Available online at www.sciencedirect.com
SCIENCE<dDIRECT° WAVE

www.elsevier.com/locate/wavemoti

iy

= T

ELSEVIER Wave Motion 38 (2003) 345-354

The spectrum of water waves produced by moving point sources,
and a related inverse problem

Hans HellsteR, Vladimir Maz'yaP, Boris Vainberd-*

a Ericsson Microwave Systems AB, SE 431 84 Molndal, Swveden
b Department of Mathematics, Linkdping University, 58183 Linkoping, Sweden
¢ Department of Mathematics, UNCC, Charlotte, NC 28223, USA

Received 20 March 2003; received in revised form 2 May 2003; accepted 9 May 2003

Abstract

Parameters of moving sources on the sea surface are recovered by spectral analysis of the induced surface waves. The metho
can be an alternative to the standard way of seeing the ship directly, in particular, when the direct observation is impossible.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of recovering parameters of moving sources on the sea surface by spectral analysis of the
surface waves. The main idea behind our approach is based on the fact that a moving point source produces surface
waves whose spectral characteristics have singularities for some values of frequencies. These special frequencies
form an unbounded curvé on the two-dimensional plane of all frequencies. One can imagine an instrument
which analyses the surface waves and singles out the frequencies where the density of the spectral amplitude is
most significant. As it was mentioned above, this density is infinite on the durdée unboundedness of the
density of the spectral amplitude does not contradict the nature of the surface waves, since the waves in the spectral
representation are given as a two-dimensional integral over the frequency plane. The next technical step would be
to distinguish the singularities due to the motion of a sea source from singularities in the spectral representation
of the surface waves caused by other reasons: wind, current, and so on. We assume that these more significan
natural forces have smoother spectral characteristics and form such a background, that the unbounded frequencies
of localised disturbances can be distinguished on that background. We do not want to speculate on the technical
questions. Our goal here is purely theoretical: assuming that the éuovesome points of this curve are found,
recover trajectories, velocities and intensities of the moving sea sources.

2. Spectrum of a wave sourcein the moving coor dinate system

In the linear theory of surface waves, the Neumann—Kelvin problem on the uniform rectilinear motion of a point
source is stated as follows. Let the water fill the half-sd&eey, z) : z < 0}. Suppose that a point source is moving
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in the direction of ther-axis with constant velocity in the free surface = 0. We introduce a coordinate system
moving with the source in such a way that the origin coincides with the position of the sourgesaixis parallel
to the velocity vector. Then the velocity potentjahnd the elevation of the free surfagsatisfy

Ap=0, z<0, v _P _o PLyM_o ._o 1)

0x P 0z 0x
whereg is the acceleration due to gravipyis the density of watep(x, y) = po+ Ad(x)8(y), andpg = constis the
atmospheric pressure. Bywe denote the Dirac function. The positive constardharacterises the intensity of the
source. Replacing by n — po/gp we can omit the ternpg/ o in the right-hand side of the first boundary condition
in (1). Then the elevation of the free surface is measured with respect to its elevation in the absence of the source.
The boundary value problefd) may be written in the form

2p g A
A¢ =0, 0, — — = —§®)(y), =0. 2
¢ z< A i T (08, z @)
For the elevation of the free surface we have the formula
Vo A
g ox 8p
After the Fourier transform with respecttoy
00 o0 .
Pk, ko, 2) = / / p(x, y, ) €Ctha) dr dy, (4)
—00 J —00
the boundary value proble(®) takes the form
P ot — Kok =0 <0 —KZpk.O) + v pk0) =~k
JR— — — < — V— —_ —] —
42 4 4 , 2 , 19k, AL Vo 1,

wherek = (k1, k2) and k| = (k3 + k3)Y/2.
The ordinary differential equation f@r on the half-axis < 0 with the condition thap vanishes ag — —oo,
leads to the formula

bk, 2) = d(k, 0) eIz,

Using the boundary condition fgratz = 0, we find

~ A
(—kF + vIk))(k, 0) = —lvpkl. (5)
By (3)
- Ve A
n= —|k1—¢ _ .
8 8P

Multiplying this equality by—k% + vlk| and using5), we obtain
2 ~ 2A A 2
(—kf + vikDn(k) = —ki— — —(—kT + vIk]).
8o 8P
Hence,
2 - Av
(k1 — vikDn(k) = —Ik|. (6)
8p

This is the main equation fay. The rest of this section is devoted to solvif@. Note, that one cannot fingl by
simple division of both sides dB) by kf — v|k|, since the last expression vanishes for some valuéstdénce,
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Fig. 1. Curved.,. andL_ in plane &1, k2) whereEg. (6)cannot be solved.

solution of(6) has to be understood in the sense of distributions. Soluti{8) &f not unique, and we are looking for
such a solution of6) that the elevatiom(x, y) of the free surface has a character of a cylindrical wave downstream
and decays rapidly upstream.

