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Abstract

The strongly elliptic system Aij∂
2u/∂xi∂xj = 0 with constant m × m matrix valued coefficients

Aij = Aji for a vector valued function u = (u1, . . . , um) in the half-space Rn
+ = {x = (x1, . . . , xn) : xn >

0} as well as in a domain Ω ⊂ Rn with smooth boundary ∂Ω and compact closure Ω is considered. A
representation for the sharp constant Cp in the inequality

|u(x)| ≤ Cp x(1−n)/p
n ||u|xn=0||p

is obtained, where | · | is the length of a vector in the m-dimensional Euclidean space, x ∈ Rn
+, and || · ||p

is the Lp-norm of the modulus of an m-component vector valued function, 1 ≤ p ≤ ∞.
It is shown that

lim
x→Ox

˛̨
x−Ox

˛̨(n−1)/p
sup

˘
|u(x)| : ||u|∂Ω||p ≤ 1

¯
= Cp(Ox),

where Ox is a point at ∂Ω nearest to x ∈ Ω, u is the solution of Dirichlet problem in Ω for the strongly
elliptic systemAij∂

2u/∂xi∂xj = 0 with boundary data from [Lp(∂Ω)]m, and Cp(Ox) is the sharp constant
in the above mentioned inequality for u in the tangent space Rn

+(Ox) to ∂Ω at Ox. As examples, Lamé
and Stokes systems are considered. For instance, in the case of the Stokes system, the explicit formula

Cp =
2Γ

`
n+2

2

´
π(n+p−1)/(2p)

8<:Γ
“

2p+n−1
2p−2

”
Γ

“
n+1
2p−2

p
”

9=;
(p−1)/p

is derived, where 1 < p < ∞.
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0. Introduction

In this paper we consider solutions u = (u1, . . . , um) of the strongly elliptic second order system

n∑
i,j=1

Aij
∂2u

∂xi∂xj
= 0 (0.1)

with constant real m ×m matrix valued coefficients Aij = Aji in the half-space Rn
+ = {x = (x1, . . . , xn :

xn > 0} as well as in a domain Ω ⊂ Rn with smooth boundary ∂Ω and compact closure Ω.
We find a representation for the sharp constant Cp in the inequality

|u(x)| ≤ Cp x(1−n)/p
n ||u|xn=0||p, (0.2)
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where x is an arbitrary point in Rn
+, u is the solution of the system (0.1) with boundary data from [Lp(∂Rn

+)]m

(see [20]), | · | is the length of a vector in m-dimensional Euclidean space, and || · ||p is the Lp-norm of the
modulus of an m-component vector valued function, 1 ≤ p ≤ ∞.

The value Cp is connected with the asymptotic behaviour of solutions to system (0.1) near the boundary
∂Ω. In particular, we show that

lim
x→Ox

∣∣x−Ox

∣∣(n−1)/p sup
{
|u(x)| : ||u|∂Ω||p ≤ 1

}
= Cp(Ox), (0.3)

where Ox is a point at ∂Ω nearest to x ∈ Ω, u is solution of the Dirichlet problem in Ω for strongly elliptic
system (0.1) with boundary data from [Lp(∂Ω)]m, and Cp(Ox) is the sharp constant in the inequality (0.2)
for the tangent space Rn

+(Ox) to ∂Ω at Ox.
The derivation of the explicit formulas for the sharp constant in the inequality (0.2) for solutions of the

Lamé and Stokes systems is reduced to an optimization problem on the unit sphere Sn−1. This problem can
be explicitly solved for any p ∈ [1,∞] in the case of the Stokes system. We obtain also the estimates with
sharp constants for the modulus of solutions to the Stokes and Lamé systems in the center of a ball by the
integral means of order p of the modulus of boundary values on the sphere.

The first section is auxiliary. We consider the operator

T (f) =
∫
X

G(x)f(x)dµ(x),

acting from the space [Lp(X ,A, µ)]n ([Lp(X ,A, µ)]n) of real (complex) vector-valued n-component functions
into the m-dimensional Euclidean space Rm (the unitary space Cm). Here (X ,A, µ) is the space with a
measure, G = ((gij)) is the m×n matrix-valued function with real (complex) components gij ∈ Lq(X ,A, µ)
(gij ∈ Lq(X ,A, µ)), 1 ≤ p ≤ ∞, 1/p+1/q = 1 and the norm in [Lp(X ,A, µ)]n ([Lp(X ,A, µ)]n) is defined by

||f ||p =
{∫

X
|f(x)|pdµ(x)

}1/p

,

for 1 ≤ p < ∞ and ||f ||∞ = ess sup{|f(x)| : x ∈ X}, where | · | is the length of a vector in Rm (Cm). We
derive a representation for the norm

||T ||p = sup
|z|=1

||G∗z||q, (0.4)

where G∗ stands for the transposed (adjoint) matrix of G and z ∈ Rm (z ∈ Cm).
In Section 2, applying (0.4), we obtain a representation for the constant Cp in the inequality (0.2) for

solutions of Dirichlet problem for the system (0.1) in the half-space Rn
+. A representation of the sharp

constant in (0.2) for the system (0.1) in case p = ∞ was derived earlier in [13]. Sharp pointwise estimates of
solutions to elliptic systems with boundary data subject to some algebraic conditions are obtained in [9].

In Section 3 it is shown, that for any solution u of the Dirichlet problem in Ω for the system (0.1) with
boundary data from [Lp(∂Ω)]m and all x ∈ Ω the relation

sup
{
|u(x)| : ||u|∂Ω||p ≤ 1

}
= Cp(Ox)|x−Ox|−(n−1)/p + O

(
|x−Ox|ε−(n−1)/p

)
(0.5)

holds for some ε > 0. Here Ox is a point at ∂Ω nearest to x ∈ Ω, and Cp(Ox) is the best constant in (0.2)
for the half-space Rn

+(Ox). Equality (0.3) is an immediate consequence of (0.5).
In Section 4 we consider the Stokes system

ν∆u− grad p = 0, div u = 0,

in the half-space Rn
+, n ≥ 2, with the boundary condition

u
∣∣
xn=0

= f ,
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where ν is the kinematic coefficient of viscosity, u = (u1, . . . , un) is the velocity vector of a fluid, p is the
pressure in the fluid, and f ∈ [Lp(∂Rn

