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Abstract

We prove that nonsmooth quasilinear parabolic systems admit a local solution in
L? strongly differentiable with respect to time over a bounded three-dimensional
polyhedral space domain. The proof rests essentially on new elliptic regularity
results for polyhedral Laplace interface problems for anisotropic materials. These
results are based on sharp pointwise estimates for Green’s function, which are also
of independent interest. To treat the nonlinear problem, we then apply a classi-
cal theorem of Sobolevskii for abstract parabolic equations and recently obtained
resolvent estimates for elliptic operators and interpolation results. As applications
we have in mind primarily reaction-diffusion systems. The treatment of such equa-
tions in an L? context seems to be new and allows (by Gauss’ theorem) the proper
definition of the normal component of currents across the boundary.

1. Introduction

Various phenomena in physics, chemistry and biology are described by systems
of evolution equations like

up = V- (e Tk @ Vug) = Re(, V), u(Tp) =uo ; u= (ut, ... ,un) (1.1)

(see [1] and the references therein). In many applications, the data describing the
properties of the medium involve discontinuities. The aim of this work is to estab-
lish conditions on the piecewise constant coefficients p; under which (1.1) admits
a unique solution from a space

C([To, T1, LP (2 R™) N C' ((To, T], L7 (Q; R™)).

Throughout this paper we impose Dirichlet boundary conditions which may depend
suitably on time. The underlying three-dimensional domain €2 is a Lipschitz poly-
hedron, which means that €2 is a bounded Lipschitz domain with piecewise plane
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boundary. Further, we assume that 2 is partitioned into a finite set of Lipschitz
polyhedra 1, ..., Q7 such that the (3 x 3)-matrix functions p; are constant on
these subdomains. The dependence of the functions R on Vu is not stronger than
quadratic.

The theory of systems of the form (1.1) is well developed if €2 and the coeffi-
cient functions uy are smooth (see, e.g., [9] or [33]). Furthermore, existence and
uniqueness are studied exhaustively in the weak context; e.g., Holder estimates
have long been known also in this case (see [21] or [31]).

Note that the original formulation of (1.1) in terms of balance laws takes the
form (see [29, Chapter 21])

0
E/Mkdx—i-/v'jkdo:/Rk(u, Vu)dx, (1.2)
g ) E

&)

where E stands for any suitable subdomain of €2. Within the variational theory
of weak solutions, however, the characteristic functions yg of the subdomains are
not admissible test functions. Therefore the integral formulation (1.2) is equivalent
to (1.1) only if the weak solutions have some additional regularity. Moreover, the
additional regularity is also of importance for the numerical treatment of (1.1), as
the integral formulation is the basis of finite-volume methods.

The main advantage of our work in comparison to the concept of weak solutions
is the strong differentiability of the solution with respect to time and the fact that
the divergence of each corresponding current jr = urJi (¢, w)Vuy is a function,
not only a distribution. In a strict sense, only this justifies the application of Gauss’
theorem to calculate the normal components of the currents over boundaries of
(suitable) subdomains.

We address a general class of possible applications involving reaction-diffu-
sion systems and heat conduction in Section 5. Though at this point our results
are restricted to Dirichlet boundary conditions, we feel that the approach can be
extended to mixed boundary conditions, which occur, e.g., in modelling semicon-
ductor devices [7].

Global existence results for (1.1) cannot be expected within this rather general
approach (see, e.g., [6] or [2] and the references therein) and are thus outside the
scope of this paper.

Our regularity result for (1.1), Theorem 6.10, rests upon the classical theorem
of Sobolevskii on abstract quasilinear parabolic equations in Banach spaces and
estimates for elliptic transmission problems. The problem is to find an adequate
function space with respect to which the hypotheses of this theorem can be veri-
fied; see Sections 5 and 6. In the three-dimensional case, this question comes down
to checking whether the linear operators

1, Lq'
V-uV:Hy'(Q) — (Hy? () (1.3)
are topological isomorphisms for some ¢ > 3 and any piecewise constant matrix

w = g occurring in (1.1). The operator (1.3) corresponds to an interface (or trans-
mission) problem for the Laplacian, with different anisotropic materials given on
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the polyhedral subdomains 21, ... , 2y of  and with Dirichlet conditions given
on 0€2.

Unfortunately, in contrast to the pure Laplacian on a Lipschitz domain (see [15,
Theorem 0.5]), the solutions to such transmission problems only belong to L>*¢
near vertices and edges where ¢ > 0 might be arbitrary small in general. This is
even true for polygonal Laplace interface problems with four isotropic materials;
see [16]. Therefore, a large part of this article is devoted to the optimal L? regularity
for (1.3).

It is well known that the singularities of solutions to elliptic boundary-value
problems near corners and edges can be characterized in terms of the eigenvalues
of certain polynomial operator pencils on domains of the unit sphere or the unit
circle. We refer to [20] in the case of the Dirichlet and Neumann problems and to
[11] for the polyhedral Laplace interface problem with two isotropic materials. To
our knowledge, the corresponding analysis for several anisotropic materials has not
been done so far. This will be the topic of Sections 2—4.

To avoid the rather complicated discussion of the optimal regularity near ver-
tices, we exploit the somewhat surprising fact that if the solution of the interface
problem belongs to L7 for some ¢ > 3 near each interior point of the interface and
boundary edges, then the operator (1.3) is in fact an isomorphism; see Sections 2
and 4. Thus we are able to reduce the regularity result for (1.3) to that for an inter-
face problem on dihedral angles having one common edge; see Theorem 4.1. The
proof of this relies essentially on sharp pointwise estimates of Green’s function,
which will be presented in detail in Section 3.

The main result of our linear regularity theory, Theorem 2.3, says that the oper-
ator (1.3) is an isomorphism provided that

q €12.2/(1=7e))
and that the spectral parameter o (cf. Definition 2.1) satisfies the inequality
o> 1. (1.4)

Note that A can be expressed in terms of the eigenvalues of certain transmission
problems on the unit circle, which are obtained applying the partial Fourier trans-
form along an edge and the Mellin transform with respect to radial direction (see
Section 3.5).

This result is sufficient for the treatment of the quadratic gradient terms in (1.1)
if the Banach space is a suitably chosen L? space. However, the condition (1.4)
imposes a rather strong assumption on the geometry of the subdomains 1, ... , Q7
and the coefficient ug, or equivalently, on the eigenvalues of certain pencils of
ordinary differential operators. We refer to Section 3.6 for a discussion of this
condition, which can certainly be checked for many heterostructures of practical
interest.

Let us introduce some notation. The space of complex-valued, Lebesgue mea-
surable, p-integrable functions on 2, p € [1, 00), is denoted by L” (£2), whereas
L*°(2) denotes the space of essentially bounded functions on .

We use H*(L2), s € [0, 1], to denote the space of Bessel potentials according
to the differentiability index s and integrability index ¢ on the set Q2 (see [32]).
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(Note that for s = 1 these spaces coincide with the Sobolev spaces wha(Q).) By
Hg’q (€2) we denote the closure of C3°(2) in H*4(Q) .

If s € [—1,0], then H*7 () denotes the dual to H—*9(%2) and Hy'? ()
denotes the dual to H(;s’q(Q) when 1/¢ + 1/¢’ = 1 holds.

For two Banach spaces X and Y we denote the space of linear, bounded oper-
ators from X into Y by B(X, Y). If X = Y, then we abbreviate B(X). The norm
in a Banach space X will be always indicated by | - || x; only in obvious cases the
subscript sometimes will be omitted.

2. A linear regularity result: Reduction to a wedge problem

In the first part of the paper we study L? regularity of weak solutions of the
Dirichlet problem

V- AX)Vu=¢, xe€Q, ulpa=0, @2.1)

with a real, symmetric and strictly positive-definite matrix function A(x). The
domain €2 is a Lipschitz polyhedron partitioned into a finite set of polyhedra
Q1, ...,y such that A is constant on each subdomain 2;. We are interested
in determining under which conditions on €2 and A the solution of (2.1) satisfies
u € Hy () if the right-hand side ¢ € H;, () for some g > 3.

To formulate the result, we need a parameter 3:9 which can be obtained from
the geometry of 2 and the coefficient A (x) in the following way:

The matrix function A is constant on polyhedral subdomains of €2 and has
therefore jumps at plane interfaces which intersect at certain interior or boundary
edges. Let M be one of these edges or one of the edges of the polyhedron 2.
Choose a new coordinate system (y1, y2, y3) with origin at a point P in the interior
of M such that the direction of M coincides with the y3-axis. Denote by A(y) the
piecewise constant matrix function which coincides in a neighbourhood of P with
A7'A(A7(y + P))A, where A denotes the corresponding orthogonal transfor-
mation matrix, and satisfies A(ty’, y3) = A(Y,0), y' = (y1, y2), forall y3 € R,
t > 0.

We assign to M a positive real number by solving the following nonlinear
eigenvalue problem:

Let r = |y'[, @ be polar coordinates in the y’ plane and set U = r’*u(9),
V =r*v(®), A € C, where the functions u, v are given on the intersection o of the
unit sphere S! in the y’-plane with the support Q of Ay), o = QN SLIf M is
an interior edge of Q, then o = S' and we denote by H = H'!(S") _the periodic
Sobolev space on the unit circle. Otherwise we set H = H(} (0). Let A’(y") be the

upper left 2 x 2 block of A(y) and define the operator IT(1) by

1 - _
(MM, v)y & o3 / NGV U-VyVdy, uwveH, (22)

{l<\y’|<2}ﬁ§
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where (-, -), is the L?(o) duality. In Section 3 we will show that the spectrum of
the operator pencil IT(1) : H — H’ consists of isolated eigenvalues only. Denote
by A the eigenvalue with the smallest positive real part and set A o4 = Re A pq.

Definition 2.1. Let
To © min(1, A,
where the minimum is taken over all interior and boundary edges M of Q.

Definition 2.2. We say that the matrix A generates an admissible decomposition

of the Lipschitz polyhedron €2 into the polyhedral subdomains £2; (where A is

constant) if 3:9 > %

The regularity result which is needed for the nonlinear problem is

Theorem 2.3. If the piecewise constant matrix A\ generates an admissible decom-
position of Q, then the operator —V - A(x)V : H& () > HO_1 (2) provides a topo-
logical isomorphism between H(}’q (2) and H(;l’q () forallg € [2,2/(1 —/)\.\Q)).

