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Abstract

The aim of this work is the accurate calculation of periodic solutions to the Sivashinsky equation, which models

dynamics of the long wave instability of laminar premixed flame. A highly accurate computational algorithm was

developed in both one and two spatial dimensions and its crucial implementation details are presented. The algorithm is

based on the concept of saturated asymptotic approximations and can be straightforwardly extended to a wide variety

of nonlinear integro-differential equations. The development of such an algorithm was motivated by difficulties in

interpretation of the results of numerical experiments with the Sivashinsky equation using spectral methods. The

computations carried out by the algorithm in question are in good agreement with the results obtained earlier by

spectral methods. Analysis of the accuracy of obtained numerical solutions and of their stabilization to steady states

supports the idea of the instability of the steady coalescent pole solutions (with maximal possible number of poles) to

the Sivashinsky equation in large domains through huge linear transient amplification of nonmodal perturbations of

small but finite amplitudes.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

Sivashinsky�s equation was obtained in [24] as a weakly nonlinear long wave asymptotic of the Na-
vier–Stokes system combined with the infinite activation energy model of premixed combustion chem-

istry. The equation governs evolution of the perturbation Uðx1; x2; tÞ of the plane flame front moving in
the x3-direction with the laminar flame speed ub. Thus, at a given instant of time t, the surface of the
flame front is described as x3 ¼ t þ Uðx1; x2; tÞ, where space coordinates are measured in units of the flame
front width dth and time is in units of dth=ub. In these notations, the Sivashinsky equation can be written
as follows:
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Uðy1; y2; tÞdy1 dy2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � y1Þ2 þ ðx2 � y2Þ2

q ;

ðx1; x2Þ 2 R2: ð1Þ

In the derivation of (1) the wavelengths of the perturbations were assumed to be much greater than the

width of the flame front. Hence, the flame front was considered as a surface separating a combustible

mixture of density qu and burnt gases of density qb. An assumption of low expansion rate qb=qu � 1 was
also used in order to justify the appearance of the nonlinearity in (1), where the parameter c ¼ 1� qb=qu.
Eventually, its weak nonlinearity means that jrUj is assumed to be small.
Because of the asymptotic origins of (1), see [25], it cannot be used to model thermal-diffusive instabilities

which may occur for sufficiently small values of the Lewis number. The proper model to treat this kind of

instabilities was also obtained in [24] and is called the Kuramoto–Sivashinsky equation.

Physically, (1) governs uniform propagation of the flame front along the normal to its surface with the

speed ub affected by the Landau–Darrieus instability [12,14]. Eq. (1) can be written as Ut � 2�1jrUj2 ¼
DU þ 2�1cð�DÞ1=2U and is reduced in one dimension to
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whereH½U� is the Hilbert transform. Note, that if U1ðx; tÞ is a K1-periodic solution to (2) for c ¼ c1, then

U2ðx; tÞ ¼ U1 ðK1=K2Þx; ðc2K1=c1K2Þt½ � ð3Þ

is a K2-periodic solution to (2) for c ¼ c2 if c1K1 ¼ c2K2. This gives a reason to study (1) for any c, though
proper scaling maybe required in order to interpret obtained results from the physical point of view.

A wide class of periodic solutions to (2) was obtained in [26] by using the pole decomposition technique.

Namely, it was shown that

Uðx; tÞ ¼ 2pNpK�1ðc � 4pNpK�1Þt þ 2
XNp
n¼1

ln cosh 2pK�1bnðtÞ
	 
�� � cos 2pK�1½x

�
� anðtÞ�


�� ð4Þ

is a K-periodic solution to (2) if anðtÞ, bnðtÞ, n ¼ 1; . . . ;Np, satisfy a system of ODE�s, which is available
elsewhere and is known as the pole dynamics system. Here Np is an arbitrary positive integer.
At any time instant t complex numbers znðtÞ ¼ anðtÞ � ibnðtÞ, n ¼ 1; . . . ;Np are poles of (4). Corre-

spondingly, (4) is called the Np-pole solution of (2). If all the poles are steady and an ¼ a 2 R for

n ¼ 1; . . . ;Np, then (4) is called a steady coalescent Np-pole solution. Solutions of the latter type are denoted
here as UNpðxÞ. It was shown, see for example [23], that for a given period K the number of poles in the

steady coalescent pole solution (4) may not exceed Np;K ¼ ceilðcK=8p þ 1=2Þ � 1, where ceilðxÞ is the
smallest integer greater or equal to x.
Computational studies of (2) are usually undertaken in a finite domain of large enough size L assuming

the L-periodicity of the solutions. The eigenvalue analysis of (2) linearized on the steady coalescent pole
solutions of the period K commensurable with L was carried out both numerically [19] and analytically [29].
The analysis indicated that for any L > 0 the steady coalescent Np;L-pole solution is the only steady coa-
lescent Np-pole solution to (2) with no eigenvalues located to the right from the imaginary axis. Accord-

ingly, direct numerical experiments revealed that for sufficiently small values of L < Lc numerical solutions
converge to UNp;Lðx; tÞ. However, for larger computational domains L > Lc, numerical solutions to (2) do
not stabilize to any steady solution at all. Instead, being essentially nonsteady, they remain very closely to
the steady coalescent Np;L-pole solution, developing on the surface of the flame front small cusps arbitrary
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in time and space [23]. With time these small cusps move towards the trough of the flame front profile and

disappear in it as this is shown in Fig. 1.

Even if the spectrum of the linearized problem is located entirely in the left half of the complex plane

there is still a variety of possible reasons for numerical solutions not to converge to UNp;Lðx; tÞ for large
enough L. For example, the high sensitivity of pole solutions to certain perturbations of small but finite
amplitudes was suggested in [8] as an explanation of the cardinal change in the behaviour of numerical

solutions to (2) which takes place for L ¼ Lc. The argument of [8] was based on a particular asymptotic
solution of an approximation to the Sivashinsky equation linearized on the steady coalescent Np;L-pole
solution. That solution exhibits a very strong transient growth during which the energy of the perturbation

is amplified of order eOðLÞ times. Similar conclusions on high sensitivity of the Sivashinsky equation to noise

were made in [19]. In the Hagen–Poiseuille flow such sensitivity to noise was shown to be the reason of the

subcritical transition to turbulence, see [2,6].

In computer simulations both approximation residuals and round-off errors can be considered as finite

amplitude perturbations or noise and for this reason deserve a special investigation. Sometimes both of

them are united and referred to as ‘‘numerical artefacts.’’ However, the answer to the question which of

them is the reason of not stabilization of solutions to (2) for L > Lc would have contrasting implications for
the physical status of the Sivashinsky equation. Investigation of the numerical aspects of solving of the

Sivashinsky equation as a possible reason of not stabilization of its numerical solutions for L > Lc is the
primary physical objective of this work.

Taking into account that most of previous numerical studies of (2), see, e.g. [4,5,7,18,19,22,23] were

based on spectral methods, it is reasonable to try an essentially different approach with a dissimilar ap-

proximation residual. An obvious alternative is the method of finite differences whose main advantage is

simplicity. However, numerical investigation of stability of steady coalescent Np;L-pole solutions of (2)
requires a highly accurate computational algorithm and attempts to develop high order finite-difference
approximations of (1) and (2) result in quite cumbersome formulas. Most of troubles come from the in-

tegral term with the singularity in the kernel.

