws takes the
form (see [29, Chapter 21])

∂

∂t

∫

�

uk dx +
∫

∂�

ν · jk dσ =
∫

�

Rk(u,∇u) dx , (1.2)

where � stands for any suitable subdomain of �. Within the variational theory
of weak solutions, however, the characteristic functions χ� of the subdomains are
not admissible test functions. Therefore the integral formulation (1.2) is equivalent
to (1.1) only if the weak solutions have some additional regularity. Moreover, the
additional regularity is also of importance for the numerical treatment of (1.1), as
the integral formulation is the basis of finite-volume methods.

The main advantage of our work in comparison to the concept of weak solutions
is the strong differentiability of the solution with respect to time and the fact that
the divergence of each corresponding current jk = µkJk(t,u)∇uk is a function,
not only a distribution. In a strict sense, only this justifies the application of Gauss’
theorem to calculate the normal components of the currents over boundaries of
(suitable) subdomains.

We address a general class of possible applications involving reaction-diffu-
sion systems and heat conduction in Section 5. Though at this point our results
are restricted to Dirichlet boundary conditions, we feel that the approach can be
extended to mixed boundary conditions, which occur, e.g., in modelling semicon-
ductor devices [7].

Global existence results for (1.1) cannot be expected within this rather general
approach (see, e.g., [6] or [2] and the references therein) and are thus outside the
scope of this paper.

Our regularity result for (1.1), Theorem 6.10, rests upon the classical theorem
of Sobolevskii on abstract quasilinear parabolic equations in Banach spaces and
estimates for elliptic transmission problems. The problem is to find an adequate
function space with respect to which the hypotheses of this theorem can be veri-
fied; see Sections 5 and 6. In the three-dimensional case, this question comes down
to checking whether the linear operators

∇ · µ∇ : H 1,q
0 (�) �→ (H

1,q ′
0 (�))′ (1.3)

are topological isomorphisms for some q > 3 and any piecewise constant matrix
µ = µk occurring in (1.1). The operator (1.3) corresponds to an interface (or trans-
mission) problem for the Laplacian, with different anisotropic materials given on
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the polyhedral subdomains �1, . . . , �J of � and with Dirichlet conditions given
on ∂�.

Unfortunately, in contrast to the pure Laplacian on a Lipschitz domain (see [15,
Theorem 0.5]), the solutions to such transmission problems only belong to L2+ε
near vertices and edges where ε > 0 might be arbitrary small in general. This is
even true for polygonal Laplace interface problems with four isotropic materials;
see [16]. Therefore, a large part of this article is devoted to the optimalLq regularity
for (1.3).

It is well known that the singularities of solutions to elliptic boundary-value
problems near corners and edges can be characterized in terms of the eigenvalues
of certain polynomial operator pencils on domains of the unit sphere or the unit
circle. We refer to [20] in the case of the Dirichlet and Neumann problems and to
[11] for the polyhedral Laplace interface problem with two isotropic materials. To
our knowledge, the corresponding analysis for several anisotropic materials has not
been done so far. This will be the topic of Sections 2–4.

To avoid the rather complicated discussion of the optimal regularity near ver-
tices, we exploit the somewhat surprising fact that if the solution of the interface
problem belongs to Lq for some q > 3 near each interior point of the interface and
boundary edges, then the operator (1.3) is in fact an isomorphism; see Sections 2
and 4. Thus we are able to reduce the regularity result for (1.3) to that for an inter-
face problem on dihedral angles having one common edge; see Theorem 4.1. The
proof of this relies essentially on sharp pointwise estimates of Green’s function,
which will be presented in detail in Section 3.

The main result of our linear regularity theory, Theorem 2.3, says that the oper-
ator (1.3) is an isomorphism provided that

q ∈ [2, 2/(1 − λ̂�))
and that the spectral parameter λ̂� (cf. Definition 2.1) satisfies the inequality

λ̂� >
1
3 . (1.4)

Note that λ̂� can be expressed in terms of the eigenvalues of certain transmission
problems on the unit circle, which are obtained applying the partial Fourier trans-
form along an edge and the Mellin transform with respect to radial direction (see
Section 3.5).

This result is sufficient for the treatment of the quadratic gradient terms in (1.1)
if the Banach space is a suitably chosen Lp space. However, the condition (1.4)
imposes a rather strong assumption on the geometry of the subdomains�1, . . . , �J
and the coefficient µk , or equivalently, on the eigenvalues of certain pencils of
ordinary differential operators. We refer to Section 3.6 for a discussion of this
condition, which can certainly be checked for many heterostructures of practical
interest.

Let us introduce some notation. The space of complex-valued, Lebesgue mea-
surable, p-integrable functions on �, p ∈ [1,∞), is denoted by Lp(�), whereas
L∞(�) denotes the space of essentially bounded functions on �.

We use Hs,q(�), s ∈ [0, 1], to denote the space of Bessel potentials according
to the differentiability index s and integrability index q on the set � (see [32]).
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(Note that for s = 1 these spaces coincide with the Sobolev spaces W 1,q(�).) By
H
s,q
0 (�) we denote the closure of C∞

0 (�) in Hs,q(�) .

If s ∈ [−1, 0], then Hs,q ′
(�) denotes the dual to H−s,q(�) and Hs,q ′

0 (�)

denotes the dual to H−s,q
0 (�) when 1/q + 1/q ′ = 1 holds.

For two Banach spaces X and Y we denote the space of linear, bounded oper-
ators from X into Y by B(X, Y ). If X = Y , then we abbreviate B(X). The norm
in a Banach space X will be always indicated by ‖ · ‖X; only in obvious cases the
subscript sometimes will be omitted.

2. A linear regularity result: Reduction to a wedge problem

In the first part of the paper we study Lq regularity of weak solutions of the
Dirichlet problem

−∇ ·	(x)∇u = φ , x ∈ � , u|∂� = 0 , (2.1)

with a real, symmetric and strictly positive-definite matrix function 	(x). The
domain � is a Lipschitz polyhedron partitioned into a finite set of polyhedra
�1, . . . , �J such that 	 is constant on each subdomain �j . We are interested
in determining under which conditions on � and 	 the solution of (2.1) satisfies
u ∈ H 1,q

0 (�) if the right-hand side φ ∈ H−1,q
0 (�) for some q > 3.

To formulate the result, we need a parameter λ̂� which can be obtained from
the geometry of � and the coefficient 	(x) in the following way:

The matrix function 	 is constant on polyhedral subdomains of � and has
therefore jumps at plane interfaces which intersect at certain interior or boundary
edges. Let M be one of these edges or one of the edges of the polyhedron �.
Choose a new coordinate system (y1, y2, y3)with origin at a point P in the interior
of M such that the direction of M coincides with the y3-axis. Denote by 	̃(y) the
piecewise constant matrix function which coincides in a neighbourhood of P with
A−1	(A−1(y + P))A, where A denotes the corresponding orthogonal transfor-
mation matrix, and satisfies 	̃(ty′, y3) = 	̃(y′, 0), y′ = (y1, y2), for all y3 ∈ R,
t > 0.

We assign to M a positive real number by solving the following nonlinear
eigenvalue problem:

Let r = |y′|, θ be polar coordinates in the y′ plane and set U = rλu(θ),
V = rλv(θ), λ ∈ C, where the functions u, v are given on the intersection σ of the
unit sphere S1 in the y′-plane with the support �̃ of 	̃(y), σ = �̃ ∩ S1. If M is
an interior edge of �, then σ = S1 and we denote by H = H 1(S1) the periodic
Sobolev space on the unit circle. Otherwise we set H = H 1

0 (σ ). Let 	̃′(y′) be the
upper left 2 × 2 block of 	̃(y) and define the operator �(λ) by

〈�(λ)u, v〉σ def= 1

log 2

∫

{1<|y′|<2}∩�̃
	̃′(y′)∇y′ U · ∇y′ V dy′ , u, v ∈ H , (2.2)
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where 〈·, ·〉σ is the L2(σ ) duality. In Section 3 we will show that the spectrum of
the operator pencil �(λ) : H �→ H′ consists of isolated eigenvalues only. Denote
by λM the eigenvalue with the smallest positive real part and set λ̂M = Re λM.

Definition 2.1. Let

λ̂�
def= min(1, λ̂M) ,

where the minimum is taken over all interior and boundary edges M of �.

Definition 2.2. We say that the matrix 	 generates an admissible decomposition
of the Lipschitz polyhedron � into the polyhedral subdomains �j (where 	 is
constant) if λ̂� > 1

3 .

The regularity result which is needed for the nonlinear problem is

Theorem 2.3. If the piecewise constant matrix 	 generates an admissible decom-
position of�, then the operator −∇·	(x)∇ : H 1

0 (�) �→ H−1
0 (�) provides a topo-

logical isomorphism betweenH 1,q
0 (�) andH−1,q

0 (�) for all q ∈ [2, 2/(1 − λ̂�)).
Since ‖∇ · ‖

Lq
′ is an equivalent norm on H 1,q ′

0 (�), any φ ∈ H
−1,q
0 (�) =

(H
1,q ′
0 (�))

′
can be represented as ∇ · f with f ∈ Lq(�)3, where the divergence

is understood in the distributional sense. Hence, Theorem 2.3 is proved if we show
that the unique solution u of the variational equation∫

�

	(x)∇u · ∇ ϕ dx =
∫

�

f · ∇ ϕ dx ∀ϕ ∈ H 1
0 (�) (2.3)

satisfies the estimate

‖∇u‖Lq(�) � c ‖f ‖Lq(�) (2.4)

with a constant c not depending on f .
The proof of (2.4) is based on local estimates for solutions of the Dirichlet prob-

lem which can be obtained from model problems in an infinite wedge. Here we
use the integral representation by Green’s functions which are studied in Section 3.
First we prove a result for differential operators in R

n with measurable coefficients,
which will be applied in Section 4 to establish Theorem 2.3.

2.1. A preliminary result

Let� be a bounded polyhedral domain in R
n, n � 3, and consider the Dirichlet

problem

L(x, ∂)u
def= ∇ · A(x)∇u = ∇ · g , x ∈ � , u|∂� = 0 , (2.5)

with g ∈ Lq(�)n. HereA(x) is an n×n symmetric matrix of real, measurable and
bounded functions satisfying

a |ξ |2 � A(x) ξ · ξ � b |ξ |2 for all ξ ∈ R
n
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uniformly in x ∈ � with 0 < a � b. Using Green’s function G(x, y), which
satisfies ∫

�

A(y)∇yG(x, y) · ∇ϕ dy = ϕ(x) , ϕ ∈ H 1
0 (�) ,

for all x ∈ �, we can write the solution of (2.5) as

u(x) = −
∫

�

∇yG(x, y) · g(y) dy . (2.6)

For almost allx ∈ � the Green function belongs to the setH 1(�\Bρ(x))∩W 1,p
0 (�)

for all ρ > 0 and 1 � p < n/(n − 1); cf. for example [30]. Here and in the fol-
lowing, Bρ(x) denotes the open ball in R

n with radius ρ and centre x. Moreover,
for almost all y ∈ � \ {x} the estimate

0 � G(x, y) � c

|x − y|n−2 (2.7)

holds and, if |x − y| < dist(x, ∂�)/2, then additionally

G(x, y) � c

|x − y|n−2 , (2.8)

where the constants depend on the ellipticity constants of A(x).
By the De Giorgi-Nash theorem the solution of (2.5) is Hölder continuous.

More precisely, there exists α ∈ (0, 1) such that v ∈ Cα(�), and for any x ∈ �
and 0 < ρ < R,

sup
�∩Bρ(x)

u − inf
�∩Bρ(x)

u � c ρα
(
R−α sup

�∩BR(x)
|u| + ‖g‖Lq

)
, (2.9)

where C and α depend on the ellipticity constants of A, n, � and R (cf. [10]).

Theorem 2.4. Let n < q < n/(1−α). For any x0 ∈ � the solution of (2.5) satisfies
∫

�

|u(x)− u(x0)|q dx

|x − x0|q � c

∫

�

|g|qdx .

The proof relies on several lemmas. In the following, let x0 = 0 and set Bρ =
Bρ(0).

Lemma 2.5. Let r > n, r ′ = r/(r − 1) . If x ∈ Bρ , then

∫

�∩Bρ
|∇yG(x, y)|r ′dy � c ρ(r−n)/(r−1)

with a constant not depending on x.
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Proof. We establish the stronger (because of Bρ ⊂ B2ρ(x)) inequality

∫

�∩B2ρ(x)

|∇yG(x, y)|r ′dy � c ρ(r−n)/(r−1)

by proving

I
def=

∫

�∩Bρ
|∇yG(0, y)|r ′dy � c ρ(r−n)/(r−1) .