Since ||V - ||, is an equivalent norm on Hé’q/(Q), any ¢ € Ho_l"q(Q) =

(Hé 4 (Q))/ can be represented as V - f with f € L7(2)°, where the divergence
is understood in the distributional sense. Hence, Theorem 2.3 is proved if we show
that the unique solution u of the variational equation

/A(x)w-vadx =/f.v¢dx Vo € HH(RQ) (2.3)
Q Q

satisfies the estimate

IVullza@) = cll fllLae) (2.4)

with a constant ¢ not depending on f.

The proof of (2.4) is based on local estimates for solutions of the Dirichlet prob-
lem which can be obtained from model problems in an infinite wedge. Here we
use the integral representation by Green’s functions which are studied in Section 3.
First we prove a result for differential operators in R” with measurable coefficients,
which will be applied in Section 4 to establish Theorem 2.3.

2.1. A preliminary result

Let 2 be a bounded polyhedral domain in R”, n = 3, and consider the Dirichlet
problem

L, DuE V. A0Vu=V.g, xeQ, ulsa=0, 2.5)

with g € L9(2)". Here A(x) is an n x n symmetric matrix of real, measurable and
bounded functions satisfying

alg? S Ax)E-ESbIg* forallg € R”
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uniformly in x € Q with 0 < a < b. Using Green’s function G(x, y), which
satisfies

/A(y)vycu, V) Vody = (). ¢ HAQ),
Q

for all x € €2, we can write the solution of (2.5) as

u(x) = —/VyG(x, y)-g(y)dy. (2.6)
Q

Foralmostall x € Q the Green function belongs to the set H ! (2\B,(x))N WO1 P (Q)
forallp > 0and 1 £ p < n/(n — 1); cf. for example [30]. Here and in the fol-
lowing, B,(x) denotes the open ball in R" with radius p and centre x. Moreover,
for almost all y € Q2 \ {x} the estimate

c

0Gx,y) £ —— 2.7
S e @7
holds and, if |[x — y| < dist(x, d€2)/2, then additionally
Glx,y) 2 — 2.8)
X,y 2 —-, .
VE R

where the constants depend on the ellipticity constants of A(x).

By the De Giorgi-Nash theorem the solution of (2.5) is Holder continuous.
More precisely, there exists @ € (0, 1) such that v € C* (), and for any x € Q
and 0 < p < R,

sp w — _inf uw S cp”(R sup lul+lglea).  (29)
QNB,(x) QNB,(x) QNBR(x)

where C and o depend on the ellipticity constants of A, n, 2 and R (cf. [10]).
Theorem 2.4. Letn < g < n/(1—a). Forany xo € Q the solution of (2.5) satisfies

/Iu(x)—u(xo)lq ot = /Iglqu

Q

The proof relies on several lemmas. In the following, let xo = 0 and set B, =
B,(0).

Lemma 2.5. Letr > n, v’ =r/(r — 1) . If x € B, then
[ 1wy < eprme
QNB,

with a constant not depending on x.
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Proof. We establish the stronger (because of B, C B3, (x)) inequality

IVyG(x, y)|"dy < ¢ p/=D

QN By, (x)
by proving
= f IV, GO, Y| dy < ¢ pt=m/=D
QNB,
We have

o
rsey o2ty fmeonra

k=0 c

p2~k

<Y ot ( w60 pra) "
k=0

p2k

where Cs défQﬁ(Bzg\B(;) and ][ fdx standsfor|C|*1 /fdx.
c C

We use a Caccioppoli-type inequality for spherical layers: Let v € H!(Q N
(Bsp2 \ Bp2)) with L(x, 9) v = 0. Then

/|Vv|2dx < %( / v|2dx + / |v|2dx). (2.10)
0
Cp QN(Bsp/2\B2p) QN(Bp\By/2)

Because L(x, 9) G(x, y) = 0in QN (Byy-«+2 \ B,y-+-1), after applying (2.10)
and (2.7) in C, p-« we obtain

c1
][ IVyG (0, y)[*dy < TR 1G(0, y)[*dy
Cook QN(B,p—k+2\B p—k—1)
1)
.
= (,0 2—k)2(n—1) )
Thus
00 —k\n 00
(p27%) (i k(1 (n—

k=0 P k=0

and the series converges because n — r’'(n — 1) = (r —n)/(r — 1) >0. 0O
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Lemma 2.6. Let |x| < %|y|, x,y € Q. Then

|x|*

IG(x,y) — G0, y)] = yp2re

Proof. Set p = |y|. By (2.9) any solution of L(x, 9) v = 0 satisfies

|x|*

() = V()] £ e =
0

sup  |v]
QNBy2

forall x € QN B,2, and by (2.7) we obtain G(x, y) < ¢ |x —y[>™" < ¢ |y|> 2.
O

Lemma 2.7. Let 3p < diam(Q) and |x| < §p. Then

1/2 clx|
( f mGOn-cwmra)” < ST
p<lyl<2p
Proof. By (2.10)
C
][ IV,(G(0, y) — G(x, y))|*dy < P ][ 1G(0, y) — G(x, y)[*dy,
C, QN(Bsp2\Bp/2)

and applying Lemma 2.6 gives the result. O

Proof of Theorem 2.4. Using the representation (2.6), we split

|xla —
2 Buyx|

q dx
w1 [ wewn-c0m smal
2 R™\ By

/|u<x>—u<0)|q—<f\ [ Vi(G )~ GO - g ] Lo o
Q

dile-i-Kz,

where g is extended by zero onto R". Letn < r < g. Then from Lemma 2.5,

’ ’ q/r'
[ avGar + 9,60.00a)" < e,
QN By)x|
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and Holder’s inequality leads to

[| nalr / g1 dy

227

Bajx|
o0 P /
.
g C/\pnilinq/rdp(\/fnild‘[ / |g(y)|rd0>q
0 0 Sn—l
o0
gc[p" = "q/r+‘f/’dp =l / g do "<e /|g(y)|‘fdy
0

sn—1

Since ng/r — n > 0, the second-to-last estimate follows from Hardy’s inequality.

We proceed with
dx q
K25 [ ([ IViGa, ) = GO, )l ()l dy)
x]?
Q |y>41x]
dx
Q 4lx| B3 \B;

Here we use the fact that, for f = 0,a 2 0,

/ Fdy =log3 / e (< / fdy).

|y|>a a r<|y|<3r

Then from Lemma 2.7,

0]

d 12
ks [ ([ etar( 190G - 6O Ray)
Q

4)x| B3 \B;

<(f 1soPay) ")’

B3 \B:

o0
<of gz [ euar f rewra)”)
Q 4)x]|

B3 \B:

o0

C]opnl(]a)qdp(/radt( ][ golay) )",
0

p B3:\B:

A

/_| / e {96 - GOy

@2.11)
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and in view of n > (1 — «)q, Hardy’s inequality leads to

o0
KziC/,O"_ldp ][ |g<y>|qdy§c/|g<y>|qdy. 0
B3p\B, Q

2.2. Reduction to a wedge problem

We return to the variational equation (2.3) in  C R? with piecewise constant
A. Let us choose a partition of unity of £ which isolates the corners, let x be one
of these cut-off functions, and define 2, = € N supp x. From

[AV(Xu)~V¢dx:/(Xf—i-uAVX)~V¢dx+/¢(f—AVu)~dex
Q Q Q

with

]/(xf +u AV - VFdx| £ el flla,) + lula@) Vel
Q

and

| /a(f — AVa) - Vxdx| £ el f lua@p el + el o IVl )
Q

it follows that the function yu € HO1 (£2,) satisfies an equation of the form
V-AX)V(xu) =V -g with |glree, = cUfllag, + lullLae,))

and the constant ¢ is independent of f and u. Then estimate (2.4) and consequently

the assertion of Theorem 2.3 follows from the imbedding HO1 Q) c L3/C~-D(Q),
if we show that

IVxw)lie = cligllea - (2.12)

Since Q_X contains exactly one of the corners, we have to consider the two cases
of an interior corner point and of a boundary vertex, where additional homogeneous
Dirichlet conditions are imposed. The case of an interior point corresponds to the
problem in the full space R with a matrix A(x) constant on infinite polyhedral
cones £2; with their vertices at the origin O. Hence their edges are rays originating
from O. In the case of a boundary corner point we get the Dirichlet problem in
some infinite polyhedral cone denoted by D with vertex at O, and A is constant on
polyhedral subcones ©2; C D. To unify notation we set D = IR? for the case of an
interior corner and study the problem

V.-A(x)Vv=V.g with g € LY(D)’ (2.13)

where A(x) is piecewise constant, satisfies A(tx) = A(tx),t > 0,and v = 0 on
D if D # R3.
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Lemma 2.8. Denote D, = B,ND and suppose that in the spherical layer D3\ D1 2
the solution of (2.13) satisfies

IVullLa(p\Dy) = C(Ilgllm(m\pl/z) + ||U||Lq(D3\D1/2)) (2.14)
for some q > 3. Then
IVvllLapy = cligllLap) -
Proof. Since the function vs(x) &ef v(dx), § > 0, satisfies
V- AX)Vvs=8"'V.gs,
by dilation we obtain, from (2.14),

1
IVUllLa(Dys\Ds) = € (||g||L‘1(D33\D5/2) + g”U”L‘I(D”\Dg/z)) : (2.15)
Thus
T ds oods 1
q q q
/ =5 IVolLs sy S € / 5 ”g”L"(Dw\Ds/z) + 5_q||v||L"(D35\Da/2))
0 0

and from the relation

x|

ds
/ / |u|qu—/|u|qu / log2/|u|qu

Dos\Ds [x]/2

we therefore obtain
/le|‘1dx /|g|‘1d + Hd )
D

Since g > 3, Theorem 2.4 implies the desired estimate. O

Lemma 2.8 reduces the proof of Theorem 2.3 to the proof of estimate (2.14). In
the spherical layer D3 \ D1, the coefficient matrix A (x) jumps at plane interfaces
which meet only at certain edges. Next we perform in D3 \ D1, a partition of unity
to isolate these edges. Let n be a cut-off function which isolates one edge. Then, in
the domain D, := suppn N (D3 \ Djy,2), nv satisfies

V- -AXx)V(nv) =

with another right-hand side b € Lq(Dn)3, and again we have |kl Ls(p,) <
c(llglzap,) + llvllLe(p,))- Thus it remains to consider the localized problem

V-AXx)Vw=V-h, heLi{(W)>3, (2.16)

where W either coincides with R or is a wedge in R3, and the coefficient A is
constant on dihedral angles E; forming W and having the common edge M. In the
case of an exterior edge, W # R3, the function w satisfies additionally w|yw = 0.