In this work we develop an algorithm based on saturated asymptotic approximations, which are known

also as ‘‘approximate approximations’’ [15]. The order of approximation of the saturated asymptotic ap-

proximations is controlled by an explicit parameter and theoretically achievable accuracy of the approxi-

mation is limited by the smoothness of approximated solutions only. This gives us a reason to claim that

theoretically the saturated asymptotic approximations are as accurate as the spectral method. Further, the

Fig. 1. Appearance of small cusps on the surface of the flame front for c ¼ 0:8 and L ¼ 100p. Corresponding solution UNp;L ðx; tÞ is also
given. Here Np;L ¼ 10.
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computational formulas of the algorithm are uniform in regard to the parameter of the order of the ap-

proximation and, unlike to the method of finite differences, their complexity does not grow with that pa-

rameter. Thus, for low orders of approximation the proposed method may look more complicated than the

finite-differences, but for highly accurate calculations this is no longer obvious. The last but not least is that

similarly to the finite differences and in contrast to the spectral approximations, the accuracy of the sat-

urated asymptotic approximations is only degraded locally if the smoothness of the approximated function

is lost locally. The latter property of the method can be especially beneficial for bifurcating solutions with

smoothness degrading at the moments of bifurcations. The algorithm in question was proved to be efficient
for nonlocal problems in infinite domains [9,10] and is extended here to tackle periodic solutions.

The method of saturated asymptotic approximations provides high order approximations of sufficiently

smooth functions up to certain prescribed accuracy. Consider for example the approximation of gðxÞ by the
formula

gðxÞ � ghðxÞ ¼
1ffiffiffiffi
D

p
X1
m¼�1

gmgN

x� mhffiffiffiffi
D

p
h

� �
; x 2 R: ð5Þ

with gm ¼ gðhmÞ. Here gNðxÞ is a smooth and rapidly decaying basis function, satisfying the moment
conditionZ 1

�1
gNðxÞdx ¼ 1;

Z 1

�1
xngNðxÞdx ¼ 0; n ¼ 1; . . . ;N� 1:

Then for any e > 0 there exists D > 0 that

jgðxÞ � ghðxÞj6 cgð
ffiffiffiffi
D

p
hÞNkgðNÞkL1 þ e

XN�1
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ð
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(cf. [16]). An example of a suitable basis function is given by

gNðxÞ ¼ g2Nþ2ðxÞ ¼ eN

�
� 1
4
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dx2
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e�x
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p

p
22Nþ1N !

H2Nþ1ðxÞ
x

; ð6Þ

where eN ðxÞ ¼
PN

k¼0 x
k=k! is the truncated exponent function, and HnðxÞ denotes the Hermite polynomial of

order n. The function (6) is not a unique possible basis, but just a choice of many others [17]. Note that
formula (5) allows straightforward generalizations to the multivariate case.
Formula (5) with (6) provides approximation of order Oðh2Nþ2Þ plus a small saturation term

e ¼ Oðe�p2DÞ, see [15]. This term does not disappear when h ! 0, instead it vanishes as D ! 1. In par-
ticular, it can be made less than machine zero eM of the computer used in calculations, and, normally, does
not produce errors greater than the machine zero does. The accuracy of the saturated asymptotic ap-

proximations (5), (6) is limited only by the smoothness of approximated solutions and by the number of the

vanishing moments of the basis function.

Smoothing properties of Gaussians were intensively exploited earlier, for example, in the grid-free vortex

methods for the incompressible fluid dynamics equations, see, e.g. [13] and references therein. However, the
grid based approximations (5) were first introduced in [15] and studied, for example, in [16,17].

In Section 2 we develop the algorithm for Sivashinsky�s equation in one spatial dimension, and, in
Section 3, the algorithm is extended to the two-dimensional case. In Section 4 we present results of nu-

merical simulations for both one- and two-dimensional Eqs. (1) and (2). These computations indicate that

the non-stabilization of numerical solutions in large enough computational domains is of numerical origins

and that the small cusps appearing on the flame surface for L > Lc are generated by the round-off errors.
Conclusions are given in Section 5.
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2. Computational algorithm in one dimension

2.1. Discretization in time

We approximate the one-dimensional equation (2) in time as follows:

Uðnþ1Þ � UðnÞ

Dt
¼ r1LUðnþ1Þ þ ð1� r1ÞLUðnÞ þ r1

2

oU
ox

� �2
t¼tnþ1

þ r2
2

oU
ox

� �2
t¼tn

þ 1� r1 � r2
2

oU
ox

� �2
t¼tn�1

: ð7Þ

Here L is the pseudodifferential operator composed of linear terms of the Sivashinsky equation

LU ¼ o2U
ox2

þ c
2

oH½U�
ox

; ð8Þ

and UðnÞ ¼ Uðx; nDtÞ, n ¼ 0; 1; . . . The three time-layer interpolation of the nonlinear term provides a

possibility to obtain approximations of second order explicitly. Variable time steps can be used in (7) as well

subject to proper modification of the time interpolation in the right-hand side. Unlike the variety of

available choices for weight coefficients, two major cases of (7) with rI ¼ r1 ¼ r2 ¼ 1=2, and rI ¼ 1=2,
r1 ¼ 0, r2 ¼ 3=4 were tested in practice.
Linearizing ðoU=oxÞ2t¼tnþ1 in (7) with respect to DU ¼ Uðnþ1Þ � UðnÞ for U ¼ UðnÞ and factorizing the im-

plicit operator, one obtains

ðI � DtrILÞ I
�

� Dtr1
oUðnÞ

ox
o

ox

�
Uðnþ1Þ � UðnÞ

Dt
¼ LUðnÞ þ GðnÞ;

where

GðnÞ ¼ r1 þ r2
2

oU
ox

� �2
t¼tn

þ 1� r1 � r2
2

oU
ox

� �2
t¼tn�1

; ð9Þ

and I is the identity operator. Alternatively, Eq. (7) could be split into fractional time steps.
The factorized equation is solved in two stages, first relatively to Y ðnÞ:

ðI � DtrILÞY ðnÞ ¼ LUðnÞ þ GðnÞ; ð10Þ

and then relatively to ðUðnþ1Þ � UðnÞÞ=Dt:

I
�

� Dtr1
oUðnÞ

ox
o

ox

�
Uðnþ1Þ � UðnÞ

Dt
¼ Y ðnÞ: ð11Þ

With oUðnÞ=ox and o=ox approximated by finite differences, the solution of (11) is straightforward, if r1 6¼ 0
and is not required at all otherwise. For example, forward and backward sweeps of LU decomposition can
be used. The operator o=ox in (11) has been approximated by the central finite-differences of the second
order. However, the central finite-difference approximations of up to the 8th order were tested for spatial

derivatives oU=ox in (9) and (11).
In terms of the Fourier transform F½f �ðnÞ ¼

R1
�1 f ðxÞe�i2pnx dx the solution to (10) can be written as

follows
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Y ðnÞðxÞ ¼ ðI � DtrILÞ�1ðLUðnÞ þ GðnÞÞ ¼
Z 1

�1

F½L�ðnÞF½UðnÞ�ðnÞ þF½GðnÞ�ðnÞ
1� DtrIF½L�ðnÞ ei2pnx dn; ð12Þ

whereF½L�ðnÞ ¼ �4p2n2 þ pcjnj is the Fourier image of (8). The evaluation of the Fourier integral (12) is
one of the major components of the computational algorithm in question.