We have

I � c

∞∑
k=0

(ρ 2−k)n
∫
−

C
ρ2−k

|∇yG(0, y)|r ′dy

� c

∞∑
k=0

(ρ 2−k)n
( ∫

−
C
ρ2−k

|∇yG(0, y)|2dy
)r ′/2

,

where Cδ
def= � ∩ (B2δ \ Bδ) and

∫
−
C

f dx stands for |C|−1
∫

C

f dx.

We use a Caccioppoli-type inequality for spherical layers: Let v ∈ H 1(� ∩
(B5ρ/2 \ Bρ/2)) with L(x, ∂) v = 0. Then

∫

Cρ

|∇v|2dx � c

ρ2

( ∫

�∩(B5ρ/2\B2ρ)

|v|2dx +
∫

�∩(Bρ\Bρ/2)
|v|2dx

)
. (2.10)

Because L(x, ∂)G(x, y) = 0 in�∩ (Bρ2−k+2 \Bρ2−k−1), after applying (2.10)
and (2.7) in Cρ 2−k we obtain

∫
−

C
ρ 2−k

|∇yG(0, y)|2dy � c1

(ρ 2−k)2

∫
−

�∩(B
ρ2−k+2 \B

ρ2−k−1 )

|G(0, y)|2dy

� c2

(ρ 2−k)2(n−1)
.

Thus

I � c3

∞∑
k=0

(ρ 2−k)n

(ρ 2−k)r ′(n−1)
= c3 ρ

n−r ′(n−1)
∞∑
k=0

2−k(n−r ′(n−1)) ,

and the series converges because n− r ′(n− 1) = (r − n)/(r − 1) > 0. 
�
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Lemma 2.6. Let |x| � 1
2 |y|, x, y ∈ �. Then

|G(x, y)−G(0, y)| � c |x|α
|y|n−2+α .

Proof. Set ρ = |y|. By (2.9) any solution of L(x, ∂) v = 0 satisfies

|v(x)− v(0)| � c
|x|α
ρα

sup
�∩Bρ/2

|v|

for all x ∈ �∩Bρ/2, and by (2.7) we obtainG(x, y) � c |x− y|2−n � c |y|2−n−2.

�

Lemma 2.7. Let 5
2ρ < diam(�) and |x| < 1

4ρ. Then

( ∫
−

ρ<|y|<2ρ

|∇y(G(0, y)−G(x, y))|2dy
)1/2

� c |x|α
ρn−1+α .

Proof. By (2.10)

∫
−
Cρ

|∇y(G(0, y)−G(x, y))|2dy � c

ρ2

∫
−

�∩(B5ρ/2\Bρ/2)
|G(0, y)−G(x, y)|2dy ,

and applying Lemma 2.6 gives the result. 
�

Proof of Theorem 2.4. Using the representation (2.6), we split

∫

�

|u(x)− u(0)|q dx|x|q �
∫

�

∣∣∣
∫

B4|x|

∇y(G(x, y)−G(0, y)) · g(y) dy

∣∣∣q dx|x|q

+
∫

�

∣∣∣
∫

Rn\B4|x|

∇y(G(x, y)−G(0, y)) · g(y) dy

∣∣∣q dx|x|q

def= K1 +K2 ,

where g is extended by zero onto R
n. Let n < r < q. Then from Lemma 2.5,

( ∫

�∩B4|x|

(|∇yG(x, y)|r ′ + |∇yG(0, y)|r ′)dy
)q/r ′

� c |x|q(r−n)/r ,



Solutions for Quasilinear Nonsmooth Evolution Systems in Lp 227

and Hölder’s inequality leads to

K1 � c

∫

�

dx

|x|nq/r
( ∫

B4|x|

|g(y)|rdy
)q/r

� c

∞∫

0

ρn−1−nq/rdρ
( ρ∫

0

τn−1dτ

∫

Sn−1

|g(y)|rdσ
)q/r

� c

∞∫

0

ρn−1−nq/r+q/rdρ
(
ρn−1

∫

Sn−1

|g(y)|rdσ
)q/r

� c

∫

�

|g(y)|qdy .

Since nq/r − n > 0, the second-to-last estimate follows from Hardy’s inequality.
We proceed with

K2 �
∫

�

dx

|x|q
( ∫

|y|>4|x|
|∇y(G(x, y)−G(0, y))| |g(y)| dy

)q

� c

∫

�

dx

|x|q
( ∞∫

4|x|
τn−1dτ

∫
−

B3τ \Bτ
|∇y(G(x, y)−G(0, y))| |g(y)| dy

)q
.

Here we use the fact that, for f � 0, a � 0,

∫

|y|>a
f (y) dy = log 3

∞∫

a

τn−1dτ
( 1

τn

∫

τ<|y|<3τ

f (y) dy
)
. (2.11)

Then from Lemma 2.7,

K2 �
∫

�

dx

|x|q
( ∞∫

4|x|
τn−1dτ

( ∫
−

B3τ \Bτ
|∇y(G(x, y)−G(0, y))|2dy

)1/2

×
( ∫

−
B3τ \Bτ

|g(y)|2dy
)1/2)q

� c

∫

�

dx

|x|(1−α)q
( ∞∫

4|x|
τ−αdτ

( ∫
−

B3τ \Bτ
|g(y)|2dy

)1/2)q

� c

∞∫

0

ρn−1−(1−α)q dρ
( ∞∫

ρ

τ−αdτ
( ∫

−
B3τ \Bτ

|g(y)|2dy
)1/2)q

,
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and in view of n > (1 − α)q, Hardy’s inequality leads to

K2 � c

∞∫

0

ρn−1dρ

∫
−

B3ρ\Bρ
|g(y)|qdy � c

∫

�

|g(y)|qdy . 
�

2.2. Reduction to a wedge problem

We return to the variational equation (2.3) in � ⊂ R
3 with piecewise constant

	. Let us choose a partition of unity of � which isolates the corners, let χ be one
of these cut-off functions, and define �χ = � ∩ suppχ . From
∫

�

	∇(χu) · ∇ ϕ dx =
∫

�

(χf + u	∇χ) · ∇ ϕ dx +
∫

�

ϕ (f −	∇u) · ∇χ dx

with ∣∣∣
∫

�

(χf + u	∇χ) · ∇ ϕ dx
∣∣∣ � c(‖f ‖Lq(�χ ) + ‖u‖Lq(�χ ))‖∇ϕ‖

Lq
′

and∣∣∣
∫

�

ϕ (f −	∇u) · ∇χ dx
∣∣∣ � c(‖f ‖Lq(�χ )‖ϕ‖

Lq
′ + ‖u‖Lq(�χ )‖∇ϕ‖

Lq
′ )

it follows that the function χu ∈ H 1
0 (�χ) satisfies an equation of the form

∇ ·	(x)∇(χu) = ∇ · g with ‖g‖Lq(�χ ) � c (‖f ‖Lq(�χ ) + ‖u‖Lq(�χ ))
and the constant c is independent of f and u. Then estimate (2.4) and consequently
the assertion of Theorem 2.3 follows from the imbeddingH 1,q

0 (�) ⊂ L3q/(3−q)(�),
if we show that

‖∇(χu)‖Lq � c‖g‖Lq . (2.12)

Since�χ contains exactly one of the corners, we have to consider the two cases
of an interior corner point and of a boundary vertex, where additional homogeneous
Dirichlet conditions are imposed. The case of an interior point corresponds to the
problem in the full space R

3 with a matrix 	(x) constant on infinite polyhedral
cones�j with their vertices at the originO. Hence their edges are rays originating
from O. In the case of a boundary corner point we get the Dirichlet problem in
some infinite polyhedral cone denoted byD with vertex atO, and	 is constant on
polyhedral subcones �j ⊂ D. To unify notation we set D = R

3 for the case of an
interior corner and study the problem

∇ ·	(x)∇v = ∇ · g with g ∈ Lq(D)3 (2.13)

where 	(x) is piecewise constant, satisfies 	(tx) = 	(tx), t > 0, and v = 0 on
∂D if D �= R

3.
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Lemma 2.8. DenoteDρ = Bρ∩D and suppose that in the spherical layerD3\D1/2
the solution of (2.13) satisfies

‖∇v‖Lq(D2\D1) � c
(
‖g‖Lq(D3\D1/2) + ‖v‖Lq(D3\D1/2)

)
(2.14)

for some q > 3. Then

‖∇v‖Lq(D) � c‖g‖Lq(D) .
Proof. Since the function vδ(x)

def= v(δx), δ > 0, satisfies

∇ ·	(x)∇vδ = δ−1 ∇ · gδ ,

by dilation we obtain, from (2.14),

‖∇v‖Lq(D2δ\Dδ) � c
(
‖g‖Lq(D3δ\Dδ/2) +

1

δ
‖v‖Lq(D3δ\Dδ/2)

)
. (2.15)

Thus
∞∫

0

dδ

δ
‖∇v‖qLq(D2δ\Dδ) � c

∞∫

0

dδ

δ

(
‖g‖qLq(D3δ\Dδ/2) +

1

δq
‖v‖qLq(D3δ\Dδ/2)

)

and from the relation
∞∫

0

dδ

δ

∫

D2δ\Dδ
|u|qdx =

∫

D

|u|qdx
|x|∫

|x|/2

dδ

δ
= log 2

∫

D

|u|qdx

we therefore obtain∫

D

|∇v|q dx � c
( ∫

D

|g|q dx +
∫

D

|v|q
|x|q dx

)
.

Since q > 3, Theorem 2.4 implies the desired estimate. 
�
Lemma 2.8 reduces the proof of Theorem 2.3 to the proof of estimate (2.14). In

the spherical layerD3 \D1/2 the coefficient matrix	(x) jumps at plane interfaces
which meet only at certain edges. Next we perform inD3 \D1/2 a partition of unity
to isolate these edges. Let η be a cut-off function which isolates one edge. Then, in
the domain Dη := supp η ∩ (D3 \D1/2), ηv satisfies

∇ ·	(x)∇(ηv) = ∇ · h

with another right-hand side h ∈ Lq(Dη)
3, and again we have ‖h‖Lq(Dη) �

c (‖g‖Lq(Dη) + ‖v‖Lq(Dη)). Thus it remains to consider the localized problem

∇ ·	(x)∇w = ∇ · h , h ∈ Lq(W)3 , (2.16)

where W either coincides with R
3 or is a wedge in R

3, and the coefficient 	 is
constant on dihedral anglesEj forming W and having the common edge M. In the
case of an exterior edge, W �= R

3, the function w satisfies additionally w|∂W = 0.
The regularity of the solution of the wedge problem (2.16) can be studied using

the integral representation by Green’s function, which is the topic of the next sec-
tion.
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3. The Green function of the wedge problem

Consider a wedge W with the edge M = {(0, 0, x3) : x3 ∈ R}. In the case of
an interior edge we assume that R

3 = W is divided into dihedral angles Ej =
ej × R (j = 1, . . . , n), where ej are open sectors in the x′-plane, x′ = (x1, x2),
with vertex at the origin. In the following we set e = e1 ∪ · · · ∪ en and E =
E1 ∪ · · · ∪ En. Then γ = ∂e consists of n rays γ1, . . . , γn originating at x′ = 0,
and � = ∂E = �1 ∪ · · · ∪ �n with �j = γj × R. Given real symmetric positive-
definite matrices 	j (j = 1, . . . , n), we suppose that 	(x) = 	j for x ∈ Ej and
consider the transmission problem

Lu = −∇ ·	(x)∇u(x) = f (x) , x ∈ E,
(3.1)[u]� = 0 , [∂ν,	u]� = g(x) , x ∈ �,

where ∂ν,	
def= 	ν · ∇ (ν denotes the normal to the interfaces) and [·]� is the jump

across �.
In the case W �= R

3, the wedge is divided by the dihedral angles Ej and has
the boundary ∂W = �0 ∪�n. Here � denotes the interfaces � = �1 ∪ · · · ∪�n−1.
Further, we introduceω = {x′ : x ∈ W} with ∂ω = γ0∪γn and γ = γ1∪· · ·∪γn−1.
We have to consider the transmission problem (3.1) completed with the boundary
condition

u|∂W = 0 . (3.2)

With (3.1) and possibly (3.2) we associate the sesquilinear form

B(u, v)
def=
∫

E

	(x) ∇u · ∇v̄ dx

and the energy space H(E) which is the completion of C∞
0 (W) in the norm

‖u‖H(E) = ‖∇u‖L2(E)
def=
(∫

E

|∇u|2 dx
)1/2

.

