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Abstract

A mixed boundary value problems for the Stokes system in a polyhedral domain is considered. The
authors prove the existence of solutions in weighted and non-weighted Holder spaces and obtain regu-
larity assertions for the solutions. The results are essentially based on estimates of the Green’s matrix.
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0 Introduction

Schauder estimates, i.e. coercive estimates of Holder norms, for solutions to linear elliptic equations
and systems in domains with smooth boundaries have important applications to linear and especially
nonlinear boundary value problems (see, e.g., Agmon, Douglis, Nirenberg [1] and Gilbarg, Trudinger [8]).
In the present paper, we consider a mixed boundary value problem for the linear Stokes system

—Au+Vp = f, -V-u=g (0.1)

in a three-dimensional domain of polyhedral type, where components of the velocity and/or the friction
are given on the boundary. To be more precise, we have one of the following boundary conditions on
each side I';:

(i) u="h,
(i) ur =h, —p+2ey,n(u) =09,
(ili) up =h, enr(u) =0,

(iv) —pn+ 2e,(u) = ¢,

where u, = u-n denotes the normal and u, = v — u,n the tangential component of u, &, (u) is the vector
e(u) n, €n,n(u) is the normal component and &, -(u) the tangential component of &, (u). In our previous
papers [22, 23] we proved estimates for the Green’s matrix and estimates of solutions in weighted (and
nonweighted) Sobolev spaces. The goal of the present paper is to prove the existence of solutions in
weighted Holder spaces. Furthermore, we will obtain regularity results for the solutions.

There is an extensive bibliography concerning elliptic boundary value problems in domains with
edges (see e.g. the references in the books of Grisvard [10], Dauge [3], Nazarov and Plamenevskii [25]).
Moreover, many works deal with boundary value problems in Lipschitz domains. We mention here the
papers of Jerison and Kenig [11], Kenig [12] and for the Stokes system the papers of Fabes, Kenig and
Verchota [7], Brown and Shen [2], Deuring and von Wahl [5], Dindos and Mitrea [6]. However, most
of the works in this field deal with solutions in Sobolev spaces with or without weight. Concerning
Schauder estimates for solutions of boundary value problems in domains with edges, we mention the
papers by Maz’ya and Plamenevskii [16, 17], where boundary value problems for elliptic differential
equations of arbitrary order were studied. The results obtained in [16, 17] are applicable, e.g., to the
Dirichlet problem but not to the Stokes system with boundary conditions (i)—(iv). In [19], weighted L,
and Schauder estimates were obtained for solutions of the Stokes system with Dirichlet condition (i) and



free surface condition (iii) on parts of the boundary. Weighted L, and Schauder estimates for solutions
to the Neumann problem in a domain with nonintersecting edges were proved in the preprint [26] by
Solonnikov. For the Neumann problem to second order systems
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we refer to our paper [21]. The boundary value problems considered in [16, 17, 19] allow to use weighted
Holder spaces N, é'g with “homogeneous” norms. However, the Neumann problem or in general the mixed

problem with boundary conditions (i)—(iv) requires the use of weighted spaces C;;f; with “inhomogeneous”
norms. This makes the consideration of the boundary value problem more difficult. On the other hand,
in some cases (e.g. the Dirichlet problem in convex polyhedral domains), the results can be improved
when considering solutions in weighted spaces with inhomogeneous norms. We also note that on the
set of functions vanishing in a neighborhood of the corners of the domain, the Cé’:g norm with § = 0 is
equivalent to the norm in the non-weighted Holder space C°.

The largest part of the paper (Sections 2-4) concerns the boundary value problem for the Stokes
system in a dihedron D and in polyhedral cone I with sides I'y, ..., 'y and edges My, ..., My. We do
not a priori suppose in this paper that the cone K is Lipschitz. Section 3 deals with the existence of
solutions (u,p) € C’;:g(IC)?’ X C};‘;(IC) of the boundary value problem if f € C’g:g(lC)37 g€ C[lgig(lC), and

the boundary data h;, ¢; are from the corresponding trace spaces. Here, C’é’fg(lC) is a weighted Holder