2.2. Inversion of the integral operator

A standard way of calculating the Fourier transform and, eventually, the integral (12), is to approximate

the integrand by a series expansion with respect to a set of relatively simple basis functions. Then, the

calculation of the Fourier transform of an arbitrary function will be reduced to the evaluation of the

Fourier images of the basis functions. In sequel, the calculation of the value of the operator ðI � DtrILÞ�1
on LUðnÞ þ GðnÞ, for arbitrary functions UðnÞ and GðnÞ, will be reduced to evaluating its values on the basis

functions. In this work saturated asymptotic approximations are used in order to approximate UðnÞðxÞ and
GðnÞðxÞ.
It is easy to see that expansion (5), (6) preserves parity of the approximated function. Indeed, if

gð�xÞ ¼ �gðxÞ, x 2 R, then ghð�xÞ ¼
P1

m¼�1 gmgNð�x� mhÞ ¼
P1

m¼�1 gmgNðxþ mhÞ, because gNðxÞ
from (6) is an even function. By introducing a new index n ¼ �m, we have ghð�xÞ ¼

P�1
n¼1

g�ngNðx� nhÞ ¼ �
P1

n¼�1 gngNðx� nhÞ, or ghð�xÞ ¼ �ghðxÞ.
Also, saturated asymptotic approximations (5) retain periodicity of the approximated function if the

period X 2 R is commensurable with the parameter of approximation h. One may write ghðxþ X Þ ¼P1
m¼�1 gmgNðxþ X � mhÞ ¼

P1
m¼�1 gmgN½x� ðmh� X Þ�. Assuming that X=h ¼ MX is an integer and in-

troducing a new index n ¼ m�MX , we have ghðxþ X Þ ¼
P1

n¼�1 gnþMX gNðx� nhÞ ¼
P1

n¼�1 gngNðx� nhÞ,
because gnþMX ¼ gðnhþMXhÞ ¼ gðnhþ X Þ ¼ gðnhÞ ¼ gn. Thus ghðxþ X Þ ¼ ghðxÞ for X=h 2 Z.
Application of the Fourier transform to (5), (6) yields

F½g�ðnÞ � F½gh�ðnÞ ¼
X1
m¼�1

gmF½gNðx� mhÞ�ðnÞ; ð13Þ

where F½gNðx� mhÞ�ðnÞ ¼ heNðp2Dh2n2Þe�p2Dh2n2�i2pmhn. Use of (13) in (12) results in the convolution

Y ðnÞ
k ¼

X1
m¼�1

Cð1Þ
k�mUðnÞ

m þ Cð2Þ
k�mG

ðnÞ
m ; k 2 Z; ð14Þ

where the coefficients are given by the Fourier integral

CðjÞ
l ¼ 2h

Z 1

0

FjðnÞ cos 2phlndn; j ¼ 1; 2; l 2 Z; ð15Þ

with

F1ðnÞ ¼ F½L�ðnÞF2ðnÞ; F2ðnÞ ¼
eN ðp2Dh2n2Þe�p2Dh2n2

1� DtrIF½L�ðnÞ : ð16Þ

Note, that Cð1Þ
l ¼ ðrIDtÞ�1½Cð2Þ

l � gNðlhÞ� for l 2 Z, and the following parity symmetries are held:

CðjÞ
�l ¼ CðjÞ

l ; j ¼ 1; 2; l 2 Z: ð17Þ

Considering space periodic solutions and assuming that their period L is commensurable with the dis-
cretization parameter h, i.e., L=h ¼ 2M 2 Z, we have UðnÞ

m ¼ UðnÞ
mþ2M , G

ðnÞ
m ¼ GðnÞ

mþ2M for m 2 Z. Here, use of an
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even number for L=h is not a restriction. All the following results take place for odd values of L=h either, but
formulas and programming are more complex.

Assuming L-periodicity, formula (14) can be transformed into

Yk ¼
XkþM�1

m¼k�M
Bð1;MÞ
k�m UðnÞ

m þ Bð2;MÞ
k�m G

ðnÞ
m ; k ¼ �M ; . . . ;M � 1; ð18Þ

where

Bðj;MÞ
l ¼ CðjÞ

l þ
X1
l¼1

CðjÞ
2lMþl

�
þ CðjÞ

2lM�l

�
; j ¼ 1; 2; l ¼ �M þ 1; . . . ;M ; ð19Þ

because of (17). Functions UðnÞ
m and GðnÞ

m are involved in (18) for m ¼ �2M ; . . . ; 2M � 2.
By proper extension of the convolution coefficients Bðj;MÞ

l the sum (18) can be transformed into the
discrete circular convolution and calculated by using FFT, see [28].

2.3. Convolution coefficients

The integrands in (15) depend on l through cos 2phln only. Therefore, after substitution of CðjÞ
l into (19),

a temptation to swap integration and summation may appear. However, the sum

Xl1
l¼�l1

cos 2phðm� 2lMÞn ¼ cos 2phmn 2
sin 2phð2l1 þ 1ÞMn

sin 2phMn

�
� 1
�

does not converge as l1 ! 1 and swapping of integration and summation in (19) with (15) is not legal. The

discrete Fourier transform is finite and can be swapped with both summation in (19) and integration in (15),
but this neither eases (19) nor brings any other benefits.

A better way to tackle the summation in (19) is to use asymptotic expansions of the integral (15). The

Laplace method of asymptotic approximation of the integral (15) with even functions (16) rapidly decaying

for n ! 1, yields

CðjÞ
l ¼ 2h

XKj
j¼1

ð�1ÞjF ð2j�1Þ
j ð0Þ

ð2phlÞ2j
þO

2hDtF ð2Kjþ1Þ
j ð0Þ

ð2phlÞ2Kjþ2

" #
; j ¼ 1; 2; ð20Þ

where F ðjÞ
j ð0Þ stands for the jth derivative of FjðnÞ for n ¼ 0.

Splitting the summation in (19) as follows:

Bðj;MÞ
l ¼ CðjÞ

l þ
X�1

l¼�1
CðjÞ
l�2lM þ

X1
l¼1

CðjÞ
l�2lM ; j ¼ 1; 2;

and substituting asymptotic expansions (20) results in

Bðj;MÞ
l ¼ CðjÞ

l þ 2h
XKj
j¼1

ð�1ÞjF ð2j�1Þ
j ð0Þ

ð4phMÞ2j
X1
l¼1

l

�"
þ l
2M

��2j

þ l

�
� l
2M

��2j
#

þO
2hF ð2Kjþ1Þ

j ð0Þ
ð2phÞ2Kjþ2

X
l2Znf0g

1

ðl� 2lMÞ2Kjþ2

( )
: ð21Þ
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The residual of the inner series in (21) cut off at l ¼ M1 is of order M�2jþ1
1 . This means, in turn, that for

j ¼ 1 direct summation with accuracy of order 10�16 would require to take into account about 1016 terms
and is practically impossible. In order to reduce the computational costs, we represent the summation in

terms of the polygamma functions wðjÞðxÞ for l 6¼ 0. Further, using the ð2j � 1Þth derivative of the sym-
metry relationship wðxÞ � wð�xÞ ¼ �pcotpx� x�1, see p. 774 in [20], together with the representation of
a�2j as the ð2j � 1Þth derivative of a�1, yields the required formula:

Bðj;MÞ
l ¼ CðjÞ

l þ 2h
XKj
j¼1

ð�1Þj�1F ð2j�1Þ
j ð0Þ

ð4hMÞ2jð2j � 1Þ!
d2j�1ðcot a � a�1Þ

da2j�1

����
a¼pjlj=2M

þO
6hF ð2Kjþ1Þ

j ð0Þ
ð2phMÞ2Kjþ2

" #
;

l ¼ �M þ 1; . . . ;�1; 1; . . . ;M ; j ¼ 1; 2: ð22Þ

Details of the estimation of the expansion error are available in [11].

In the case l ¼ 0, we rewrite (21) by making use of the Riemann zeta function as follows:

Bðj;MÞ
0 ¼ CðjÞ

0 þ 4h
XKj
j¼1

ð�1ÞjF ð2j�1Þ
j ð0Þ

ð4phMÞ2j
fð2jÞ þO

8hF ð2Kjþ1Þ
j ð0Þ

ð4phMÞ2Kjþ2

( )
: ð23Þ

Details of the estimation of the expansion error are available in [11] as well. Values of the Riemann zeta

function required in (23) can be taken from Table 23.3, p. 811 of [1].

For coefficients Bðj;MÞ
l the error of the asymptotic expansions was estimated in (22) for l ¼ �M þ 1;

. . . ;�1; 1; . . . ;M :

Eðj;MÞ
Kj ¼ O

6hDtF ð2Kjþ1Þ
j ð0Þ

ð2phMÞ2Kjþ2

" #
; j ¼ 1; 2:

It is obviously greater than the error for l ¼ 0 given in (23). Figs. 2(a) and (b) show graphs of Eð2;MÞ
K2 versus

K2 for typical values of L and Dt. Dependence of Eð2;MÞ
K2 on h is much weaker and corresponding graphs are

not given.