By Hardy’s inequality, for any fixed x0 ∈ M we have∫

E

|x − x0|−2|u|2 dx � ‖∇u‖2
L2(E)

,

so that each u ∈ H(E) belongs to L2
loc(W). Consider the variational problem

corresponding to (3.1) and possibly (3.2):

B(u, v) =
∫

E

f v̄ dx +
∫

�

gv̄ dσ , v ∈ H(E) , (3.3)

where u is sought in the energy spaceH(E). SinceB(u, u) ∼ ‖∇u‖L2 , the problem
(3.3) generates a continuous linear operator from H(E) into H(E)′. In particular,
if f ∈ L2

comp(W) and g ∈ L2
comp(�), then (3.3) has a unique solution u ∈ H(E).
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Theorem 3.1. (i) There exists a unique solution of the boundary value problem

L(∂x)G(x, ξ) = δ(x − ξ) , x, ξ ∈ E,
[G(x, ξ)]x∈� = [∂ν,	G(x, ξ)]x∈� = 0 , ξ ∈ E,
G(x, ξ)|x∈∂W = 0 if W �= R

3 , ξ ∈ E,
(3.4)

such that the function

x �→ (1 − χ(|x − ξ |ε−1)G(x, ξ)

belongs to H(E) for arbitrary fixed ξ = (ξ ′, ξ3) ∈ E and ε > 0. Here χ is a
smooth function on [0,∞) satisfying χ(t) = 1 for t � 1/2 and χ(t) = 0 if
t � 1.

(ii) The function G is infinitely differentiable with respect to x, ξ ∈ E, x �= ξ ,
and homogeneous, i.e., G(tx, tξ) = t−1G(x, ξ) for t > 0. For |x − ξ | �
min(|x′|, |ξ ′|) the estimate

|∂αx ∂βξ G(x, ξ)| � c |x − ξ |−1−|α|−|β| (3.5)

holds, where c is independent of x and ξ .
(iii) G is also the unique solution of the problem

L(∂ξ )G(x, ξ) = δ(x − ξ) , x, ξ ∈ E,
[G(x, ξ)]ξ∈� = [∂ν,	G(x, ξ)]ξ∈� = 0 , x ∈ E,
G(x, ξ)|ξ∈∂W = 0 if W �= R

3 , x ∈ E,
such that the function

ξ �→ (1 − χ(|x − ξ |ε−1)G(x, ξ)

belongs to H(E) for arbitrary fixed x ∈ E and ε > 0.

Proof. (i) If G1,G2 are two solutions of (3.4), then G̃ = G1 − G2 is infinitely
smooth in a neighbourhood of ξ , implying that G̃ ∈ H(E) and hence G̃ = 0, which
shows the uniqueness of G. To verify its existence, let ξ ∈ E1, for example, and
let E1 be either the fundamental solution (if W = R

3) or Green’s function for the
Dirichlet problem in the wedge W �= R

3 of the operator −∇ ·	1∇. Reducing this
to −� by a suitable unitary transformation and afterwards by a dilation with respect
to each axis, it can be checked that E1 satisfies the estimate (3.5). For W = R

3 this
is obvious since

E1(x, ξ) = c
(
a1|x1 − ξ1|2 + a2|x2 − ξ2|2 + a3|x3 − ξ3|2

)−1/2

with some constants c, a1, a2, a3 > 0, whereas the estimate for Green’s function
in the wedge follows from [23, Theorem 8.4]. Making the ansatz

G(x, ξ) = E1(x, ξ)+ v(x, ξ)
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for fixed ξ ∈ E1, we observe that v satisfies the problem

−∇x ·	(x)∇xv(x, ξ) = f (x, ξ) , x ∈ E ,
[v(x, ξ)]x∈� = 0 , [∂ν,	v(x, ξ)]x∈� = g(x, ξ) ,

v(x, ξ)|x∈∂W = 0 if W �= R
3,

(3.6)

with

f (x, ξ) = 0 , x ∈ E1 , f (x, ξ) = ∇x ·	(x)∇xE1(x, ξ) , x ∈ E \ E1 ,

g(x, ξ) = −[∂ν,	E1(x, ξ)]x∈� .
To obtain a (unique) variational solution of (3.6) for fixed ξ ∈ E1, we have to
check that the corresponding right-hand side of (3.3) generates a continuous linear
functional on H(E): Note that f and g are infinitely smooth on Ēk ∩ {|x| � 1

}
and �̄k ∩ {|x| � 1

}
, respectively, for any k. Moreover,

|f (x, ξ)| � c |x − ξ |−3, |g(x, ξ)| � c |x − ξ |−2

with c independent of x and ξ . Then, with v ∈ H(E),
∫

E∩{|x|�1}
|f v| dx � c

( ∫

E

|v|2
|x|2 dx

)1/2( ∫

E∩{|x|�1}
|x|−4dx

)1/2

� c1‖∇v‖L2(E)

by Hardy’s inequality, which shows that v �→ ∫
E
f v̄ is continuous on H(E). To

verify this for v �→ ∫
�
gv̄, we note that

∫

�∩{|x|�1}
|gv| dσ � c

( ∫

�∩{|x|�1}

|v|2
|x| dσ

)1/2( ∫

�∩{|x|�1}
|x|−3dσ

)1/2
,

where the last integral is finite and the first on the right-hand side can be estimated
by c‖∇v‖L2(E) again; see [22, Section 1]. The construction of G(x, ξ) for fixed
ξ ∈ Ek (k = 2, . . . , n) is analogous; hence (i) is proved. Since (x, ξ) �→ v(ξ, x)

is a solution of (3.6) with x, ξ interchanged, we obtain assertion (iii).
(ii) The homogeneity of G follows from that of the boundary-value problem

(3.4) and the uniqueness of G. To prove the estimates (3.5) we apply well-known
local elliptic estimates for transmission problems; see [27] and [26]:

Set U = {
x ∈ W : 1 < |x′| < 2

}
, V = {

x ∈ W : 1
2 < |x′| < 4

}
, and let u ∈

H(E) be the solution of the variational problem (3.3). Then for any integer l � 0
we have

‖∇ l+2u‖L2(E∩U) � c�
(‖∇ lf ‖L2(E∩V ) + ‖g‖Hl+1/2(�∩V ) + ‖∇ lu‖L2(E∩V )

)
. (3.7)

Let 1 = |x− ξ | � min(|x′|, |ξ ′|). By the homogeneity ofG it is then sufficient
to verify the estimates |∂αx ∂βξ G(x, ξ)| � cαβ . It is enough to prove this for x′ ∈ Ū ;
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otherwise a translation with respect to x and ξ in direction x′ may be performed.
Consider, for example, the relation

∂
β
ξ G(x, ξ) = ∂

β
ξ E1(x, ξ)+ ∂βξ v(x, ξ), ξ ∈ E1,

where w(x, ξ) = ∂
β
ξ v(x, ξ) satisfies the problem (3.6) with right-hand sides

f1
def= ∂

β
ξ f (x, ξ) , g1

def= ∂
β
ξ g(x, ξ) .

Applying the estimates (3.7) to this problem, we find that for |x − ξ | = 1 the
quantity

‖∂αx w(x, ξ)‖L2(E∩U)

is uniformly bounded for any multi-index α since

‖∇ lxf1‖L2(E∩V ) and ‖g1‖Hl+1/2(�∩V )

are so for any l. Together with Sobolev’s imbedding theorem, this implies

sup
|x−ξ |=1,x′∈Ū

|∂αx w(x, ξ)| � cα

for any multi-index α. This finishes the proof of (3.5). 
�

3.1. Estimates near the edge

Here we briefly recall the definition of the operator pencil�(λ) associated with
the edge M = (0, 0, x3): Let r = |x′|, θ be polar coordinates in the x′ plane and
set 	′

j (x) = 	′
j for x′ ∈ ej , where 	′

j = (
a
(j)
kl

)
k,l=1,2 and a(j)kl are the entries of

the matrix 	j . Consider the family of sesquilinear forms

a(u, v; λ) def= 1

log 2

∫

{1<|x′|<2}∩W

	′(x′)∇x′ U · ∇x′ V dx′ , (3.8)

where U = rλu(θ), V = rλv(θ) and u, v ∈ H. Here H = H 1(S1) if W = R
3

and H = H 1
0 (σ ), σ = S1 ∩ W, otherwise. The form (3.8) generates a continuous

linear operator �(λ) : H �→ H′ by

(�(λ)u, v)σ
def= a(u, v; λ) , u, v ∈ H, (3.9)

where (·, ·)σ denotes the (extended) L2(σ ) duality. The spectrum of the operator
pencil �(λ) consists of isolated eigenvalues only (see Section 3.5 for a detailed
discussion). Let λ1 be the eigenvalue with the smallest positive real part and set
λ̂ = Re λ1.
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Theorem 3.2. For |x − ξ | � min(|x′|, |ξ ′|) the estimate

|∂αx′∂
j
x3∂

β

ξ ′∂kξ3G(x, ξ)| � c |x − ξ |−1−|α|−|β|−j−k( |x′|
|x − ξ |

)δα( |ξ ′|
|x − ξ |

)δβ
(3.10)

holds, where c is independent of x and ξ , δ0 = 0 , δα = min(1, λ̂) − |α| − ε for
α �= 0 and ε is an arbitrary small positive number.

Corollary 3.3. For δ < min(1, λ̂),

|∇x∇ξG(x, ξ)| � c

{
|x − ξ |−3 if |x − ξ | � min(|x′|, |ξ ′|),
|x′|δ−1 |ξ ′|δ−1 |x − ξ |−1−2δ if |x − ξ | � min(|x′|, |ξ ′|).

Proof. The first estimate follows from Theorem 3.1 (ii), whereas Theorem 3.2
implies the inequalities

|∇x′∇ξ ′G(x, ξ)| � c |x − ξ |−1−2δ |x′|δ−1 |ξ ′|δ−1 ,

|∂x3∂ξ3G(x, ξ)| � c |x − ξ |−1−2δ |x′|δ−1 |ξ ′|δ−1 ,

for example. 
�
To prove Theorem 3.2, we follow the approach used in [24, Section 2] to obtain

a corresponding result for Neumann problems in a dihedron. We also refer to [11]
where the transmission problem with two isotropic materials, i.e., problem (3.1)
with n = 2 and scalar (but in general complex-valued) quantities	1, 	2, has been
treated. That in our case the sesquilinear form is coercive simplifies the arguments
of [11] at several places.

The proof of Theorem 3.2 relies on local estimates which will be discussed in
the next section.

3.2. Local estimates near the edge

Theorem 3.4. Let ϕ,ψ ∈ C∞
0 (W) be such thatψϕ = ϕ. If u ∈ H(E) is a solution

of problem (3.3) (with right-hand side from H(E)′) where ψf = 0 and ψg = 0,
then for all integers k, l � 0 and δ > max(1 − λ̂, 0) the estimate

‖|x′|δ+k∂lx3
∇k+2ϕu‖L2(E) � c ‖ψu‖H(E) (3.11)

holds, where c does not depend on u.

The proof of (3.11) for k = 0 is based on the following

Theorem 3.5. For fixed R > 0 let u ∈ H(E) be a solution of problem (3.3) such
that supp u ⊂ BR(0), f ∈ L2(E) and g ∈ H 1/2(�). Then

‖∂2
x3
u‖L2(E) + ‖∂x3∇x′u‖L2(E) + ‖|x′|δ∇2

x′u‖L2(E)

� c
(‖f ‖L2(E) + ‖g‖H 1/2(�)

)
, (3.12)

where c does not depend on f and g.
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We proceed with the proof of Theorem 3.4, starting with the case k = 0:Assume
first that l = 0. Then

L(ϕu) = ϕf + ∇ϕ ·	∇u+ (∇ ·	∇ϕ)u def= f1 ,

[ϕu]� = 0 , [∂ν,	(ϕu)]� = ϕg − [(	ν · ∇ϕ)u]� def= g1 ,

ϕu|∂W = 0 if W �= R
3 .

