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The spectrum of water waves produced by moving point sources,
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Abstract

Parameters of moving sources on the sea surface are recovered by spectral analysis of the induced surface waves. The method
can be an alternative to the standard way of seeing the ship directly, in particular, when the direct observation is impossible.
© 2003 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of recovering parameters of moving sources on the sea surface by spectral analysis of the
surface waves. The main idea behind our approach is based on the fact that a moving point source produces surface
waves whose spectral characteristics have singularities for some values of frequencies. These special frequencies
form an unbounded curveL on the two-dimensional plane of all frequencies. One can imagine an instrument
which analyses the surface waves and singles out the frequencies where the density of the spectral amplitude is
most significant. As it was mentioned above, this density is infinite on the curveL. The unboundedness of the
density of the spectral amplitude does not contradict the nature of the surface waves, since the waves in the spectral
representation are given as a two-dimensional integral over the frequency plane. The next technical step would be
to distinguish the singularities due to the motion of a sea source from singularities in the spectral representation
of the surface waves caused by other reasons: wind, current, and so on. We assume that these more significant
natural forces have smoother spectral characteristics and form such a background, that the unbounded frequencies
of localised disturbances can be distinguished on that background. We do not want to speculate on the technical
questions. Our goal here is purely theoretical: assuming that the curveL or some points of this curve are found,
recover trajectories, velocities and intensities of the moving sea sources.

2. Spectrum of a wave source in the moving coordinate system

In the linear theory of surface waves, the Neumann–Kelvin problem on the uniform rectilinear motion of a point
source is stated as follows. Let the water fill the half-space{(x, y, z) : z < 0}. Suppose that a point source is moving
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in the direction of thex-axis with constant velocityV in the free surfacez = 0. We introduce a coordinate system
moving with the source in such a way that the origin coincides with the position of the source andx-axis is parallel
to the velocity vector. Then the velocity potentialφ and the elevation of the free surfaceη satisfy

�φ = 0, z < 0, V
∂φ

∂x
− gη = p

ρ
, z = 0,

∂φ

∂z
+ V

∂η

∂x
= 0, z = 0, (1)

whereg is the acceleration due to gravity,ρ is the density of water,p(x, y) = p0+Aδ(x)δ(y), andp0 = const. is the
atmospheric pressure. Byδ we denote the Dirac function. The positive constantA characterises the intensity of the
source. Replacingη by η− p0/gρ we can omit the termp0/ρ in the right-hand side of the first boundary condition
in (1). Then the elevation of the free surface is measured with respect to its elevation in the absence of the source.

The boundary value problem(1) may be written in the form

�φ = 0, z < 0,
∂2φ

∂x2
+ ν

∂φ

∂z
= A

Vρ
δ′(x)δ(y), z = 0. (2)

For the elevation of the free surface we have the formula

η(x, y) = V

g

∂φ

∂x
(x, y,0)− A

gρ
δ(x)δ(y). (3)

After the Fourier transform with respect tox, y

φ̃(k1, k2, z) =
∫ ∞

−∞

∫ ∞

−∞
φ(x, y, z)ei(k1x+k2y) dx dy, (4)

the boundary value problem(2) takes the form

d2

dz2
φ̃(k, z)− |k|2φ̃(k, z) = 0, z < 0, −k2

1φ̃(k,0)+ ν
d

dz
φ̃(k,0) = −i

A

Vρ
k1,

wherek = (k1, k2) and|k| = (k2
1 + k2

2)
1/2.

The ordinary differential equation for̃φ on the half-axisz < 0 with the condition that̃φ vanishes asz → −∞,
leads to the formula

φ̃(k, z) = φ̃(k,0)e|k|z.

Using the boundary condition for̃φ at z = 0, we find

(−k2
1 + ν|k|)φ̃(k,0) = −i

A

Vρ
k1. (5)

By (3)

η̃ = −ik1
V

g
φ̃ − A

gρ
.

Multiplying this equality by−k2
1 + ν|k| and using(5), we obtain

(−k2
1 + ν|k|)η̃(k) = −k2

1
A

gρ
− A

gρ
(−k2

1 + ν|k|).