+)]n. Despite the fact that the Stokes system is not strongly elliptic,
the representation for the velocity vector u in the half-space is of the same nature as in the case of strongly
elliptic systems. Hence, the result obtained in Section 2 applies to the Stokes system. It is shown, that for
any x ∈ Rn

+ the sharp coefficient Cp in the inequality (0.2) for the velocity vector u defined by a solution
(u, p) of the Stokes system is given by

C1 =
2Γ
(

n+2
2

)
πn/2

, C∞ =
2Γ
(

n+2
2

)
√

πΓ
(

n+1
2

) ,
and

Cp =
2Γ
(

n+2
2

)
π(n+p−1)/(2p)

Γ
(

2p+n−1
2p−2

)
Γ
(

n+1
2p−2p

)


(p−1)/p

for 1 < p < ∞. In particular, C∞ = 4/π for n = 2 and C∞ = 3/2 for n = 3.
In Section 5 we find a representation of the sharp constant in the inequality

|u(0)| ≤ Hp Mp(u; ∂Br),

where u is the velocity vector, and Mp(u; ∂Br) is the integral mean of order p for the modulus of u on the
sphere ∂Br = {x ∈ Rn : |x| = r}. In particular, it is shown that

H1 =
n(n + 1)

2
, H2 =

n
√

n + 3
2

.

Section 6 concerns the Lamé system

µ∆u + (λ + µ)grad div u = 0

in the half-space Rn
+ with the boundary condition

u
∣∣
xn=0

= f ,

where λ and µ are the Lamé constants, u = (u1, . . . , un) is the displacement vector of an elastic medium,
and f ∈ [Lp(∂Rn

+)]n. We find a representation for the sharp constant Cp in (0.2). In particular, we show
that

C1,κ =
[1 + κ(n− 1)]Γ (n/2)

πn/2
, C2,κ =

{
Γ
(

n
2

)
2nπn/2

[
1 + (n− 1)κ2 +

(
1 + (n− 1)κ

)2]}1/2

,

where κ = (λ + µ)(λ + 3µ)−1.
The sharp constants in (0.2) for the Lamé and Stokes systems in the case p = ∞ were found in [13].
The concluding Section 7 is dedicated to the sharp constant in

|u(0)| ≤ Bp,κ Mp(u; ∂Br)

where u is a solution of the three-dimensional Lamé system in a ball. We show, in particular, that

B1,κ =
3(1 + 3κ)

3− κ
, B2,κ =

3
3− κ

(
17κ2 − 2κ + 3

)1/2
.
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1. The norm of a linear bounded operator defined on the Lp-space of
m-component vector valued functions and acting into Rm

By | · | and (·, ·) we denote the length of a vector and the inner product in the unitary finite dimensional
space Cm and in the Euclidean space Rm, i.e. for z = (z1, . . . , zm) and ζ = (ζ1, . . . , ζm) ∈ Cm we put
(z, ζ) = z1ζ1 + · · · + zmζm and |z| = (z,z)1/2. Let (X ,A, µ) be a measure space, let p satisfy 1 ≤ p ≤ ∞,
and let q be defined by 1/p + 1/q = 1.

It is known (see, f.e., [4], Proposition 3.5.2 and Ex. 2, p. 153), that each element g ∈ Lq(X ,A, µ) induces
a bounded linear functional Φg on Lp(X ,A, µ) by means of the formula

Φg(f) =
∫
X

f(x)g(x)dµ(x),

and that the operator Φ mapping g to Φg is an isometry of Lq(X ,A, µ) into (Lp(X ,A, µ))∗. A similar
assertion holds for functionals on Lp(X ,A, µ) (see Sect. 3.3, 3.5 v [4]).

Moreover, the following statement is known ([4], Theorem 4.5.1).

Theorem 1. If p = 1 and µ is σ-finite, or if 1 < p < ∞ and µ is arbitrary, then the operator Φ :
Lq(X ,A, µ) → (Lp(X ,A, µ))∗ in the real case, and the operator Φ : Lq(X ,A, µ) → (Lp(X ,A, µ))∗ in the
complex case, defined above is an isometric isomorphism.

We introduce the spaces [Lp(XA, µ)]n and [Lp(X ,A, µ)]n of real and complex vector-valued functions
f = (f1, . . . , fn) with components in Lp(X ,A, µ) and Lp(X ,A, µ), respectively, endowed with the norm

||f ||p =
{∫

X
|f(x)|pdµ(x)

}1/p

, (1.1)

for 1 ≤ p < ∞, and ||f ||∞ = ess sup{|f(x)| : x ∈ X}.
The next assertion follows directly from the above theorem on the representation of a linear functional

on the spaces Lp(X ,A, µ) and Lp(X ,A, µ).

Corollary 1. If p = 1 and µ is σ-finite, or if 1 < p < ∞ and µ is arbitrary, then any linear bounded
operator T : [Lp(X ,A, µ)]n → Rm (T : [Lp(X ,A, µ)]n → Cm) admits the representation

T (f) =
∫
X

G(x)f(x)dµ(x),

where G = ((gij)) is the m × n matrix valued function with elements gij ∈ Lq(X ,A, µ) (respectively, gij ∈
Lq(X ,A, µ)).

Proof. We consider the space of real valued functions. The case of complex valued functions is treated in
the same way. Let T be an arbitrary linear bounded operator [Lp(X ,A, µ)]n → Rm,

T (f) =


T1(f)
. . . . . .
. . . . . .
Tm(f)

 , (1.2)

where T1, . . . , Tm are functionals on [Lp(X ,A, µ)]n. Clearly, the functionals T1, . . . , Tm are linear and, in
view of

|Ti(f)| ≤

[
m∑

i=1

|Ti(f)|2
]1/2

= |T (f)| ≤ ||T ||p ||f ||p,

they are bounded, where ||T ||p is the norm of the operator T : [Lp(X ,A, µ)]n → Rm.
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Further, for any function f = (f1, . . . , fn) ∈ [Lp(X ,A, µ)]n there holds

Ti(f) = Ti(f1, 0, . . . , 0) + Ti(0, f2, . . . , 0) + · · ·+ Ti(0, . . . , 0, fn). (1.3)

We introduce the notation

Ti1(f1) = Ti(f1, 0, . . . , 0), . . . . . . . . . , Tin(fn) = Ti(0, . . . , 0, fn). (1.4)

Clearly, each of the functionals Ti1, . . . , Tin is linear and bounded on Lp(X ,A, µ). Hence, by Theorem 1,
Tij(fj) admits the representation

Tij(fj) =
∫
X

fj(x)gij(x)dµ(x), (1.5)

1 ≤ i ≤ m, 1 ≤ j ≤ n, where gij ∈ Lq(X ,A, µ). Thus, (1.3)-(1.5) imply

Ti(f) =
n∑

j=1

Tij(fj) =
n∑

j=1

∫
X

fj(x)gij(x)dµ(x). (1.6)

Combining (1.2), (1.6) and the notation G = ((gij)), 1 ≤ i ≤ m, 1 ≤ j ≤ n, we complete the proof.