Since ϕf = 0, ϕg = 0, the estimates

‖f1‖L2(E) � c ‖ψu‖H(E) , ‖g1‖H 1/2(�) � c ‖ψu‖H(E)
hold, and (3.12) then implies

‖∂2
x3
ϕu‖L2(E) + ‖∂x3∇x′ϕu‖L2(E) + ‖|x′|δ∇2

x′ϕu‖L2(E) � ‖ψu‖H(E) ; (3.13)

hence (3.11) holds for k = l = 0.
Setting w = ∂x3ϕu, we obtain w ∈ H(E) by (3.13), and w satisfies the bound-

ary-value problem

Lw = ∂x3f1 , [w]� = 0 , [∂ν,	w]� = ∂x3g1 (3.14)

with homogeneous Dirichlet conditions if W �= R
3. From (3.13) follows the esti-

mate

||∂x3f1‖L2(E) + ‖∂x3g1‖H 1/2(�) � c
(‖∂x3∇ϕ1u‖L2(E) + ‖∂x3ϕ1u‖L2(E)

)
� c ‖ψu‖H(E),

where ϕ1 ∈ C∞
0 (W) is such that ϕ1ϕ = ϕ, ψϕ1 = ϕ1. Applying Theorem 3.5 to

problem (3.14), we obtain (3.11) for k = 0, l = 1. Iterating this procedure, we
obtain Theorem 3.4 for k = 0 and any l. Now we treat the case k > 0: Setting
v = ∂lx3

ϕu, we have to deduce the estimate

‖|x′|δ+k∇k+2v‖L2(E) � c‖ψu‖H(E) (3.15)

from the already established bound

‖|x′|δ∇2v‖L2(E) � c ‖ψu‖H(E). (3.16)

LetUj = {
x ∈ W : c12−j−1 < |x′| < c12−j} andVj = {

x ∈ W : c22−j−1 <

|x′| < c22−j} be such that
{
Uj
}∞

0 is an open covering of supp ϕ and
{
Vj
}∞

0 is
another open covering with Uj ⊂ Vj and V = ∪jVj ⊂ supp ψ . Set U = ∪jUj
and v1 = ∂lx3

u. Using the local elliptic estimates (3.7) (with f = g = 0) and a
scaling argument, we obtain

‖∇k+2v1‖L2(Uj∩E) � ck 22j ‖∇kv1‖L2(Vj∩E)

for any k, j � 0. Multiplying this inequality by 2−j (δ+k) and summing over j gives

‖|x′|δ+k∇k+2v1‖L2(U∩E) � ck ‖|x′|δ+k−2∇kv1‖L2(V∩E). (3.17)
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Now we have from (3.16) and (3.17) (for k = 1)

‖|x′|δ+1∇3v‖L2(E) � c
(‖|x′|δ−1∇v1‖L2(V∩E) + ‖ψu‖H(E)

)
� c

(‖|x′|δ∇2v1‖L2(V∩E) + ‖ψu‖H(E)
)

� c ‖ψu‖H(E) ,
where we have applied Hardy’s inequality in the second-to-last estimate. Further-
more, from (3.16) and (3.17) (for k = 2) we obtain

‖|x′|δ+2∇4v‖L2(E) � c
(‖|x′|δ∇2v1‖L2(V∩E) + ‖ψu‖H(E)

)
� c ‖ψu‖H(E).

Proceeding this way, we get (3.15) for k > 2. 
�

3.3. Proof of Theorem 3.2

To deduce Theorem 3.2 from Theorem 3.4 we proceed exactly as in [24, Sec-
tion 2.5] and first establish

Lemma 3.6. Let x0 ∈ W be such that dist(x0,M) � 4. Moreover, let ϕ,ψ be infi-
nitely differentiable functions with support in B1(x0) such that ψ = 1 on supp ϕ.
If u ∈ H(E), Lu = 0 in E ∩ B1(x0) and [∂ν,	u]� = 0 on � ∩ B1(x0), then

sup
x∈E

|x′|−δα |∂jx3∂
α
x′ϕ(x)u(x)| � c ‖ψu‖H(E), (3.18)

where δα is defined as in Theorem 3.4 and c does not depend on u and x0.

Proof. Consider first the caseα �= 0 and let δ be a real number with max(1−λ̂, 0) <
δ < 1. Then the estimates (3.18) can be written as

sup
x∈E

|x′|δ+k−1 |∂lx3
∂kx′ϕ(x)u(x)| � c ‖ψu‖H(E), k � 1, l � 0. (3.19)

From Theorem 3.4 it follows that |x′|δ+k∂lx3
∇k+2
x′ (ϕu)(·, x3) ∈ L2(e) for all k, l

and almost all x3. Applying Sobolev’s theorem and Hardy’s inequality we can show
that

sup
x∈E

|x′|δ+k−1 |∂lx3
∇kx′(ϕu)(x)| � c sup

x3∈R

‖|x′|δ+k∂lx3
∇k+2
x′ (ϕu)(·, x3)‖L2(e).

Moreover, by the continuity of the imbeddingH 1(M) ↪→ C(M) and Theorem 3.4,
the last expression can be bounded by

c
(
‖|x′|δ+k∂lx3

∇k+2
x′ ϕu‖L2(E) + ‖|x′|δ+k∂l+1

x3
∇k+2
x′ ϕu‖L2(E)

)
� c‖ψu‖H(E),

which gives (3.19).
Now let α = 0. By Theorem 3.4 we have x′ �→ |x′|δ∂jx3(ϕu)(x

′, x3) ∈ L2(e)

for almost all x3, and together with the imbedding result of [19, Lemma 7.1.3] this
implies that

sup
x∈E

|∂jx3(ϕu)(x)| � c sup
x3∈R

‖| · |δ∂jx3∇2
x′(ϕu)(·, x3)‖L2(e).

Proceeding as in the case α �= 0, we obtain (3.18). 
�
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Proof of Theorem 3.2. Because of the homogeneity of G, we may assume that
|x − ξ | = 2, which implies that max(|x′|, |ξ ′|) � 4. Let ϕ and ψ be infinitely
differentiable functions with support B1(x) or B1(ξ). Applying Lemma 3.6 to the
function ∂jx3∂

α
x′G(x, ·), we obtain

|ξ ′|−δβ |∂jx3∂
α
x′∂kξ3∂

β

ξ ′G(x, ξ)| � c ‖ψ(·) ∂jx3∂
α
x′G(x, ·)‖H(E). (3.20)

Consider the solution u(x) = (ψ(·)f (·),G(x, ·))E of the variational problem
(cf. (3.3))

B(u, v) = (F, v)E ∀ v ∈ H(E)
withF ∈ H(E)′. SinceψF vanishes in the ballB1(x), we conclude from Lemma 3.6
that

|x′|−δα |∂jx3∂
α
x′u(x)| � c ‖ϕu‖H(E).

Therefore, the mapping

H(E)′ � F �→ |x′|−δα ∂jx3∂
α
x′u(x) = |x′|−δα (F (·), ψ(·)∂jx3∂

α
x′G(x, ·))E

represents a continuous linear functional onH(E)′ for arbitrary x ∈ E, with norm
independent of x. This implies that

|x′|−δα ‖ψ(·)∂jx3∂
α
x′G(x, ·)‖H(E) � c,

which, together with (3.20), yields the desired estimate and finishes the proof of
Theorem 3.2. 
�

The following subsections are devoted to the proof of Theorem 3.5 (which
implies Theorem 3.4) and to the spectral properties of the operator pencil �(λ).

3.4. Reduction of Theorem 3.5 to a two-dimensional problem

Following the standard approach for elliptic problems in domains with edges,
we apply the partial Fourier transform Fx3 �→η to the problem (3.1). We use the
notation

û(η)
def= Fx3 �→ηu(x

′, x3) = û(x′, η) .

Then (3.1) takes the form

L(η)û
def= −∇x′ ·	′∇x′ û− 2iη(a13∂x1 + a23∂x2)û+ η2a33û = f̂ in e ,

[û]γ = 0, [∂ν,	′ û+ iη(a13ν1 + a23ν2)û]γ = ĝ on γ , η ∈ R ,

u|∂ω = 0 if ω �= R
2 , (3.21)

where ∂ν,	′ def= 	′ν · ∇x′ , 	′ = (
akl
)
k,l=1,2. Recall that ω is the intersection of W

with the x′-plane and akl (k, l = 1, 2, 3) are the entries of 	 which are constant in
each sector ej . Since

Fx3 �→η

(
	∇u · ∇ v) = 	

(∇x′ û
iηû

)
·
(

∇x′ v̂
−iηv̂

)
,
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the sesquilinear form B transforms to

B(û, v̂; η) def=
∫

e

(
	′∇x′ û · ∇x′ v̂ + iηû (a13∂x1 + a23∂x2)v̂

− iηv̂ (a13∂x1 + a23∂x2)û+ η2a33ûv̂
)
dx′ .

Since 	 is positive-definite (uniformly in x), for any û ∈ C∞
0 (ω) we obtain the

estimate

B(û, û; η) � c

∫

e

(|∇x′ û|2 + η2|û|2) dx′ , η ∈ R. (3.22)

With the variational problem (3.3) we can now associate the family of problems

B(û, v̂; η) =
∫

e

f̂ v̂ dx′ +
∫

γ

ĝ v̂ dσ ∀v̂ ∈ H(e; η) , η ∈ R, (3.23)

where the solution û is sought in the energy spaceH(e; η), which is the completion
of C∞

0 (ω) with respect to the norm

‖û‖H(e;η) = ‖∇x′ û‖L2(e) + |η| ‖û‖L2(e).

Now let u ∈ H(E) be a solution of (3.3) with support in the ball BR(0) such
that f ∈ L2

comp(R
3) and g ∈ H 1/2

comp(�). For every η ∈ R the function û(η) then
belongs to H(e; η) and satisfies (3.21) or (3.23). Furthermore, inequality (3.12) in
the case g = 0 is equivalent to

‖η2 û(η)‖L2(e) + ‖η∇x′ û(η)‖L2(e) + ‖ |x′|δ∇2
x′ û(η)‖L2(e)

� c ‖f̂ (η)‖L2(e) , η ∈ R. (3.24)

Remark 3.7. It is sufficient to prove (3.12) for g = 0. In the general case we may
choose u0 ∈ H(E) with compact support such that u0|Ej ∈ H 2(Ej ) for all j ,

[u0]� = 0 and [∂ν,	u0]� = g, according to the trace theorem. Then u1
def= u− u0

satisfies the problem

Lu1 = f − Lu0 ∈ L2(E) , [u1]� = 0 , [∂ν,	u1]� = 0

with homogeneous Dirichlet conditions if W �= R
3, and the desired estimate of

u = u1 + u0 follows from that of u1.

To reduce the estimate (3.24) to the case η = 0, we need the following result
which will be proved in the next section.

Theorem 3.8. Let u ∈ H 1(e) be a solution of the problem

L(0)u = −∇x′	′∇u = f in e ,
[u]γ = 0 , [∂ν,	′u]γ = g on γ, (3.25)

u|∂ω = 0 if ω �= R
2 ,

such that supp u ⊂ BR(0), f ∈ L2(e) and g ∈ H 1/2(γ ). Then the estimate

‖ |x′|δ∇2
x′u‖L2(e) � c

(‖f ‖L2(e) + ‖g‖H 1/2(γ )

)
(3.26)

holds, where c does not depend on f and g.
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Proof of estimate (3.24) for η �= 0. From

L(η)û(η) = f̂ (η) , [û(η)]γ = 0 , [∂ν,	′ û(η)+ iη(a13ν1 + a23ν2)û(η)]γ = 0

we obtain

L(0)û(η) = f̂ (η)+ 2iη(a13∂x1 + a23∂x2)û(η)− η2a33û(η)
def= f1(η) ,

[∂ν,	′ û(η)]γ = −iη[(a13ν1 + a23ν2)û(η)]γ def= g1(η). (3.27)

Setting v̂ = û in (3.23) and using (3.22) gives

‖f̂ (η)‖L2(e) ‖û(η)‖L2(e) � B(û, û; η)
� c

(‖∇x′ û(η)‖2
L2(e)

+ η2‖û(η)‖2
L2(e)

)
(3.28)

� cη ‖∇x′ û(η)‖L2(e) ‖û(η)‖L2(e).

On the other hand, it follows from (3.27) and (3.28) that

‖f1(η)‖L2(e) � c‖f̂ (η)‖L2(e) ,

‖g1(η)‖H 1/2(γ ) � cη‖∇x′ û(η)‖L2(e) � c ‖f̂ (η)‖L2(e).

Applying Theorem 3.8 to problem (3.27) then yields the bound

‖ |x′|δ∇2
x′ û(η)‖L2(e) � c ‖f̂ (η)‖L2(e),

which, together with (3.28), implies (3.24) for any η �= 0. Thus we have reduced
the proof of Theorem 3.5 to that of Theorem 3.8. 
�
Remark 3.9. As in Remark 3.7, we reduce the assertion of Theorem 3.8 to the case
g = 0.

3.5. Proof of Theorem 3.8: Reduction to a one-dimensional eigenvalue problem

Consider the boundary-value problem

L(0)u = f , [u]γ = [∂ν,	′u]γ = 0 , u|∂ω = 0 if ω �= R
2 (3.29)

and let u ∈ H 1(e) be a solution of (3.29) such that supp u ⊂ BR(0) and f ∈ L2(e).
Passing to polar coordinates x′ = (x1, x2) = r(cos θ, sin θ) we have

∇ = ∇x′ = (cos θ ∂r − r−1 sin θ ∂θ , sin θ ∂r + r−1 cos θ ∂θ ) ,
r2 L(0) = −r∇ ·	′r∇ + (∇r) ·	′r∇

= −
(

cos θ r∂r − sin θ ∂θ
sin θ r∂r + cos θ ∂θ

)
·
(
a11 a12
a12 a22

)(
cos θ r∂r − sin θ ∂θ
sin θ r∂r + cos θ ∂θ

)

+
(

cos θ
sin θ

)
·
(
a11 a12
a12 a22

)(
cos θ r∂r − sin θ ∂θ
sin θ r∂r + cos θ ∂θ

)
. (3.30)

The transmission condition of (3.29) can be written in the form

[u]θj = 0 ,

[r∂ν,	′u]θj = [ν ·	′r∇u]θj



240 V. Maz’ya, J. Elschner, J. Rehberg & G. Schmidt

=
[(− sin θ

cos θ

)
·
(
a11 a12
a12 a22

)(
cos θ r∂r − sin θ ∂θ
sin θ r∂r + cos θ ∂θ

)
u

]
θj= 0 , (3.31)

where the angle θj corresponds to the ray γj , j = 1, . . . , n if ω = R
2, or j =

1, . . . , n− 1 otherwise.
Following Kondratiev’s method [17], we now apply the Mellin transform

with respect to the radial variable:

ũ(λ, θ) =
∫

R+
r−λ−1u(r, θ) dr , λ ∈ C.