space with weight parameters 3 € R, § = (d1,...,6n) € [0,00)". In the special case §; = - = dn = 0,
the norm in this space is given by
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where r(x) denotes the distance of x to the set S = {0} U M; U--- U My and k is the integral part of
0 — o + 1. It is shown in Section 3 that there is a uniquely determined solution if g and the boundary
data satisfy certain compatibility conditions on the edges, the line Re A = 24+ o — [ is free of eigenvalues
of a certain operator pencil 24()\), and the components §; of § are such that dp > 0, §; — o not integer,
and 2 — ux < 0 —o <2 for k=1,..., N. Here uj are certain positive numbers depending on the angle
0y at the edge M. For example, in the case of the Dirichlet problem, we have p, = /6y if ), < m, while
g is the smallest positive solution of the equation sin(ufy) + psinfy = 0 if 6, > 7. Estimates for the
eigenvalues of the pencil 2(\) can be found e.g. in [4, 13, 14, 18]. It is further shown that the solution
(u,p) € CFI(K)? x Cy3(K) belongs to C575,(K)? x CL 57 (K) if f € O %7 (K)3, g € C5% (K), the
boundary data are from the corresponding trace spaces, the closed strip between the lines Re A = 2+0—
and Re A = [+ o/ — ' is free of eigenvalues of the pencil 2()), and the components of §’ are such that
0, > 0, 0, — o not integer, and | — py, < 0;, — o’ < I. In Section 4, we deal with weak solutions of the
boundary value problem. We prove that under conditions analogous to those in Section 3, there exists a
unique weak solution (u,p) € C’é:g(lC)3 X C’g‘g(IC)

The boundary value problem for the Stokes system in a bounded polyhedral domain G is studied in
the last Section 5. As an example, we consider the weak solution (u,p) € W1(G)3 x Ly(G) of the Dirichlet
problem

-Au+Vp=f, —-V-u=g inGg, u=0only, j=1,...,N,

in a polyhedron G with sides I'; and edges M. We denote by 6, the angle at the edge Mj. As a
consequence of our results, we obtain for example the following regularity assertion in a neighborhood of
an edge point & € M.

If f€C'=27 ge O~ in a neighborhood of &, g|ar, =0, and [ + o < 7/0y, then u € CL°
and p € C'~19 in a neighborhood of £.



This result is also true for [ = 1. This means that in the case 6 < 7, we obtain u € C17, p € €% in a
neighborhood of & provided o < (7 — 0))/6x and f, g satisfy the above conditions. Another result is the
following.

If fe C’;;Q’U(Q)?’ and g € C};lv”(g), where 0 < o < min(ReA;, p11), then (u,p) € C};l"(g)3

xCﬁl’J (G). In particular, we have u € C%°(G)3. If the polyhedron G is convex, then this
result is true for arbitrary o € (0,1).

Here A; denotes the eigenvalue of the pencil 2,;(\) with smallest positive real part. For convex polyhe-
drons, we have A; = 1. Then there is also the following result.

Let f € C719(G)3, g € C%79(G), where ¢ is a sufficiently small positive number, and let
g|ar,=o for all k. Then the solution (u,p) belongs to C17(G)? x C%7(G) .

Other examples are given at the end of Section 5. In a forthcoming paper, we will apply the results to
the nonlinear Navier-Stokes system.

1 Weighted Holder spaces

1.1 Weighted Holder spaces in an angle an in a dihedron

Let K be the angle {(z1,72) € R?: 0 <r <00, —0/2 < p < 0/2}, where r, @ are the polar coordinates
of ' = (x1,22), and let ¥* : ¢ = +0/2 be the sides of K. Furthermore, let

D=KxR={x=(2,23): 2’ = (21,72) € K, 73 € R}

be a dihedron with sides I'* = v* x R and edge M. For arbitrary integer [ > 0 and real 6, 0,0<o <1,
we define N7 (K) as the space of all functions with continuous derivatives up to order [ on K\{0} such
that

Hu||N§,a(K) = Z sup |’ [Pl (2| + Z sup |
‘e

’ ’
o<t K la|=t, &y €K
lz"—y'|<|z’|/2

0% u(z") — 0%u(y’)|
16105 y
| P < o0.