By L we denote the set on the plarig,(k2) described by the equation

k? = vlk|. (7)

It consists of two symmetric curvds, placed in the half-planesk; > 0 (Fig. 1)
These curved... may be described by the equations

1
k1= :I:\/E <v2+,/v4+4k§).

In each quadrant of the plank, ( k2), the setL can be expressed by a simpler equation

k
ky=2— (2 —AY2 [kl = v,
%
where the siga: coincides with the sign of the produgtk» in the quadrant. In polar coordinatgs 6), 0 < 6 < 27,
on the plangks, k2), the curved. .. are determined by the equation

Vv

=+ —-—-.
P cos26

Let u48(Ly) be thes-function of the curvel ; with a continuous density, = uy(k), i.e. uy8(Ly) is a
distribution defined by the formula
1y 8(L1), h(k)) = /L i (R () k.
+

whereh (k) is an arbitrary test function, which rapidly decreases at infinity. We have clkossra parameter ai,
sinceL is uniquely projected on thie-axis. In a similar way one defines the distributjpns (L _). By definition

US(L) = p48(Ly) + p_8(Lo),

wherep = 4+ onLy
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Itis obvious thaEg. (6)has infinitely many solutions. In fact, the sum of any solution and the distribp@on)
with an arbitraryu satisfieq6). One cannot ignore this property, since, for example, the backward motion of the
source generates the saf@ (6) The solutionsg;,. ands_, corresponding to opposite directions, differ o§(L)
with a certain functionu.

In the exterior of any neighbourhood bfthe solution of(6) is given by

Avlk|
go(k% — vik|)”
The correct representation gfin a neighbourhood ol. should be such that the inverse Fourier transforrnj of

corresponds to a cylindrical wave downstream and decays rapidly upstream. We will show that these requirements
define the solutiony of Eq. (6)uniquely, and the solution is given by the formula

5 Ay _ h(k)Ik| dky dk _ _ Avklk|
(n(k), h(k)) = . (IO-V~ /R2 —kf S ) + 7l{ud(L), h(k)), wp= —gp(Zkf 2 )

(k) = (8)

where is an arbitrary test function which rapidly decreases at infinity. By pwe denote the principal value of
the integral, i.e.

h(k)|k| dkq dk . h(k)|k| dkq1 dk
pv./ ()2|| 1 2:“mf ()2I| 10kz (10)
Rz ki —vlk| e>H0J )2 —vik|>e kT — VIK]
The functional, defined b1 0), will be denoted by

o |k|
k2 — k|

Then formula(9) can be rewritten in the form
- Av 13 Ami K3
k)= — |pV.5—— |+ ———=8(). 11
n(k) gp(p k%—VIH) 2 2k§—v2() (11)

One can justify formulg11)with the help of a well-known formula for Green'’s function of the Neumann—Kelvin
problem. Green’s function is a solution of the problem

G;’X+G§,’V+G’Z’Z=O, 7 <0, G+ G, =4nd(x,y), z=0 (12)
with an appropriate behavior at infinity (it is bounded downstream and decays upstream). Conditions at infinity

define Green’s function uniquely. The velocity potential can be expressed through Green’s function

é A 8G( ),
= ——(vx,vy,v
4mgp ox Yo v

and it is such a solution dR), that the corresponding velocities decay rapidly upstream. So, accord{@ytte
functionn is defined by the formula
A ¥

471sz|—>— ™ ~—Gx, vy, vz) — —S(x y). (13)

n=

By (13) we have

-AC [k Kk A
k) = L lim G (—1, —2,z> - (14)
4mgpv
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Formula for Green’s function can be found[ifj (formula (7)) or in[2] (formulas (6.6)—(6.8)). It can be shown
that these formulae can be rewritten in the form

1 e lk|—ixky —iyky o k1
G =——p.Vv. —————dky dko — i(uS(L' ,e_'Xkl_'yk2 , = —,
P f;ez 21 10ky — I{ud(L") Y M 221
whereL’ is the setl with v = 1. This formula gives a representation of Green’s function as the inverse Fourier
transform of the functio; such that for an arbitrary test functiak)

- — 4y Mk 2. ,
(G(k, z), h(k)) = p.V./ —5———h(k) dk — 47 {ud(L"), h(k)),
Rz ki — |k|
where
P ar oy
Thus,

- —4r .