Using (3.30) and the relation r̃∂ru = −λũ, we obtain

˜r2L(0)u = − ∂θ (a11 sin2 θ − 2a12 sin θ cos θ + a22 cos2 θ)∂θ ũ

+ λ∂θ
(
(a22 − a11) sin θ cos θ + a12(cos2 θ − sin2 θ)

)
ũ

+ λ((a22 − a11) sin θ cos θ + a12(cos2 θ − sin2 θ)
)
∂θ ũ

− λ2(a11 cos2 θ + 2a12 sin θ cos θ + a22 sin2 θ)ũ.

Furthermore, taking the Mellin transform of (3.31) and using the notation g
def= r2f

and

b0(θ)
def= a11 cos2 θ + 2a12 sin θ cos θ + a22 sin2 θ ,

b2(θ)
def= a11 sin2 θ − 2a12 sin θ cos θ + a22 cos2 θ ,

b1(θ)
def= (a22 − a11) sin θ cos θ + a12(cos2 θ − sin2 θ) ,

we can write the boundary-value problem (3.29) as the following one-dimensional
problem with parameter λ on σ ∩ e:

�(λ)ũ
def= −∂θb2∂θ ũ+ λ∂θb1ũ+ λb1∂θ ũ− λ2b0ũ = g̃ ,

[ũ]θj = 0 , [b2∂θ ũ− λb1ũ]θj = 0 , j = 1, . . . , n if σ = S1,

or j = 1, . . . n− 1, and additionally ũ(θ0) = ũ(θn) = 0 .

(3.32)

For fixed λ ∈ C, problem (3.32) generates a continuous linear operator �(λ) :
H �→ H′ via the sesquilinear form

a(ũ, ṽ; λ) def=
∫

σ

(
b2∂θ ũ∂θ ṽ − λb1ũ∂θ ṽ + λb1∂θ ũṽ − λ2b0ũṽ

)
dθ . (3.33)

Note that �(λ) is just the operator pencil defined at the beginning of Section 3.1.
We now investigate its spectral properties.
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Lemma 3.10. Let λ = ξ + iη, |ξ | � C. Then there exist constants c > 0 and
c1 = c1(C) such that

Re a(ũ, ũ; λ) � c
(‖∂θ ũ‖2

L2(σ )
+ η2‖ũ‖2

L2(σ )

)

for all ũ ∈ H and |η| � c1.

Proof. From (3.33) we have

Re a(ũ, ũ; λ)
�
∫
σ

(
b2|∂θ ũ|2 + (η2 − ξ2)b0|ũ|2 − 2ηb1Im (∂θ ũũ)

)
dθ

� c
∫
σ

(
b2|∂θ ũ|2 + η2b0|ũ|2 − 2|η| |b1| |∂θ ũ| |ũ|

)
dθ − c2ξ

2‖ũ‖L2(σ ) .

A straightforward calculation gives b2b0 − b2
1 = a11a22 − a2

12, and this quan-
tity is bounded from below (on σ ) by a positive constant since 	′ is (uniformly)
positive-definite. Therefore the last integral can be estimated from below by

c
(‖∂θ ũ‖L2(σ ) + η2‖ũ‖2

L2(σ )

)
. 
�

Corollary 3.11. The operator �(λ) is an analytic Fredholm operator function
which has only isolated eigenvalues of finite multiplicity. For |ξ | � C and suf-
ficiently large |η| the operator �(λ) (λ = ξ + iη) is invertible with the uniform
bound

‖�(λ)−1g̃‖H 2(e∩σ) + η2‖�(λ)−1g̃‖L2(σ ) � c ‖g̃‖L2(σ ). (3.34)

Here the norm in H 2(e ∩ σ) is defined by

‖v‖H 2(e∩σ) = ‖v‖H +
∑
j

‖∂2
θ v‖L2(ej∩σ).

If λ0 is an eigenvalue of maximal rank k, then in a neighbourhood of λ0 the repre-
sentation

�(λ)−1 = B(λ)+
k∑
l=1

Bl(λ− λ0)
−l (3.35)

holds, where B1, . . . , Bk are finite-rank operators and

B(λ) : H 2(e ∩ σ) �−→ L2(σ )

is an analytic operator function.

Proof. From a(ũ, ũ; λ) = ∫
σ
g̃ũ and Lemma 3.10 we obtain

|η|‖∂θ ũ‖L2(σ ) ‖ũ‖L2(σ ) � c
(‖∂θ ũ‖2

L2(σ ))
+ η2‖ũ‖L2(σ )

)
� c‖g̃‖L2(σ ) ‖ũ‖L2(σ ),

which implies that

η2‖ũ‖L2(σ ) + |η|‖∂θ ũ‖L2(σ ) � c ‖g̃‖L2(σ ).
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Moreover, from (3.32) and b2 � c > 0 on σ , we have
∑
j

‖∂2
θ ũ‖L2(ej∩σ) � c ‖g̃‖L2(σ ),

which completes the proof of (3.34). The other assertions follow from standard
results on Fredholm operator functions; see e.g. [18, Appendix A]. 
�
Lemma 3.12. If W �= R

3, then the line Re λ = 0 contains no eigenvalues; other-
wise it contains the single eigenvalue λ = 0.

Proof. Let λ = iη (η ∈ R) be an eigenvalue and u0 an eigenfunction. From (3.33)
we have

0 = a(u0, u0; iη) =
∫

σ

(
b2|∂θu0|2 + b0η

2|u0|2 − 2ηb1Im (∂θu0ū0)
)
dθ

� c
(‖∂θ ũ‖L2(σ ) + η2‖ũ‖2

L2(σ )

) ;
cf. the proof of Lemma 3.10. This gives η = 0 and u0 = const if σ = S1; otherwise
the Dirichlet conditions imply u0 = 0. 
�
Proof of Theorem 3.8. Let u ∈ H 1(e) be a solution of problem (3.29) such that
supp u ⊂ BR(0) and f ∈ L2(e), where R > 0 is fixed. We have to show that for
0 < δ < 1, δ > 1 − λ̂, the estimate

‖rδ∇2u‖L2(e) � c ‖f ‖L2(e) (3.36)

holds, where c is independent of f . Recall that λ̂ = Re λ1, where λ1 is the eigen-
value of�(λ) with smallest positive real part. By Corollary 3.11 and Lemma 3.12,
for any sufficiently small ε > 0 the operator function�(λ)−1 is analytic in the strip
S = {−ε < Re λ < λ̂ − ε} obeying the bound (3.34) with the possible exception
of a neighbourhood of λ = 0. By Lemma 3.12 this is the case if W = R

3 and then
the representation (3.35) holds. We set

ṽ(λ, θ) = �(λ)−1g̃(λ, θ) , λ ∈ S , θ ∈ σ.
Note that g = r2f has a finite weighted L2 norm

‖rβg‖L2(e) � c(β) ‖f ‖L2(e) for any β � −2 .

Let β such that −1 − β ∈ S and β �= −1. Denoting by vβ the inverse Mellin
transform of ṽ on the line Re λ = −1 − β, we find as in [17] that vβ satisfies the
problem (3.29) and satisfies the estimate

‖rβ+2∇2vβ‖L2(e) + ‖rβ+1∇vβ‖L2(e) + ‖rβvβ‖L2(e) � c ‖rβg‖L2(e)

� c ‖f ‖L2(e). (3.37)

Note that the left-hand side of (3.37) can be estimated from above by

c
( ∫

Re λ=−1−β

(|λ|4‖ṽ(λ, ·)‖2
L2(σ )

+ ‖ṽ(λ, ·)‖2
H 2(σ∩d)

)
dλ
)1/2

,
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which can be bounded by

c
( ∫

Re λ=−1−β
‖g̃(λ, ·)‖2

L2(σ )
dλ
)1/2

� c ‖rβg‖L2(e)

by using the estimate (3.34). Furthermore, since

‖rβu‖L2(e) � c‖rβ+1∇u‖L2(e) � c ‖∇u‖L2(e) , β > −1

by Hardy’s inequality, we obtain u = vε−1 for some ε > 0 sufficiently small.
Hence, if �(λ)−1 is analytic in the strip S = {−ε < Re λ < 1 − δ + ε}, then also
u = vδ−2 and (3.37) gives (3.36).

Otherwise we use the Residue Theorem (see [17]) which gives the equation

u = ψvδ−2 +
∑

0�j�k−1

cj (g)ψ logj (r) uj (θ) , (3.38)

where ψ is a smooth cut-off function with ψ = 1 on BR(0), u0 = 1 is the
eigenfunction and uj (j � 1) are generalized eigenfunctions corresponding to
the eigenvalue λ = 0 of �(λ). Moreover, cj (g) are continuous linear functionals
in the sense that

|cj (g)| � c
(‖rε−1g‖L2(e) + ‖rδ−2g‖L2(e)

)
.

Using (3.37) for β = δ − 2 and the fact that u ∈ H 1(e), we see that cj (g) = 0 for
j � 1 in (3.38), which implies the desired estimate (3.36) for u. 
�

3.6. Verification of the condition (1.4)

We conclude this section with some remarks on the verification of the condi-
tion (1.4), which is needed for our main regularity result (Theorem 2.3). For any
operator pencil �(λ) of the form (3.32) corresponding to problem (2.1) near an
interface or boundary edge, we have to check that

λ̂ = Re λ1 >
1
3 , (3.39)

where λ1 is the eigenvalue of �(λ) with smallest positive real part.
Following [5], we may determine the eigenvalues of �(λ) by using a solution

basis of the form

ϕ+(λ, θ) def= e−iλθ (α+e2iθ + 1)λ , ϕ−(λ, θ) def= eiλθ (α−e−2iθ + 1)λ (3.40)

on each arc ej ∩ σ , where

α+ = i + β
i − β , α− = α+

and β is the root of the quadratic equation

a22β
2 + 2a12β + a11 = 0
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satisfying Im β < 0, with the real constants a11, a12 = a21, a22 from (3.30). Thus
we have

β = − 1

a22
(a12 + iκ) , α+ = i(a22 − κ)− a12

i(a22 + κ)+ a12
, κ

def= (a11a22 − a2
12)

1/2 .

Moreover, we assume without loss of generality that all polar angles corresponding
to rays γj satisfy θj ∈ (−π, π) and define the function zλ occurring in (3.40) by

zλ
def= exp(λ log |z| + iλ arg z) , arg z ∈ (−π, π ] .

If all materials are orthotropic, we may assume that

a11 = 1 , a12 = 0 , a22 = t2

with some t > 0 on each sector ej . Then (3.40) takes the form

ϕ+(λ, θ) = (t cos θ + i sin θ)λ , ϕ−(λ, θ) = (t cos θ − i sin θ)λ .

Denoting the functions (3.40) on ej ∩ σ by ϕ±
j and inserting the ansatz

ϕ(λ, θ)
def= C+

j ϕ
+
j (λ, θ)+ C−

j ϕ
−
j (λ, θ) , θ ∈ ej ∩ σ , j = 1, . . . , n

into the homogeneous equations (3.32), we obtain a linear system

C(λ)z = 0 , z = ((C+
j , C

−
j ) : j = 1, . . . , n) ,

for the unknown vector z ∈ C
2n. Then the eigenvalues of �(λ) are given by the

roots of the transcendental equation

detC(λ) = 0 , (3.41)

and by determining the location of its roots we may find lower bounds of the quantity
λ̂. We refer to [5] for further discussion and algorithmic aspects. The explicit form
of equation (3.41) in the case of a pure transmission problem with two anisotropic
materials can be found in [14].

If all materials are isotropic, then (3.32) is a Sturm-Liouville problem having
only real eigenvalues, and we refer to [25] for a detailed discussion of (3.41). More-
over, from [25, Theorem 6.2] we find that condition (3.39) is fulfilled if additionally

(i) (3.32) is a pure transmission problem with at most three materials (i.e., n � 3)
and θ̂ � 3π/2, or

(ii) (3.32) corresponds to an interface problem with two materials and Dirichlet
conditions on the boundary, and θ̂ � 3π/2.