Analogously, we define the weighted Holder space N, é’” (D) as the set of all functions with continuous
derivatives up to order [ on D\ M such that

Il g oy = 32 sup /1O (@) |+ (e < oo, (1.1)
lal<t®
where 92u(z) — 93u(y)|
u(zx) — 0%u(y
(Wm0 = sp ool Ol
lz—y|<|z’|/2

Note that Ny (D) is continuously imbedded into C*=#*=0+9(D) if k — 1 < § — 0 < k, where k is a
nonnegative integer, k < I (see [21]). Here C"? (D) denotes the nonweighted Holder space with the norm

0 — 9o
llullcto(py = Z sug|6au(x)| + Z sup ’ u(z) U(y)|

|a\<l$€ z,y€D |33‘ - y‘o
= lz—y|<1

la|=L
An equivalent norm is given in the following lemma.

Lemma 1.1 The norm in C1°(D) is equivalent to

\6%(3:’, x3) — 0%u(z, y3)|
= 0™
el = 3 suplo®u(e)l+ - (sup sup

/ _ xXrg — a
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+Sllp sup }aau(x ,ibg) - aau(y ,.Tg)’).

/ /
T3 |x'—y'|<|z’|/2 |x 7y|a



P r oo f. It suffices to prove the lemma for I = 0. Obviously, the norm in C%?(D) is equivalent to

|u(x’,x3) - u(x’,yg)f

u|| = sup|u(x)]+sup sup
[l meD| (@)| up sup 25 — val°
’u(m’,xg) — u(y’,x3)|
+sup sup ; o )
T3 |z’ —y’|<1 |:E _yl

We show, that there exists a constant ¢ independent of u such that

/ _ / ’ . ’
sup sup lu(z’, x3) — u(y', z3)| < ¢ sup sup lu(z’, x3) — u(y’, x3)|

!/ /! !/ /!
z3 o'y €K |.’L‘ -y |U 3 2y eK |!L‘ -y |U
o’ —y'|<|a’|/2

(1.2)

We denote the right-hand side of (1.2) by A, (u). Let 2,3’ be arbitrary points in K such that |2’ —y'| >
|z'|/2, and let x5 € R. We put &, = 27"z’. Then

[u(n, 23) — w(€ns1, 23)| < co|&n — Ensr|” = co|2’|727TD7 where ¢ = Ay (u).

Consequently,

_ 0 N _ " < o 9- (n+1l)o _ /o

|u(z’, x3) — u(0, z3) Z‘ w(&n,23) — u(Eng1, 3)| < o |2 Z 72071 ||
and, analogously,
— (0 o
](y r3) — u( 963‘_20_1|?/|
Since |2/ < 2|2’ — ¢'| and |y'| < 3|z’ — ¢/|, it follows that
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|u(@’ @) =y, 23)| < oo (1717 + W'17) < T Ao (w) |2 =¥/

what proves (1.2). The result follows. O

Let 0 <d <l+4+o0and 0 < o <1. Then by Cé’U(D), we denote the weighted Holder space with the
norm

lull ooy = lllcr-snseoipy+ > sup /|7l |02u(@)| + (w)rmsim
la|=1—k+1 €D
where k = [6 — 0] + 1, [s] denotes the greatest integer less or equal to s. In the case § > [ + o, we set
Cy” (D) = N;” (D). )
Every function u € Cé’U(D), 0 <4 <1+ o, is continuous in D. The restriction of u to M belongs to
the Hélder space C'=FF=9+o(\[) where k = [§ — o] + 1. Conversely, every function f € C!=F*=0+o(pr)
can be extended to a function u € C’l’a (D). For this, we consider the operator

(Ef)(2',x3) /fo:3+tr P(t) dt, (1.3)

where ¢ € C§°(R) is a given function with support in (0, 1) satisfying the condition

1 1
/ Y(t)dt =1, /tjw(t)dt:() for j=1,2,...,1 — k.
0

0
In [21, Le.2.7] it is shown that F realizes a continuous mapping C'~Fk=+o(Ar) — C’é’” (D),
(Ef)la = [ for arbitrary f € "M% (M), k=[6 — o] + 1 <1

and
O, Ef € 6+1(D)7 ||azlEf||N“’ (D) < cllfllgi-rn—s+o(ary fori=1,2.

For the following lemma we refer to [21, Le.2.8,Le.2.9].