The following assertion contains a representation of the norm ||T ||p of the integral operator T defined on
[Lp(X ,A, µ)]n ([Lp(X ,A, µ)]n), 1 ≤ p ≤ ∞, and acting into Rm (Cm).

Proposition 1. Let (X ,A, µ) be a measure space, let p satisfy 1 ≤ p ≤ ∞, and let q be defined by 1/p+1/q =
1. Let, further, G = ((gij)) be an m × n matrix valued function with the elements gij ∈ Lq(X ,A, µ)
(gij ∈ Lq(X ,A, µ)) whose values gij (|gij |) are everywhere finite. The norm of the linear continuous operator
T : [Lp(X ,A, µ)]n → Rm (T : [Lp(X ,A, µ)]n → Cm) defined by

T (f) =
∫
X

G(x)f(x)dµ(x) (1.7)

is equal to
||T ||p = sup

|z|=1

||G∗z||q, (1.8)

where G∗ stands for the transposed (adjoint) matrix of G and z ∈ Rm (z ∈ Cm).

Proof. We deduce (1.8) for the operator T : [Lp(X ,A, µ)]n → Cm defined by (1.7). The case of the operator
T : [Lp(X ,A, µ)]n → Rm is treated in the same way.

1. Upper estimate for ||T ||p. For any vector z ∈ Cm,

(T (f),z) =
∫
X

(G(x)f(x),z)dµ(x) =
∫
X

(f(x), G∗(x)z)dµ(x), (1.9)

where we denote by G∗ the adjoint matrix of G. Hence by Hölder’s inequality

|(T (f),z)| ≤
∫
X
|(f(x), G∗(x)z)|dµ(x) ≤

∫
X
|G∗(x)z||f(x)|dµ(x) ≤ ||G∗z||q||f ||p.

Therefore, taking into account that |T (f)| = sup{|(T (f),z)| : |z| = 1} we arrive at the estimate

||T ||p ≤ sup
|z|=1

||G∗z||q. (1.10)

2. Lower estimate for ||T ||p. Let us fix z ∈ Sm−1 = {z ∈ Cm : |z| = 1}. We introduce the vector-valued
function with n components

hz(x) = gz(x)h(x), (1.11)
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where h ∈ Lp(X ,A, µ), ||h||p ≤ 1, and

gz(x) =

 G∗(x)z|G∗(x)z|−1 for |G∗(x)z| 6= 0,

0 for |G∗(x)z| = 0.

Note that hz ∈ [Lp(X ,A, µ)]n and ||hz||p ≤ 1. Setting (1.11) as f in (1.9) we find

(T (hz),z) = (T (gzh),z) =
∫
X

(gz(x), G∗(x)z)h(x)dµ(x) =
∫
X
|G∗(x)z|h(x)dµ(x).

Hence

||T ||p = sup
||f ||p≤1

|T (f)| ≥ sup
||h||p≤1

|T (gzh)| ≥ sup
||h||p≤1

|(T (gzh),z)|

= sup
||h||p≤1

∣∣∣∣∫
X
|G∗(x)z|h(x)dµ(x)

∣∣∣∣ = ||G∗z||q.

By the arbitrariness of z ∈ Sm−1,
||T ||p ≥ sup

|z|=1

||G∗z||q,

which together with (1.10) leads to (1.8).

2. Elliptic systems in a half-space

We introduce some notation used henceforth. Let x ∈ Rn
+ =

{
x = (x′, xn) : x′ = (x1, . . . , xn−1) ∈

Rn−1, xn > 0
}

and Sn−1 = {x ∈ Rn : |x| = 1}. By [C(2)(Rn
+)]m we denote the space of m-component

vector valued functions with continuous derivatives up to the second order in Rm
+ . Further, [C(Rn

+)]m and
[C(∂Rn

+)]m will stand for the spaces of continuous and bounded m-component vector valued functions on
Rn

+ and ∂Rn
+, respectively.

We introduce the strongly elliptic operator

A(Dx) =
n∑

i,j=1

Aij ∂2/∂xi∂xj , (2.1)

where Dx = (∂/∂x1, . . . , ∂/∂xn) and Aij = Aji are constant real m×m matrices. The strong ellipticity of
A(Dx) means that the inequality  n∑

i,j=1

Aijσiσjζ, ζ

 > 0

is valid for all ζ = (ζ1, . . . , ζm) ∈ Rm\{0} and σ = (σ1, . . . , σn) ∈ Rn\{0}.
According to [12, 20], there exists a bounded solution of the problem

A(Dx)u = 0 in Rn
+, u = f on ∂Rn

+, (2.2)

where f ∈ [C(∂Rn
+)]m, which is continuous up to ∂Rn

+, and this solution can be represented in the form

u(x) =
∫

∂Rn
+

F

(
y − x

|y − x|

)
xn

|y − x|n
f(y′)dy′. (2.3)

Here y = (y′, 0), y′ = (y1, . . . , yn−1), and F is a m×m matrix valued function with continuous components
on the closure of the hemisphere Sn−1

− =
{
x ∈ Rn : |x| = 1, xn < 0

}
.
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The uniqueness of a solution to the Dirichlet problem (2.2) in the class [C(2)(Rn
+)]m with boundary data

from [Lp(∂Rn
+)]m can be derived by means of a standard argument, from (2.3) and from local estimates for

derivatives of solutions to elliptic systems (see [3, 17]).
By || · ||p we denote the norm in the space [Lp(∂Rn

+)]m, that is

||f ||p =

{∫
∂Rn

+

|f(x′)|pdx′

}1/p

,

if 1 ≤ p < ∞, and ||f ||∞ = ess sup{|f(x′)| : x′ ∈ ∂Rn
+}.