The regularity of the solution of the wedge problem (2.16) can be studied using
the integral representation by Green’s function, which is the topic of the next sec-
tion.
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3. The Green function of the wedge problem

Consider a wedge W with the edge M = {(0, 0, x3) : x3 € R}. In the case of
an interior edge we assume that R? = W is divided into dihedral angles E; =
e; xR (j =1,...,n), where e; are open sectors in the x'-plane, x’ = (x1, x2),
with vertex at the origin. In the following we set e = e U---Ue, and E =
E1U---UE,. Then y = de consists of n rays 1, ... , y, originating at x’ = 0,
andI' =0E =T'1U---UTI, withT'; = y; x R. Given real symmetric positive-
definite matrices A; (j =1, ..., n), we suppose that A(x) = A for x € E; and
consider the transmission problem

Lu=-V- -Ax)Vulx)=f(x), xeckE,

3.1)
[ulr =0, [Oypaulr=gKx), xel,

where 9, A def Av -V (v denotes the normal to the interfaces) and [-]r is the jump
across I'.

In the case W # R3, the wedge is divided by the dihedral angles E ;j and has
the boundary oW = I'g U T',,. Here I" denotes the interfaces ' =T'{ U--- U T,
Further, we introduce w = {x’ : x € W} withdw = yyUy, andy = y1U---Uy,_1.
We have to consider the transmission problem (3.1) completed with the boundary
condition

With (3.1) and possibly (3.2) we associate the sesquilinear form

B(u, v) &of / A(x) Vu-Vodx
E

and the energy space H (E) which is the completion of C5°(W) in the norm

def 1/2
il = 1 Vull 2z < (/ Valax)'"

E

By Hardy’s inequality, for any fixed xo € M we have

—27..12 2
/|x—xo| u?dx < | Vull?a, -
E

so that each u € H(E) belongs to L? (W). Consider the variational problem

loc

corresponding to (3.1) and possibly (3.2):

B(u,v):/fﬁdx+/gt7da, ve H(E), (3.3)

E r

where u is sought in the energy space H (E). Since B(u, u) ~ ||Vu/||;2, the problem
(3.3) generates a continuous linear operator from H (E) into H(E)'. In particular,
if f € L(z:omp(W) and g € L2 (I, then (3.3) has a unique solution u € H(E).

comp



Solutions for Quasilinear Nonsmooth Evolution Systems in L? 231

Theorem 3.1. (i) There exists a unique solution of the boundary value problem

L@3)G(x, £) =8(x — &), x,€E€E,
[G(x, E)ver = [0b.AG(x,E)lxer =0, E€E, (3.4)
G(x,8)lvepw =0 if W #R3, £cE,

such that the function

x> (1= x(x —€leHGx, &)

belongs to H(E) for arbitrary fixed ¢ = (§',&3) € E and ¢ > 0. Here x is a
smooth function on [0, 00) satisfying x (t) = 1 fort < 1/2 and x(t) = 0 if
t2>1.

(ii) The function G is infinitely differentiable with respect to x, &€ € E,x # &,
and homogeneous, i.e., G(tx,t€) = t ' G(x,&) fort > 0. For |x — &| <
min(|x'|, |€'|) the estimate

9200 G (x, §)] < ¢ |x — g7l 1Al (3.5)

holds, where c is independent of x and &.
(iii) G is also the unique solution of the problem

L(3)G(x,&) =8(x — &), x, € €E,
[G(x,&))eer = [0u,AG(x,8E)]ger =0,  x€E,
G(x,8)lecow =0 if W #R3, x €E,

such that the function

§r> (1= x(x —§le™HG(x, )
belongs to H (E) for arbitrary fixed x € E and ¢ > 0.

Proof. (i) If G, G, are two solutions of (3.4), then G = G1 — G is infinitely
smooth in a neighbourhood of &, implying that G € H (E) and hence G = 0, which
shows the uniqueness of G. To verify its existence, let & € Eq, for example, and
let £ be either the fundamental solution (if W = R3 ) or Green’s function for the
Dirichlet problem in the wedge W # R of the operator —V - A1 V. Reducing this
to —A by a suitable unitary transformation and afterwards by a dilation with respect
to each axis, it can be checked that &; satisfies the estimate (3.5). For W = R3 this
is obvious since

—1/2
E1(x, &) = c(arlx1 — &> + aalrr — &2 + azlxs — &%)

with some constants ¢, aj, az, a3 > 0, whereas the estimate for Green’s function
in the wedge follows from [23, Theorem 8.4]. Making the ansatz

G(x,8) =&(x,8) +v(x,§)
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for fixed § € E1, we observe that v satisfies the problem
Vi A)Vyv(x,8) = f(x,§), x€eE,
[U(x,é)]xel“ =Ov [aU,AU(xvg)]XEF = g(xvé)’ (36)
v(x, §)lxepw =0 if W 3 R?,
with

f(x,6) =0, x€Er, [f(x,8) =V A)Vi&i(x,8), x € E\Ey,

8(x, &) = —[3y,a&1(x, ) xer -

To obtain a (unique) variational solution of (3.6) for fixed £ € Ep, we have to
check that the corresponding right-hand side of (3.3) generates a continuous linear
functional on H(E): Note that f and g are infinitely smooth on Ex N {|x| < 1}
and Ty N {|x| < 1}, respectively, for any k. Moreover,

If. O Sclx—&73, gk, &) Sclx—&72
with ¢ independent of x and &. Then, with v € H(E),

| fvldx c( %dx)l/z( / |)c|74dx)1/2

En{lx|>1} E En{x|>1}

A

A

ciliVull2g)

by Hardy’s inequality, which shows that v > || g SV is continuous on H(E). To
verify this for v — fr gv, we note that

2 1/2 172
f |gv|da§c( f %dd) ( f |x|_3d0) ,

rn{ix|=1} roflx|=1} rn{ix|=1}

where the last integral is finite and the first on the right-hand side can be estimated
by cl|Vvll 2 again; see [22, Section 1]. The construction of G(x, &) for fixed
& € Ex (k=2,...,n) is analogous; hence (i) is proved. Since (x, &) — v(§, x)
is a solution of (3.6) with x, & interchanged, we obtain assertion (iii).

(i1) The homogeneity of G follows from that of the boundary-value problem
(3.4) and the uniqueness of G. To prove the estimates (3.5) we apply well-known
local elliptic estimates for transmission problems; see [27] and [26]:

SetU ={xeW:1<|x|<2},V={xeW:l <x| <4} andletu e
H (E) be the solution of the variational problem (3.3). Then for any integer [ = 0
we have

IV 2ull 2 gny < ce(IV! Fll2znwy + 18l gmieeavy + 1V Ul 2gay)) . BT

Let 1 = |x —&| < min(|x'|, |€’|). By the homogeneity of G it is then sufficient
to verify the estimates |97 BgG(x, £)| = cqp. It is enough to prove this for x" € U;
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otherwise a translation with respect to x and & in direction x” may be performed.
Consider, for example, the relation

00Gx.&) =olei(x. &) +dfv(x.6), &€k,

where w(x, §) = 85 v(x, &) satisfies the problem (3.6) with right-hand sides

AL a6, g1 S ) gx.6).

Applying the estimates (3.7) to this problem, we find that for |[x — &§| = 1 the
quantity

195 wx, Ol L2enw)

is uniformly bounded for any multi-index « since

IVEfill2cenyy  and g1l gz oay)

are so for any /. Together with Sobolev’s imbedding theorem, this implies

sup [0y w(x, &)| = co
|x—&|=1,x'eU

for any multi-index «. This finishes the proof of (3.5). O

3.1. Estimates near the edge

Here we briefly recall the definition of the operator pencil IT(A) associated with
the edge M = (0, 0, x3): Let r = |x/|, 0 be p(_)lar coordinates _in the x’ plane and
set A;(x) = A'; for x" € ¢, where A/, = (_alg))u:l,z and aJ are the entries of
the matrix A ;. Consider the family of sesquilinear forms

1
a(u,v; \) def
log2

{1<|x/|<2}NW

AN&)YVy U -V Vdx', (3.8)

where U = r*u(0), V. = r*v(@) and u,v € H. Here H = H'(S!) if W = R3
and H = HOl (0), 0 = S N'W, otherwise. The form (3.8) generates a continuous
linear operator I1(A) : H — H' by

(MU, v)e E a,v;2), wu,veH, (3.9)

where (-, -), denotes the (extended) L%(0) duality. The spectrum of the operator
pencil IT(X) consists of isolated eigenvalues only (see Section 3.5 for a detailed
discussion). Let A1 be the eigenvalue with the smallest positive real part and set
A =ReA;.
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Theorem 3.2. For |x — &| 2 min(|x'|, |&'|) the estimate

. ; 1\ IE'L N9
aa/aj aﬂ/ak G , é _ —]7|a‘7|ﬁ|7‘]7k |x| 310
19379350105, G (x, §)| < ¢ |x — & (IX—EI) (Ix—gl) (3.10)

holds, where c is independent of x and &, 69 = 0, 8y = min(l,/):) — || — € for

o # 0 and ¢ is an arbitrary small positive number.

Corollary 3.3. For § < min(1, %),

e — €172 if Ix — &| < min(|x], §']),

V,VeG(x, <c
VxVeGlx, 91 2 /P E P x — £[71728if |x — €] = min(|x'], |€7]).

Proof. The first estimate follows from Theorem 3.1 (ii), whereas Theorem 3.2
implies the inequalities

IV Ve Gx, §)] < clx —&|71720 /)0 g/ =t
|02, 06, G (x, €)| < c|x — &[7172 /)71 g/ 5T
for example. 0O

To prove Theorem 3.2, we follow the approach used in [24, Section 2] to obtain
a corresponding result for Neumann problems in a dihedron. We also refer to [11]
where the transmission problem with two isotropic materials, i.e., problem (3.1)
with n = 2 and scalar (but in general complex-valued) quantities A1, A», has been
treated. That in our case the sesquilinear form is coercive simplifies the arguments
of [11] at several places.

The proof of Theorem 3.2 relies on local estimates which will be discussed in
the next section.

3.2. Local estimates near the edge

Theorem 3.4. Let ¢, ¥ € C{° (W) be such that yr¢ = ¢. Ifu € H(E) is a solution
of problem (3.3) (with right-hand side from H(f)/) where Y f = 0 and yg = 0,
then for all integers k,1 2 0 and § > max(1 — A, 0) the estimate

I 1Pl V 2 u | 12y < ¢ W ull e (3.11)
holds, where c does not depend on u.