Here θ̂ denotes the maximal interior angle of the sectors ej .
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4. Proof of the linear regularity result

Now we are in the position to study the Lp regularity of the wedge problem
(2.16). Its solution can be represented as

w(x) = −
∫

W

∇yG(x, y) · h(y)dy , (4.1)

with the corresponding Green functionG(x, y). Recall the definition of the number
λ̂M given in Section 2. It is uniquely determined by the values of 	(x) near M.

Theorem 4.1. If h ∈ Lq(W)3 with q ∈ [2, 2/(1−λ̂M)), then the solution of (2.16)
satisfies

‖∇w‖Lq(W) � c ‖h‖Lq(W) .

The proof of Theorem 4.1 follows from

Lemma 4.2. Let δ ∈ (0, λ̂M). There exists a constant c such that, for any r > 0,

( 1

r2

∫

Cr

|∇w|qdx
)1/q

� c
( 1

r2

∫

Cr

|h|qdx
)1/q + c

r1−δ

∞∫

r

( 1

ρ2

∫

Cρ

|h|qdx
)1/q dρ

ρδ

+ c

r1+δ

r∫

0

( 1

ρ2

∫

Cρ

|h|qdx
)1/q

ρδdρ , (4.2)

where Cρ denotes the cylindrical layer Cr
def= {x : r < |x′| < 2r, x3 ∈ R} ∩ W.

Proof of Theorem 4.1. We simply integrate the q-th power of the terms in (4.2)
over r dr . Then

∞∫

0

r dr

r2

2r∫

r

τ dτ

∫

σ

∫

R

|∇w(r, θ, x3)|q dθ dx3

= log 2

∞∫

0

∫

σ

∫

R

|∇w(r, θ, x3)|q τ dτ dθ dx3 .

To the last two terms on the right-hand side of (4.2) we apply additionally Hardy’s
inequality which provides, for q − qδ < 2,

∞∫

0

r dr
(
rδ−1

∞∫

r

(
ρ−2

∫

Cρ

|h|qdx
)1/q dρ

ρδ

)q

=
∞∫

0

r1−q+qδ dr
( ∞∫

r

( ∫

Cρ

|h|qdx
)1/q dρ

ρδ+2/q

)q

� c

∞∫

0

r1−q+qδ+q−2−δq dr
∫

Cr

|h|qdx = c

∞∫

0

dr

r

∫

Cr

|h|q dx ,
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and for q + qδ > 2 we obtain

∞∫

0

r dr
(
r−δ−1

r∫

0

(
ρ−2

∫

Cρ

|h|qdx
)1/q

ρδdρ
)q

=
∞∫

0

r1−q−qδ dr
( r∫

0

( ∫

Cρ

|h|qdx
)1/q dρ

ρ2/q−δ
)q

� c

∞∫

0

r1−q−qδ+q−2+δq dr
∫

Cr

|h|qdx = c

∞∫

0

dr

r

∫

Cr

|h|q dx . 
�

Proof of Lemma 4.2. Using (4.1) and the notation
∫
=
Cr

u dx
def= r−2

∫

Cr

u dx, we

split the integral on the left-hand side into three parts:

( ∫
=
Cr

|∇w|qdx
)1/q

�
( ∫

=
Cr

( ∫

|y′|<r/4
|∇x∇yG(x, y)| |h(y)| dy3 dy

′)qdx)1/q

+
( ∫

=
Cr

( ∫

|y′|>4r

|∇x∇yG(x, y)| |h(y)| dy3 dy
′)qdx)1/q

+
( ∫

=
Cr

∣∣∣∇x
∫

r/4<|y′|<4r

∇yG(x, y) · h(y) dy3 dy
′
∣∣∣qdx

)1/q

def= I1 + I2 + I3 ,
where h is extended by zero onto the whole space if W �= R

3. For the first and
second integral we have |x − y| � min(|x′|, |y′|); hence by Corollary 3.3 and
|x′| > r ,

I1 � c
( ∫

=
Cr

( ∫

|y′|<r/4

|h(y)| dy′ dy3

(|x′ − y′| + |x3 − y3|)1+2δ|x′|1−δ|y′|1−δ
)q
dx
)1/q

� c

r1−δ
( ∫

−
Kr

dx′
∫

R

dx3

( ∫

R

H(y3, r) dy3

(|x′| + |x3 − y3|)1+2δ

)q )1/q
,

where Kr = {x′ : x ∈ Cr} and the notation

H(y3, r)
def=

∫

|y′|<r/4

|h(y′, y3)| dy′

|y′|1−δ
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is used. From Young’s convolution theorem we have∫

R

dx3

∣∣∣
∫

R

H(y3, r) dy3

(|x′| + |x3 − y3|)1+2δ

∣∣∣q � c

|x′|2δq
∫

R

|H(y3, r)|qdy3 ,

which implies together with Minkowski’s inequality that

I1 � c

r1−δ
( ∫

−
Kr

dx′

|x′|2δq
)1/q( ∫

R

|H(y3, r)|qdy3

)1/q

� c

r1+δ
( ∫

R

( r/4∫

0

ρ dρ

ρ1−δ

∫
−
Kρ

|h(y′, y3)| dy′)qdy3

)1/q

� c

r1+δ

r/4∫

0

ρδdρ

∥∥∥
∫
−
Kρ

|h(y′, ·)| dy′
∥∥∥
Lq(R)

� c

r1+δ

r/4∫

0

ρδdρ
( ∫

=
Cρ

|h(y)|qdy
)1/q

.

The second integral can be estimated by

I2 � c
( ∫

−
Kr

dx′
∫

R

dx3

( ∫

|y′|>4r

|h(y′, y3)| dy
(|x′ − y′| + |x3 − y3|)1+2δ|x′|1−δ|y′|1−δ

)q )1/q

� c

r1−δ
( ∫

R

dx3

( ∫

|y′|>4r

|h(y′, y3)| dy
(|y′| + |x3 − y3|)1+2δ|y′|1−δ

)q )1/q

� c

r1−δ
( ∫

R

dx3

( ∞∫

4r

ρ dρ

ρ1−δ

∫

R

dy3

∫
−
Kρ

|h(y′, y3)| dy′

(ρ + |x3 − y3|)1+2δ

)q)1/q
.

Applying again Minkowski’s inequality, we obtain, similar to I1,

I2 � c

r1−δ

∞∫

4r

ρδdρ
( ∫

R

dx3

( ∫

R

dy3

∫
−
Kρ

|h(y′, y3)| dy′

(ρ + |x3 − y3|)1+2δ

)q
dx3

)1/q

� c

r1−δ

∞∫

4r

ρδdρ
1

ρ2δ

( ∫

R

( ∫
−
Kρ

|h(y′, y3)| dy′)qdy3

)1/q

� c

r1−δ

∞∫

4r

dρ

ρδ

( ∫
=
Cρ

|h(y)|qdy
)1/q

.
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To estimate the third integral I3, note that

∫
=
Cr

|∇wr(x)|qdx = 1

2r

∫

R

dt

t+r∫

t−r
dx3

∫
−
Kr

|∇wr(x′, x3)|q dx′

=
∫

R

dt

∫
−
Qr,t

|∇wr(x)|q dx ,

where

wr(x)
def= −

∫

r/4<|y′|<4r

∇yG(x, y) · h(y) dy ,

Qr,t
def={x : x′ ∈ Kr, t − r < x3 < t + r} .

Next we split

∫
−
Qr,t

|∇xwr |qdx �
∫
−
Qr,t

|∇x(wr − wr,t )|qdx +
∫
−
Qr,t

|∇xwr,t |qdx def= J1 + J2 ,

where

wr,t (x)
def= −

∫

Q
′
r,t

∇yG(x, y) · h(y) dy

with

Q
′
r,t

def= {x : r/4 < |x′| < 4r, t − 2r < x3 < t + 2r} .

If x ∈ Qr,t and 1
4 r < |y′| < 4r , |y3 − t | > 2r , then again |x − y| �

min(|x′|, |y′|), and additionally |x′ − y′| + |x3 − y3| � c(|x′| + |x3 − y3|). Hence

J1 =
∫
−
Qr,t

∣∣∣
∫

r/4<|y′|<4r
|y3−t |>2r

∇x∇yG(x, y) · h(y) dy

∣∣∣qdx

� c

r(1−δ)q

∫
−
Qr,t

( ∫

r/4<|y′|<4r
|y3−t |>2r

|h(y)| dy
(|x′| + |x3 − y3|)1+2δ|y′|1−δ

)q
dx .
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Integration over t gives

∫

R

J1 dt � c

r(1−δ)q

∫
=
Cr

( ∫

r/4<|y′|<4r

|h(y)| dy
(|x′| + |x3 − y3|)1+2δ|y′|1−δ

)q
dx

� c

r(1−δ)q

∫
−
Kr

dx′
∫

R

dx3

×
( ∫

R

dy3

(|x′| + |x3 − y3|)1+2δ

∫

r/4<|y′|<4r

|h(y′, y3)| dy′

|y′|1−δ
)q
,

and proceeding as in the estimation of the integral I1, we obtain

( ∫

R

dt

∫
−
Qr,t

|∇(wr − wr,t )|qdx
)1/q =

( ∫

R

J1 dt
)1/q

� c

r1+δ

4r∫

r/4

ρδdρ
( ∫

=
Cρ

|h(y)|qdy
)1/q

.

To estimate J2, note that by the homogeneity of Green’s function

∫
Qr,t

dx

∣∣∣ ∫
Q

′
r,t

∇x∇yG(x, y) · h(y) dy

∣∣∣q

= r3
∫
Q1,0

dx

∣∣∣ ∫
Q

′
1,0

∇x∇yG(x, y) · h(r(y + (0, 0, t))) dy
∣∣∣q .

We can chooseC∞ cut-off functions ϕ(x) andψ(y) equal to 1 onQ1,0 respectively

Q
′
1,0 such that

G(x, y) def= ϕ(x)ψ(y)∇x∇yG(x, y)
satisfies the estimate

|∂αx ∂βy G(x, y)| � c |x − y|−3−|α|−|β|

for all x, y ∈ R
3. This follows easily from Theorem 3.1. Hence, G fulfils the

requirements of a Calderon-Zygmund kernel (cf. [4]). To prove that the mapping

Kg(x)
def= −

∫

R3

G(x, y)g(y) dy (4.3)
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is a Calderon-Zygmund operator, it remains to show that K : L2(R3)3 �→ L2(R3)3

is bounded. For any g ∈ L2(R3)3 the vector function Kg can be written as Kg(x) =
ϕ(x)∇u(x), where u satisfies the partial differential equation

∇ ·	(x)∇u = ∇ · (ψg) ,

and obviously

‖ϕ∇u‖L2 � ‖∇u‖L2 � c‖ψg‖L2 � ‖g‖L2 .

Consequently, K ∈ B(Lq(R3)3) for any 1 < q < ∞, and therefore

∫
Q1,0

dx

∣∣∣ ∫
Q

′
1,0

∇x∇yG(x, y) · h(r(y + (0, 0, t))) dy
∣∣∣q

= ‖ Kh(r(· + (0, 0, t)))‖q
Lq(Q

′
1,0)

� c r−3‖h‖q
Lq(Q

′
r,t )
.

Hence

∫

R

dt

∫
−
Qr,t

|∇wr,t |qdx � c

∫

R

dt

∫
−
Q′
r,t

|h(y)|qdy

and therefore

( ∫
=
Cr

|∇wr |qdx
)1/q

� c
( ∫

=
r/2<|y′|<4r

|h(y)|qdy
)1/q

+ c

r1+δ

4r∫

r/4

ρδdρ
( ∫

=
Cρ

|h(y)|qdy
)1/q

. 
�

5. The nonlinear system: Assumptions, exact formulation of the problem,
functional analytic tools

Having Theorem 2.3 at hand, we now develop the tools for solving the nonlinear
equation (1.1) during the subsequent sections. We start this section by formulating
our assumptions on the coefficient functions Jk , the right-hand sides Rk and the
boundary values. Afterwards we give equation (1.1) a precise meaning between
appropriate spaces.

To simplify notation, in the following we denote by Lp,Hs,q andHs,q
0 the cor-

responding function spaces over the given polyhedron �. For the sake of brevity,
the cross products of m copies of these spaces are denoted by Lp, Hs,q and Hs,q

0 ,
correspondingly.

Because we have to deal also with spaces of real-valued functions, we use the
notation ZR for the real analog of a complex space Z from above.
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Definition 5.1. We define for k ∈ {1, . . . , m} the operators

−∇ · µk∇ : H 1,2
0 �−→ H

−1,2
0

as usual via the corresponding forms. The operator

H1,2
0 � (ψ1, . . . , ψm) �−→ (−∇ · µ1∇ψ1, . . . ,−∇ · µm∇ψm) ∈ H−1,2

0

will be denoted by −divµ grad.

Remark 5.2. For the restriction of these operator to an Lp space, this definition
incorporates homogeneous Dirichlet conditions in the usual way (see [8] or [3]).