Proposition 2. Let x be an arbitrary point in Rn
+ and let z ∈ Rm. The sharp coefficient Kp(x) in the

inequality
|u(x)| ≤ Kp(x)||u|xn=0||p (2.4)

is given by
Kp(x) = Cp x(1−n)/p

n , (2.5)

where
C1 = sup

|z|=1

sup
σ∈Sn−1

−

|F ∗(eσ)z|(eσ,−en)n, (2.6)

C∞ = sup
|z|=1

∫
Sn−1
−

|F ∗(eσ)z|dσ, (2.7)

and

Cp = sup
|z|=1

{∫
Sn−1
−

|F ∗(eσ)z|p/(p−1)(eσ,−en)n/(p−1)dσ

}(p−1)/p

(2.8)

for 1 < p < ∞. Here eσ is the n-dimensional unit vector joining the origin to a point σ ∈ Sn−1
− , and ∗

denotes the transposition of a matrix.

Proof. By Proposition 1 and (2.3), the sharp constant Kp(x) in (2.4) is given by

Kp(x) = sup
|z|=1

{∫
∂Rn

+

∣∣∣∣F ∗
(

y − x

|y − x|

)
z

∣∣∣∣q xq
n

|y − x|nq
dy′

}1/q

,

where 1 < p ≤ ∞. Putting ρ = |y′ − x′|, we write the last equality as follows

Kp(x) = sup
|z|=1

{∫
Sn−2(x′)

dσ

∫ ∞

0

∣∣∣∣∣F ∗

(
ρe′σ − xnen[
ρ2 + x2

n

]1/2

)
z

∣∣∣∣∣
q

xq
n[

ρ2 + x2
n

]nq/2
ρn−2dρ

}1/q

, (2.9)

where e′σ = (y′ − x′)|y′ − x′|−1, and Sn−2(x′) is the (n − 2)-dimensional unit sphere with the center at the
point x′.

Now we make the change of variable ρ = xn tanϕ in (2.9) with ϕ standing for the angle between the
vectors ρe′σ − xnen and −en, and obtain

Kp(x) = x(1−n)(q−1)/q
n sup

|z|=1

{∫
Sn−2(x′)

dσ

∫ π/2

0

|F ∗ (e′σ sinϕ− en cos ϕ) z|q cosn(q−1) ϕ sinn−2 ϕ dϕ

}1/q

.

Using the independence of the integral on x′ and the notation

eσ = e′σ sinϕ− en cos ϕ,
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we arrive at (2.5) with Cp defined by (2.8). In particular, (2.8) becomes (2.7) for p = ∞.
Next note that by Proposition 1 and (2.3), the sharp constant in (2.4) with p = 1 can be written as

K1(x) = sup
|z|=1

sup
y∈∂Rn

+

∣∣∣∣F ∗
(

y − x

|y − x|

)
z

∣∣∣∣ xn

|y − x|n
.

Setting here |y′ − x′| = xn tanϕ, 0 ≤ ϕ < π/2, we find

K1(x) = x1−n
n sup

|z|=1

sup
0≤ϕ<π/2

|F ∗(e′σ sinϕ− en cos ϕ)z| cosn ϕ = x1−p
n sup

|z|=1

sup
Sn−1
−

|F ∗(eσ)z| (eσ,−en)n,

which implies (2.5) with p = 1 and with C1 defined by (2.6).

3. Asymptotic formula involving the Poisson matrix in a domain

In what follows, by smoothness we mean the membership in C∞. Suppose Ω is a domain in Rn with
smooth boundary ∂Ω and compact closure Ω. By ν(y) we denote the unit interior normal to ∂Ω at a point
y ∈ ∂Ω. Let Rn

+(y) =
{
x ∈ Rn : (x,ν(y)) > 0

}
, Rn

−(y) =
{
x ∈ Rn : (x, ν(y)) < 0

}
and Rn−1(y) = ∂Rn

+(y).
We consider the Dirichlet problem

A(Dx)ug = 0 in Ω, ug

∣∣
∂Ω

= g (3.1)

for the strongly elliptic operator A(Dx), defined by (2.1), with g ∈ [Lp(∂Ω)]m.

Theorem 2. For all x ∈ Ω

sup
{
|ug(x)| : ||g||p ≤ 1

}
= Cp(Ox)|x−Ox|−(n−1)/p + O

(
|x−Ox|ε−(n−1)/p

)
with some ε > 0. Here Ox is a point at ∂Ω nearest to x ∈ Ω, and Cp(Ox) is the best constant in (2.5) for
the half-space Rn

+(Ox).

Before giving a proof of this theorem, we formulate its obvious corollary.

Corollary 2. The equality

lim
x→Ox

∣∣x−Ox

∣∣(n−1)/p sup
{
|ug(x)| : ||g||p ≤ 1

}
= Cp(Ox)

holds.

Proof of the Theorem. The Poisson matrix of problem (3.1) with singularity at the point y ∈ ∂Ω will be
denoted by PΩ(x, y). In other words, PΩ satisfies the problem

A(Dx)PΩ(x, y) = 0 for x ∈ Ω, PΩ(x, y) = δ(y − x)I for x ∈ ∂Ω,

where δ is the Dirac function and I is the m×m identity matrix. We put PΩ(x, y) = 0 for x ∈ Rn\Ω.
The notation Π(x, y) will be used for the Poisson matrix with singularity at y of the Dirichlet problem

for the operator A(Dx) in the half-space Rn
+(y). The matrix-function x → Π(x, y) is extended by zero to the

half-space Rn
−(y). Clearly,

Π(x, y) =
(y − x,ν(y))
|y − x|n

F
(

y − x

|y − x|
, ν(y)

)
, (3.2)

where ∣∣∣∣∣∣∣∣F ( y − x

|y − x|
, ν(y)

)
−F

(
y − x

|y − x|
, ν(Ox)