The proof of (3.11) for £ = 0 is based on the following

Theorem 3.5. For fixed R > 0 let u € H(E) be a solution of problem (3.3) such
that suppu C Br(0), f € L*(E) and g € H'Y/2("). Then

192, ull 2y + 10 Verllp2cgy + 11/ PVEull 2y
<c (||f||L2(E) + ||g||1-11/2(r))7 (3.12)

where ¢ does not depend on f and g.



Solutions for Quasilinear Nonsmooth Evolution Systems in L? 235

We proceed with the proof of Theorem 3.4, starting with the case k = 0: Assume
first that / = 0. Then
def
Ligu) = ¢f + Vo - AVu+ (V- AVe)u = fi,
def
lpulr = 0., [By,a (@) = ¢g — [(Av - Vo)ulr = g1,
oulyw =0 if W #£R3.
Since pf = 0, g = 0, the estimates

Ifill2e) S clVullue) . Igillgee = cllvullae

hold, and (3.12) then implies
197, 0ull 12k + 106 Vergull 2y + N5 1P Vigull 25y S IWullae:  (3.13)

hence (3.11) holds for k =1 = 0.
Setting w = dy, pu, we obtain w € H (E) by (3.13), and w satisfies the bound-
ary-value problem

Lw=20yf1, [wlr=0, [0yawlr=0xg (3.14)

with homogeneous Dirichlet conditions if W # R3. From (3.13) follows the esti-
mate

103 f111 228y + 10x3 811l 12y S € (19 Vorull 2y + 10xs @10l 12¢))
< clivullae.

where ¢ € C° (W) is such that ;¢ = @, Y1 = ¢;. Applying Theorem 3.5 to
problem (3.14), we obtain (3.11) for k = 0, [ = 1. Iterating this procedure, we
obtain Theorem 3.4 for k = 0 and any /. Now we treat the case k£ > 0: Setting

v = E))lm(pu, we have to deduce the estimate

" P 20 2y < ellVull e (3.15)
from the already established bound
P V20l 2y < c 1V ullaee). (3.16)

LetU; = {x eW: 27/ < x| < 012_-i}and V= {x eW:ep2=i-1 <

|x'| < 2277} be such that {U; ], is an open covering of supp ¢ and {V;}," is

L. 0
another open covering with U; C V; and V = U;V; C supp ¥. Set U = U;U;
and v; = 8i3u. Using the local elliptic estimates (3.7) (with f = g = 0) and a
scaling argument, we obtain

IV vill2w,0p) < a2 1V 2,0
forany k, j > 0. Multiplying this inequality by 27/@+%) and summing over j gives

1" P 201 2wy S e X PHE2V50 1 2 v 3.17)
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Now we have from (3.16) and (3.17) (for k = 1)

PNl 20y £ (I P Vol 2vng) + W ullae))
< (X' 1PV2oull 2y + 1Y ullace))

S cllyullue) .

where we have applied Hardy’s inequality in the second-to-last estimate. Further-
more, from (3.16) and (3.17) (for k = 2) we obtain

/|5+2v4

Il

I[|x iz < c(lX PVl 2w + IWullae) < clvullae).

Proceeding this way, we get (3.15) fork > 2. O

3.3. Proof of Theorem 3.2

To deduce Theorem 3.2 from Theorem 3.4 we proceed exactly as in [24, Sec-
tion 2.5] and first establish

Lemma 3.6. Let xo € W be such that dist(xg, M) < 4. Moreover; let @, v be infi-
nitely differentiable functions with support in B1(xy) such that ¥ = 1 on supp ¢.
Ifu e HE), Lu =01in E N B1(x9) and [0, aulr = 00on " N B1(xyp), then

sup 7% 104,08 0 ()u ()] < ¢ lyrull ey, (3.18)
xXe

where &, is defined as in Theorem 3.4 and ¢ does not depend on u and xy.

Proof. Consider firstthe case @ # 0 and let § be areal number with max(1 —/):, 0) <
8 < 1. Then the estimates (3.18) can be written as

sup |x" 1" L 3k o (u)| S e lyulpe), k=1,120.  (3.19)
xeE
From Theorem 3.4 it follows that |x’|3+k3! karz(gou)(-, x3) € L?(e) for all k, [

X3 T x
and almost all x3. Applying Sobolev’s theorem and Hardy’s inequality we can show

that

S+k—1 49l k
sup |x' |1 0L, VE (@) ()] £ ¢ sup |||x
xeE x3eR

Moreover, by the continuity of the imbedding H! (M) < C (M) and Theorem 3.4,
the last expression can be bounded by

PRl VR (@u) (- x3) [ 20

(I P08, VE 2 pull 2y + I PO VE 2 gul 2y ) < clvrullae),
which gives (3.19). .

Now let o = 0. By Theorem 3.4 we have x” > [x/|°37, (pu)(x', x3) € L%(e)
for almost all x3, and together with the imbedding result of [19, Lemma 7.1.3] this
implies that

sup |92 (@u) ()] < ¢ sup [[| - P04, V5 (@u) (-, x3) | 12 -
x€E x3€R

Proceeding as in the case o # 0, we obtain (3.18). O
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Proof of Theorem 3.2. Because of the homogeneity of G, we may assume that
|x — &| = 2, which implies that max(|x’|, |€']) £ 4. Let ¢ and ¥ be infinitely
differentiable functions with support Bi(x) or Bi(§). Applying Lemma 3.6 to the
function 9y,3% G (x, -), we obtain

€17 104, 0% 08, 0L,G (x, )] £ ¢ 19 () 9,05 G (x. )l k- (3.20)

Consider the solution u(x) = (¥ (-) f(-), G(x, -)) g of the variational problem
(cf. (3.3))

B(u,v) =(F,v)g Yve H(E)

with F € H(E)'.Since y F vanishes in the ball B (x), we conclude from Lemma 3.6
that

/| 192, 0% (x)| < ¢ llpullme).
Therefore, the mapping
H(E) 5 F > |x/|%0],0%u(x) = x| % (F(), ¥ (134,0% G (x, ))&

represents a continuous linear functional on H (E)’ for arbitrary x € E, with norm
independent of x. This implies that

7% 19 ()0450% G (x, )l meey < e,

which, together with (3.20), yields the desired estimate and finishes the proof of
Theorem 3.2. O

The following subsections are devoted to the proof of Theorem 3.5 (which
implies Theorem 3.4) and to the spectral properties of the operator pencil IT()).

3.4. Reduction of Theorem 3.5 to a two-dimensional problem

Following the standard approach for elliptic problems in domains with edges,
we apply the partial Fourier transform Fy;.., to the problem (3.1). We use the
notation

~ def
() =

Then (3.1) takes the form

Foyqu(x’, x3) = i(x', n) .

~ def N . ~ N 2 .
Lt S =V - A'Vyi — 2in(ai3dy, + andy)i +n*asii= f ine,

@], = 0, [0y,atl +in(aizvy +azvp)i]l, =g on y, nekR,
ulpe =0 if » #R?, (3.21)

def
where 9, A/ = Av -V, A = (akl)k =12
with the x’-plane and ay; (k, I = 1, 2, 3) are the entries of A which are constant in
each sector e;. Since

Freyon(AVU - VT) = A C;u“) . ( Vi

Recall that w is the intersection of W

SN <)

—in
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the sesquilinear form B transforms to

B, o &

/ (A/Vx/ft . foﬁ +ini (a3, + a233x2)5

e

— in5 (a130x, + az3ax2)ﬁ + n2a33ﬂ5) dx’.

Since A is positive-definite (uniformly in x), for any # € C§°(w) we obtain the
estimate

Ba.in Zc [(il +Pafdr.  weR (2
e
With the variational problem (3.3) we can now associate the family of problems
B(it, b; ) = fﬁdx/+/§5da Vo e H(e;n), neR, (3.23)
e Y

where the solution # is sought in the energy space H (e; 1), which is the completion
of Cgo(w) with respect to the norm
||12||H(e;n) = ||Vx’ﬁ||1,2(g) + Inl ||ﬁ||L2(e)-
Now let u € H(E) be a solution of (3.3) with support in the ball Bg(0) such
that f € L? (R3) and g € Hclo/n%p(r‘). For every n € R the function #(#n) then

comp

belongs to H (e; n) and satisfies (3.21) or (3.23). Furthermore, inequality (3.12) in
the case g = 0 is equivalent to
7 &2 + INVed 2@ + I 1PV2EM L2
Sclfmlize . neRr. (3.24)

Remark 3.7. It is sufficient to prove (3.12) for g = 0. In the general case we may
choose ug € H(E) with compact support such that u0|EJ. € HX(E ;) for all j,

. def
[uo]lr = 0 and [0, Auplr = g, according to the trace theorem. Then u; = u— uo
satisfies the problem

Luy = f —Lug € L*(E), [u1lr =0, [8yau1lr =0

with homogeneous Dirichlet conditions if W £ R3, and the desired estimate of
u = uy1 + ug follows from that of u;.

To reduce the estimate (3.24) to the case n = 0, we need the following result
which will be proved in the next section.

Theorem 3.8. Let u € H'(e) be a solution of the problem
LOu=—-VyA'Vu=7f ine,
[ul, =0,[0,auly =g on vy, (3.25)
ulpo =0 if o #R*,
such that supp u C Br(0), f € L%(e) and g € Hl/z(y). Then the estimate
1P V20l 200y < ¢ (1F N2y + 8la12) (3.26)
holds, where ¢ does not depend on f and g.
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Proof of estimate (3.24) for n # 0. From
Lam) = fa), [aml, =0, [0y a4() + in(aizv + azzva)ii(m], =0
we obtain

LO)Yi(n) = f() + 2in(arzdy, + ar3de)ii(n) — nlassi(p) L f(p) .
[y A ()], = —inl(@rzvi + axv)i(n], 2 g1 (). (3.27)

Setting v = # in (3.23) and using (3.22) gives

\

2 B(u, i; 1)
2 c(IVeialiae, + 1 lamla,,)  (328)
Zcn ”Vx’ﬁ(n)”Lz(e) ”ﬁ(n)”L2(e)'

On the other hand, it follows from (3.27) and (3.28) that

LA 20) =l F DIz -
gt D2y < enll VedMliz2e < eIl F L2

1F Dl 20y 1A L2

Applying Theorem 3.8 to problem (3.27) then yields the bound

X' PVZAM) 2 S e I D 2)

which, together with (3.28), implies (3.24) for any n # 0. Thus we have reduced
the proof of Theorem 3.5 to that of Theorem 3.8. O

Remark 3.9. As in Remark 3.7, we reduce the assertion of Theorem 3.8 to the case

g=0.