Hence,

(k2
1 − ν|k|)η̃(k) = Aν

gρ
|k|. (6)

This is the main equation for̃η. The rest of this section is devoted to solving(6). Note, that one cannot find̃η by
simple division of both sides of(6) by k2

1 − ν|k|, since the last expression vanishes for some values ofk. Hence,
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Fig. 1. CurvesL+ andL− in plane (k1, k2) whereEq. (6)cannot be solved.

solution of(6)has to be understood in the sense of distributions. Solution of(6) is not unique, and we are looking for
such a solution of(6) that the elevationη(x, y) of the free surface has a character of a cylindrical wave downstream
and decays rapidly upstream.

By L we denote the set on the plane (k1, k2) described by the equation

k2
1 = ν|k|. (7)

It consists of two symmetric curvesL± placed in the half-planes±k1 > 0 (Fig. 1)
These curvesL± may be described by the equations

k1 = ±
√

1

2

(
ν2 +

√
ν4 + 4k2

2

)
.

In each quadrant of the plane (k1, k2), the setL can be expressed by a simpler equation

k2 = ±k1

ν
(k2

1 − ν2)1/2, |k1| ≥ ν,

where the sign± coincides with the sign of the productk1k2 in the quadrant. In polar coordinates(ρ, θ),0 ≤ θ ≤ 2π,
on the plane(k1, k2), the curvesL± are determined by the equation

ρ = ± ν

cos2θ
.

Let µ+δ(L+) be theδ-function of the curveL+ with a continuous densityµ+ = µ+(k), i.e. µ+δ(L+) is a
distribution defined by the formula

〈µ+δ(L+), h(k)〉 =
∫
L+

µ+(k)h(k)dk2,

whereh(k) is an arbitrary test function, which rapidly decreases at infinity. We have chosenk2 as a parameter onL+,
sinceL+ is uniquely projected on thek2-axis. In a similar way one defines the distributionµ−δ(L−). By definition

µδ(L) = µ+δ(L+)+ µ−δ(L−),

whereµ = µ± onL±
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It is obvious thatEq. (6)has infinitely many solutions. In fact, the sum of any solution and the distributionµδ(L)

with an arbitraryµ satisfies(6). One cannot ignore this property, since, for example, the backward motion of the
source generates the sameEq. (6). The solutions̃η+ andη̃−, corresponding to opposite directions, differ byµδ(L)
with a certain functionµ.

In the exterior of any neighbourhood ofL the solution of(6) is given by

η̃(k) = Aν|k|
gρ(k2

1 − ν|k|) . (8)

The correct representation ofη̃ in a neighbourhood ofL should be such that the inverse Fourier transform ofη̃

corresponds to a cylindrical wave downstream and decays rapidly upstream. We will show that these requirements
define the solutioñη of Eq. (6)uniquely, and the solution is given by the formula

〈η̃(k), h(k)〉 = Aν

gρ

(
p.v.

∫
R2

−h(k)|k| dk1 dk2

k2
1 − ν|k|

)
+ πi〈µδ(L), h(k)〉, µ = Aνk1|k|

gρ(2k2
1 − ν2)

, (9)

whereh is an arbitrary test function which rapidly decreases at infinity. By p.v.
∫

we denote the principal value of
the integral, i.e.

p.v.
∫
R2

h(k)|k| dk1 dk2

k2
1 − ν|k| = lim

ε→+0

∫
|k2

1−ν|k||>ε
h(k)|k| dk1 dk2

k2
1 − ν|k| . (10)

The functional, defined by(10), will be denoted by

p.v.
|k|

k2
1 − ν|k| .