Assumption 5.3. We suppose that for each k the piecewise constant (3 × 3)-matri-
ces µk generate an admissible decomposition of � (see Definition 2.2).

Remark 5.4. Theorem 2.3 guarantees for any k the existence of a number qk > 3
such that the corresponding operator −∇·µk∇ provides a topological isomorphism
betweenH 1,qk

0 andH−1,qk
0 . Furthermore, each of these operators is also an isomor-

phism betweenH 1,2
0 andH−1,2

0 . Interpolation (see Proposition 5.16 below) between

H
1,qk
0 andH 1,2

0 (H
−1,qk
0 andH−1,2

0 , respectively) then shows that the operator also

establishes an isomorphism between H 1,q
0 and H−1,q

0 if q ∈ [2, qk].
Definition 5.5. Let q ∈ (3, 4] be a number such that each of the operators −∇ ·
µ1∇, . . . ,−∇·µm∇ provides a topological isomorphism betweenH 1,q

0 andH−1,q
0 .

We define p as the number q2 . Finally, we denote by D the domain of the operator
−divµ grad when the range space is restricted to Lp. The real part of D is denoted
by D.

We now formulate our assumptions on the operators Jk , Rk and the boundary
values. The reader will notice that the assumptions on Rk also include nonlo-
cal operators, which enlarges the class of possible applications considerably (see
Example 5.8).

Assumption 5.6. (i) For any k ∈ {1, . . . , m} there is a twice continuously dif-
ferentiable mapping ζk : [T0, T1] × R

m �→ (0,∞) such that the operator

Jk : [T0, T1] × H1,q
R

�→ H
1,q
R

is given by

Jk(t,u)(x) def= ζk(t, u1(x), . . . , um(x)) , u = (u1, . . . , um) , x ∈ � .

(ii) The operator Rk maps [T0, T1]×H1,q
R

intoLp
R

. Additionally, there is a constant
η ∈ (0, 1) and for any R > 0 a constant C(R) such that

‖Rk(t1, ψ1)− Rk(t2, ψ2)‖Lp
R

� C(R)
(|t1 − t2|η + ‖ψ1 − ψ2‖H1,q

R

)

for all (t1, ψ1), (t2, ψ2) ∈ [T0, T1] × H1,q
R

, ‖ψ1‖H1,q
R

, ‖ψ2‖H1,q
R

� R and

k = 1, . . . , m.
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(iii) We assume the existence of functions �1, . . . , �m,

[T0, T1] � t �→ �k(t) ∈ H 1,q
R

,

such that the corresponding distributional derivatives −∇ · µk∇�k are from
the space Lp

R
and for t ∈ [T0, T1] the mappings

t �→ �k(t) ∈ H 1,q
R
,

t �→ −∇ · µk∇�k(t) ∈ Lp
R
,

t �→ ∂�k

∂t
∈ Lp

R

are Hölder continuous with exponent η. For any k ∈ {1, . . . , m} the function
�k represents the boundary conditions for uk in the sense of traces; we have

uk(t)|∂� = �k(t)|∂�. (5.1)

In what follows, we will denote the function t �→ (�1(t), . . . , �m(t)) by �.
We now give two examples for mappings R = (R1, . . . ,Rm):

Example 5.7. Let

Sk : [T0, T1] × R
m × R

3m �→ R

be functions which satisfy the following condition: There is a positive constantη and
for any compact set K ⊂ R

m a constantϒ such that for any t1, t2 ∈ [T0, T1], a,b ∈
K, d, e ∈ R

3m and k ∈ {1, . . . , m} the inequality

|Sk(t1, a,d)− Sk(t2,b, e)| �ϒ
(|t1 − t2|η + |a − b|Rm

(|d|2
R3m + |e|2

R3m

)

+ ϒ |d − e|R3m
(|d|R3m + |e|R3m

)
holds. Then S = (S1, . . . ,Sm) defines a mapping R in the following way: For
every u ∈ C∞(�; R

m) we put

Rk(t,u)(x) = Sk(t,u(x), (∇u)(x)) for x ∈ �
and afterwards extend R by continuity to the whole set [T0, T1] × H1,q

R
.

Example 5.8. Assume υ : R �→ (0,∞) to be a positive, continuously differentiable
function. Further, let L : H 1,q

R
�→ H

1,q
R

be the mapping which assigns to u ∈ H 1,q
R

the solution ϕ of the (inhomogeneous) Dirichlet problem

−∇ · υ(u)∇ϕ = 0.

If we define

R(u) = |∇(L(u))|2
then, under a reasonable condition on the boundary value of ϕ, R satisfies Assump-
tion 5.6 (ii) with m = 1.

This second example comes from a model which describes electrical heat con-
duction; see [2] and the references therein.
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We now present a formulation of (1.1) and (5.1) which will later enable us to
prove local existence and uniqueness for the system under our consideration:

Definition 5.9. Let Fk : [T0, T1] × H1,q
0,R �→ H

1,q
R

be defined by

Fk(t,w) = Jk(t,w +�(t))

and the mapping Xk : [T0, T1] × H1,2p
0,R �→ L

p

R
be given by

Xk(t,w) = Rk(t,w +�(t),∇w + ∇�(t)) .

Then we say that u is a local solution to (1.1) including the boundary condition
(5.1) if

v = u −� ∈ C((T0, T ],D) ∩ C1((T0, T ],Lp
R
) ∩ C([T0, T ],Lp

R
)

satisfies

∂vk

∂t
− Fk(t, v)∇ · µk∇vk

= ∇Fk(t, v) · µk∇vk +Xk(t,w)− ∂�k

∂t+ Fk(t, v)∇ · µk∇�k + ∇Fk(t, v) · µk∇�k , k = 1, . . . , m (5.2)

on an interval (T0, T ] and v(T0) = u0 −�(T0).

In this definition an initial-value problem for a system of operator differential
equations in the real space Lp

R
has been formulated. However, the methods for its

solution operate in complex Banach spaces; cf. Proposition 5.13. That is why we
now pass over to a complex version of the problem. We start with

Definition 5.10. Let P : H1,q → H1,q
R

denote the mapping onto the real part of H1,q

which takes componentwise the real part of the function, and let Q : Lp
R

→ Lp

denote the canonical imbedding of the real space into the complex one. Further, we
define for v ∈ H1,q ,

Fk(t, v) def= Fk(t,Pv) and Xk(t, v) def= QXk(t,Pv).

For the sake of simplicity, we denote the complexified functionsQ�k and the vector(
Q�1, . . . ,Q�m

)
again by �k and �, respectively.

Remark 5.11. It is easy to see that the continuity properties of Fk and Xk carry
over to Fk and Xk .

Furthermore, in referring to the assumptions on Fk we also implicitly refer to
Remark 5.11. Thus, the complexified version of (5.2) reads as follows:
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Problem 5.12. Find a function

v ∈ C((T0, T ],D) ∩ C1((T0, T ],Lp) ∩ C([T0, T ],Lp)

which satisfies

∂vk

∂t
− Fk(t, v)∇ · µk∇vk

= ∇Fk(t, v) · µk∇vk + Xk(t, v)− ∂�k

∂t+ Fk(t, v)∇ · µk∇�k + ∇Fk(t, v) · µk∇�k , k = 1, . . . , m (5.3)

on an interval (T0, T ] and v(T0) = u0 −�(T0).

For the convenience of the reader, we now establish the functional-analytic
background we will use in the following. We start by quoting Sobolevskii’s theo-
rem, which will serve as the ultimate instrument for solving our quasilinear problem.
Then we continue with a resolvent estimate for elliptic operators on Lp spaces and
finish this section with two interpolation results which will be needed in the next
section.

Proposition 5.13. [28] LetA0 be an operator on a (complex) Banach spaceX with
dense domain D0. Assume that A0 admits the resolvent estimate

sup
Re z�0

(1 + |z|)‖(A0 + z)−1‖B(X) < ∞. (5.4)

Suppose β > α and v0 ∈ dom(Aβ0 ). Additionally, let

[T0, T1] × dom(Aα0 ) � (t, v) �−→ A(t, v) ∈ B(D0, X)

be a mapping satisfying A(T0, v0) = A0 and

‖(A(t1, A−α
0 v1)− A(t2, A−α

0 v2))A
−1
0 ‖B(X)

� c(R)
(|t1 − t2|η + ‖v1 − v2‖X

) (5.5)

for t1, t2 ∈ [T0, T1] and ‖v1‖X, ‖v2‖X � R. Finally, let

[T0, T1] × dom(Aα0 ) � (t, v) �−→ f (t, v) ∈ X
be a mapping obeying the estimate

‖f (t1, A−α
0 v1)− f (t2, A−α

0 v2)‖X � c(R)
(|t1 − t2|η + ‖v1 − v2‖X

)
(5.6)

for t1, t2 ∈ [T0, T1] and ‖v1‖X, ‖v2‖X � R.
If ‖Aα0v0‖X < R, then there is a (nontrivial) interval [T0, T ] such that the

equation

∂v

∂t
+ A(t, v(t))v = f (t, v) , v(T0) = v0

admits exactly one solution on [T0, T ] which belongs to the space

C([T0, T ]; dom(Aα0 )) ∩ C1((T0, T ];X) ∩ C((T0, T ]; D0) .
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The next result, which is proved in [12], says in essence that the operator A0,
specified in Definition 6.1, satisfies the required resolvent estimate (5.4).

Proposition 5.14. [12]. Let	 be a measurable function on� with values in the set
of the real, symmetric (3 × 3)-matrices which is essentially bounded, and assume
that

	
def= ess inf

x∈� inf‖y‖
R3=1

	(x)y · y > 0 .

Let" be anL∞
R
(�) function with positive upper and lower bounds "̂ and", respec-

tively. Assume that r ∈ (1,∞) and denote by A	 the restriction of the operator
−∇ ·	∇ (including homogeneous Dirichlet conditions) to Lr . Then the operator
−"A	 generates an analytic semigroup onLr and satisfies the following resolvent
estimate for z with Re z � 0:

‖("A	 + z)−1‖B(Lr ) � "̂

"
M
(‖	‖L∞

	
, r
) 1

1 + |z| ,

where

M : (1,∞)× (1,∞) �→ (0,∞)

is locally bounded.

The subsequent proposition will allow us to substitute the domain of fractional
powers (including the corresponding graph norm) by a suitable interpolation space
between the domain and the Banach space (and vice versa).

Proposition 5.15. Let Z be a Banach space and B a densely defined operator on
X satisfying the resolvent estimate

sup
t∈[0,∞)

(1 + t)‖(B + t)−1‖B(Z) < ∞.

If ϑ, θ ∈ (0, 1) and ϑ < θ , then

[Z, dom(B)]θ ↪→ dom
(
Bϑ
)
, dom

(
Bθ
)
↪→ [Z, dom(B)]ϑ

(the domains being topologized by a norm equivalent to the graph norm of the
corresponding operator).

Proof. The assertions are obtained from [32, 1.15.2, 1.10.3, 1.3.3]. 
�
Finally, we will exploit the following interpolation result which was proved in

[13] for the more general case of Lipschitz domains and mixed boundary conditions.

Proposition 5.16. Let γ ∈ (0, 1), 1 < p0, p1 < ∞. Furthermore, suppose that
γ �= 1/p = (1 − γ )/p0 + γ /p1. Then

[Lp0 , H
1,p1
0 ]γ = H

γ,p
0 .
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6. The nonlinear system: Existence and uniqueness of the solution

In this section we show that (1.1) has a (local) solution in the spirit of Defini-
tion 5.9, which is also unique. Having an application of Proposition 5.13 in mind,
the outline of the section is as follows: First we define an operator-valued mapping
A on [T0, T1]×H1,q , the restriction of which later on becomes the operator-valued
mapping A from Proposition 5.13.

Having fixed in particular the operatorA0 within this procedure, we then prove
that dom(Aα0 ) continuously imbeds into H1,q

0 for suitably chosen α. Thus, the
restriction of A to [T0, T1] × dom(Aα0 ) makes sense. Denoting this restriction by
A, we then prove that A satisfies the hypotheses of Proposition 5.13. Afterwards
we show that the same is true for the right-hand side of (5.3), which then enables
us to apply Proposition 5.13. Finally, we prove that the solution in fact belongs to
the corresponding real space.

Let us start with the following

Definition 6.1. We define a mapping

A : [T0, T1] × H1,q �−→ B(D,Lp)

by putting, for ψ = (ψ1, . . . , ψm) ∈ D,

A(t,w)(ψ1, . . . , ψl)
def= (−F1(t,w)∇ · µ1∇ψ1, . . . ,−Fm(t,w)∇ · µm∇ψl

)
.

Moreover, we set

A0
def= A(T0,u0 −�(T0)) .