3.5. Proof of Theorem 3.8: Reduction to a one-dimensional eigenvalue problem
Consider the boundary-value problem
LOu=f, lul,=[0varul, =0, ulpo=0if o # R? (3.29)

andletu € H!(e) be asolution of (3.29) such that suppu C Br(0)and f € L%(e).
Passing to polar coordinates x’ = (x1, x2) = r(cos 8, sin 6) we have

V=V, =(cosfd —r 'sinfdy, sinfd, +r ' cos d),
r?L(0) = —rV - A'rV + (Vr) - A'rv

_ cos@rd, —sinf dy (@ a2 cos@ro, —sinf dy
B sin 0 rd, + cos 6 dy ap a» sin@ rd, + cosf 9y
cos b ail ap cos6rd, —sinf dy
+ <sin9> ' <a12 a22> <sin9r8r +cosBdy ) (3.30)
The transmission condition of (3.29) can be written in the form

[M]G_,' =0 ’

[rdy arule; = [v- A/rVu]gj
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_ —sin@ (@ a2 cos@ro, —sinf dy "
o cos 0 ap a» sin@ rd, + cosf 9y 0.
J

=0, (3.31)
where the angle 6; corresponds to the ray y;, j = 1,...,nifw = R2, or j =
1,...,n — 1 otherwise.

Following KONDRATIEV’s method [17], we now apply the Mellin transform
with respect to the radial variable:

i, 0) =/r—Hu(r, 0)dr, xeC.

R+
Using (3.30) and the relation r/a\r/u = —All, we obtain
r2/L_EO/)u = —og(an sin2@ — 2aj12 sin 6 cos 6 + any cos? 0)ogut

+ 239 ((a22 — ar1) sin @ cos 6 + aja(cos? @ — sin? 0) )it
+ A((azz —app)sinf cos O + alz(cos2 6 — sin? 9))89ﬁ

- Az(all c0s? 0 + 2ayn sin 6 cos O + ax sin” )ii.

Furthermore, taking the Mellin transform of (3.31) and using the notation g &f )2 f
and

bo(6) def apn cos? 6 + 2a17 sin 6 cos 6 + apy sin% @ ,
by (6) def apg sin 9 — a1z sin 6 cos 6 + any cos? 6 ,
b10) ¥ (a2 — ayy) sin 6 cos 6 + aya(cos? @ — sin20) ,

we can write the boundary-value problem (3.29) as the following one-dimensional
problem with parameter A on o N e:

TV S —8pbrdgit + 1pb1ii + Ab13gii — X2bgii = 3 ,

lily, =0, [badgii — Abiiily; =0, j=1,....n if o=S8'" (332
or j=1,...n—1, andadditionally u(6y) =u(6,) =0.

For fixed A € C, problem (3.32) generates a continuous linear operator IT(}) :
‘H — 'H' via the sesquilinear form

a(ﬁ,ﬁ;x)déf/(bzagaaei—xb1ﬁ395+xblagﬂ5—x2b0a5)d9. (3.33)

(o2

Note that IT(1) is just the operator pencil defined at the beginning of Section 3.1.
We now investigate its spectral properties.
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Lemma 3.10. Let . = & + in, || < C. Then there exist constants ¢ > 0 and
c1 = ¢1(C) such that
Re a(i, i; 2) Z ¢ (19672, + 01172,
forallii € H and |n| Z c.
Proof. From (3.33) we have

Rea(u, u; 1)
2 [ (b2180a|* + (0> — €H)bolit|* — 2nbi1m (dpia)) dO
o
C

2 ¢ [ (b2ldeit|* + nbolid|* — 2[n| |b1] 18] |]) dO — c2€>||itl| 12 -
o
A straightforward calculation gives byby — b% = ajjaxy — a%z, and this quan-

tity is bounded from below (on o) by a positive constant since A’ is (uniformly)
positive-definite. Therefore the last integral can be estimated from below by

¢ (190l 2 + 1NN ,)- o

Corollary 3.11. The operator T1(X) is an analytic Fredholm operator function
which has only isolated eigenvalues of finite multiplicity. For |&| < C and suf-
ficiently large |n| the operator TI(A) (A = & + in) is invertible with the uniform
bound

ITT) "8l 2 enoy + 1P ITT) '8l 12¢6) = 1B 1200y (3.34)

Here the norm in H?(e N o) is defined by

2
1l 2erey = IVl + D 10500120 00 -
J

If Ao is an eigenvalue of maximal rank k, then in a neighbourhood of A the repre-
sentation

k
o)™ = BO)+ ) Bl —10)™ (3.35)
=1

holds, where By, ... , By are finite-rank operators and
B(\) : H*(eNo) —> L*(o)
is an analytic operator function.
Proof. From a(u, ii; )) = fg gﬁ and Lemma 3.10 we obtain
36l 20 Nl 20y = € (108172, + 0Nl 200) S €llENL2a) Nl 2¢0)s
which implies that

il 20y + 1907l 200y < €181 L2¢0)-
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Moreover, from (3.32) and b, = ¢ > 0 on o, we have

5. N
Z 105720 2(e;r0) = € €11 L2(5)s
j

which completes the proof of (3.34). The other assertions follow from standard
results on Fredholm operator functions; see e.g. [18, Appendix A]. O

Lemma 3.12. If W # R3, then the line Re & = 0 contains no eigenvalues; other-
wise it contains the single eigenvalue A = 0.

Proof. Let A = in (n € R) be an eigenvalue and u( an eigenfunction. From (3.33)
we have

0 = aluo, uos in) = / (bal3puol? + bon?luol® — 2nbyIm (Bpuoiio)) d8

o

> ¢ (100l 20y + 172 )

cf. the proof of Lemma 3.10. This gives n = 0 and uo = constif o = S!; otherwise
the Dirichlet conditions imply ug = 0. O

Proof of Theorem 3.8. Let u € H'(e) be a solution of problem (3.29) such that
suppu C Br(0) and f € L2(e), where R > 0 is fixed. We have to show that for
0<dé<1,8 >1— A, the estimate

17°V2ull 20y < 1 f |20 (3.36)

holds, where c is independent of f. Recall that A = Re A1, where A is the eigen-
value of IT(}) with smallest positive real part. By Corollary 3.11 and Lemma 3.12,
for any sufficiently small ¢ > 0 the operator function IT(1) ! is analytic in the strip
S={-e<Rei < r— ¢} obeying the bound (3.34) with the possible exception
of a neighbourhood of A = 0. By Lemma 3.12 this is the case if W = R and then
the representation (3.35) holds. We set

(A, 0) =TI(W) " 'g(1,0), reS, beo.
Note that g = r2 f has a finite weighted L? norm

7Pl 2 < c(B) 1 fll 2y forany p = —2.

Let 8 such that —1 — 8 € S and B # —1. Denoting by vg the inverse Mellin
transform of v on the line ReA = —1 — B, we find as in [17] that vg satisfies the
problem (3.29) and satisfies the estimate

IrP P2V 208l 120) + PP Vgl 2 + PP vgll L2 < cllrPgllo

clfllize- (337
Note that the left-hand side of (3.37) can be estimated from above by

4= 2 . 2 172
C( (IAFIB 2 gy + 10, -)IIHz(md))d?») ,
Rei=—1-8

IVANIVAN
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which can be bounded by

~ 5 1/2 P
o( f 1802y dr) < clirfell g
Reh=—1-8

by using the estimate (3.34). Furthermore, since

p+1

||rﬁu||Lz(e) < clr VM”LZ(e) <c ||VM||L2(6) . Bp>—1

by Hardy’s inequality, we obtain u = v,_; for some ¢ > 0 sufficiently small.
Hence, if TT(A)~! is analytic in the strip S = {—e < Re A < 1 — § + ¢}, then also
u = vs_p and (3.37) gives (3.36).

Otherwise we use the Residue Theorem (see [17]) which gives the equation

u=yvs o+ Y cj(@y log/(rnu;@®), (3.38)
0= j<k—1
where ¥ is a smooth cut-off function with ¥ = 1 on Bg(0), ug = 1 is the

eigenfunction and u; (j = 1) are generalized eigenfunctions corresponding to
the eigenvalue A = 0 of IT(A). Moreover, c;(g) are continuous linear functionals
in the sense that

lei (@1 < e (I gll 20y + 17728l L20))-

Using (3.37) for § = § — 2 and the fact that u € H'(e), we see that cj(g) =0 for
J 2 1in (3.38), which implies the desired estimate (3.36) foru. O

3.6. Verification of the condition (1.4)

We conclude this section with some remarks on the verification of the condi-
tion (1.4), which is needed for our main regularity result (Theorem 2.3). For any
operator pencil IT(A) of the form (3.32) corresponding to problem (2.1) near an
interface or boundary edge, we have to check that

A=Rer > 1, (3.39)

where A is the eigenvalue of IT(A) with smallest positive real part.
Following [5], we may determine the eigenvalues of IT(}) by using a solution
basis of the form

(0+()\‘, 0) déf e—ik@(a"rezi@ + 1))\. , 90_()\', 0) déf ei}x@(a—e—zi@ + 1))» (340)
on each arc e; N o, where

i + e
at = 'B, o =at

i—p

and S is the root of the quadratic equation

anp? +2anp +ai; =0
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satisfying Im 8 < 0, with the real constants a1, aj2 = a1, a2 from (3.30). Thus
we have

21172

1 ) i(ap — k) —ap def
B=——(an+ix), at=—2"""L & g0, —d)'?.

axn i(ap +K)+apn

Moreover, we assume without loss of generality that all polar angles corresponding
to rays y; satisfy 6; € (—m, w) and define the function 7 occurring in (3.40) by

7 def exp(Alog|z| +irargz), argze (—m,m].
If all materials are orthotropic, we may assume that
ann =1, apn=0, apn =1*
with some ¢ > 0 on each sector e;. Then (3.40) takes the form
et (A, 0) = (tcosf +isind)*, ¢ (A, 0) = (tcosh —isinb).
Denoting the functions (3.40) on e; N o by (pjE and inserting the ansatz

oG, 6) % cjgoj(x,e)Jrc;go;(x,e), ecejNo, j=1,...,n

into the homogeneous equations (3.32), we obtain a linear system
CMz=0, z=(C/,C:j=1,...,n),

for the unknown vector z € C2. Then the eigenvalues of IT(}) are given by the
roots of the transcendental equation

detC(A) =0, (3.41)

and by determining the location of its roots we may find lower bounds of the quantity
A. We refer to [5] for further discussion and algorithmic aspects. The explicit form
of equation (3.41) in the case of a pure transmission problem with two anisotropic
materials can be found in [14].