G(k,0) = v.p. — 47% S(L").
0 pk§—|k| 2/<§—1( :

This and(14) yield (11) if one takes into account thatL’) is replaced byws(L) under the change — k/v and
that
K3 vk1|k|

1
———6§(L) = ———=48(L).
ZkE—vz() 2kf—v2()

3. Spectrum of a wave sourcein theimmobile coordinate system

Let a point source move with a constant velodityn the directionl = (cosa, sina) in the free surface. Suppose
that this source is placed at the pojnt b) at the initial moment. The elevation of the free surféfig, y, r) at the
point (x, y) at the moment can be expressed by the formula

H(x,y,t) = n((x —a) cosa + (y — b) sina — Vt, —(x — a) Sina + (y — b) cosw), (15)

wheren is the function defined in the previous section.
The Fourier transform off with respect to variableg, y) is given by

H(k, ) = (k1 cosa + ko Sina, —kq Sina + ko Cosay) glk1(@+Vtcose)+ka(b+Visina)] (16)

with 7 defined by(11).
The functionH has a singularity on the set
L(a, v) = {k : (k1 cOSa + k Sina)? = vlk|}. (17)

It consists of two curves, which are obtained fréam (Fig. 1) by the counterclock rotation by the angle
4, Calculation of parameters of the motion of the source by the function ﬁ(k, t) outside of some
neighbourhood of the set L(«, v)

We assume that the functidii(k, 1) has been found experimentally. By1) and (16)ve obtain that the intensity
coefficientA is connected withy by the formula

A= @m(k, 0|1kl cos?( — &) — v, (49
Vv

wherek is any point of the plane which does not belond t@, v) andé is the polar angle of the poitt
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Writing this equality for two different points™® andk® with the same, we arrive at the following equation:
|HED, 0] - 11kP | cos?(@ — a) — v| = [HED, 1)] - [1kP| cos?(6 — @) — V|, (19)
which implies (in caséH (kD 1| # |H(k@, 1)|) that
v = Ccos?(6 — a), (20)
where constant is given by one of the following expressions:

KDNHKED, ] — kP HE?, 1) or KDNHKED, 0] + kP H K, 1)
|H(KD, )] — |H KD, 1) |HKD, 1| + | H KD, 1)

One can extenéq. (19)using one more poirkt = k@ with the same polar angte This will allow us to specify

the constan€. Now « can be found by the equating the right-hand sidg20fwith different values 0. One will

need more than two different valuesadh order to findx uniquely. Ther(20) and (18Yefinev andA, respectively.
From(16)it also follows that

ki(a + Vtcosa) + ka(b + Vtsina) = —iln [i—pﬁ(k, DIkl cos2(6 — @) — v]] . 1)
v

From(21)written for two pointsk® andk® we get a system of two equations which enables us tarfidt cose
andb + Vtsina. Having these values for two moment¥ and:® we finda, b andV (in fact, V could be found

earlier, sinceV = \/g/v).
One can suggest a different device to detern¥irenda. From(16)it follows that for anyk = @ the following
formula is valid:
NI:I(k(0>, ) _ ei[k(lm
H(kO, 1))

©)

V(t—t1) cosa-+k, "~ V(t—t1) sina]

which gives the value
kio) V(t — t1) cOSx + kéo) V(t — 1) Sina.

Taking this value for two different poinis® we obtainV ande.

5. Determination of thetrajectory and of V by L(a, v)

Suppose that the sét(«, v) is obtained experimentally. One may conduct such an experiment because the set
L(a, v) does not depend on time and the functiik, 1) tends to infinity as the poirit = (k1, k») tends to this
set. The seL(«, v) depends upon two parametessandv = gV—2 only. After finding L(«, v) we can obtain the
direction of the motion of the sourd¢e= (cosw, sine) andV = (g/v)¥/2.

We are going to show that the sktw, v) (and the parametets v) can be found, generally speaking, by three
points of this set.