Lemma 1.2 LetuGC(ls’ (D), where § >0, k—1<d—0 <k, ke{0,1,...,1}.
1) Furthermore, let f;; = 0% 03 ula fori+j <1 —k and u; ;(x) = x(|2']) (Efi;)(x), where x is a

smooth cut-off function on [0,00), suppx C [0,2), x =1 on [0,1]. Then u admits the decomposition

1
u=v+w, wherevGNé’a(D),w: Z =
i

iti<l—k

i l
wi,; izl € C5EO (D), m=0,1,2,....

2) For the inclusion u € Né’U(D) it is necessary and sufficient that 0®u =0 on M for |a| <1 —k.

1.2 Weighted Holder spaces in a polyhedral cone

Let
K={zecR®: z/|lz| € Q} (1.4)

be a polyhedral cone in R? whose boundary consists of plane sides I'y, and edges My, j =1,...,N. We
denote by r(x) the distance to the edge My, and by r(z) the distance to the set S = M1 U---UMy U{0}.
The subset {x € K : rj(z) < 3r(x)/2} is denoted by IC;. Note that there are the inequalities

N
Tre\x
1 |z H |x| S ) < ez H $(c|) (1.5)
k=1

with positive constants ¢y, co independent of x € K.
Let [ be a nonnegative integer, 3 € R, and § = (61,...,0y) € RY. We define the space Né}(;(lC) as
the set of all [ times continuously differentiable functions in K\S such that

Sk—l+lal
lalln o) = Zsupw lﬂalﬂ( )k |02 u(z)| dz < cc.

la<t®

The weighted Holder space N ég(lC) is defined as the set of all [ times continuously differentiable functions
on K\S with finite norm

N
B—l—o+|a|
lilyioy = D suplal 11 (

|a‘<la:€)C

N k |0%u(x) — 0%u
+3 s off U( = )5 Oz u(x) — Ouy)| (1.6)

=t |2yl <r(@)/2 [z =yl

| 1eY

)5k — 0‘+|OL|

Furthermore, the space Clﬁ"g(/C) is defined for nonnnegative dx, k = 1,..., N, as the set of all | times
continuously differentiable functions on K\S with finite norm

o (z)
Hu”Cgfs(IC) = Z su2|x|5 l—o+|a H( ]

|| <1

_s, |07 u(z) — 9y u(y)
+ Z Z sup |x‘ﬁ 6j| x) ,-+Z’—(§j ‘

z,y€K;
JrksSt lad=t=k; |, - yy\<\x|/2

+ Z sup  |z|? H ( 2] ) ; |x—y|i , (1.7)

— z,yeX
l&l=t 5y <r (@) /2

where k; = [0; — o] + 1, [s] denotes the greatest integer less or equal to s. Replacing
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we obtain an equivalent norm in CZB’Z(IC) (cf. Lemma 1.1). Obviously, N, ég(IC) is a subset of C’lﬁ’;(lC). If
0 > 140 for k=1,..., N, then both spaces coincide. Furthermore, there are the following continuous
imbeddings:

N 15— (K) CNLHK) C NG5 4(K),
CL5(K) € Cy5(K) ifl+o>l 4o, f—l—o=0 ~1'—0, b —l—0 <810

The trace spaces for Né‘; (K) and Clﬁ’f; (K) on I'; are denoted by N'ég (T';) and Clﬁ’:;(Fj), respectively.
Finally, we introduce the following notation. If § € RY and s € R, then by Né’ngs(IC) and C’g;JrS(IC)
we mean the spaces J\/é’g,(IC) and Clﬂ’:;, (K) with &' = (61 + s,...,0N + 5).

2 The problem in a dihedron

Let D be the dihedron introduced in the previous section. We consider a boundary value problem for
the Stokes system, where on each of the sides I'* one of the boundary conditions (i)-(iv) is given. Let
n* = (nf,nT,0) be the exterior normal to I'*, e (u) = e(u) n* and e, (u) = £ (u)-n*. Furthermore, let
d* € {0,1,2,3} be integer numbers characterizing the boundary conditions on I't and I'~, respectively.