2.4. Crucial aspects of implementation

The accurate calculation of high derivatives of FjðnÞ for n ¼ 0 and of cot a � a�1 in (22) and (23) is
crucial in the practical implementation of the algorithm.

Starting from computational formulas for F ðkÞ
2 ð0Þ, we note that it can be represented as a product of

three functions eNðp2Dh2n2Þ, e�p2Dh2n2 , and 1=GðnÞ, where

GðnÞ ¼ 1� DtrIF½L�ðnÞ ¼ 1þ DtrIð4p2n2 � pcjnjÞ: ð24Þ

Thus, the application of the Leibniz rule reduces the problem to the evaluation of derivatives of arbitrary

orders of the factors. It is easy to see that

dneN ðp2Dh2n2Þ
dnn

����
n¼0

¼ ð2lÞ!ðp2Dh2Þl=l! for n ¼ 2l; l ¼ 0; 1; 2; . . . ;N ;
0 for all other n;

�

and

dne�p2Dh2n2

dnn

�����
n¼0

¼ ð2lÞ!ð�p2Dh2Þl=l! for n ¼ 2l; l ¼ 0; 1; 2; . . . ;
0 for all other n:

�
ð25Þ
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Values of f½GðnÞ��1gðmÞ for n ¼ 0 can be obtained with the help of the expansion ð1� xÞ�1 ¼ 1 þ
xþ x2 þ � � �Using it for ½GðnÞ��1 in an e-vicinity of n ¼ 0 and, further, differentiating the expansion term-by-
term, yields

dm½GðnÞ��1

dnm

�����
n¼0

¼ m!pm
Xm

l¼ceilðm=2Þ

l
2l � m

� �
ð�4Þm�lc2l�mðDtrIÞl:

High order derivatives of G�1ðnÞ for n ¼ 0 may become very large as their order grows, see Fig. 2(c).
Fortunately, large values of fG�1ðnÞgðmÞ for n ¼ 0 are compensated by other factors, and the terms of ex-
pansion (22) are eventually decaying as it can be seen from Figs. 2(a) and (b).

Fig. 2(d) shows the graph of jF ðjÞ
2 ð0Þj versus j for a set of Dt. The saw-shape of the graph is

explained by the alternation of the odd-even order of the derivatives. The graph itself is point-wise

and is defined for integer values of j only. Similar to high order derivatives of G�1ðnÞ, these func-
tions can become very large for large j as well and certain care is required in practical implemen-

tations of (22) in order to avoid severe round-off errors. In our calculations j did not exceed 12

usually.

Another important parameter is c. For c ¼ 0 all odd derivatives of F ðjÞ
2 ð0Þ vanish, making asymptotic

expansions of the previous section senseless and indicating that the convolution coefficients CðjÞ
l decay

exponentially for l ! 1. This is because (2) turns into Burgers� equation for c ¼ 0 and is no longer
nonlocal. The effect of c within the range 0:16 c6 1 and of other parameters on F ðjÞ

2 ð0Þ is less pronounced
and the corresponding graphs are not shown for the sake of brevity.
The values of F ðjÞ

1 ð0Þ can be conveniently expressed in terms of F ðjÞ
2 ð0Þ:

F ðjÞ
1 ð0Þ ¼

pcF2ð0Þ; j ¼ 1;
jpcF ðj�1Þ

2 ð0Þ � 4jðj � 1Þp2F ðj�2Þ
2 ð0Þ; j ¼ 2; 3; . . .

(

Fig. 2. Dependence of Eð2;MÞ
K2 on K2 for Dt ¼ 0:01 (a), and L ¼ 20 (b). High order derivatives fG�1ðnÞgðmÞ for n ¼ 0 (c), and values of

jF ðjÞ
2 ð0Þj (d). Here h ¼ 0:01, D ¼ 4, N ¼ 0, and c ¼ 0:8.
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In order to calculate high order derivatives of cot a � a�1, its power series expansion (see entry 4.3.70, p.

75 of [1]) is employed resulting for j ¼ 0; 1; 2; . . . in

d2jþ1

da2jþ1
ðcot a � a�1Þ ¼ � 2

p2jþ2
X1
l¼1

fð2l þ 2jÞ ð2l þ 2j � 1Þ!
ð2l � 2Þ!

a
p

� �2l�2
: ð26Þ

We remind that a ¼ pjlj=2M 6 p=2, l ¼ 1; . . . ;M and only derivatives of odd order are used in formulas for

convolution coefficients. Unlike the inner series in (21) the series in (26) require a very limited number of

summands to be calculated accurately even in the worst case of a ¼ p=2. It should be taken into account in
implementations that for sufficiently large j and a, the summands of (26) reach their maximum for

l � ðj þ 1=2Þðp=a � 1Þ�1 þ 1.
Besides the infinite summation, formulas (22) and (23) for calculation of Bðj;MÞ

l include values of CðjÞ
l for

l ¼ �M þ 1; . . . ;M . Because of the fast decay of the integrands in (15), numerical integration is very efficient
and can be done by standard routines. Unfortunately, the accuracy of these universal algorithms is at most

about 3–4 decimal digits less than machine precision. Therefore, in order to reach the accuracy on the level of

machine precision, a special tackling of (15) is required. In particular, the function ½GðnÞ��1 from (24) can be
approximated by (5), (6) and substituted into (15). The result can be integrated analytically by using [21],
p. 452, entry 2.5.36.9. For small enough Dt, when high derivatives of ½GðnÞ��1 are not very large (see
Fig. 2(c)), the approximation accuracy of the integrals in (15) can be improved up to the machine zero [16].

3. Computational algorithm in two dimensions

3.1. Discretization

By analogy with the one-dimensional case, we split the computations into two stages

ðI � DtrILÞY ðnÞ ¼ LUðnÞ þ GðnÞ; ð27Þ
and

I
�

� Dtr1
oUðnÞ

ox1

o

ox1

�
I
�

� Dtr1
oUðnÞ

ox2

o

ox2

�
Uðnþ1Þ � UðnÞ

Dt
¼ Y ðnÞ; ð28Þ

where, on this occasion,

LU ¼ o2U
ox21

þ o2U
ox22

� c
4p

D
Z
R2

Uðy1; y2; tÞdy
jx� yj ;

GðnÞ ¼ r1 þ r2
2

oUðnÞ

ox1

� �2"
þ oUðnÞ

ox2

� �2#
þ 1� r1 � r2

2

oUðn�1Þ

ox1

� �2"
þ oUðn�1Þ

ox2

� �2#
;

x ¼ ðx1; x2Þ; y ¼ ðy1; y2Þ; and UðnÞ ¼ Uðx1; x2; nDtÞ; n ¼ 0; 1; . . .
Again, after a finite difference approximation of space derivatives, the solution to (28) can be obtained by

forward and backward sweeps of LU decomposition. The solution to (27) in terms of the Fourier transform is

Y ðnÞðxÞ ¼
Z
R2

F½L�ðnÞF½UðnÞ�ðnÞ þF½GðnÞ�ðnÞ
1� DtrIF½L�ðnÞ ei2pðn�xÞ dn; ð29Þ

where F½L�ðnÞ ¼ �4p2jnj2 þ pcjnj, and n ¼ ðn1; n2Þ.

218 V. Karlin et al. / Journal of Computational Physics 188 (2003) 209–231



The approximation formula (5) in two dimensions takes the form

gðxÞ � ghðxÞ ¼
1

D

X
m2Z2

gmgN

x�mhffiffiffiffi
D

p
h

� �
; ð30Þ

where m ¼ ðm1;m2Þ and gm ¼ gðmhÞ. As basis function one can use

gNðxÞ ¼ g2Nþ2ðxÞ ¼
1

p
eN

�
� 1
4
D

�
e�jxj2 ¼ e

�jxj2

p
L

ð1Þ
Nþ1ðjxj

2Þ; ð31Þ

where

Lð1ÞNþ1ðyÞ ¼
eyy�1

ðN þ 1Þ!
d

dy

� �Nþ1

ðe�yyNÞ

is the generalized Laguerre polynomial of order N þ 1. Similar to the one-dimensional case, formula (30)
with (31) provides approximation of order Oðh2Nþ2Þ plus a small saturation term of order Oðe�p2DÞ, see
[15,16].