)∣∣∣∣∣∣∣∣ ≤ c |y −Ox|, (3.3)
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and || · || is the matrix norm induced by the Euclidean norm in Rm. It is well-known (see Krasovskǐi [6, 7],
Solonnikov [18, 19]) that for x ∈ Ω and y ∈ ∂Ω

||PΩ(x, y)−Π(x, y)|| ≤ c(εo) |x− y|2−n−εo , (3.4)

where εo is an arbitrary positive number. Therefore, for x ∈ Ω and any z ∈ Sn−1

||P ∗
Ω(x, ·)z −Π∗(x, ·)z||[Lq(∂Ω)]m ≤ c(εo) || |x− ·|2−n−εo ||Lq(∂Ω) ≤ c1(ε)|x−Ox|ε−(n−1)/p (3.5)

with some ε > 0. Using (3.2) and (3.3), we arrive at the estimate∣∣∣∣∣
∣∣∣∣∣∣∣∣ (·− x,ν(·))

| ·−x|n
F∗
(

·− x

| ·−x|
, ν(·)

)
z

∣∣∣∣∣∣∣∣
[Lq(∂Ω)]m

−
∣∣∣∣∣∣∣∣ (·− x,ν(Ox))

| ·−x|n
F∗
(

·− x

| ·−x|
, ν(Ox)

)
z

∣∣∣∣∣∣∣∣
[Lq(∂Ω)]m

∣∣∣∣∣
≤ c2(ε)|x−Ox|ε−(n−1)/p. (3.6)

Since ∂Rn
+(Ox) is tangent to ∂Ω at the point Ox, one can see that∣∣∣∣∣

∣∣∣∣∣∣∣∣ (·− x, ν(Ox))
| ·−x|n

F∗
(

·− x

| ·−x|
, ν(Ox)

)
z

∣∣∣∣∣∣∣∣
[Lq(∂Ω)]m

−
∣∣∣∣∣∣∣∣ (·− x,ν(Ox))

| ·−x|n
F∗
(

·− x

| ·−x|
, ν(Ox)

)
z

∣∣∣∣∣∣∣∣
[Lq(Rn−1(Ox))]m

∣∣∣∣∣
≤ c3(ε)|x−Ox|ε−(n−1)/p. (3.7)

Using (3.2) and combining (3.5), (3.6) and (3.7), we obtain for any z ∈ Sn−1∣∣∣∣∣ ||P ∗
Ω(x, ·)z||[Lq(∂Ω)]m −

∣∣∣∣∣∣∣∣ (·− x,ν(Ox))
| ·−x|n

F∗
(

·− x

| ·−x|
, ν(Ox)

)
z

∣∣∣∣∣∣∣∣
[Lq(Rn−1(Ox))]m

∣∣∣∣∣
≤ c4(ε)|x−Ox|ε−(n−1)/p. (3.8)

The second norm in (3.8) is equal to

|x−Ox|−(n−1)/p

{∫
Rn−1(Ox)

∣∣∣∣F∗( σ

(1 + |σ|2)1/2
,

−1
(1 + |σ|2)1/2

)
z

∣∣∣∣q dσ

(1 + |σ|2)nq/2

}1/q

,

which, after taking the supremum over z ∈ Sn−1, becomes

Cp(Ox)|x−Ox|−(n−1)/p

by Proposition 2. Combining this with (3.8), we complete the proof of Theorem 2.

4. The Stokes system in the half-space

Consider the Stokes system

ν∆u− grad p = 0, div u = 0 in Rn
+, n ≥ 2, (4.1)

with the boundary condition
u
∣∣
xn=0

= f , (4.2)
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where ν is the kinematic coefficient of viscosity, u = (u1, . . . , un) is the velocity vector of a fluid, p is the
pressure in the fluid, and f = (f1, . . . , fn) is a continuous and bounded vector valued function on ∂Rn

+.

The solution u of the Dirichlet problem for the Stokes system in the half-space Rn
+ which is bounded and

continuous up to ∂Rn
+ admits the representation (see [11])

u(x) =
∫

∂Rn
+

S

(
y − x

|y − x|

)
xn

|y − x|n
f(y′)dy′, (4.3)

where x ∈ Rn
+, y = (y′, 0), y′ = (y1, . . . , yn−1), and S(eσ) is the n × n matrix valued function on the unit

sphere Sn−1 of Rn with the elements
2n

ωn
(eσ, ei)(eσ, ej), (4.4)

and ωn = 2πn/2/Γ(n/2) is the area of Sn−1.
The uniqueness of solutions of the Dirichlet problem (4.1), (4.2) in the class [C(2)(Rn

+)]n with boundary
data from [Lp(∂Rn

+)]n can be derived by means of a standard argument from (4.3) and local estimates for
derivatives of solutions to elliptic systems (see [3, 17]).

Theorem 3. Let x be an arbitrary point in Rn
+. The sharp coefficient Kp(x) in the inequality

|u(x)| ≤ Kp(x)||u|xn=0||p (4.5)

for the velocity vector u defined by a solution (u, p) of the Stokes system is given by

Kp(x) = Cp x(1−n)/p
n , (4.6)

where

C1 =
2Γ
(

n+2
2

)
πn/2

, C∞ =
2Γ
(

n+2
2

)
√

πΓ
(

n+1
2

) , (4.7)

and

Cp =
2Γ
(

n+2
2

)
π(n+p−1)/(2p)

Γ
(

2p+n−1
2p−2

)
Γ
(

n+1
2p−2p

)


(p−1)/p

(4.8)

for 1 < p < ∞. In particular,

C2 =

{
(n + 1)Γ

(
n+2

2

)
2n−1πn/2

}1/2

. (4.9)

Proof. Since the solution of the Dirichlet problem (4.1), (4.2) is given by (4.3), it obeys Proposition 2. Since
the elements of the matrix S are defined by (4.4), it follows that

|S∗(eσ)z| = 2n

ωn

∣∣(eσ,z)
∣∣, (4.10)

which together with (2.4), (2.5), and (2.8) implies

Cp =
2n

ωn
sup
|z|=1

{∫
Sn−1
−

∣∣(eσ,z)
∣∣p/(p−1)(eσ,−en)n/(p−1)dσ

}(p−1)/p

,

where 1 < p ≤ ∞. Noting that the function |(eσ,−en)| is even on the sphere Sn−1, we can write Cp as

Cp =
21/pn

ωn
sup
|z|=1

{∫
Sn−1

∣∣(eσ,z)
∣∣p/(p−1)∣∣(eσ, en)

∣∣n/(p−1)
dσ

}(p−1)/p

. (4.11)
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This immediately implies the lower estimate

Cp ≥
21/pn

ωn

{∫
Sn−1

∣∣(eσ, en)
∣∣(p+n)/(p−1)

dσ

}(p−1)/p

. (4.12)

Next we derive the upper estimate for Cp. Setting

l =
p + n

n
, s =

p + n

p
,

and noting that 1/s + 1/l = 1, we have by Hölder’s inequality∫
Sn−1

∣∣(eσ,z)
∣∣p/(p−1)∣∣(eσ, en)

∣∣n/(p−1)
dσ ≤

{∫
Sn−1

∣∣(eσ,z)
∣∣ps/(p−1)

dσ

}1/s{∫
Sn−1

∣∣(eσ, en)
∣∣nl/(p−1)

dσ

}1/l

.