We put
o Stu=u ford* =0,
o STu=u—(u-n)n*, N*¥(u,p)=—p+2ei,(u) ford* =1,
o STu=wu-n*, NF(u,p)=ct(u)—ek (u)nt ford* =2

N*(u,p) = —pn* + 2eF(u) for d* =3

and consider the boundary value problem

—Au+Vp=f, —-V-u=g inD, (2.8)
S*u=h* N*(u,p)=¢* onTI*. (2.9)

Here the condition N*(u,p) = ¢T is absent in the case d* = 0, while the condition STu = h* is absent
in the case d* = 3.

2.1 Reduction to homogeneous boundary conditions

Lemma 2.1 Let ht € No7(I£)3-4 | ¢* ¢ NI719(T4)4" | > 1, be given. Then there exists a vector
function u € ./\/é’U(D)3 such that S*u = h* and N*(u,0) = ¢* on T*. The norm of u can be estimated
by the norms of h* and ¢*.

The analogous result in the space C(l;’g holds only under additional assumptions on the boundary data.
Ifue C’é’”(D):}7 § < l+0, then there exists the trace u|y € C=F*=9+7(M)3 k = [§—0]+1, and from the
boundary conditions (2.9) it follows that STu|y; = h*|y. Here ST and S~ are considered as operators on
Cl=kk=6+o(M)3, Consequently, the boundary data h* and A~ must satisfy the compatibility condition
(Rt s, ™ |m) € R(T), where R(T) is the range of the operator 7' = (ST, 57). This condition can be
also written in the form

ATy =A"h |, (2.10)

where A1, A~ are certain constant matrices. For example in the case of the Dirichlet problem, A" and
A~ are the identity matrices.



Lemma 2.2 Let h* € Cf;"’(I‘i)?’*di and ¢* € C’éfl’g(f‘i)di, 1>1,l+0—-1<4d<l+0. Suppose
that h™ and h™~ satisfy the compatibility condition (2.10) on M. Then there exists a vector function
u € C’é’a(D)3 such that S*Tu = h*, N*(u,0) = ¢ on T*. The norm of u can be estimated by the norms
of h* and ¢*.

P r oo f By (2.10), there exists a vector function 1y € C%*7=9(M)3 such that STt¢p = h¥|y. Let
v € Cé’U(D)g’ be an extension of 1. Then the trace of h* — STv|p+ on M is equal to zero and,
consequently, h* — SFTv|ps € /\fé"’(f‘i)?”di (cf. Lemma 1.1). Furthermore, ¢* — N*(v,0)|p+ €
C’(l;l"T(I‘i)di C Néil’U(Fi)di. Thus, according to Lemma 2.1, there exists a function w € Ny7 (D)3
such that STw = h* — S*v and N*(w,0) = ¢* — N¥(v,0) on I'*. Then u = v + w has the desired
properties. 0

Now let g € CL17(D), ht € CL7(T%)3-4" and ¢ € CL7(T)3=4" |+0—2 < § < [4+0—1. Then the
traces of g, h*,0,.h* and ¢* on M exist. We suppose that there is a pair (u,p) € C’(IS’U(D)3 X Céfl’U(D)
such that

Stu=h%, N¥u,p)=¢* onT* and —V-u=g on M (2.11)

We put
b= u|Ma c= (al'lu)|M7 d= (amQU)‘M and ¢= p|]\/[-

Then from the equations S*u = h* on I'* it follows that S*0,u = 9,h* on I'*, and therefore,
SEb = hE |y, (2.12)
Si(ccosgj:dsin%) = (0,hF) | (2.13)
Moreover —V - u = g on M if and only if
c1+dz + Ozybs = =gl - (2.14)

Obviously, the trace of N*(u,p) on M can be written as a linear form M¥*(c,d,d,,b,q). Thus, from
N#*(u,p) = ¢* on T'F it follows that

M*(c,d, 02,b,q) = ¢*|u - (2.15)

Lemma 2.3 Suppose that g € Ct "7 (D), h* € Cé’o(l"i)?’_di, and ¢ € Cf;fl’a(l"i)?’_di, [>1,l4+0-2<
§ <1+ o0 —1, are such that the system (2.12)—(2.15) with the unknowns b,c,d, q is solvable. Then there
exists a pair (u,p) € C’fs’a(D)3 X C’é_l’a(D) satisfying (2.11).