Introduce polar coordinatég, 6), 0 < 6 < 2m, p > 0, on the plané& = (k1, k2). Eq. (17)can be rewritten in the
form

VP COS(0 — ) = /v, (22)

where signst correspond to different connected components of thé &etv).
Let the pointsk® = p; €%1 andk@ = p, €%2 belong toL («, v). Then

Jp1C0S(01 — a) = £/v, V02C0S(02 — ) = /. (23)
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If the pointsk™®, k@ are placed on the same connected componehta@fv) then the signs in the right-hand side
of (23) coincide and

A/P1COS(01 — &) = /p2COS(O2 — ).

In the opposite case

p1C0S(A1 — ) = —/p2COS(H2 — ).
By solving these equation we arrive at
_ /p1€OSO1L — /2 COSH? (24)
- J/p2Sindy — . /p1Sind;
in the first case and similarly
B /p1C0SH1 + /p2 COSH2
/01Sind1 + /p2 Sinb2

in the second case.

Everywhere below we shall assume that the vetter (cose, sina) is directed into the right half-plane, i.e.
cosa > 0. Then, ifV > 0, then the source moves to the rightVlk 0 then it moves to the left.

Now by Egs. (24) and (25)e obtain either

|/p2sin6z — /p1Sing;|

tana

tana = (25)

cosx = 73
lp1 + p2 — 2,/p1p2 COS(61 — 62)]
or
sing, + sing
cosu [/02 2+ /01 1|

" |p1+ p2+ 2,/p1p2 COS(01 — 0)[1/2
and, respectively, in the first case

/p1COSHL — /p2 COSH
[p1+ p2 — 2,/p1p2 COS(A1 — 62)]%/2
and in the second case

/p1C0SH1 + . /p2 COSHL
[p1 + p2 + 2/p1p2 COS(1 — 62)]1/?

In the first case,

Sina = sign(y/p2 Sinfy — /p1 Sinb1),

Sina = —

sign(y/pz2 sinfz + /p1SiNd1).

. p1p2SiN?(61 — 62)
p1+ p2 — 2/p1p2COS(1 — 62)

In the second case,

e p1p2Sin?(61 — 62)
p1+ p2 + 2/p1p2COS(01 — 62)

Hence, if pointst™™ andk® belong to the sef(«, v), and if it is unknown whether they belong to the same
connected component df(e, v), then these points define two pairs @f, v) which can be calculated by the
above formulae. Each of these pairs determines thé &etv) by formula(17). One of these sets corresponds
to the situation when the points?, k@ are located on the same connected componeiit(@fv). The second
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set corresponds to the case, whef®, k® belong to different components. One can specify the situation and
pick up the appropriate séft(«, v) by taking one more poink® of L(«, v). The pointk®® has to be chosen not

on the intersection of two sefs(«, v) which have been constructed. Thus, the trajectory of the source, i.e. the
anglea, and the absolute value of the velocity can be found experimentally by a finite number of points on the
curveL(a, v).

6. Calculation of the intensity of the source and its position by H in a small neighbourhood of L (a, v)

We assume that the parameterandv has been found and the dete, v) is known. Then we take the limit in
formula(18)ask — k@, wherek@ is an arbitrary point of.(«, v). We obtain

A =52 lim [|Ek, )[lk|cos?(6 — a) — v]|].
V k—k©
Similarly, by (21) we have

K9 (@ + Vtcosa) + k(b + Vtsing) = —i lim _In [Qﬁ(k, D[Ik| cos2(0 — @) — v]] .
k—k© Av

Taking two different point&(? on L («, v) we arrive at the algebraic system. By solving it we obtainVt cosa
andb + Vtsina. These values far= 1 andr = 1@ enable one to find, » ando.

We give one more formula for the intensity of the source, which can be used when the remaining parameters of
the source are known.