The Fourier transform of (30) is

F½g�ðnÞ � F½gh�ðnÞ ¼ h2eN ðp2Dh2jnj2Þe�p2Dh2jnj2
X
m2Z2

gme�2pihðm�nÞ: ð32Þ

Substitution of (32) into (29) results in the convolution

Y ðnÞ
k ¼

X
m2Z2

Cð1Þ
k�mUðnÞ

m þ Cð2Þ
k�mG

ðnÞ
m ; k 2 Z2; ð33Þ

with coefficients

CðjÞ
l ¼ 2ph2

Z 1

0

nFjðnÞJ0ð2phjljnÞdn; j ¼ 1; 2; l 2 Z2; ð34Þ

where J0ðxÞ is the Bessel function of zero order and FjðnÞ are exactly the same as in the one-dimensional
case, i.e., are given by formulas (16). These coefficients are even functions of both components of index l,
and Cð1Þ

l ¼ ðrIDtÞ�1½Cð2Þ
l � gNðhlÞ� for l 2 Z2.

Considering space periodic solutions and assuming that their period L ¼ ðL; LÞ is commensurable with
the discretization parameter h, i.e., L=h ¼ 2M 2 Z, we have: UðnÞ

m ¼ UðnÞ
mþ2M , G

ðnÞ
m ¼ GðnÞ

mþ2M , m 2 Z2, where

M ¼ ðM ;MÞ. Then, formula (33) can be transformed into

Yk ¼
Xk1þM�1

m1¼k1�M

Xk2þM�1

m2¼k2�M
Bð1;MÞ
k�m UðnÞ

m þ Bð2;MÞ
k�m G

ðnÞ
m ; ð35Þ

where �M 6 k1; k26M � 1 and

Bðj;MÞ
l ¼

X
l2Z2

CðjÞ
l�2Ml ¼ CðjÞ

l þ
X

l2Z2nf0g

CðjÞ
l�2Ml; ð36Þ

for �M þ 16 l1; l26M and j ¼ 1; 2. The functions UðnÞ
m and GðnÞ

m are involved in (35) for �2M 6

m1;m26 2M � 2.
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Similarly to the one-dimensional case, the sum (35) can be transformed into the discrete circular con-

volution and calculated by using two-dimensional FFT, see [28].

3.2. Convolution coefficients

In two dimensions the convolution coefficients (34) have a form of the Hankel transform of the zero

order and for large enough values of jlj, their integrands will frequently oscillate as well. However, the
application of the Laplace method of asymptotic approximation of the integral is not straightforward

because of the lack of a theorem similar to Lebesgue�s one for Fourier integrals.
In order to obtain an asymptotic expansion of (34) for jlj ! 1 we consider the integralZ 1

0

QðnÞe�an2J0ðbnÞdn ð37Þ

for a sufficiently smooth function QðnÞ and large b > 0. By virtue of the rapid decay of the inte-
grand, we assume that the nonnegligible contribution to the integral comes from a vicinity of n ¼ 0,
where QðnÞ can be represented by the Taylor series. Then, integral (37) can be approximated by a
linear combination of integrals with QðnÞ ¼ nn, n ¼ 0; 1; 2; . . . The latter can be written in terms of
the confluent hypergeometric function (see entry 2.12.9.3, p. 186 of [21]). The asymptotic of this

function for b ! 1 and even n is given in entry 13.5.1, p. 508 of [1]. For odd values of n the
asymptotic is exponential and the contribution from corresponding terms into (37) is asymptotically

negligible.
Carrying out all these substitutions and appropriate regrouping of summands yields

Z 1

0

QðnÞe�an2J0ðbnÞdn ¼
XK
j¼0

ð�1Þjð2jÞ!
ð2jj!Þ2b2jþ1

d2jQðnÞe�an2

dn2j

�����
n¼0

þO ð2K þ 2Þ!
½2Kþ1ðK þ 1Þ!�2b2Kþ3

d2Kþ2QðnÞe�an2

dn2Kþ2

�����
n¼0

( )
ð38Þ

for b ! 1. Here we also used (25) for high order derivatives of e�an2 , the Leibniz� formula for differenti-
ation of a product of functions and the expression of the gamma function of a half-integer argument in

terms of factorial Cðmþ 1=2Þ ¼
ffiffiffi
p

p
2�2mð2mÞ!=ðmÞ! Turning back to (34), we have

CðjÞ
l ¼ 2ph2

XK
j¼0

ð�1Þjð2jÞ!
ð2jj!Þ2ð2phjljÞ2jþ1

d2jnFjðnÞ
dn2j

����
n¼0

þO 2ph2ð2K þ 2Þ!
½2Kþ1ðK þ 1Þ!�2ð2phjljÞ2Kþ3

d2Kþ2nFjðnÞ
dn2Kþ2

����
n¼0

( )
;

j ¼ 1; 2: ð39Þ

One can see that CðjÞ
l � jlj�3 for jlj ! 1 because of nF ðnÞjn¼0 ¼ 0.

From (36), (39) and because of the relationship d2jnFjðnÞ=dn2jjn¼0 ¼ 2jF
ð2j�1Þ
j ð0Þ, we have

Bðj;MÞ
l ¼ CðjÞ

l þ 2ph2
XK
j¼1

ð�1Þj2jð2jÞ!Wjðl=2MÞ
ð2jj!Þ2ð4phMÞ2jþ1

F ð2j�1Þ
j ð0Þ þO 4h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðK þ 1Þ

p
WKþ1ðl=2MÞ

ð4phMÞ2Kþ3
F ð2Kþ1Þ
j ð0Þ

( )
;

ð40Þ

where �M þ 16 l1; l26M , j ¼ 1; 2,
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WmðaÞ ¼
X

l2Z2nf0g

1

ja � lj2mþ1
; ð41Þ

and the upper bound was used in the error term of the expansion.

3.3. Crucial implementation issues and parallelization

The calculation of high order derivatives of FjðnÞ for n ¼ 0 has been considered in Section 2.4. So, the
only remaining problem in computing the coefficients Bðj;MÞ

l is the estimation of the series (41). Cutting this
series off at jlj ¼ M1, results in the residual of order M�2mþ1

1 , which, similar to the one-dimensional case,

gives in the worst case m ¼ 1 the rate of convergence M�1
1 . Taking into account the two-dimensional nature

of (41), this makes it even less realistic to calculate the sum directly.

In order to accelerate the convergence of series (41), we apply a kind of Kummer�s transformation as
follows:

WmðaÞ ¼
X

l2Z2nf0g

ja
 

� lj�2m�1 �
XKm

k1¼0

XKm

k2¼0

ak1
1 ak2

2

k1!k2!
ok1þk2 ja � lj�2m�1

oak1
1 oa

k2
2

�����
a¼0

!

þ
XKm

k1¼0

XKm

k2¼0

ak1
1 ak2

2

k1!k2!

X
l2Z2nf0g

ok1þk2 ja � lj�2m�1

oak1
1 oa

k2
2

������
a¼0

: ð42Þ

The residual of the transformed series cut off at jlj ¼ M1 is of order M�2m�1þKm
1 , and by choosing a proper

value of Km it is easy to obtain the required accuracy of summation for practically acceptable values of M1
of order 100.