Proof Letbe CUI=0F7(M)3, ¢ .d € CH=1=0+o(M)3 ¢ € CO=1=9+9 (M) solve the linear system
(2.12)—(2.15). We set
v=FEb+xy Ec+ 292 Ed, p= Fq,

where F is the extension operator (1.3). Then v € Cf;’g(D)3, p € Cf;_l’”(D), vlp = b, 0,0l = ¢,
Oxov|pys = d, and p|p; = ¢q. Consequently,

SEvlar = hE|ar, 0,5%v|ar = 8:hE [, Vvl = gl N, )| = 6% |

From this and from Lemma 1.1 we conclude that S*v — h* € ./\/é’o(Fi)3_di and N*(v,p) — ¢* €
/\/'é_l’a(l"i)di . Thus, by Lemma 2.1, there exists a vector function w € Né’U(D)?’ such that

S*tw =h* — SFv, N*¥(w,0) =¢* on '+,
Then (u,p) = (v+ w, p) satisfies (2.11). O
Remark 2.1 The condition of Lemma 2.3 is always satisfied if d* 4 d~ is odd, h™ and h~ satisfy the

compatibility condition (2.10) and sin26 # 0 for d* + d~ = 3, cosf cos20 # 0 for d* + d~ € {1,5}.
If dt + d~ is even, then additionally to (2.10) another compatibility condition must be satisfied. For



example, in the case of the Dirichlet problem, 0 # w, 6 # 2x, for the validity of Lemma 2.3 it is necessary
and sufficient that

Ry =h7|am, 0 -0ht | +nt 007 | = (9lm +3I3h§'|M) sin 6.

In the case d~ =0, d" =2, 0 # /2, 0 # 37/2, the data h*, h~, ¢ and g must satisfy the compatibility
conditions h~ -nT = AT and

O-ht cos20 — (2nT cos@ +n")d.hT + 2sin? 0 (¢ cos0/2 + ¢ sin6/2) + %(g + Oy, hs ) sin20 =0,

and in the case of the Neumann problem, 6 # w, # # 27, the compatibility condition ¢+ -n= = ¢~ -n*

on M is necessary and sufficient for the validity of Lemma 2.3, see [22].

Lemma 2.4 Let f € C-27(D)3, g € 19 (D), ht € CLo(TE)3~4" and ¢ € CL Vo (TE)3-4" 1 > 2,
0<d<l+o0—1,0— 0 not integer. Suppose that g, h* and ¢+ are such that the system (2.12)—
(2.15) with the unknowns b, c,d, q is solvable. In the case | + 0 — 6 > 2 we assume furthermore that for

k=2,3,...,[l + 0 —§] there do not exist homogeneous polynomials
w= Y cjaie), p= Y, dijzial
i+j=k i+j=k—1

satisfying —Au +Vp = 0, =V -u = 0 in D and the homogeneous boundary conditions STu = 0,
N*(u,p) =0 on T*. Then there exists a pair (u,p) € C'(ZS’G(D)3 X C’éfl’U(D) such that
Au—Vp+feNZ (DB, Veout+geN, (D), S*ulpe =%, N¥(u,p)lrs = ¢*.

Proof Lets<l+o0c—0 <s+1, where s € {1,...,1}, and let k be an integer, 1 < k < s. We show (by
induction in k) that there exists a pair (u,p) € C’(lg’g(D)3 X C’é_l’o(D) satisfying the following condition
(Cr):

(0%,00,(Au—Vp+ f))|,, =0fori+j<k—2 (9,8,(V-u+g))|,, =0fori+j<k-1,
(aﬁ(Siuhﬂi - hi))|M =0 for j <k, (8,]:(Ni(u,p)|pi - qﬁi))}M =0forj<k-1

For k =1 condition (Cj) means that
—V-u=g, STu=hr* 08,(STulpz)=08hT, NT(u,p)=¢*t on M.