Remark 6.2. This definition is justified because for any (t,w) ∈ [T0, T1] × H1,q

the function Fk(t,w) is from H 1,q ↪→ L∞, and, hence, a multiplier on Lp. Addi-
tionally, any function Fk(t,w) is bounded from below by a positive constant, cf.
Definition 5.9 and Assumption 5.6.

As announced above, our first goal is to prove

Theorem 6.3. For every α ∈ ( 1
2 + 3

2q , 1) the space dom
(
Aα0

)
(equipped with the

norm ‖Aα0 (·)‖Lp ) continuously imbeds into H1,q
0 .

For the proof we need

Lemma 6.4. Assume s = 3
p

− 3
2 and τ = 3

q
− 1

2 and set $ = τ − s. Then for any

k ∈ {1, . . . , m} the operator (−∇ ·µk∇)$/2 mapsH−s,2
0 continuously ontoH−τ,2

0 .

Proof. First we observe that $ is positive because q > 3 and s is nonnegative
because p � 2. Secondly, the operator ∇ · µk∇ generates analytic semigroups on
both, H 1,2

0 and L2. Thus, powers of −∇ · µk∇ and −∇ · µk∇|L2 are well defined
and the usual rules for calculus hold. In this spirit, we consider the operators

B
def= (−∇ · µk∇)1/2 : H 1,2

0 �→ L2 ,

C
def= (−∇ · µk∇)1/2 : L2 �→ H

−1,2
0 .
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Clearly, we have

(B∗)$ = (B$)∗ = C$.

By a well-known theorem (see [32, Chapter 1.15.2]), B$ maps dom(Bτ ) isomor-
phically onto dom(Bs). On the other hand, B is positive and selfadjoint, so that

dom(Bγ ) = [L2, dom(B)]γ = [L2, H
1,2
0 ]γ , γ = τ, s

(see [32, Chapter 1.18.10]). Because these interpolation spaces are identical with
H
γ,2
0 (see Proposition 5.16),B$ provides a topological isomorphism betweenHτ,2

0

and Hs,2
0 . Hence, by duality, C$ = (−∇ · µk∇)$/2 maps H−s,2

0 isomorphically

onto H−τ,2
0 . 
�

Proof of Theorem 6.3. Obviously, it suffices to show for all k ∈ {1, . . . , m} and
α ∈ ( 1

2 + 3
2q , 1), the existence of an imbedding

dom
(
(−"∇ · µk∇)α

)
↪→ H

1,q
0

whenever " is a real L∞ function bounded from below by a positive constant. In
order to do so, we first notice that the definition of s and τ yield the (continuous)
imbeddings

Lp ↪→ H
−s,2
0 and H

−τ,2
0 ↪→ H

−1,q
0 ,

(see [32, Chapter 4.6.1]). Denoting by κ1 and κ2 the imbedding constants between
the corresponding spaces, we may estimate

‖(−∇ · µk∇)$/2−1‖B(Lp,H 1,q
0 )

� ‖(−∇ · µk∇)−1‖B(H−τ,2
0 ,H

1,q
0 )

‖(−∇ · µk∇)$/2‖B(Lp,H−τ,2
0 )

� κ1κ2 ‖(−∇ · µk∇)−1‖B(H−1,q
0 ,H

1,q
0 )

‖(−∇ · µk∇)$/2‖B(H−s,2
0 ,H

−τ,2
0 )

.

The third factor is finite by Definition 5.5 and the last factor is finite by Lemma 6.4.
Thus,

dom
(
(−∇ · µk∇|Lp)1−$/2) ↪→ H

1,q
0 .

Hence, if α > 1 − 1
2$, then Proposition 5.15 implies that

[Lp, dom
(−∇ · µk∇|Lp

)]α ↪→ H
1,q
0 . (6.1)

Because the domains of −∇ · µk∇|Lp and −"∇ · µk∇|Lp are identical including
the equivalence of the corresponding graph norms, (6.1) gives

[Lp, dom
(−"∇ · µk∇|Lp

)]α ↪→ H
1,q
0 .

Another application of Proposition 5.15 then leads to the assertion of Theorem 6.3.

�
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Before we can prove one key result which afterwards enables us to apply
Sobolevskii’s theorem, we have to reinforce the above assumption on the initial
value u0:

Assumption 6.5. There exists a number β ∈ ( 1
2 + 3

2q , 1] such that

u0 −�(T0) ∈ [Lp
R
,D]β ⊂ [Lp,D]β .

In what follows we fix a number α ∈ ( 1
2 + 3

2q , β) and denote the imbedding

constant from dom
(
Aα0

)
into H1,q by κ .

Definition 6.6. Let A be the restriction of A to [T0, T1] × dom(Aα0 ).

The reader should notice that the definition of A is justified by Theorem 6.3.

Lemma 6.7. LetM be a bounded set in dom
(
Aα0

)
. Then there is a constant ck(M)

such that, for any y1, y2 ∈ M ,

‖Fk(t1, y1)− Fk(t2, y1)‖H 1,q � ck(M)
(|t1 − t2|η + ‖Aα0 y1 − Aα0 y2‖Lp

)
.

Moreover,

sup
(t,y)∈[T0,T1]×M

‖Fk(t, y)‖H 1,q < ∞.

Proof. By Theorem 6.3,M constitutes a bounded set in H1,q . Thus, applying Defi-
nition 5.9 we may estimate

‖Fk(t1, y1)− Fk(t2, y2)‖H 1,q

� ‖Jk(t1,Py1 +�(t1))− Jk(t2,Py2 +�(t2))‖H 1,q . (6.2)

If we bring Assumption 5.6 into play, we obtain a constant c(M) such that the
right-hand side of (6.2) is not greater than

c(M)
(|t1 − t2|η + ‖Py1 +�(t1)− Py2 −�(t2)‖H1,q

)
. (6.3)

Let 	� denote the Hölder constant of � (cf. Assumption 5.6 (iii)); then (6.3) is
less than or equal to

c(M)
(|t1 − t2|η +	�|t1 − t2|η + ‖y1 − y1‖H1,q

)
� c(M)

(
(1 +	�)|t1 − t2|η + κ‖Aα0 y1 − Aα0 y1‖Lp

)
.

The second assertion follows from the first. 
�
Theorem 6.8. The domain D of A0 (cf. Definition 6.1) is dense in Lp and A0 sat-
isfies the resolvent estimate (5.4). Moreover, A satisfies the estimate (5.5) from
Proposition 5.13.
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Proof. The density of the domain and the resolvent estimate (5.4) forA0 are implied
by Remark 6.2 and Proposition 5.14.

Let BR
def= {‖w‖Lp � R

}
be the closed ball of radius R in Lp. Clearly, the set

A−α
0 BR is then identical to the R-ball in dom

(
Aα0

)
and, consequently, a bounded

subset of H1,q (cf. Theorem 6.3). Assume now t1, t2 ∈ [T0, T1] and w1,w2 ∈ BR .
If we denote A−α

0 w1 by y1 and A−α
0 w2 by y2, then

‖(Fk(t1, y1)∇ · µk∇ − Fk(t2, y2)∇ · µk∇)(Fk(T0,u0 −�(T0))∇ · µk∇)−1‖
= ‖(Fk(t1, y1)− Fk(t2, y2)

)∇ · µk∇)(∇ · µk∇)−1(Fk(T0,u0 −�(T0))
−1‖

� 1
inf Fk(T0,u0−�(T0))

‖Fk(t1, y1)− Fk(t2, y2)‖L∞ ,

where the operator norm is taken in B(Lp). Applying Lemma 6.7 and inserting for
y1, y2, we obtain the assertion. 
�

In order to apply Sobolevskii’s result for our quasilinear system, we still have to
prove that the right-hand side of (5.3) satisfies the estimate (5.6) of Proposition 5.13.
This will be done now:

Theorem 6.9. Define the mapping

f k(t,w) = ∇Fk(t,w) · µk∇wk + Xk(t,w)−�′
k(t)+Fk(t,w)∇ · µk∇�k(t)+ ∇Fk(t,w) · µk∇�k(t)

for (t,w) ∈ [T0, T1] × H1,q ,w = (w1, . . . , wm). Then fk maps [T0, T1] × H1,q

into Lp. Moreover, there exists a constant C(R) such that

‖fk(t1, A−α
0 w1)− fk(t2, A−α

0 w2)‖Lp � C(R)
(|t1 − t2|η + ‖w1 − w2‖Lp

)

for any t1, t2 ∈ [T , T0] and any w1,w2 ∈ BR = {
w : ‖w‖Lp � R

}
.

Proof. The first assertion immediately follows from the estimates (6.2) and (6.3),
Definition 5.9 and the assumptions on the mappings Rk and the functions �k (see
Section 5).

To prove the second assertion we put y = A−α
0 w1 and ŷ = A−α

0 w2 with
w1,w2 ∈ BR . Then

‖fk(t1, y)− fk(t2, ŷ)‖Lp
� ‖�′

k(t1)−�′
k(t2)‖Lp+ ‖ ∇Fk(t1, y) · µk∇yk − ∇Fk(t2, ŷ) · µk∇ŷk ‖Lp

+ ‖Xk(t1, y)− X ‘k(t2, ŷ)‖Lp
+ ‖Fk(t1, y)∇ · µk∇�k(t1)− Fk(t2, ŷ)∇ · µk∇�k(t2)‖Lp
+ ‖ ∇Fk(t1, y) · µk∇�k(t1) − ∇Fk(t2, ŷ) · µk∇�k(t2) ‖Lp . (6.4)

We consider the terms on the right-hand side of (6.4) separately and show that each
of them has an upper bound of the form

C
(|t1 − t2|η + ‖Aα0 y − Aα0 ŷ‖Lp

)
. (6.5)
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For the first term this follows directly from Assumption 5.6 (iii), whereas the
second term can be estimated as follows:

� ‖∇(Fk(t1, y)− Fk(t2, ŷ)
) · µk∇yk‖Lp + ‖∇Fk(t2, ŷ) · µk∇(yk − ŷk) ‖Lp

� ‖Fk(t1, y)− Fk(t2, ŷ)‖H 1,q sup
x∈�

‖µk(x)‖B(R3) ‖y‖H1,q

+ ‖Fk(t2, ŷ)‖H 1,q sup
x∈�

‖µk(x)‖B(R3) ‖y − ŷ‖H1,q .

Taking into account the imbedding dom
(
Aα0 ) ↪→ H1,q and again applying

Lemma 6.7, we estimate this sum by (6.5).
By Assumption 5.6, the third term may be bounded by

C(A−α
0 BR)

(|t1 − t2|η + ‖y − ŷ‖H1,q
)

� C(A−α
0 BR) max(1, κ)

(|t1 − t2|η + ‖Aα0 y − Aα0 ŷ‖Lp
)
.

Moreover, the fourth term may be estimated by

‖Fk(t1, y)− Fk(t2, ŷ)‖L∞ ‖∇ · µk∇�k(t1)‖Lp
+ ‖Fk(t2, y)

(∇ · µk∇�k(t1)− ∇ · µk∇�k(t2)
)‖Lp .

Then another application of Lemma 6.7 and Assumption 5.6 yield an estimate of
the form (6.5).

Finally, the fifth term is not greater than

‖∇(Fk(t1, y)− Fk(t2, ŷ)
) · µk∇�k(t1)‖Lp

+ ‖∇Fk(t2, ŷ) · µk∇
(
�k(t1)−�k(t2)

)‖Lp
� ‖Fk(t1, y)− Fk(t2, ŷ)‖H 1,q sup

x∈�
‖µk(x)‖B(C3) sup

t∈[T0,T1]
‖�k(t)‖H 1,q

R

+ sup
x∈�

‖µk(x)‖B(C3) sup ‖Fk(t, y)‖H 1,q ‖�k(t1)−�k(t2)‖H 1,q
R

,

where the last supremum is taken over (t, y) ∈ [T0, T1] × A−α
0 BR . Applying

Lemma 6.7 together with Assumption 5.6 yields the desired estimate for the last
term. If we insert for y and ŷ, we obtain the assertion. 
�

After these preparations we can formulate our final result:

Theorem 6.10. Problem 5.12 admits exactly one solution v in

C([T0, T ], dom(Aα0 )) ∩ C((T0, T ],D) ∩ C1((T0, T ],Lp)

with T ∈ (T0, T1].
The function u def= v+� is then a solution of (1.1) in the sense of Definition 5.9.
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Proof. Assumption 6.5 together with Proposition 5.15 gives

v(T0) = u0 −�(T0) ∈ dom(Aγ0 )

whenever γ < β. Thus, the first assertion is implied by Proposition 5.13, Theo-
rem 6.8 and Theorem 6.9.

Furthermore, it is easy to see that the complex conjugate v = (v̄1, . . . , v̄m) is
also a solution of (5.3) and has the same initial value. Hence, v and v must coin-
cide. Thus, v takes its values in R

m and also satisfies (5.2), which proves the second
statement. 
�
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