Transformation (42) reduces the problem of summation of (41) to the calculation of numbers

X
l2Z2nf0g

ok1þk2 ja � lj�2m�1

oak1
1 oa

k2
2

������
a¼0

ð43Þ

for a set of integer parameters k1, k2, and m. For m > 4 the series (41) converge reasonably fast without any
transformations. For m6 4, in order to provide accuracy of summation on the level of machine precision, it
is sufficient to take Km ¼ 6� 2ðm � 1Þ.
All practically important cases of (43) can be reduced to the values of the series

wðjÞ
k;m ¼

X
l2Z2nf0g

l2kj

ðl21 þ l22Þ
mþ1=2 ; j ¼ 1; 2; ð44Þ

for 16 m6 7 and maxfm � 4; 0g6 k6 int½ðm � 1Þ=2�. Generally speaking, we would have to consider infinite
sums of terms like l

~kk1
1 l

~kk2
2 jlj

�2m�1
. However, if at least one of ~kkj; j ¼ 1; 2, is odd, then the contribution of the

corresponding series to (43) will be zero. On the other hand, terms with both even ~kkj can be reduced to a
linear combination of (44). For example, l21l

2
2jlj

�2m�1 ¼ ðl21l22 þ l42 � l42Þjlj
�2m�1 ¼ l22jlj

�2mþ1 �l42jlj
�2m�1

.

Obviously, wð1Þ
k;m ¼ wð2Þ

k;m , which gives immediately

wðjÞ
1;m ¼

1

2
wðjÞ
0;m�1 ¼

1

2

X
l2Z2nf0g

1

ðl21 þ l22Þ
m�1=2 ; j ¼ 1; 2: ð45Þ

Unfortunately, the symmetry in j does not help so much for k > 1.
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For kP 0 series (44) can be rewritten as follows:

wðjÞ
k;m ¼ 2½1þ signðkÞ�fð2m � 2k þ 1Þ þ 4

X1
l1¼1

X1
l2¼1

l2kj

ðl21 þ l22Þ
mþ1=2 ;

where the series in the right-hand side can be represented by the formula

X1
l1¼1

X1
l2¼1

l2kj

ðl21 þ l22Þ
mþ1=2 ¼

2�2mþ2k
ffiffiffi
p

p

Cðm þ 1=2Þ
Xk

j1¼0
ck;j1ðmÞ

ffiffiffi
p

p
Cð2m � 2kÞfð2m � 2kÞ

2j1Cðm � 2k þ j1 þ 1=2Þ

"

� Cð2m � 2k þ 1Þfð2m � 2k þ 1Þ
2j1þ1Cðm � 2k þ j1 þ 1Þ

þ ð�1Þk�j1

2k�1

X1
j2¼1

X1
j3¼1

4pj2
j3

� �m�k

D
ð2k�2j1Þ
m�k ð2pj2j3Þ

#
: ð46Þ

Expressions for D
ð2k�2j1Þ
m�k and numerical values of a few series (44) relevant to this paper are given in

Appendix A. Details of the evaluation of this formula are available in [11].

In contrast to the terms of the double series in the left-hand side of (46), terms of the double series in the

right decay exponentially and, within the required values of integer parameters m and k, accuracy on the
level of machine zero eM � 10�16 is reached for j2; j36 10. In practice, a generic work station had cal-
culated all the required numbers (46) in a fraction of a second. The calculations were carried out in Matlab

and results are given in Appendix A too. The algorithm was validated by comparison with the direct

summation for large enough values of m and with formula (45).
The coefficients CðjÞ

l from (40) were calculated by direct numerical integration. Similarly to the one-di-
mensional case, the integrands in (34) are very smooth and fast decaying functions which makes integration

very efficient. The only difference is that the integration should be done on the sequence of intervals between

zeros of J0ð2phjljnÞ, see, e.g. [1], rather than between zeros of cosð2phlnÞ. An attempt to accelerate the
convergence by the e-algorithm halved processing time, on average, but failed to produce reliable esti-

mation of the accuracy. Thus, if accuracy is of primary interest, then it is safer to carry out the integration

straightforwardly.

The convolution coefficients (40) are point-wise and the parallelization of their calculations represents no

problems. On average, in our practice, these calculations take about the same amount of computer re-
sources as a few dozens of time steps. In contrast, at least a few dozens of thousands of time steps is usually

required in order to obtain the numerical solution to (1) on a physically meaningful time scale.

In parallel implementation, the coordinate direction-wise nature of the time marching algorithm suggests

to split the core data of 4M � 4M elements between P processors in the form of P arrays of 4M � ð4M=PÞ
elements. The repeating alteration of processing between x1 and x2 directions prompts to keep a copy of the
data split between processors along another direction into P arrays of ð4M=P Þ � 4M elements as well (see

Fig. 3). Optimal load balancing is reached by setting P as a factor of 4M .
Computational codes were written in Fortran 90 and in the two dimensional case MPI has been chosen

as the parallelization tool. The chosen data structure allows efficient use of the standard sequential routines

for the discrete Fourier transform in (35) and LU-sweeps in (28).

The MPI code was validated by comparison against the results obtained with the sequential code for a

relatively small computational domain with L ¼ 10p. The discrepancy was on a level of 3–4 decimal digits
less than machine precision, which is in a good agreement with the accuracy of the quadrature routines used

by the parallel code. The sequential code was run on Origin 200 and the parallel one on CRAY T3E-1200.

For 128 processors and main data arrays of 512� 512 elements the efficient level of parallelization was
about 23%. It looks like that the main contribution into the degradation of the efficiency of parallelization
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comes from the MPI_GATHERV procedure which is used repeatedly during every time step in order to

transform data arrays from x1 to x2 orientation and vice verse (see Fig. 3).

4. Results of numerical experiments

4.1. Accuracy

The accuracy of the algorithm was tested on steady coalescent pole solutions (4) in relatively small

domains L < Lc. For Np ¼ 1, the steady-state solution corresponds to b1 ¼ ðL=4pÞ ln½ðcLþ 4pÞ=ðcL� 4pÞ�.
For Np > 1 the values of b1; . . . ; bNp were calculated by Newton iterations as steady-state solutions to the
pole dynamics system.

In practice, for numerical grids with 0:001 < h < 0:1, the theoretical order of approximation was
reached for up to the fourth order of approximation. For algorithms of higher orders real approximation

was not better than of the fifth order. Therefore, from the point of view of computational efficiency, it is
expedient to use the algorithm of at most of the sixth order or even of the fourth one for this range of h.
In our practice, by proper choice of D, h, and of the order of approximation, it was always possible to
obtain the relative residual of the approximation of (2) on the steady coalescent pole solutions up to

10�10.

Limitations of the accuracy of the algorithm come from variety of reasons. In particular, from errors of

the numerical integration to compute the convolution coefficients (15) in (22). Further, high order deriv-

atives of steady coalescent Np-pole solutions grow very fast with their order. Hence, the high formal order
of the approximation might only be observed for smaller values of h than those used in this work.
It was possible to reach the relative accuracy of approximation of the stabilized solution to (2) in

comparison to UNp;Lðx; tÞ of order 10�10 for cL < 12p (i.e., for Np;L ¼ 1) as well. However, this accuracy of
the approximation of UNp;Lðx; tÞ by the steady state of (2) was rapidly degrading with L growing. This
degradation of the accuracy of the stabilized numerical solution is in agreement with the high sensitivity of

the steady coalescent pole solutions to noise. Taking into account results of [8], some of the constants Ci,

i ¼ 1; 2; 3 in the a priori estimation

kUNp;Lðx; tÞ � limt!1
Uhðx; tÞk26C1hN þ C2eðDÞ þ C3eM ð47Þ

might be of order of eOðLÞ. Assuming that the round-off errors are pseudorandom, it is most likely that C3 is
of order of eOðLÞ. However, other constants can be much less because the transient amplification usually

occurs for perturbations of very special type only, to which the deterministic approximation residuals may

not to belong if U � UNp;L .