Let 57(k) be the Fourier transform of the elevation of the free surface in the moving coordinate system, found in
Section 2 By p, ¢ we denote two points of a connected component of thd.g#bth points belong td.,. or to
L_). Let the function;(k) be determined in the domain

DG, p, q) = {(k1, k2) : [k§ — vIk]| < 8, ka(p) < k2 < ka(q)},

whereka(p), k2(g) are values of the coordinate at p, ¢ andsé is a small positive number (sé&ég. 2).
We integrate; over D(3, p, q), i.e. we puth(k) = 1 in D(8, p, q) andh(k) = 0 outside ofD(3, p, g) in formula
(9). Itis easily seen that the first summand in the right-hand si¢®)dénds to zero a& — 0. The second term in

D(d,p,q)

k1

L,

Fig. 2. D(8, p, q) denotes domain where the intensity of the source and its position can be determined from the spectral density of the elevation
of the free surface.
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the right-hand side d®) is equal to
Ami fRe@ i3

—1  dky. (26)
80 Jippy 2k —12

We use the following change of variable in the latter integral= vr(1 + r2)¥/2. Then by the equation of the
setL we obtain thak; = +v(1 + t2)%/2, where signt depends on the componeht . Thent = +kp/ k1 is equal
to tand, whered is an angle coordinate of the poit0 < 6 < 2x. Integral(26) takes the form

Axi (B A+ 7HY2 w241 Am /‘a”% (14 ) de
t;

T =
gp Jiang, 202(1+71%) —12 142 8p

Amv?i
= 37;: (3tang, + tan®g, — 3tand, — tan4,).

ane,

Thus, we have the following approximate expression for the intersityhich is valid for smalb:

 Gepl/m) [ ps. g 1K) Ak
"~ 3tand, + tan3, — 3tand, — tan%,’

(27)

Now let H (k, r) be the Fourier transform of the elevation of the free surface in the immobile coordinate system.
We denote the domaib($, p, g) rotated counterclock-wise by the angldy D,. Then from(16) it follows that

71(k1cosa + ko Sine, —ky Sina + ko coser) = H (k, ) e kilatVicosn)+ka(b+Visina)] (28)

Clearly, if we integrate the left-hand side(28) over the domairD,, then the result will coincide with the integral
of (k) over D(3, p, q). Consequently, according {28)

A~ (3g,0|/7“)2) ffDa I:I(k, ) e—i[kl(a+V'[COSot)+k2(b+VtSina)] dkq dk>
- 3tand, + tan30, — 3tang, — tan%y, '

7. The case of several moving wave sour ces

Suppose that there ale point sources, which are moving in directidns= (cosw;, sina;) with the velocities
V;. The resulting elevation of the free surface is the sum of the elevations produced by each source:

H(x,y,t) = Z Hj(x, y,1). (29)
1<j<N

The functionH; is defined by formulg15) where the parametess b, «, V, v = gV~2 and the functiom depend
on j. Thus, after the Fourier transform, we have

Hk,t) = Z 7j(k1 cosa; + kp sinaj, —ki sina; 4 kp cosa ;)
1=j=N
xexpilky(a; 4+ tV; cosw;) + ko(bj +tV; sina;)], (30)
where
13 Ajri k3
k2 —vilkl g0 2kZ—v

- Aiv;

7itk) = —Lv.p. 58(Lj). (31)
8p :

Suppose that the sels = L(«j, v;), 1 < j < N, supporting singularities of the distributidfi(k, ), can be found

experimentally. Then, as it was describedSiection 5 from (30) we can obtain the directiom; and the absolute
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value of the velocity, i.ev; for each source. Assume, that afterwards we fofihth a small neighbourhood of
L(aj, vj). Then we avoid the necessity to solve the system of equations which is related to more than one source.

8. Themotion of a source on water waves

Here we will discuss very briefly a more general situation which is probably important in practice and which
concerns the problem on the uniform motion of the source with account of harmonic oscillations of the w§B¢y.(see
Consider the coordinate system, moving with the point source, simila@gttion 2 The boundary conditions
take the form

(Vi—kiw)qﬁ—gnzw, a—(l)+(Vi+iw>n=0,
0x 0 0z 0x

wherew is the frequency of oscillations of the free surface.
The velocity potential satisfies the boundary value problem

Aj— 0 8ia)2 W _A(D o)
¢ =0, (a— v) ¢+V8—Z—Vp(a— v) (¥)3(y).

The elevation of the free surfagds expressed by the formula
1 a . A
n=- <V— - lw) ¢ — —38(0)8(y),
g\ ox 8p
which leads to the following equation fg(k):
w\?2 A
ki+—=) —vlkl|7k) = —lk
[(1+V) v qn() il

which can be investigated in the spirit 8éctions 2—7
In conclusion we remark that all our results can be extended to the case of a distributed pressure as well to the
case of a submerged source.
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