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581 83 Linköping, Sweden

vlmaz@mai.liu.se UDC 517.95

We consider a nontrivial example of distributional eigenfunction of the planar Fourier

transform. This eigenfunction is not a tensor product of univariate eigenfunctions. As

a consequence, we obtain a formula for multi-dimensional eigenfunctions in dimension

2N . Bibliography: 6 titles.

The Fourier transform of a function f ∈ L2(RN ) is defined by

F (f)(ξ) =
1

(2π)N/2

∫

RN

f(x)e−ix·ξdx ,

where x · ξ = x1ξ1 + . . . + xNξN . Since the Fourier transform has period 4, i.e., applying the

Fourier transform four times, we get the identity operator, we see that if f is an eigenfunction,

F (f) = λf , then λ satisfies λ4 = 1. Hence λ = ±1,±i are the only possible eigenvalues of the

Fourier transform. The exponential e−|x|2/2 is an eigenfunction associated to the eigenvalue 1.

In dimension N = 1, the Hermite functions

Φn(x) =
1

(
√
π2nn!)1/2

Hn(x) e
−x2/2,

where

Hn(x) = (−1)nex
2 dn

dxn
e−x2

are the Hermite polynomials, give the remaining eigenfunctions. They satisfy F (Φn) = (−i)nΦn

and form an orthonormal basis for the space L2(R) (cf. [1]).
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In higher dimensions, the eigenfunctions of the Fourier transform can be obtained by taking

the tensor products of Hermite functions, one in each coordinate variable. A list of eigenfunctions

of the cosine or sine Fourier transforms can be found in [1].

In dimension N = 2, the separable Hermite–Gaussian functions Φm(x1)Φn(x2) are eigen-

functions corresponding to the eigenvalues (−i)m+n. Denote by

A =

(
cosα sinα

− sinα cosα

)

a rotation matrix where α is the rotation angle in the counterclockwise direction. Since A is an

orthogonal matrix, we have

(Ff(A·))(ξ) = (Ff(·))(Aξ) .
Hence the rotated Hermite–Gaussian functions

h(α)m,n(x1, x2) = Φm(x1 cosα+ x2 sinα)Φn(−x1 sinα+ x2 cosα)

are eigenfunctions with the same eigenvalues as those of Φm(x1)Φn(x2)’s.

The functions rνL
(ν)
p (r2)e−r2/2, with the generalized Laguerre polynomials L

(ν)
p , are eigen-

functions of the Hankel transform

Hν(f)(r) =

∞∫

0

f(ρ)Jν(rρ)ρdρ

corresponding to the eigenvalues (−1)p (cf. [2, formula (2.5)]). Here, Jν(ρ) is the Bessel function

of the first kind of order ν and argument ρ. Because of the integral representation (cf. [3, p. 20])

Jν(ρ) =
iν

2π

2π∫

0

e−irρ cos θe−i ν θdθ,

the Laguerre–Gaussian functions

lm,n(r, θ) = Np,νr
νL(ν)

p (r2)e−r2/2e−iνθ

are eigenfunctions in the polar coordinates (r, θ) of the planar Fourier transform corresponding

to the eigenvalues (−i)m+n. Here, p = min{m,n}, ν = |m−n|, Np,ν is the normalization factor.

The above sets of eigenfunctions form a complete orthonormal basis for L2(R2). In [4], the

three sets considered above are all obtained as special cases of a general form.

In dimension N > 2, the separable Hermite–Gaussian functions

Φm(x) =
N∏
j=1

Φmj (xj)

are eigenfunctions corresponding to the eigenvalues (−i)m1+...+mN . Moreover, if A is an orthog-

onal matrix of order N , then Φm(Ax) are eigenfunctions with the same eigenvalues of Φm.

Another example is provided by functions of the form

Yk(x)e
−|x|2/2,
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where Yk is a homogeneous harmonic polynomial of degree k. They are eigenfunctions of the

Fourier transform and satisfy the equality

F (Yk(·)e−|·|2/2)(ξ) = (−i)kYk(ξ)e
−|ξ|2/2.

The above result is known as the Bochner–Hecke formula for the Fourier transform [5, p. 85].

More generally, one can consider eigenfunctions in the sense of distributions. Such eigen-

functions do not need to belong to L2(RN ). It is known that 1/|x|N/2 is an eigenfunction of F
in the sense of distributions and corresponds to the eigenvalue 1 (cf. [5, p. 71]):

F (| · |−N/2)(ξ) = |ξ|−N/2 .

The goal of this note is to consider a nontrivial example of distributional eigenfunction of the

planar Fourier transform. This eigenfunction is not a tensor product of univariate eigenfunctions.

As a consequence, we obtain a formula for multi-dimensional eigenfunctions in dimension 2N .

Theorem. The function

f(x, y) =

√
x2 + y2

x y

is an eigenfunction of the Fourier transform

F (f)(k, l) =
1

2π

∫∫

R2

f(x, y)e−i(k x+l y)dx dy (1)

corresponding to the eigenvalue −1. The integral (1) is understood in the sense of Cauchy

principal value.

Proof. Let

F (k, l) =

∫∫

R2

√
x2 + y2

xy
e−i(k x+l y)dx dy.

By the symmetry of the integrand,

F (k, l) = F (l, k), F (−k, l) = −F (k, l), F (k, l) = F (−k,−l) . (2)

Taking the partial derivative of F (k, l), we get

∂F (k, l)

∂k
= −i

∫∫

R2

√
x2 + y2

y
e−i(k x+l y)dx dy,

∂2F (k, l)

∂k∂l
= −

∫∫

R2

√
x2 + y2e−i(k x+l y)dx dy.

We introduce the polar coordinates (r, ϕ) so that kx + ly = r
√
k2 + l2 cosϕ. We write the last

integral in the form

∂2F (k, l)

∂k∂l
= −

2π∫

0

∞∫

0

e−ir
√
k2+l2 cosϕr2dr dϕ .
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Making the change of variable ρ = r
√
k2 + l2 and setting

a =

2π∫

0

∞∫

0

e−iρ cosϕρ2dρdϕ,

we get
∂2F (k, l)

∂k∂l
= − a

(k2 + l2)3/2
.

Integrating with respect to l, we find

∂F (k, l)

∂k
= − a l

k2(k2 + l2)1/2
+A(k),

where A(k) denotes an unknown function. Integrating with respect to k, we get the following

formula for the original function:

F (k, l) = a

√
k2 + l2

kl
+A(k) +B(l),

where A(k) and B(l) are unknown functions. Since F (k, l) = F (l, k), we deduce that A ≡ B and

2A(l) = −A(k)− A(−k) in view of (2), which implies A(l) = const. Hence A(l) = 0. Thus, we

have proved that F (k, l) = af(k, l), i.e., λ = a/(2π) is an eigenvalue for the Fourier transform

and f is the corresponding eigenfunction. It remains to compute a.

We consider the Fourier transform of the radial function
√
x2 + y2 (cf. [6, p. 194])

1

2π

∫∫

R2

√
x2 + y2e−i(kx+ly)dx dy = 4

Γ(32)

Γ(−1
2)
(k2 + l2)−3/2 = − 1

(k2 + l2)3/2
.

Hence, in the polar coordinates,

1

2π

2π∫

0

∞∫

0

ρ2e−iρ
√
k2+l2 cosϕdρdϕ = − 1

(k2 + l2)3/2
.

We infer that a = −2π. The theorem is proved.

From this theorem it follows that
N∏
j=1

f(x2j−1, x2j) is an eigenfunction of the Fourier transform

in dimension 2N corresponding to the eigenvalue (−1)N .
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