Fig. 3. Two copies of data distributed among P processors in x2 and x1 directions.
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The last issue relevant to the accuracy, which we would like to mention here, is the U- and x-shift in-
variance of the Sivashinsky equation. In other words, it means that if Uðx; tÞ is a solution, then, for any real
DU and Dx, the function Uðxþ Dx; tÞ þ DU satisfies the Sivashinsky equation as well. Thus, the shifts of the
stabilized solution are not known a priori and should be identified in order to allow comparison with the

exact solution. The only way to estimate the shifts is by a kind of optimization. In particular, calculation of

the minimum of the stabilized solution was carried out in this work. Generally speaking, errors of the

estimation of the minimum might interfere or even supersede the errors made during the calculation of the

solution itself.
It can be checked by direct substitution that if Uð1Þðx; tÞ and Uð2Þðx; tÞ are solutions to one-dimensional

equation (2), then the function

Uðx1; x2; tÞ ¼ Uð1Þðx1; tÞ þ Uð2Þðx2; tÞ ð48Þ

is a solution to the two dimensional equation (1). In our numerical experiments the functions

UNp;Lðx1; x2; tÞ ¼ UNp;Lðx1; tÞ þ UNp;Lðx2; tÞ ð49Þ

were found to be the steady attractors for Sivashinsky�s equation in two dimensions for small enough L.
These solutions were used in order to test the accuracy of the algorithm in two space dimensions.
The parameters of the two-dimensional algorithm have a similar qualitative effect on its accuracy as in

the one-dimensional case. However, quantitatively, the accuracy of the algorithm in two-dimensions is

usually less by one or two decimal digits for the same sets of parameters. Also, understandably, the choice

of two-dimensional grids with small values of h is more restrictive in practice.

4.2. One-dimensional equation

The typical evolution of the flame front in a relatively small domain L ¼ 50p < Lc is shown in Fig. 4.
In the very beginning the flame rapidly approaches a steady coalescent Np;L0 -pole solution with the
period L0 ¼ 10p of the initial condition. Later, the solution undergoes a series of bifurcations and sta-
bilizes to the steady coalescent Np;L-pole solution with the period L occupying the entire computational
domain.

Fig. 4. Evolution of the flame front profile in time for L ¼ 50p, c ¼ 0:8, and Uðx; 0Þ ¼ � cos 10px=L.
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Appearance and disappearance of poles in Uðx; tÞ can be clearly seen in the graph of its spatially av-
eraged time derivative:

hUti ¼ L�1
Z L=2

�L=2

oU
ot
dx: ð50Þ

Physically, hUti is the increase of the speed of the flame front in comparison with the speed of the plane
laminar flame. For steady coalescent Np-pole solution (4) we obviously have

hUti ¼ 2pNpL�1ðc � 4pNpL�1Þ: ð51Þ

The behaviour of hUti for time-dependent solutions to (2) is essentially different. In moments of time which,
in terms of (4), correspond to a change in the number of poles per period, function (50) develops sharp

spikes, see Fig. 5(a). The Figure shows also that with time all such spikes die out eventually, indicating

stabilization of the solution to UNp ;LðxÞ for any initial conditions. The function hUti does not develop sharp
spikes for time-dependent pole solutions (4) because the number of poles is the integral of the pole dy-
namics system.

The scenario changes dramatically when the length of the computational domain exceeds a critical

value Lc. In this case, sharp spikes in hUti do not die out but appear and appear for as long as
computations are continued, see Fig. 5(b). For some initial conditions transition to the pronounced

time-dependent behaviour for t ! 1 can be quite delayed, as it is illustrated in Fig. 5(d) for L ¼ 100p.
Close examination of solutions to (2) shows that the appearance of spikes coincides with the appear-

ance of micro cusps on the surface of the flame front as illustrated in Fig. 1. In terms of pole solutions

(4) these micro cusps would correspond to additional poles appearing near the crest of the flame
profile, then moving slowly towards its trough, and eventually disappearing there. The change in the

temporal behaviour of hUti for L < Lc and L > Lc is further illustrated in Fig. 5(c). Thus, temporal
behaviour of numerical solutions to the Sivashinsky equation obtained here with the method of

Fig. 5. Dependence of hUti and the number m of local extremums on the flame surface (lower curve in (b) and (d)) on time. The time
interval marked with the dashed lines in (b) corresponds to the appearance of cusps depicted in Fig. 1. Here c ¼ 0:8;
Uðx; 0Þ ¼ UNp ;Lðx; 0Þ in (d), and Uðx; 0Þ ¼ � cos npx=L in (a)–(c) with n ¼ 48, 52, and 60 for L ¼ 80p, 90p, and 100p, correspondingly.
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saturated asymptotic approximations matches results obtained earlier by the spectral methods, see, e.g.

[7,18,22,23].

In order to establish which term in (47) is the dominating one, we ran a series of calculations with

varied values of h, D, N and Dt. It was noticed that the effect of these parameters on the accuracy of
the stabilized solution disappears when L grows and approaches Lc. Also, the accuracy itself degrades
dramatically when L grows and for L > Lc � 85p numerical solutions do not stabilize at all. On the

other hand, the accuracy of the stabilized solution for L close enough to Lc and the value of Lc itself
strongly depend on eM . This is a clear indication that for large enough L the dominating term in (47) is
C3eM . Two values of Lc obtained in our calculations with 32- and 64-bit arithmetic are shown in Fig. 6.
The problem of finding the value of Lc by direct numerical simulations is rather time consuming.
However, the accuracy of observations was at least �4p. Note, that corresponding machine zeros were
eM � 10�7 and 10�16.
Strictly speaking, in calculations with spectral methods stabilization of numerical solutions does not

happen at all, unless an additional condition of symmetry, e.g., solution is assumed to be an even function,

is imposed, see [23]. This gave a reason to the authors of [23] to estimate Lyapunov�s exponents for the
steady states UNp;Lðx; tÞ, which turned to be very tiny indeed. The dependence of those exponents on ma-
chine accuracy was not checked. Though, in view of the recent results in [29] and in this paper, physical

meaning of these exponents is not very clear. Stabilization in our computations occurs, probably, because

of an implicit positive dissipation intrinsic to the saturated asymptotic approximations, as they are used

with large but finite value of the parameter of the order of approximation N .
An analytical attempt to estimate the value of Lc was made in [8] where the following modification of (2)

linearized on the steady coalescent pole solution was considered:

oDU
ot

� xR�1 oDU
ox

¼ o2DU
ox2

þ c
2

oH½DU�
ox

; x 2 R: ð52Þ

Here DUðx; tÞ ¼ Uðx; tÞ � UNp ;Lðx; tÞ and R is the curvature radius in the crest of the flame profile UNp;Lðx; tÞ.
The investigation of a particular asymptotic solution to (52) resulted in an estimation of the possible

amplification of the spectral density f of harmonics of DUðx; 0Þ versus R. The latter provides values of the
critical curvature radius Rc for which the spectral density of the most dangerous harmonics can grow up to
the order of Oð1Þ. A functional link between L and R can be easily established for UNp;Lðx; tÞ and the re-
sulting graph of Lc versus f is shown in Fig. 6.

Fig. 6. Dependence of the critical flame size Lc on the strength of the perturbation f .
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The agreement is striking because results in [8] were obtained for the spectral density of the most

dangerous harmonics of the perturbation DUðx; 0Þ rather than for its amplitude resulting in overestimation
of Lc. Also, the value of Lc in [8] corresponds to amplification of the most dangerous harmonic up to the
order of Oð1Þ, while in our computational practice we were judging Lc by its ‘‘stabilized’’ value of hUti
which results in underestimation of Lc. The use of normalizing parameters j1 and j2 such that j1f and
j2Oð1Þ replace f and Oð1Þ correspondingly gives exact coincidence of graphs in Fig. 6 for j1 � 0:81 and
j2 � 1:32.
Effect of the round-off errors in numerical solution of (2) can be modelled by a stochastic right-hand side

f ðx; tÞ as follows:

oU
ot

� 1
2

oU
ox

� �2
¼ o2U

ox2
þ c
2

oH½U�
ox

þ f ðx; tÞ; x 2 R: ð53Þ

Such an explicit addition to the Sivashinsky equation was studied, for example, in [3–5,19]. Unlike (2)

was obtained under the assumption of small heat expansion c � 1, it can be considered for any value of

c > 0 and, then, interpreted for a physically acceptable value of c0 in a larger domain L0 in virtue of the
invariance condition cL ¼ c0L0, see (3). With addition of the noise term in (53) one has to request also,

that the noise level in a realistic system with small heat expansion is proportionally smaller f 0 ¼ ðc0Þ2c�2f .
This remark is equally true for both explicit and implicit (i.e., round-off errors) noise terms in the
Sivashinsky equation.