Then formula(9) can be rewritten in the form

η̃(k) = Aν

gρ

(
p.v.

|k|
k2

1 − ν|k|

)
+ Aπi

gρ

k3
1

2k2
1 − ν2

δ(L). (11)

One can justify formula(11)with the help of a well-known formula for Green’s function of the Neumann–Kelvin
problem. Green’s function is a solution of the problem

G′′
xx +G′′

yy +G′′
zz = 0, z < 0, G′′

xx +G′
z = 4πδ(x, y), z = 0 (12)

with an appropriate behavior at infinity (it is bounded downstream and decays upstream). Conditions at infinity
define Green’s function uniquely. The velocity potential can be expressed through Green’s function

φ = A

4πgρ

∂G

∂x
(νx, νy, νz),

and it is such a solution of(2), that the corresponding velocities decay rapidly upstream. So, according to(3) the
functionη is defined by the formula

η = A

4πVρ
lim
z→−0

∂2

∂x2
G(νx, νy, νz)− A

gρ
δ(x, y). (13)

By (13)we have

η̃(k) = −Ak2
1

4πgρν2
lim
z→−0

G̃

(
k1

ν
,
k2

ν
, z

)
− A

gρ
. (14)
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Formula for Green’s function can be found in[1] (formula (7)) or in[2] (formulas (6.6)–(6.8)). It can be shown
that these formulae can be rewritten in the form

G = − 1

π
p.v.

∫
R2

ez|k|−ixk1−iyk2

k2
1 − |k| dk1 dk2 − i〈µδ(L′),e−ixk1−iyk2〉, µ = k1

2k2
1 − 1

,

whereL′ is the setL with ν = 1. This formula gives a representation of Green’s function as the inverse Fourier
transform of the functioñG such that for an arbitrary test functionh(k)

〈G̃(k, z), h(k)〉 = p.v.
∫
R2

−4π ez|k|

k2
1 − |k| h(k)dk − 4π2i〈µδ(L′), h(k)〉,

where

µ = k1

2k2
1 − 1

.

Thus,

G̃(k,0) = v.p.
−4π

k2
1 − |k| − 4π2i

k1

2k2
1 − 1

δ(L′).

This and(14) yield (11) if one takes into account thatδ(L′) is replaced byνδ(L) under the changek → k/ν and
that

k3
1

2k2
1 − ν2

δ(L) = νk1|k|
2k2

1 − ν2
δ(L).

3. Spectrum of a wave source in the immobile coordinate system

Let a point source move with a constant velocityV in the directionl = ( cosα, sinα) in the free surface. Suppose
that this source is placed at the point(a, b) at the initial moment. The elevation of the free surfaceH(x, y, t) at the
point (x, y) at the momentt can be expressed by the formula

H(x, y, t) = η((x− a) cosα+ (y − b) sinα− Vt,−(x− a) sinα+ (y − b) cosα), (15)

whereη is the function defined in the previous section.
The Fourier transform ofH with respect to variables(x, y) is given by

H̃(k, t) = η̃(k1 cosα+ k2 sinα,−k1 sinα+ k2 cosα)ei[k1(a+Vt cosα)+k2(b+Vt sinα)] (16)

with η̃ defined by(11).
The functionH̃ has a singularity on the set

L(α, ν) = {k : (k1 cosα+ k2 sinα)2 = ν|k|}. (17)

It consists of two curves, which are obtained fromL± (Fig. 1) by the counterclock rotation by the angleα.

4. Calculation of parameters of the motion of the source by the function H̃ (k, t) outside of some
neighbourhood of the set L(α, ν)

We assume that the functioñH(k, t) has been found experimentally. By(11) and (16)we obtain that the intensity
coefficientA is connected withν by the formula

A = gρ

ν
|H̃(k, t)|||k| cos2(θ − α)− ν|, (18)

wherek is any point of the plane which does not belong toL(α, ν) andθ is the polar angle of the pointk.
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Writing this equality for two different pointsk(1) andk(2) with the sameθ, we arrive at the following equation:

|H̃(k(1), t)| · ||k(1)| cos2(θ − α)− ν| = |H̃(k(2), t)| · ||k(2)| cos2(θ − α)− ν|, (19)

which implies (in case|H̃(k(1), t)| �= |H̃(k(2), t)|) that

ν = C cos2(θ − α), (20)

where constantC is given by one of the following expressions:

|k(1)||H̃(k(1), t)| − |k(2)||H̃(k(2), t)|
|H̃(k(1), t)| − |H̃(k(2), t)| or

|k(1)||H̃(k(1), t)| + |k(2)||H̃(k(2), t)|
|H̃(k(1), t)| + |H̃(k(2), t)| .