Taking into account that ps = nl = p + n and that the first integral in the right-hand side is independent on
z, we find ∫

Sn−1

∣∣(eσ,z)
∣∣p/(p−1)∣∣(eσ, en)

∣∣n/(p−1)
dσ ≤

∫
Sn−1

∣∣(eσ, en)
∣∣(p+n)/(p−1)

dσ,

which together with (4.11) leads to

Cp ≤
21/pn

ωn

{∫
Sn−1

∣∣(eσ, en)
∣∣(p+n)/(p−1)

dσ

}(p−1)/p

.

Combining this with (4.12), we arrive at the equality

Cp =
21/pn

ωn

{∫
Sn−1

∣∣(eσ, en)
∣∣(p+n)/(p−1)

dσ

}(p−1)/p

, (4.13)

where 1 < p < ∞. The formula (4.8) follows from (4.13) and∫
Sn−1

∣∣(eσ, en)
∣∣(p+n)/(p−1)

dσ = 2ωn−1

∫ π/2

0

cos
p+n
p−1 ϑ sinn−2 ϑdϑ

=
2π(n−1)/2

Γ
(

n−1
2

) B

(
2p + n− 1

2p− 2
,
n− 1

2

)
= 2π(n−1)/2

Γ
(

2p+n−1
2p−2

)
Γ
(

n+1
2p−2p

) ,

where B(u, v) is the Beta-function. Passing to the limit in (4.8) as p →∞, we arrive at the second equality
in (4.7).

Combining (2.6) and (4.10), we obtain

C1 = sup
|z|=1

sup
σ∈Sn−1

−

|S∗(eσ)z|(eσ,−en)n = sup
σ∈Sn−1

−

sup
|z|=1

2n

ωn

∣∣(eσ,z)
∣∣(eσ,−en)n =

2n

ωn
=

nΓ(n/2)
πn/2

,

which proves the first equality in (4.7).

5. The Stokes function in a ball

The Stokes function in a ball Br = {x ∈ Rn : |x| < r} is a solution u ∈ [C2(Br)]n ∩ [C(Br)]n of the
system

ν∆u− grad p = 0, div u = c,

11



where c is a constant.
The value of the Stokes function u ∈ [C(∂Br)]n at the center of the ball Br satisfies (see Kratz [8])

u(0) =
n

2ωnrn−1

∫
∂Br

M(σ)u(σ)dσ, (5.1)

where M is n× n matrix valued function on ∂Br with the elements

−δij + (n + 2)(eσ, ei)(eσ, ej). (5.2)

The estimate of |u(0)| given below contains the integral mean of order p

Mp(u; ∂Br) =
{

1
ωnrn−1

∫
∂Br

|u(σ)|pdσ

}1/p

.

Proposition 3. The sharp constant Hp in the inequality

|u(0)| ≤ Hp Mp(u; ∂Br)

is given by

H1 =
n(n + 1)

2
, (5.3)

and

Hp =
n

21/p

{
Γ
(

n
2

)
√

πΓ
(

n−1
2

) ∫ π/2

0

[
1 + n(n + 2) cos2 ϑ

] p
2(p−1)

sinn−2 ϑ dϑ

} p−1
p

(5.4)

for 1 < p ≤ ∞. In particular,

H2 =
n
√

n + 3
2

.

Proof. By (5.1) and Proposition 1, the sharp constant in

|u(0)| ≤ Hp Mp(u; ∂Br)

can be written as

Hp =
n
(
ωnrn−1

)1/p

2ωnrn−1
sup
|z|=1

||M∗z||Lq(∂Br). (5.5)

Hence, taking into account that

|M∗(σ)z| =
[
1 + n(n + 2)(eσ,z)2

]1/2

(5.6)

for any |z| = 1 and p ∈ (1,∞], we obtain

Hp =
n
(
ωnrn−1

)1/p

2ωnrn−1
sup
|z|=1

{∫
∂Br

[
1 + n(n + 2)(eσ,z)2

]q/2

dσ

}1/q

=
n
(
ωnrn−1

)1/p
r(n−1)/q

2ωnrn−1
sup
|z|=1

{∫
Sn−1

[
1 + n(n + 2)(eσ,z)2

]q/2

dσ

}1/q

=
n

2ω
(p−1)/p
n

{
2ωn−1

∫ π/2

0

[
1 + n(n + 2) cos2 ϑ

] p
2(p−1)

sinn−2 ϑ dϑ

} p−1
p

, (5.7)
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which implies (5.4).
To get (5.3) we combine (5.5) and (5.6)

H1 =
ωnrn−1n

2ωnrn−1
sup
|z|=1

[
1 + n(n + 2)(eσ,z)2

]1/2

=
n(n + 1)

2
. (5.8)

Remark 1. For instance,

H1 = 3, H2 =
√

5, H∞ =
6
π

E

(
2
√

2
3

)
for n = 2, and

H1 = 6, H2 =
3
2

√
6, H∞ = 3 +

√
15

20
log
(
4 +

√
15
)

for n = 3, where E is the complete elliptic integral of the second kind.
Note that the inequality

|u(0)| ≤ H∞ sup
ζ∈∂B1

|u(ζ)|

with the sharp constant

H∞ =
Γ
(

n
2

)
√

πΓ
(

n−1
2

) ∫ π/2

0

[
1 + n(n + 2) cos2 ϑ

]1/2

sinn−2 ϑ dϑ

was obtained by Kratz [8].