4.3. Two-dimensional equation

Qualitatively, the temporal behaviour of the two-dimensional flame fronts is similar to the one-di-

mensional one. Fig. 7 illustrates the evolution of a relatively small flame in two spatial dimensions. Unlike

starting from initial condition Uðx; 0Þ ¼ � cosð10px1=LÞ cosð10px2=LÞ, which is not additive in coordinate
directions, the solution is rapidly transformed into the additive form (48) and is very close to

U1;10pðx1; tÞ þ U1;10pðx2; tÞ for some time. Later, the first summand begins to evolve and for t � 1050 the
solution is approximately equal to UNL;Lðx1; tÞ þ U1;10pðx2; tÞ. Only then the second summand begins to bi-
furcate and the flame front reaches eventually the steady shape composed of the sum of two one-dimen-

sional steady coalescent Np;L-pole solutions (49).
Similar scenarios were observed in our simulations with a variety of other initial conditions and values of

L. In all the cases the period of the intermediate flame shapes of the additive form (48) was determined by
the period of the initial condition if the latter was greater than the neutral wavelength 4p=c of the dispersion
relationship associated with (1). For initial conditions with smaller wavelengths the intermediate shape was

just close to zero.

The nonstationary asymptotic character of solutions to the two-dimensional Sivashinsky equation for

larger L is illustrated in Fig. 8 in the form of the dependence of the spatially averaged speed of the flame

front on time. Here, the perturbations, appearing on the flame surface randomly in time, look like
cracks aligned parallel to the x1-axis and moving along the x2-coordinate. The x1 ¼ const cross-sections
of the cracks are very similar to the micro cusps observed in one spatial dimension. The cracks lined up

parallel to the x2-axis were not observed in our calculations for L up to 90p. This is, probably, because
of the asymmetrical treatment of the spatial coordinate directions implemented in the computational

algorithm.

It was found out in our calculations with 64-bit arithmetic, that for the two independent spatial di-

mensions the value of cLc is likely to be slightly less than 68p, but does not differ from it significantly. In
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hydrodynamics, reduction of the critical Reynolds number with the increase of the dimension of the

problem is a distinctive characteristic of the nonmodal instability, see [27].

The two-dimensional Sivashinsky equation (1) was not as popular among researchers as its one-di-

mensional counterpart (2). The paper [18] is one of a few, if not the only one, where (1) was studied nu-

Fig. 7. Evolution of the flame front profile in time for L ¼ 50p, c ¼ 0:8, and Uðx1; x2; 0Þ ¼ � cosð10px1=LÞ cosð10px2=LÞ.

Fig. 8. Dependence of hUti on time in the two-dimensional case for L ¼ 70p and L ¼ 90p. Here c ¼ 0:8 and

Uðx1; x2; 0Þ ¼ � cosðnpx1=LÞ cosðnpx2=LÞ with n ¼ 20 and 10 for L ¼ 70p and 90p, correspondingly.
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merically. Similar to the one-dimensional case, there is a very good agreement between our results and data

from [18], where a spectral method was used.

5. Conclusions

Efficient and high accurate computational algorithms for periodic solutions to the Sivashinsky equation

in one and two spatial dimensions were proposed. The algorithms are based on saturated asymptotic ap-
proximations. The order of approximation is controlled by an explicit parameter and, generally speaking,

the accuracy of the method of saturated asymptotic approximations is only limited by the smoothness of

approximated solutions. Results of our calculations are in good quantitative agreement with data obtained

by spectral methods.

The implementation of our computational code on CRAY T3E-1200 demonstrated reasonable parallel

efficiency of the approach. Resources to improve the performance of the code and the overall efficiency of

the computational algorithm were discussed as well. The presented algorithms can be straightforwardly

extended to a wide class of nonlinear nonlocal pseudodifferential equations.
For problems in finite computational domains considered in this paper, the method in question has no

distinctive advantages in comparison to the spectral methods. There are a few important differences,

however. The accuracy of the saturated asymptotic approximations is only degraded locally if the

smoothness of the approximated function is lost locally. The latter property of the method proved to be

useful for bifurcating solutions with smoothness degrading in moments of bifurcations. Also, the level of

implicit numerical dissipation of the proposed algorithm is explicitly controlled by the parameter of the

order of approximation. On the other hand, if frequent adjustment of the time step is required, then the

proposed approach might be slower than the spectral one because of the necessity to upgrade values of
the convolution coefficients. In the finite computational domains the algorithm based on saturated as-

ymptotic approximations is considered as a supplement to the spectral methods. Such a supplement is

especially useful when results of numerical simulations are not easy to interpret.

The given examples of computations not only demonstrate the accuracy and efficiency of the algorithms

but, also, confirm at a reasonable level of confidence that flame fronts governed by Sivashinsky�s equation
become extremely sensitive to perturbations as their size grows. This sensitivity was not caused by the

special structure of the limiting solutions, formed by a set of coalescent poles, but it is a consequence of the

nonnormality of the linearized governing operator. A similar effect was also discovered in many other
systems, for example in Hagen–Poiseuille flow, where pole solutions were not found. A possible implication

from this sensitivity is that a noise term of physical origins might be required in the Sivashinsky equation in

order to retain its physical value for flames of large enough size, see, e.g. [3–5].

Appendix A. Values of the series +
l‰Z2nf0gl

2k
j jlj

�2m�1

Expressions for D
ð2k�2j1Þ
m�k ð2pj2j3Þ from (46) are given below:

D
ð0Þ
m�kð2pj2j3Þ ¼ Km�kð2pj2j3Þ;

D
ð2Þ
m�kð2pj2j3Þ ¼ Km�kð2pj2j3Þ � 2pj2j3Km�kþ1ð2pj2j3Þ;

D
ð4Þ
m�kð2pj2j3Þ ¼ 3Km�kð2pj2j3Þ � 6ð2pj2j3ÞKm�kþ1ð2pj2j3Þ þ ð2pj2j3Þ2Km�kþ2ð2pj2j3Þ;

D
ð6Þ
m�kð2pj2j3Þ ¼ 15Km�kð2pj2j3Þ � 45ð2pj2j3ÞKm�kþ1ð2pj2j3Þ

þ 15ð2pj2j3Þ2Km�kþ2ð2pj2j3Þ � ð2pj2j3Þ3Km�kþ3ð2pj2j3Þ:
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Here KnðxÞ are the modified Bessel functions which decay exponentially for x ! 1.
Numerical values of series (44) for parameters relevant to this paper:

X
l2Z2nf0g

jlj�3 ¼ 9:03362168310095;
X

l2Z2nf0g

l2j jlj
�7 ¼ 2:54512911683274;

X
l2Z2nf0g

jlj�5 ¼ 5:09025823366548;
X

l2Z2nf0g

l2j jlj
�9 ¼ 2:21155889383922;

X
l2Z2nf0g

jlj�7 ¼ 4:42311778767830;
X

l2Z2nf0g

l2j jlj
�11 ¼ 2:09563418137816;

X
l2Z2nf0g

jlj�9 ¼ 4:19126836275633;
X

l2Z2nf0g

l4j jlj
�11 ¼ 2:11729427669446;

X
l2Z2nf0g

l6j jlj
�15 ¼ 2:02776956400404;

X
l2Z2nf0g

l4j jlj
�13 ¼ 2:05039110312875:
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