One can extendEq. (19)using one more pointk = k(3) with the same polar angleθ. This will allow us to specify
the constantC. Nowα can be found by the equating the right-hand sides of(20)with different values ofθ. One will
need more than two different values ofθ in order to findα uniquely. Then(20) and (18)defineν andA, respectively.

From(16) it also follows that

k1(a+ Vt cosα)+ k2(b+ Vt sinα) = −i ln
[ gρ
Aν

H̃(k, t)[|k| cos2(θ − α)− ν]
]
. (21)

From(21)written for two pointsk(1) andk(2) we get a system of two equations which enables us to finda+Vt cosα
andb + Vt sinα. Having these values for two momentst(1) andt(2) we finda, b andV (in fact,V could be found
earlier, sinceV = √

g/ν).
One can suggest a different device to determineV andα. From(16) it follows that for anyk = k(0) the following

formula is valid:

H̃(k(0), t)

H̃(k(0), t1)
= ei[k(0)1 V(t−t1) cosα+k(0)2 V(t−t1) sinα],

which gives the value

k
(0)
1 V(t − t1) cosα+ k

(0)
2 V(t − t1) sinα.

Taking this value for two different pointsk(0) we obtainV andα.

5. Determination of the trajectory and of V by L(α, ν)

Suppose that the setL(α, ν) is obtained experimentally. One may conduct such an experiment because the set
L(α, ν) does not depend on time and the functionH̃(k, t) tends to infinity as the pointk = (k1, k2) tends to this
set. The setL(α, ν) depends upon two parameters:α andν = gV−2 only. After findingL(α, ν) we can obtain the
direction of the motion of the sourcel = ( cosα, sinα) andV = (g/ν)1/2.

We are going to show that the setL(α, ν) (and the parametersα, ν) can be found, generally speaking, by three
points of this set.

Introduce polar coordinates(ρ, θ), 0 ≤ θ ≤ 2π, ρ > 0, on the planek = (k1, k2). Eq. (17)can be rewritten in the
form

√
ρ cos(θ − α) = ±√

ν, (22)

where signs± correspond to different connected components of the setL(α, ν).
Let the pointsk(1) = ρ1 eiθ1 andk(2) = ρ2 eiθ2 belong toL(α, ν). Then

√
ρ1 cos(θ1 − α) = ±√

ν,
√
ρ2 cos(θ2 − α) = ±√

ν. (23)
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If the pointsk(1), k(2) are placed on the same connected component ofL(α, ν) then the signs in the right-hand side
of (23)coincide and

√
ρ1 cos(θ1 − α) = √

ρ2 cos(θ2 − α).

In the opposite case
√
ρ1 cos(θ1 − α) = −√

ρ2 cos(θ2 − α).

By solving these equation we arrive at

tanα =
√
ρ1 cosθ1 − √

ρ2 cosθ2√
ρ2 sinθ2 − √

ρ1 sinθ1
(24)

in the first case and similarly

tanα = −
√
ρ1 cosθ1 + √

ρ2 cosθ2√
ρ1 sinθ1 + √

ρ2 sinθ2
(25)

in the second case.
Everywhere below we shall assume that the vectorl = ( cosα, sinα) is directed into the right half-plane, i.e.

cosα ≥ 0. Then, ifV > 0, then the source moves to the right. IfV < 0 then it moves to the left.
Now byEqs. (24) and (25)we obtain either

cosα = |√ρ2 sinθ2 − √
ρ1 sinθ2|

|ρ1 + ρ2 − 2
√
ρ1ρ2 cos(θ1 − θ2)|1/2

or

cosα = |√ρ2 sinθ2 + √
ρ1 sinθ1|

|ρ1 + ρ2 + 2
√
ρ1ρ2 cos(θ1 − θ2)|1/2

and, respectively, in the first case

sinα =
√
ρ1 cosθ1 − √

ρ2 cosθ2

[ρ1 + ρ2 − 2
√
ρ1ρ2 cos(θ1 − θ2)]1/2

sign(
√
ρ2 sinθ2 − √

ρ1 sinθ1),

and in the second case

sinα = −
√
ρ1 cosθ1 + √

ρ2 cosθ2

[ρ1 + ρ2 + 2
√
ρ1ρ2 cos(θ1 − θ2)]1/2

sign(
√
ρ2 sinθ2 + √

ρ1 sinθ1).