Suppose that 2 < k < s and the assertion is true for k — 1, i.e. there exists a pair (u,p) € C’é’O(D)3 X
C’é_l’”(D) satisfying condition (Cg—1). We put

v x/a iL'I’Y
N UL S R SR s

lal=k Ivl=k—1

and show that the functions U((;/), ¢, € C*~Rl=s+o=3( [} can be chosen such that

9,00 (Av—Vq)=—-0. 0, (Au—Vp+f) on M fori+j==k—2, (2.16)
9V -v==0,0l (V-u+g) on M fori+j==k—1, (2.17)

OF (SFolps) = 9F (™ — S*ulps), 3571(Ni(U,Q)|Fi) = 8571((;51 - Ni(U,QNFi) on M. (2.18)
Equation (2.16) is equivalent to
0 0 s+ B0t i+ Ou2 i = — (95,00, (Au—Vp+ f))|,, fori+j=k—2 v=123

while equation (2.16) is equivalent to

vﬁ_)l’j +vz(72j)+1 = —(8;13£2(V'u+g))|M fori+j=k—1



Analogously, (2.18) can be written in the form

S*({vl} {gy}) = OF (h* = S*ulps) |, ({0} {ar}) = 0771 (65 = N*(v,0)|r+) |, »
where &%, M* are linear forms. Thus, (2.16)-(2.18) is equivalent to a system of 4k + 3 linear equa-

tions with constant coefficients and 4k + 3 unknowns v(;’), ¢y, v =123, |a| =k, |y| =k —1. This
system is uniquely solvable. Otherwise, the corresponding homogeneous system has a nontrivial solution
({cg’)}, {d,}), and the functions

I SN NGO A _ @
U,= > —— v=123 P= > d, !

|al=k izt

satisfy the homogeneous equations (2.8), (2.9) what contradicts the assumptions of the lemma.
This proves that v{") and ¢y can be chosen such that (v, ¢) satisfies (2.16)—(2.18). Obviously,

aélﬁiz(Av—Vq):O on M fori+j<k-—3, a;lagzv-vzo on M fori+j<k-—2,
I (SFv|p+) =0, affl(Ni(v,q)hﬂi) on M for j <k-—1.
Consequently, the pair (u + v, p + q) satisfy condition (Cyg).
In particular, it follows that there exists a pair (u,p) € C’(ZS’U(D)3 X C(l;l’a (D) satistying condition (Cy)
for k = 5. This means that Au—Vp+f € N, 27 (D)%, V-utg € Ny ;7(D), SFu—h* € NjF(I*)3-4",

and N*(u,p) — ¢F € Né}l’U(Fi)di (see Lemma 1.2). Applying Lemma 2.1, we obtain the assertion of
the lemma. O

Remark 2.2 The last assumptions in Lemma 2.4 (the nonexistence of homogeneous polynomials of
degrees k and k — 1, respectively, satisfying the homogeneous equations (2.8) and (2.9)) is satisfied, e.g.,
if A =k is not an eigenvalue of the pencil A(\) introduced below.

2.2 Regularity assertions for the solution

The next lemma follows from [24, Th.6.3.7] and [1, Th.9.3].

Lemma 2.5 Let G1, Gy be bounded subdomains of R such that G1 C Go, G1ND # 0 and GyNM = 0.
If (u,p) is a solution of (2.8), (2.9), u € W5(DNG2)3, p € WH(D N Gy), f € C=29(D N Gq)?,

g € C"29(DNGy), ht € CLoT NGy, ¢ € C-LWoTENGy)Y, 1> 2,0 <o < 1, then
u€ Ch(DNGL)? x C-L (DN Gy), and

lullcro(pnaye + IPlloi-1ene,) < ¢ <||f|\clfz=o(mc2)@ +llgllci-2o (pnas) + 3 1 lore r2nes)
+

+Z ||¢>i||cl—1vv(rimc2) + llulle(pnas)s + ||p||C(DmG2)>
T

with a constant ¢ independent of u and p.

Let Wllo’i(@\M) be the set of all functions u such that (u € Wh¥(D) for all ¢ € C§°(D\M).