If all materials are isotropic, then (3.32) is a Sturm-Liouville problem having
only real eigenvalues, and we refer to [25] for a detailed discussion of (3.41). More-
over, from [25, Theorem 6.2] we find that condition (3.39) is fulfilled if additionally

(i) (3.32) is a pure transmission problem with at most three materials (i.e., n < 3)
and § < 37/2, or

(i1) (3.32) corresponds to an interface problem with two materials and Dirichlet
conditions on the boundary, and ) < 37/2.

Here 6 denotes the maximal interior angle of the sectors e;.
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4. Proof of the linear regularity result

Now we are in the position to study the L? regularity of the wedge problem
(2.16). Its solution can be represented as

w(x) = — / VyG(x,y)-h(y)dy, (4.1)
w

with the corresponding Green function G (x, y). Recall the definition of the number
A given in Section 2. It is uniquely determined by the values of A (x) near M.

Theorem 4.1. Ifh € L7 (W)3 withq € [2,2/(1 —/):M)), then the solution of (2.16)
satisfies

IVwllLaew) < c llhllaew) -
The proof of Theorem 4.1 follows from

Lemma 4.2. Let § € (0, /):M). There exists a constant ¢ such that, for any r > 0,

9]

/ / d
f|Vw|qd <o /|h|‘1d ‘4 fS/ /|h|‘1d e
o’

M / / |h|qc1x "pdp, 4.2)

where C, denotes the cylindrical layer C, &ef [x:r<|x'| <2r,x3 e RINW.

Proof of Theorem 4.1. We simply integrate the ¢g-th power of the terms in (4.2)

over r dr. Then
00 2r
[%/rdr//|Vw(r,9,x3)|qd9dX3
0 r o R

o0
2///|Vw(r,9,x3)|qrdrd9dx3.
0 o R

To the last two terms on the right-hand side of (4.2) we apply additionally Hardy’s
inequality which provides, for ¢ — g8 < 2,

oo oo

1/q9d
/rdr<r5_1/ _2/|h|qu q—p>q
P8

r

o0
1/q q
/ (1+q5dr / /|h| dx TZ/L])
1—q+g8+q—2—8 dV
c [ r—9maoTe 9dr | |h|%dx =c | — | |h|?dx,
r
0 C,

0 Cr

A
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and for g + g8 > 2 we obtain

o r

Joste o fora vy
0 0 Cp
00 r
/r]quqédr(/(/|h|qu)1/4%)q
Cp

0

0
00 o0
1—g—g8+q—2+8 dr
c | Fl-a—as+q 9dr | |h|%dx =c | — | |h|?dx. O
r
0

¢ oG

[IA

Proof of Lemma 4.2. Using (4.1) and the notation % udx &2 / udx, we

o C
split the integral on the left-hand side into three parts:

(% |Vw|qu)1/q §<% ( / IVeVyG(x, y)| 1h(y)| dy3 dy,)qu)l/q
“ Cr |y'|<r/4
+ ( % ( / IViVyG(x, )| |k (y)| dy3 dy/>qu)1/q
Cr |y|>4r

1/
+(7C v, / V,Gx,y) - h(y) dys dy['ax)

C, r/d<l|y’|<4r

)
where h is extended by zero onto the whole space if W # R3. For the first and

second integral we have |x — y| = min(|x’|, |y’|); hence by Corollary 3.3 and
x| > r,

I

A

|h(y)|dy’ dys q \l/q
d
C(.%< / (|X/—y/|+|x3—y3|)1+2‘3|x/|1—5|y/|1—5> x)
C,

r |y |<r/4

c H(y3,r)dy3 a\1/q
dx" | d ,
rl=s <][ g / x3(/ (x| + |x3 —y3|)1+28) )
- R R

T

A

where K, = {x’ : x € C,} and the notation

def lh(y', y3)| dy'
H(ys, r) S T

[y'I<r/4
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is used. From Young’s convolution theorem we have

H(ys, r)dy3 q c
d ‘ ‘ < H(ys. r)%dys .
/ 3 /(|x,|+|x3_y3|)1+23 = o | 103 s
R R R

which implies together with Minkowski’s inequality that

! c dx’ \1/q " ay 1/q
1:’,1—_5< W ( |H(y3, 1)l )’3>
r R
r/4

< ([ ([ 55 f moomiay) )™

R 0 K,
r/4
¢ s
< | pa H
=g | P AP ][ LI®)
0 K,
r/4
c 1/q
<t [ P (F moray)
0 ¢,

The second integral can be estimated by

h(y', d qa\1/q
12§c(][dx//dx3( / o y3)1|2§ =5 13))
(Ix" =y + [x3 — ysDIH20 x| 1 =0y 1=
K, R |y |>4r
h(y, d qa\1/q
< 163(/‘”3( |k (y y3)|1 i; 15))
ri= Iy + lx3 — yaD!22]y' 1=

R |y |>4r

oo
L(/dx (/ﬂ/d ][ lh(y", y3)|dy' )4)1/q
rl=3 3 plfS y3 o+ x5 — y3|)1+23 .
R 4r R K,

Applying again Minkowski’s inequality, we obtain, similar to I,

e ¢]

c 5 lh(Y', y3)ldy  \a , \V4
hs ﬂj/p dp(/dx3<fdy3][ (,0+IX3—Y3I)1+25) dx3)
4r R R Kp
o
< ¢ 5 P P qd 1/q
=1 | P ( lh(y", y3)I y) y3)
4r K,
o
p
< o )"
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To estimate the third integral I3, note that

t+r

1 / /
[Vw, (x)|?dx = > dt [ dxs 4 [Vwr(x', x3)|? dx
r
C, R t—r K,

:/dt ][ [Vw,(x)|?dx,

R Ot
where
def
wr(x) = — / VyG(-xs )’)h(y)d%

r/d<|y’|<4r

def
Ot ={x:x' €K t—r<x3<t+r}.

Next we split

][ Vow, [9dx < ][ IV (wy — wr)|dx + ][ Vewniltdx & 7+ 1,

Ot Ot Ot
where
w0 € - / V,G(x, y) - h(y)dy
0,
with

Q/r,tdéf{x:r/4<|x/| <4rt—2r <x3 <t+2r}.

If x € Qs and 4—11r < Y| < 4r, |y3 — t| > 2r, then again |x — y| =
min(|x’|, |y’]), and additionally |x" — y'| + |x3 — y3| = ¢(|x’| + |x3 — y3|). Hence

I = ][‘ / vayG(x,y)-h(y)dy(qu

Ora r/d<|y'|<4r
|y3—t|>2r

c ][ ( / lh(y)l dy )qu
r{=9q 5 (1x] + |x3 — y3|) 28]y 1-8 ’
r,t

r/d<|y'|<4r
|y3—t|>2r
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Integration over ¢ gives

¢ |h(y)|dy q
<
/Jl d ~r(-d)q % ( / (%" + |x3 — )’3|)1+28|)’/|1_8) a
R

Cr r/d<|y|<4r

/
V(l S)q fd /d)C3
K

r

dys / lh(y', ys)ldy’)q

(X + |x3 — y3 120 |y'1=
r/A<|y’|<4r

and proceeding as in the estimation of the integral /1, we obtain

(/dt ][ IV (w, — wr,l)wdx)l/q - (/ 7 d;)l/q

]R Qr,t R
4r

c 1/q
a5 [ PPde (f Ih(y)lqdy)

r/4 Cp

To estimate J», note that by the homogeneity of Green’s function

[ dx| [ Vev,Ge by

Qr,t Qr.t
q
=3 dx‘ [ ViVyGx,y) - h(r(y + (0,0, 1)) dy
o Q1o

We can choose C* cut-off functions ¢(x) and ¥ (y) equal to 1 on Q 1.0 Tespectively
Q,I,O such that

def
G(x,y) = e)Y () Vi VyG(x, y)
satisfies the estimate
9700 Gx. )| < elx — y| 7T

for all x,y € R3. This follows easily from Theorem 3.1. Hence, G fulfils the
requirements of a Calderon-Zygmund kernel (cf. [4]). To prove that the mapping

Kgx) < - / G(x, ) g(y)dy (4.3)
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is a Calderon-Zygmund operator, it remains to show that /C : L2(R3)? > L%(R3)3
isbounded. Forany g € L?(R3)3 the vector function K g can be written as K g (x) =
©(x)Vu(x), where u satisfies the partial differential equation

V-A)Vu=V-(¥g),
and obviously
loVullL, S IVullz, S clvglle, < g, -

Consequently, K € B(L?(R3)%) for any 1 < ¢ < oo, and therefore

q
[ dx| [ VG, y) GG+ 0,0,0) dy
00 o
= || Kh(r(+©,0,0ON¢ , Zer3n? .
KRG+ ©.0.00I1, o Ser— Al

Hence

[ vwdtax < [ar f imay

R Ort R 0,

and therefore

( ?C|Vwr|qu)”q§c( ?ﬁ hyiay)
ol

r/2<|y’|<4r
4r
c 1/q
+ 5 [ oo (£ moay) ™. .
r/4 Cp

5. The nonlinear system: Assumptions, exact formulation of the problem,
functional analytic tools

Having Theorem 2.3 at hand, we now develop the tools for solving the nonlinear
equation (1.1) during the subsequent sections. We start this section by formulating
our assumptions on the coefficient functions J, the right-hand sides Ry and the
boundary values. Afterwards we give equation (1.1) a precise meaning between
appropriate spaces.

To simplify notation, in the following we denote by L?, H*9 and H;;? the cor-
responding function spaces over the given polyhedron 2. For the sake of brevity,
the cross products of m copies of these spaces are denoted by L”, H*4 and Hg’q,
correspondingly.

Because we have to deal also with spaces of real-valued functions, we use the
notation Zp for the real analog of a complex space Z from above.
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Definition 5.1. We define for k € {1, ... , m} the operators

—V Vi Hy? — Hy

as usual via the corresponding forms. The operator

Hy? > (Y1, Ym) — (Vo iV, =V i Vi) € Hy2
will be denoted by —div . grad.

Remark 5.2. For the restriction of these operator to an L? space, this definition
incorporates homogeneous Dirichlet conditions in the usual way (see [8] or [3]).

Assumption 5.3. We suppose that for each k the piecewise constant (3 x 3)-matri-
ces [L generate an admissible decomposition of Q2 (see Definition 2.2).