In the first case,

ν = ρ1ρ2 sin2(θ1 − θ2)

ρ1 + ρ2 − 2
√
ρ1ρ2 cos(θ1 − θ2)

.

In the second case,

ν = ρ1ρ2 sin2(θ1 − θ2)

ρ1 + ρ2 + 2
√
ρ1ρ2 cos(θ1 − θ2)

.

Hence, if pointsk(1) andk(2) belong to the setL(α, ν), and if it is unknown whether they belong to the same
connected component ofL(α, ν), then these points define two pairs of(α, ν) which can be calculated by the
above formulae. Each of these pairs determines the setL(α, ν) by formula (17). One of these sets corresponds
to the situation when the pointsk(1), k(2) are located on the same connected component ofL(α, ν). The second
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set corresponds to the case, wherek(1), k(2) belong to different components. One can specify the situation and
pick up the appropriate setL(α, ν) by taking one more pointk(3) of L(α, ν). The pointk(3) has to be chosen not
on the intersection of two setsL(α, ν) which have been constructed. Thus, the trajectory of the source, i.e. the
angleα, and the absolute value of the velocity can be found experimentally by a finite number of points on the
curveL(α, ν).

6. Calculation of the intensity of the source and its position by H̃ in a small neighbourhood of L(α, ν)

We assume that the parametersα andν has been found and the setL(α, ν) is known. Then we take the limit in
formula(18)ask → k(0), wherek(0) is an arbitrary point ofL(α, ν). We obtain

A = gρ

ν
lim

k→k(0)
[|H̃(k, t)[|k| cos2(θ − α)− ν]|].

Similarly, by(21)we have

k
(0)
1 (a+ Vt cosα)+ k

(0)
2 (b+ Vt sinα) = −i lim

k→k(0)
ln
[ gρ
Aν

H̃(k, t)[|k| cos2(θ − α)− ν]
]
.

Taking two different pointsk(0) onL(α, ν) we arrive at the algebraic system. By solving it we obtaina+ Vt cosα
andb+ Vt sinα. These values fort = t(1) andt = t(2) enable one to finda, b andα.

We give one more formula for the intensity of the source, which can be used when the remaining parameters of
the source are known.

Let η̃(k) be the Fourier transform of the elevation of the free surface in the moving coordinate system, found in
Section 2. By p, q we denote two points of a connected component of the setL (both points belong toL+ or to
L−). Let the functionη̃(k) be determined in the domain

D(δ, p, q) = {(k1, k2) : |k2
1 − ν|k|| < δ, k2(p) < k2 < k2(q)},

wherek2(p), k2(q) are values of the coordinatek2 atp, q andδ is a small positive number (seeFig. 2).
We integratẽη overD(δ, p, q), i.e. we puth(k) = 1 inD(δ, p, q) andh(k) = 0 outside ofD(δ, p, q) in formula

(9). It is easily seen that the first summand in the right-hand side of(9) tends to zero asδ → 0. The second term in

 

 

 

Fig. 2.D(δ, p, q) denotes domain where the intensity of the source and its position can be determined from the spectral density of the elevation
of the free surface.
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the right-hand side of(9) is equal to

Aπi

gρ

∫ k2(q)

k2(p)

k3
1

2k2
1 − ν2

dk2. (26)

We use the following change of variable in the latter integral:k2 = ντ(1 + τ2)1/2. Then by the equation of the
setL we obtain thatk1 = ±ν(1+ τ2)1/2, where sign± depends on the componentL±. Thenτ = ±k2/k1 is equal
to tanθ, whereθ is an angle coordinate of the pointk,0 ≤ θ ≤ 2π. Integral(26) takes the form

Aπi

gρ

∫ tanθq

tanθp

ν3(1 + τ2)3/2

2ν2(1 + τ2)− ν2

ν(2τ2 + 1)√
1 + τ2

dτ = Aπν2i

gρ

∫ tanθq

tanθp
(1 + τ2)dτ

= Aπν2i

3gρ
(3 tanθq + tan3θq − 3 tanθp − tan3θp).