6. The Lamé system in a half-space

Consider the Lamé system

µ∆u + (λ + µ)grad div u = 0 in Rn
+, n ≥ 2, (6.1)

with the boundary condition
u
∣∣
xn=0

= f , (6.2)

where λ and µ are the Lamé constants, u = (u1, . . . , un) is the displacement vector of an elastic medium,
f = (f1, . . . , fn) is a continuous and bounded vector valued function on ∂Rn

+.
The solution u of the Dirichlet problem for the Lamé system in the half-space Rn

+ which is bounded and
continuous up to ∂Rn

+ admits the representation (see [10])

u(x) =
∫

∂Rn
+

L

(
y − x

|y − x|

)
xn

|y − x|n
f(y′)dy′, (6.3)

where x ∈ Rn
+, y = (y′, 0), y′ = (y1, . . . , yn−1). Here L(eσ) is the n×n matrix valued function on the sphere

Sn−1 of Rn with the elements
2

ωn
[(1− κ)δij + nκ(eσ, ei)(eσ, ej)] , (6.4)

where κ = (λ + µ)(λ + 3µ)−1, and ωn being the area of Sn−1. From usual assumptions µ > 0, 3λ + 2µ > 0
of elasticity theory, it follows that 0 < κ < 1.

The uniqueness of solutions of the Dirichlet problem (6.1), (6.2) in the class [C(2)(Rn
+)]n with boundary

data from [Lp(∂Rn
+)]n can be derived by means of a standard argument from (6.3) and local estimates for

derivatives of solutions of elliptic systems (see [3, 17]).
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Theorem 4. Let x be an arbitrary point in Rn
+ and let z ∈ Rn. The sharp coefficient Kp,κ(x) in the

inequality
|u(x)| ≤ Kp,κ(x)||u|xn=0||p (6.5)

for a solution u of the Lamé system is given by

Kp,κ(x) = Cp,κ x(1−n)/p
n , (6.6)

where

C1,κ =
[1 + κ(n− 1)]Γ (n/2)

πn/2
, (6.7)

C∞,κ =
2Γ
(

n
2

)
√

π Γ
(

n−1
2

) ∫ π/2

0

[
(1− κ)2 + nκ(nκ − 2κ + 2) cos2 θ

]1/2

sinn−2 θdθ, (6.8)

and

Cp,κ =
21/p

ωn
sup
|z|=1

{∫
Sn−1

[
(1− κ)2 + nκ(nκ − 2κ + 2)(eσ,z)2

] p
2(p−1) |(eσ, en)|n/(p−1)dσ

}(p−1)/p

(6.9)

for 1 < p < ∞.

In particular,

C 2k
2k−1 ,κ =

2
2k−1
2k

ωn

{∫
Sn−1

[
(1− κ)2 + nκ(nκ − 2κ + 2)(eσ, en)2

]k
|(eσ, en)|(2k−1)ndσ

}1/(2k)

, (6.10)

where k is a natural number.
As a particular case of (6.10) one has

C2,κ =

{
Γ
(

n
2

)
2nπn/2

[
1 + (n− 1)κ2 +

(
1 + (n− 1)κ

)2]}1/2

. (6.11)

Proof. Since the solution of the Dirichlet problem (6.1), (6.2) is given by (6.3), it follows that it obeys
Proposition 2. Taking into account that the elements of the matrix L are given by (6.4), we find

|L∗(eσ)z| = 2
ωn

[
(1− κ)2 + nκ(nκ − 2κ + 2)(eσ,z)2

]1/2

, (6.12)

which together with (2.4), (2.5) and 2.8) leads to

Cp,κ =
2

ωn
sup
|z|=1

{∫
Sn−1
−

[
(1− κ)2 + nκ(nκ − 2κ + 2)(eσ,z)2

] p
2(p−1)

(eσ,−en)n/(p−1)dσ

}(p−1)/p

for 1 < p ≤ ∞. The function |(eσ,−en)| is even on the sphere Sn−1, therefore the last equality can be
written as (6.9).

Passing to the limit in (6.9) as p →∞, we find

C∞,κ =
1

ωn
sup
|z|=1

∫
Sn−1

[
(1− κ)2 + nκ(nκ − 2κ + 2)(eσ,z)2

]1/2

dσ,

which implies by the independence of the last integral on z

C∞,κ =
2ωn−1

ωn

∫ π/2

0

[
(1− κ)2 + nκ(nκ − 2κ + 2) cos2 ϑ

]1/2

sinn−2 dϑ.
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Thus (6.8) follows.
By (2.6) and (6.12) we have

C1,κ = sup
|z|=1

sup
σ∈Sn−1

−

|L∗(eσ)z|(eσ,−en)n

= sup
σ∈Sn−1

−

sup
|z|=1

2
ωn

[
(1− κ)2 + nκ(nκ − 2κ + 2)(eσ,z)2

]1/2

(eσ,−en)n

=
2

ωn

[
(1− κ)2 + nκ(nκ − 2κ + 2)

]1/2

=
[1 + κ(n− 1)]Γ(n/2)

πn/2
,

which results in (6.7).
Consider a particular case of (6.9) for p = 2k(2k − 1)−1. The lower estimate

C 2k
2k−1 ,κ ≥ 2

2k−1
2k

ωn

{∫
Sn−1

[
(1− κ)2 + nκ(nκ − 2κ + 2)(eσ, en)2

]k
|(eσ, en)|(2k−1)ndσ

}1/(2k)

(6.13)

is a direct corollary of (6.9) for p = 2k(2k−1)−1. Now we derive an upper estimate for the constant C 2k
2k−1 ,κ.

By (6.9)

C 2k
2k−1 ,κ ≤ 2

2k−1
2k

ωn


k∑

j=0

Tjk(κ)
∫

Sn−1
(eσ,z)2j |(eσ, en)|(2k−1)ndσ


1/(2k)

, (6.14)

where

Tjk(κ) =
(

k
j

)
(1− κ)2(k−j)[nκ(nκ − 2κ + 2)]j . (6.15)

Adopting the notation

Pjk =
2j + (2k − 1)n

2j
, Qjk =

2j + (2k − 1)n
(2k − 1)n

,

where j = 1, 2, . . . , k, we see that
1

Pjk
+

1
Qjk

= 1, (6.16)

and
2j Pjk = (2k − 1)n Qjk = 2j + (2k − 1)n. (6.17)

Taking into account (6.16), we obtain by Hölder’s inequality∫
Sn−1

(eσ,z)2j
∣∣(eσ, en)

∣∣(2k−1)n
dσ ≤

{∫
Sn−1

∣∣(eσ,z)
∣∣2jPjkdσ

}1/Pjk
{∫

Sn−1

∣∣(eσ, en)
∣∣(2k−1)nQjkdσ

}1/Qjk

.