Remark 5.4. Theorem 2.3 guarantees for any k the existence of a number gx > 3
such that the corresponding operator —V - 1 V provides a topological isomorphism
between Hg 4 and HO_ l’q". Furthermore, each of these operators is also an isomor-
phism between HOI’2 and H, 12 Interpolation (see Proposition 5.16 below) between
HO1 "k and Hé’2(H0_ L4k and H, 1’2, respectively) then shows that the operator also
establishes an isomorphism between Hé’q and H, La j¢ q €12, gl

Definition 5.5. Let ¢ € (3, 4] be a number such that each of the operators —V -
w1V, ..., —V-u, V provides atopological isomorphism between Hol’q and Ho_l’q.
We define p as the number %. Finally, we denote by D the domain of the operator
—div u grad when the range space is restricted to L?. The real part of D is denoted
by D.

We now formulate our assumptions on the operators Ji, Ry and the boundary
values. The reader will notice that the assumptions on Ry also include nonlo-
cal operators, which enlarges the class of possible applications considerably (see
Example 5.8).

Assumption 5.6. (i) For any k € {1,...,m} there is a twice continuously dif-
ferentiable mapping & : [To, T1] x R™ — (0, 00) such that the operator

. Lg Lg
Ji [Ty, T1] x H]R > H]R

is given by

Tt W @) S ot ur (), (X)), W= (Ul ), X €.

(i1) The operator Ry maps [Ty, T1]x Hﬁéq into L{é. Additionally, there is a constant
n € (0, 1) and for any R > 0 a constant C (R) such that

IRi(tr, i) = Rac(rz, ¥o)ll o = C(R) (In — " + Iy — %”HL'%"?)

for all (n.4). (020 ¥2) € [T0. Ti] x H, [ llgra. W2l < R and
k=1,...,m.
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(iii) We assume the existence of functions @1, ... , Oy,
[To, Ti] > t > ®p(t) € Hy? |
such that the corresponding distributional derivatives —V - )V ®y are from
the space Lﬂpg and for t € [Ty, T1] the mappings
s Op(t) € HYY,

1> =V V(1) € L,

0d
tl—)—kELﬁ%
ot

are Holder continuous with exponent n. For any k € {1, ... , m} the function
Oy represents the boundary conditions for uy in the sense of traces; we have

urMlag = P laq. 5.1

In what follows, we will denote the function t > (D (¢), ..., ©, () by d.
We now give two examples for mappings R = (R1, ..., Rpm):

Example 5.7. Let
Sk [To, Ti] x R™ x R¥ > R

be functions which satisfy the following condition: There is a positive constant n and
for any compact set C C R aconstant Y such that forany 1, 1, € [Tp, T1], a,b €
K, d,e e R¥ and k € {1, ..., m} the inequality

|Sk(t1.a.d) — Se(t2. b, @) T (|1 — 121" + |a — blgn (1|53, + lelzan)

+ Y1 — elgsn (|dlgsn + lelgsn)

holds. Then & = (S1, ... , Sp) defines a mapping R in the following way: For
every u € C*(2; R™) we put

Ri(t,w)(x) = Sk, u(x), (Vu)(x)) forx € 2
and afterwards extend R by continuity to the whole set [T, T71] x Hﬂéq.

Example 5.8. Assume v : R — (0, 00) to be a positive, continuously differentiable

function. Further, let £ : H]é’q — Hﬂlg’q be the mapping which assigns tou € Hﬂlg’q
the solution ¢ of the (inhomogeneous) Dirichlet problem

—V-vu)Ve =0.
If we define
R(u) = V(L))

then, under a reasonable condition on the boundary value of ¢, R satisfies Assump-
tion 5.6 (ii) withm = 1.

This second example comes from a model which describes electrical heat con-
duction; see [2] and the references therein.
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We now present a formulation of (1.1) and (5.1) which will later enable us to
prove local existence and uniqueness for the system under our consideration:

Definition 5.9. Let F; : [Ty, T1] X H(l):gg > HI;{’q be defined by
Fi(t, w) = Ji(t, w + @(1))
and the mapping Xy : [To, T1] X H(l):f{ — Lﬁ be given by
Xi(t,w) =Rrt,w+ &(1), VW + VO (1)) .

Then we say that u is a local solution to (1.1) including the boundary condition
(5.1)if

v=u-—®e C((Ty,T], D) N C'(To, T),LE) N C([Ty, T, LE)

satisfies
8vk
— — F(t, V)V - ig Vg

ot
0Py
= VF (@, V) - wiVog + X (£, W) — ——

1
+ Fe(t, VIV - iy VO + VE (1, V) - iu Vi, k=1,....m (52)

on an interval (Tp, T'] and v(7p) = ug — ®(Tp).

In this definition an initial-value problem for a system of operator differential
equations in the real space Lﬁé has been formulated. However, the methods for its
solution operate in complex Banach spaces; cf. Proposition 5.13. That is why we
now pass over to a complex version of the problem. We start with

Definition 5.10. LetP : H'¢ — Hﬁg’q denote the mapping onto the real part of H'-¢
which takes componentwise the real part of the function, and let Q : Lﬂg — LP

denote the canonical imbedding of the real space into the complex one. Further, we
define for v e H!Y,

Fa, v Y F@ Py and X0, v) ¥ 0Xi@, Py).

For the sake of simplicity, we denote the complexified functions Q ® and the vector
(QCI>1 ey QCDm) again by @ and &, respectively.

Remark 5.11. It is easy to see that the continuity properties of Fj and Xj carry
over to Fy and A}.

Furthermore, in referring to the assumptions on F; we also implicitly refer to
Remark 5.11. Thus, the complexified version of (5.2) reads as follows:



254 V. MAZ’YA, J. ELSCHNER, J. REHBERG & G. SCHMIDT

Problem 5.12. Find a function
v e C((Ty, T1, D) N C ((To, T1,LP) N C([Ty, T1, LF)

which satisfies

0
Uk — Fr@, V)V - i Vg

Jat
od
= VF(t, V) - i Vo + Xi(t,v) — a—"

t
+Fi(@t, V)V -y VOr + VFr(t,v) - ik VO, k=1,...,m (5.3)
on an interval (Tp, T'] and v(7p) = ug — (Tp).

For the convenience of the reader, we now establish the functional-analytic
background we will use in the following. We start by quoting Sobolevskii’s theo-
rem, which will serve as the ultimate instrument for solving our quasilinear problem.
Then we continue with a resolvent estimate for elliptic operators on L? spaces and
finish this section with two interpolation results which will be needed in the next
section.

Proposition 5.13. [28] Let Ag be an operator on a (complex) Banach space X with
dense domain Dy. Assume that Ag admits the resolvent estimate

sup (14 [z lI(Ao +2) ) < . (5.4)
Rez>0

Suppose B > o and vy € dom(Ag). Additionally, let
[To, T1] x dom(Ag) > (t, v) —> A(t, v) € B(Do, X)
be a mapping satisfying A(Ty, vo) = Ag and
1AL, Ag®vn) — A2, Ay va) Ay lscx)
<c(R) (I — o]+ [lv1 — v2l1x)

forty, 12 € [To, T1) and ||v1llx, |v2llx < R. Finally, let

(5.5)

[To, T1] x dom(Ag) > (¢, v) —> f(t,v) € X
be a mapping obeying the estimate
£, Ag®v) — f(2, Ag®v2)llx < ¢(R) (I — 2] + lvr —v2llx)  (5.6)

forty, 1y € [To, T1] and ||lvy||x. [lv2llx < R.
If |A%vollx < R, then there is a (nontrivial) interval [Ty, T such that the
equation
av
at

admits exactly one solution on [Ty, T] which belongs to the space

+ A, v = f(r,v), v(To) =o

C([Tv, T1; dom(A§)) N C' ((To, T1; X) N C((To, T1; Do) .
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The next result, which is proved in [12], says in essence that the operator Ao,
specified in Definition 6.1, satisfies the required resolvent estimate (5.4).

Proposition 5.14. [12]. Let A be a measurable function on Q with values in the set
of the real, symmetric (3 x 3)-matrices which is essentially bounded, and assume
that

Adéf essinf inf A(x)y-y>0.

xeQ |lyllgs=1

Let ® be an Ly () function with positive upper and lower bounds Oand O, respec-
tively. Assume that r € (1, 00) and denote by Ap the restriction of the operator
—V - AV (including homogeneous Dirichlet conditions) to L”. Then the operator
—@® A, generates an analytic semigroup on L" and satisfies the following resolvent
estimate for 7 with Re z 2 0:

1©Ax +2) B

174N

) (||A||Loo ) 1
oy M , r )
[e) A 1+ |z

where
M :(1,00) x (1,00) — (0, 00)
is locally bounded.

The subsequent proposition will allow us to substitute the domain of fractional
powers (including the corresponding graph norm) by a suitable interpolation space
between the domain and the Banach space (and vice versa).

Proposition 5.15. Let Z be a Banach space and B a densely defined operator on
X satisfying the resolvent estimate

sup (1+ 0B +0" gz < .

t€[0,00)
If9,0 € (0,1) and ¥ < 6, then
[Z,dom(B)]p = dom(B”), dom(B’) < [Z,dom(B)]y

(the domains being topologized by a norm equivalent to the graph norm of the
corresponding operator).

Proof. The assertions are obtained from [32, 1.15.2,1.10.3,1.3.3]. O

Finally, we will exploit the following interpolation result which was proved in
[13] for the more general case of Lipschitz domains and mixed boundary conditions.

Proposition 5.16. Let y € (0,1),1 < po, p1 < oo. Furthermore, suppose that
y #1/p=0—=y)/po+vy/pi Then

1, ,
[LPo, HyP'l, = H)P.
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6. The nonlinear system: Existence and uniqueness of the solution

In this section we show that (1.1) has a (local) solution in the spirit of Defini-
tion 5.9, which is also unique. Having an application of Proposition 5.13 in mind,
the outline of the section is as follows: First we define an operator-valued mapping
Aon [Ty, Ti]1 x H“4, the restriction of which later on becomes the operator-valued
mapping A from Proposition 5.13.

Having fixed in particular the operator A within this procedure, we then prove
that dom(Ag) continuously imbeds into H(l)’q for suitably chosen «. Thus, the
restriction of A to [Ty, T1] x dom(Af) makes sense. Denoting this restriction by
A, we then prove that A satisfies the hypotheses of Proposition 5.13. Afterwards
we show that the same is true for the right-hand side of (5.3), which then enables
us to apply Proposition 5.13. Finally, we prove that the solution in fact belongs to
the corresponding real space.