Thus, we have the following approximate expression for the intensityA, which is valid for smallδ:

A ≈
(3gρi/πν2)

∫∫
D(δ,p,q)

η̃(k)dk

3 tanθp + tan3θp − 3 tanθq − tan3θq
. (27)

Now let H̃(k, t) be the Fourier transform of the elevation of the free surface in the immobile coordinate system.
We denote the domainD(δ, p, q) rotated counterclock-wise by the angleα byDα. Then from(16) it follows that

η̃(k1 cosα+ k2 sinα,−k1 sinα+ k2 cosα) = H̃(k, t)e−i[k1(a+Vt cosα)+k2(b+Vt sinα)] . (28)

Clearly, if we integrate the left-hand side in(28)over the domainDα then the result will coincide with the integral
of η̃(k) overD(δ, p, q). Consequently, according to(28)

A ≈
(3gρi/πν2)

∫∫
Dα

H̃(k, t)e−i[k1(a+Vt cosα)+k2(b+Vt sinα)] dk1 dk2

3 tanθp + tan3θp − 3 tanθq − tan3θq
.

7. The case of several moving wave sources

Suppose that there areN point sources, which are moving in directionslj = ( cosαj, sinαj) with the velocities
Vj. The resulting elevation of the free surface is the sum of the elevations produced by each source:

H(x, y, t) =
∑

1≤j≤N
Hj(x, y, t). (29)

The functionHj is defined by formula(15)where the parametersa, b, α, V, ν = gV−2 and the functionη depend
on j. Thus, after the Fourier transform, we have

H̃(k, t) =
∑

1≤j≤N
η̃j(k1 cosαj + k2 sinαj,−k1 sinαj + k2 cosαj)

×exp i[k1(αj + tVj cosαj)+ k2(bj + tVj sinαj)], (30)

where

η̃j(k) = Ajνj

gρ
v.p.

|k|
k2

1 − νj|k|
+ Ajπi

gρ

k3
1

2k2
1 − ν2

j

δ(Lj). (31)

Suppose that the setsLj = L(αj, νj),1 ≤ j ≤ N, supporting singularities of the distributioñH(k, t), can be found
experimentally. Then, as it was described inSection 5, from (30) we can obtain the directionαj and the absolute
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value of the velocity, i.e.νj for each source. Assume, that afterwards we foundH̃ in a small neighbourhood of
L(αj, νj). Then we avoid the necessity to solve the system of equations which is related to more than one source.

8. The motion of a source on water waves

Here we will discuss very briefly a more general situation which is probably important in practice and which
concerns the problem on the uniform motion of the source with account of harmonic oscillations of the water (see[3]).

Consider the coordinate system, moving with the point source, similarly toSection 2. The boundary conditions
take the form(

V
∂

∂x
+ iω

)
φ − gη = Aδ(x)δ(y)

ρ
,

∂φ

∂z
+
(
V
∂

∂x
+ iω

)
η = 0,

whereω is the frequency of oscillations of the free surface.
The velocity potential satisfies the boundary value problem

�φ = 0,

(
∂

∂x
− i

ω

V

)2

φ + ν
∂φ

∂z
= A

Vρ

(
∂

∂x
− i

ω

V

)
δ(x)δ(y).

The elevation of the free surfaceη is expressed by the formula

η = 1

g

(
V
∂

∂x
− iω

)
φ − A

gρ
δ(x)δ(y),

which leads to the following equation forη̃(k):[(
k1 + ω

V

)2 − ν|k|
]
η̃(k) = A

gρ
|k|

which can be investigated in the spirit ofSections 2–7.
In conclusion we remark that all our results can be extended to the case of a distributed pressure as well to the

case of a submerged source.
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