By (6.16), (6.17) as well as by the independence of the first integral in the right-hand side on z, we find∫
Sn−1

(eσ,z)2j
∣∣(eσ, en)

∣∣(2k−1)n
dσ ≤

∫
Sn−1

∣∣(eσ, en)
∣∣2j+(2k−1)n

dσ,

which together with (6.14) leads to

C 2k
2k−1 ,κ ≤ 2

2k−1
2k

ωn


k∑

j=0

Tjk(κ)
∫

Sn−1

∣∣(eσ, en)
∣∣2j+(2k−1)n

dσ


1/(2k)

.

Combined with (6.15), this estimate can be written as

C 2k
2k−1 ,κ ≤ 2

2k−1
2k

ωn

{∫
Sn−1

[
(1− κ)2 + nκ(nκ − 2κ + 2)(eσ, en)2

]k
|(eσ, en)|(2k−1)ndσ

}1/(2k)

,

which by (6.13) results in (6.10).
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Remark 2. In the case p = ∞ we have the sharp constant in the inequality

|u(x)| ≤ C∞,κ sup{|u(x′)| : x′ ∈ ∂Rn
+}

(see Agmon, Douglis and Nirenberg [1], Agmon [2], Fichera [5], Miranda [14]).
For instance, (6.8) implies the formulas, obtained in [13]:

C∞,κ =
2
π

(1 + κ)E
( 2

√
κ

1 + κ

)
for n = 2, and

C∞,κ =
1
2

(
1 + 2κ +

(1− κ)2√
3κ(κ + 2)

log
1 + 2κ +

√
3κ(κ + 2)

1− κ

)

for n = 3, where E is the complete elliptic integral of the second kind.
Remark 3. The constant Cp,κ in the previous assertion is defined by solving an optimization problem

on the unit sphere Sn−1.
In particular, in the proof of the Theorem 4 is shown that for p = 2k(2k − 1)−1, where k is a natural

number, the supremum of the integral in the representation for Cp,κ is attained on the vectors z = en and
z = −en. Note also that (6.10) can be written in the form

C 2k
2k−1 ,κ =

2
2k−1
2k

ωn

{
2ωn−1

∫ π/2

0

[
(1− κ)2 + nκ(nκ − 2κ + 2) cos2 ϑ

]k
cos(2k−1)n ϑ sinn−2 ϑ dϑ

}1/(2k)

=
Γ
(

n
2

)
πn/2

{
2π(n−1)/2

Γ
(

n−1
2

) ∫ π/2

0

[
(1− κ)2 + nκ(nκ − 2κ + 2) cos2 ϑ

]k
cos(2k−1)n ϑ sinn−2 ϑ dϑ

}1/(2k)

.

7. The Lamé system in a ball

The elastic displacement in the center of the ball Br = {x ∈ R3 : |x| < r} is given by the formula due to
Natroshvili [15].

u(0) =
3

4π(3− κ)r2

∫
∂Br

N (σ)u(σ)dσ, (7.1)

where N is 3× 3 matrix valued function on ∂Br with the elements

(1− 2κ)δij + 5κ(eσ, ei)(eσ, ej), (7.2)

and
κ = (λ + µ)(λ + 3µ)−1, and u ∈ [C(∂Br)]3.

Proposition 4. The sharp constant Bp,κ in the inequality

|u(0)| ≤ Bp,κ Mp(u; ∂Br)

is given by

B1,κ =
3(1 + 3κ)

3− κ
, (7.3)
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B∞,κ =
3

2(3− κ)

[
1 + 3κ +

(1− 2κ)2√
5κ(κ + 2)

log
1 + 3κ +

√
5κ(κ + 2)

|1− 2κ|

]
,

and

Bp,κ =
3

3− κ

{∫ 1

0

[
(1− 2κ)2 + 5κ(κ + 2)u2

] p
2(p−1)

du

} p−1
p

(7.4)

for 1 < p < ∞.
In particular,

B2,κ =
3

3− κ
(
17κ2 − 2κ + 3

)1/2
.

Proof. According to (7.1) and Proposition 1, the sharp constant in

|u(0)| ≤ Bp,κ Mp(u; ∂Br)

can be written as

Bp,κ =
3
(
4πr2

)1/p

4π(3− κ)r2
sup
|z|=1

||N ∗z||Lq(∂Br). (7.5)

Hence, taking into account that

|N ∗(σ)z| =
[
(1− 2κ)2 + 5κ(κ + 2)(eσ,z)2

]1/2

, (7.6)

for |z| = 1 and p ∈ (1,∞] we find

Bp,κ =
3
(
4πr2

)1/p

4π(3− κ)r2
sup
|z|=1

{∫
∂Br

[
(1− 2κ)2 + 5κ(κ + 2)(eσ,z)2

]q/2

dσ

}1/q

=
3
(
4πr2

)1/p
r2/q

4π(3− κ)r2
sup
|z|=1

{∫
S2

[
(1− 2κ)2 + 5κ(κ + 2)(eσ,z)2

]q/2

dσ

}1/q

=
3(

4π
)(p−1)/p(3− κ)

{
4π

∫ π/2

0

[
(1− 2κ)2 + 5κ(κ + 2) cos2 ϑ

] p
2(p−1)

sinϑ dϑ

} p−1
p

, (7.7)

which implies (7.4).
By (7.5) and (7.6)

B1,κ =
3

3− κ
sup
|z|=1

[
(1− 2κ)2 + 5κ(κ + 2)(eσ,z)2

]1/2

=
3(1 + 3κ)

3− κ
, (7.8)

which proves (7.3).
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[5] Fichera, G. (1961). Il teorema del massimo modulo per l’equazione dell’elastostatica tridimensionale.
Arch. Rational mech. Anal., 7, 373-387.
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