Let us start with the following

Definition 6.1. We define a mapping
A [T, Ti] x HY — B(D, LP)

by putting, for v = (Y1, ..., ¥u) € D,

A, WY Wis ) E (~F1 WV - iV, =T 6, WV - 1 V).

Moreover, we set
def
Ag = ATy, up — ®(Tp)) -

Remark 6.2. This definition is justified because for any (¢, w) € [Ty, T1] % H!4
the function F (¢, w) is from H La <5 1% and, hence, a multiplier on L?. Addi-
tionally, any function F (¢, w) is bounded from below by a positive constant, cf.
Definition 5.9 and Assumption 5.6.

As announced above, our first goal is to prove

Theorem 6.3. For every o € (% + %, 1) the space dom(Ag‘) (equipped with the
norm || A5 (:)|lLr) continuously imbeds into H(l)’q.

For the proof we need

3 1

3 3
S—sandt = a—iandsetgzt—s. Then for any

Lemma 6.4. Assume s = >

ke {l,...,m)theoperator (—=V - 1;V)°/? maps HO_S’2 continuously onto HO_T’Z.

Proof. First we observe that o is positive because ¢ > 3 and s is nonnegative
because p < 2. Secondly, the operator V - x V generates analytic semigroups on
both, Hol’2 and L2. Thus, powers of =V - ;4 V and —V - i V|2 are well defined
and the usual rules for calculus hold. In this spirit, we consider the operators

BY (v w2 H? e L2,

CY (v w2 L2 H2
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Clearly, we have
(B = (B9)* = C°.

By a well-known theorem (see [32, Chapter 1.15.2]), B maps dom(B*) isomor-
phically onto dom(B?*). On the other hand, B is positive and selfadjoint, so that

dom(B”) = [L?, dom(B)], = [L%, H)?l, , y = 1,5

(see [32, Chapter 1.18.10]). Because these interpolation spaces are identical with

H(%/ 2 (see Proposition 5.16), B¢ provides a topological isomorphism between H,, 2

and HS’Z. Hence, by duality, C¢ = (—V - uxV)?/? maps HO_S’2 isomorphically
—-1,2

onto Hy, *~. O

Proof of Theorem 6.3. Obviously, it suffices to show for all k € {1, ... ,m} and
S (% + %, 1), the existence of an imbedding

dom((—®V - ugV)*) <> H,?

whenever @ is a real L* function bounded from below by a positive constant. In
order to do so, we first notice that the definition of s and 7 yield the (continuous)
imbeddings

— - -1,
L? < H, %2 and H, w2 H, a

(see [32, Chapter 4.6.1]). Denoting by 1 and «7 the imbedding constants between
the corresponding spaces, we may estimate

1=V 2 g i
SNV g iy 1V V)2 g oy

< ki 1=V - ) g gt iy 1V V)l g pyosa pyora).

The third factor is finite by Definition 5.5 and the last factor is finite by Lemma 6.4.
Thus,

_ 1,
dom((—V . /LkV|L17)1 9/2) — H, 1,

Hence, ifa > 1 — %Q, then Proposition 5.15 implies that
[L?, dom(=V -y VIe)le < Hy'?. 6.1)

Because the domains of —V - 4 V|rr and —OV - V| are identical including
the equivalence of the corresponding graph norms, (6.1) gives

L
[L?, dom(—OV - uxVrr)le < Hy“.

Another application of Proposition 5.15 then leads to the assertion of Theorem 6.3.
0O
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Before we can prove one key result which afterwards enables us to apply
Sobolevskii’s theorem, we have to reinforce the above assumption on the initial
value ug:

Assumption 6.5. There exists a number B € (% + %, 1] such that
uyg — ®(Tp) € [LE, Dlg C [LP, Dlg.
In what follows we fix a number « € (% + %, B) and denote the imbedding
constant from dom(A§) into H"“¢ by .
Definition 6.6. Let A be the restriction of A to [Tp, T1] x dom(Ag).
The reader should notice that the definition of A is justified by Theorem 6.3.

Lemma 6.7. Let M be a bounded set in dom (Ag‘). Then there is a constant ci (M)
such that, for any y1,y2 € M,

I Fe(tr, y1) — Fe(ta, YOl g S ek (M) (161 — 21" + | AGy1 — AGy2liLr) .

Moreover,

sup | Fi(@, )l gra < o0o.
(t,y)e[To, T11xM

Proof. By Theorem 6.3, M constitutes a bounded set in H'-9. Thus, applying Defi-
nition 5.9 we may estimate

| Fr(t, y1) — Fe(t2, y2)l gra
S 1Tkt Pyt + @ (1)) — Ti(12, Pyz + @ (02)) || y1a - (6.2)

If we bring Assumption 5.6 into play, we obtain a constant c(M) such that the
right-hand side of (6.2) is not greater than

c(M) (It — 22" + [Py1 + @(t1) — Pys — @(12)l|g1a) - (6.3)

Let A denote the Holder constant of @ (cf. Assumption 5.6 (iii)); then (6.3) is
less than or equal to

c(M) (I — "+ Aot — 22" + ly1 — ¥illgia)
< M) ((1+ Ap)lti — 02]" + kI AGy1 — AGyiliLe).
The second assertion follows from the first. O

Theorem 6.8. The domain D of Ag (cf. Definition 6.1) is dense in LP and A sat-
isfies the resolvent estimate (5.4). Moreover, A satisfies the estimate (5.5) from
Proposition 5.13.
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Proof. The density of the domain and the resolvent estimate (5.4) for Ag are implied

by Remark 6.2 and Proposition 5.14.

Let Bg & {IWlliL» < R} be the closed ball of radius R in L”. Clearly, the set

Ay® B is then identical to the R-ball in dom(A§) and, consequently, a bounded
subset of H!4 (cf. Theorem 6.3). Assume now t1, t» € [Ty, T1] and w, wo € Bp.
If we denote A;“w by y; and A;*w, by y», then

I(Fi(t1, YDV - iV — Fielta, y2)V - ik VI(Fi(To, ug — S(To))V - i V) 7|
= [(Fa 1. ¥1) = Fa(t2, ¥2))V - ik VIV - i V)~ (Fi(To, uo — @ (To)) |
= m 1 Fr (i1, y1) — Fr(t, y2) o

where the operator norm is taken in B(L?). Applying Lemma 6.7 and inserting for
Y1, Y2, we obtain the assertion. O

In order to apply Sobolevskii’s result for our quasilinear system, we still have to
prove that the right-hand side of (5.3) satisfies the estimate (5.6) of Proposition 5.13.
This will be done now:

Theorem 6.9. Define the mapping

fr(t, w) = VF(t, W) - meVwg + Xie(t, w) — D) (1)
+Fi(t, WV - i VO, (1) + VFi(t, w) - i V()

for (t,w) € [To, Ti] x HYY, w = (wy, ..., wy). Then fi maps [To, Ti] x HY4
into LP. Moreover, there exists a constant C (R) such that

Il fie(t1, Ag¥wi) — fi(t2, Ag®w2)llr < C(R) (It1 — 121" + [lwy — wallLe)

foranyt,tp € [T, Ty] and any wi, Wy € Bg = {w Cwle S R}.

Proof. The first assertion immediately follows from the estimates (6.2) and (6.3),
Definition 5.9 and the assumptions on the mappings R and the functions &y (see
Section 5).

To prove the second assertion we puty = A *w; and § = A;“w, with
Wi, Wy € Bgr. Then

I fi(t1,y) — fult2, Dlre
< 1P (11) — @ (2) e
+IIVFi(t1,y) - ik Vye — VFi(t2, ) - ik VI e
+ 1Ak (t1,y) — Xk (t2, Pl Lr
+ 1 Fct1, YV - i Vi (t1) — Fi(t2, HV - i VO, (t2) | o
+ I VF(t1,y) - VO (t1) — VFi(12,9) - ik Vi (t2) llr . (6.4)

We consider the terms on the right-hand side of (6.4) separately and show that each
of them has an upper bound of the form

C(In —nl"+ 1AGy — AG¥lLe) - (6.5)
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For the first term this follows directly from Assumption 5.6 (iii), whereas the
second term can be estimated as follows:

SNV(Faltr,y) = Fa(2. ) - i Vyrlier + 1IVF@2,9) - iV r — ) llzr

S N Fetr,y) — Fetas Dl e sup e Ollgwsy 1Y l1ag
xeQ

+ 1 Fit2, Dllgra sup kOl garsy 1Y — ¥l -
xeQ

Taking into account the imbedding dom(Ag) < H"“9 and again applying
Lemma 6.7, we estimate this sum by (6.5).
By Assumption 5.6, the third term may be bounded by

C(AY*Br)(Ih — 2| + Ily — §llgg1a)
< C(Ay*Bg) max(l, ) (I — 22|" + | AGy — AGILr) -
Moreover, the fourth term may be estimated by

1 Fr(tr,y) — Fieta, lLee IV - i VO, (1)l Lr
+ 1 Falt2, (V- i Vr(11) — V - ik Vi (82)) I L -

Then another application of Lemma 6.7 and Assumption 5.6 yield an estimate of
the form (6.5).
Finally, the fifth term is not greater than
IV(Fr(tr,y) — Fi(t2,9)) - ik VO (1)l Lo
+ IVF(t2, §) - 1 V(P (11) — Pi(t2)) I
S 1 Fk(try) — Filto, Dligra sup lie)llgesy  sup 1Pk Oll 1o
xeQ |

te[To, Th

+ sup [k (g3 sup IFe@, Yl gra |Pe(t) — q>k(f2)||HH1€-q ,
xXeQ

where the last supremum is taken over (r,y) € [Tp, T1] x Ay “Bg. Applying
Lemma 6.7 together with Assumption 5.6 yields the desired estimate for the last
term. If we insert for y and y, we obtain the assertion. O

After these preparations we can formulate our final result:
Theorem 6.10. Problem 5.12 admits exactly one solution v in
C([To. T1. dom(A§)) N C((To. T1. D) N C' ((To, T], LP)

with T € (Typ, T1].
The function u o v+ @ is then a solution of (1.1) in the sense of Definition 5.9.
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Proof. Assumption 6.5 together with Proposition 5.15 gives

v(Tp) = ug — ®(Tp) € dom(A})

whenever y < B. Thus, the first assertion is implied by Proposition 5.13, Theo-
rem 6.8 and Theorem 6.9.

Furthermore, it is easy to see that the complex conjugate Vv = (v1, ... , Up) is

also a solution of (5.3) and has the same initial value. Hence, Vv and v must coin-
cide. Thus, v takes its values in R and also satisfies (5.2), which proves the second
statement. 0O
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