Lemma 2.6 Let (u,p) € W25(D\M)? x WL5(D\M) be a solution of problem (2.8), (2.9) such that
sup |2’ |°717 Ju(z)| + sup |2/ [° 7 p(z)] < oc.
If f e NT2I(D), 1> 2, g e NTHI(D), bt € NPO(TE)3=4% | ¢F € NI then u € NP7 (D)3,
p e N (D), and
Hu||N§v°(D)3 + HPHN;LU(D) < c (”f”_/\/;’z*”(D)B + HQHN;*W(D) + zi: ||hi||/\/§’”(pi)

+ ) ||¢i‘|j\/'§*1*“(ri) + llullae ,  (oys + ||p||Ng7,+17(,(D))~ (2.19)
T



Proof DuetoLemma 2.1, we may restrict ourselves to the case h* = 0, ¢* = 0. For an arbitrary
point y € D we denote by B, the ball with center y and radius |y'[/2 and by B, the ball with center

y and radius 3|y’|/4. For an arbitrary subdomain & C D let the norm in Nég(lj) be defined by (1.1),
where D is replaced by U. For || = 1 this norm is equivalent to the C*® norm, and Lemma 2.5 implies

Hu”/\/gv”(Bym'D)S + Hp”/\/’é—lv"(Byn'D) < ¢ (Hf”Né‘z"(B{,n’D)S + ||g||/\/;—1“’(3ymp) + ||u||N(?_l_0(B,;ﬁ'D)3

+ ey ., myem) (2.20)

with a constant ¢ independent of y. Let |y| # 1 and z = |y/|~'y. We introduce the functions @(¢) =
u(ly'[9), &) = ¥/ p(1y'1€), F(&) = v/'* f(ly'[€), and §(€) = [y g(|y'|€)- Then

—ANi+Vp=f, -V-a=§ inD, S*a=0, N¥(@,p)=0 onI*.

Therefore, by (2.20), we have

||ﬂ||/\/§“’(3zmp)3 + ||ﬁ||N;_1‘0(BzﬂD) < c (”f”/\/;—Qv"(B;mD)B + ||§||Né_1’”(anD) + ||ﬁHN(§’_l_U(B’ZmD)3
+ ||p~HN(§’7H176(B;ﬂD))-
Using the inequalities
_5 ~ =d
C1 |y/|l+g Hu”/\/;v"(BymD)B < Hu”j\/év“(Bzmp)s <c2 |y,|l+a ||UHN§>"(BymD)3

and the analogous inequalities for the norms of p, f and g, we obtain estimate (2.20) for arbitrary y € D.
This proves the lemma. O

We further need the following modification of Lemma 2.6

Lemma 2.7 Let (, n be smooth functions with compact supports, n = 1 in a neighborhood of supp(.
Furthermore, let (u,p) € W25 (D\M)? x W,-*(D\M) be a solution of problem (2.8), (2.9) such that

loc loc

/‘57170

sup |z |n(2) u(@)] +sup |2'|°~ =7 [n(z) p(z)] < co.

Ifnf € NO29(D)3, 1> 2, ng € NI7V9(D), pht € NPO(TE)3-4" ot e NV then Cu €
NET(DY3, ¢p e NP2 (K), and

HC“||N§=U(D)3 + HCPH/\@*W(D) <c (anHN;*?v"(Dp + ||779HN(§*11”(D) + Z ||77hi||,/\/;~”(ri)
+
+Z ||77¢iHNdﬁ—1vv(pi) + llullae,_(pys + ||77p|\/\/§_,+1_”(73))-
+

P roof We may again restrict ourselves in the proof to the case h* = 0, ¢* = 0. Let U be a
neighborhood of supp ( such that n = 1 in a neighborhood of /. Obviously, we obtain an equivalent
norm in N3 (D) if we replace the expression (u); , 5.p in (1.1) by

107 u(z) — 05 u(y)|
uy s = E sup  |2/|P == Y
< >l,o’,5,'D 2yeD | | |x _ y‘o-
lz—y|<el|z'|

)

ler=1
where ¢ is an arbitrarily small positive number. Using this norm with sufficiently small ¢, then we have

ICullyto pys + 1€Pl -1 py < € (lullytio guerpys + 1Pyt @urmy )-
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Here, we used the same notation as in the proof of Lemma 2.6. Furthermore, estimate (2.20) is also valid
if we denote by B, and Bj the balls centered at y with radii |y’| and 2e[y’|, respectively. From this it
follows (if ¢ is sufficiently small) that

Hu||N;,a(umD)3 + ||p||/\/§*1v“(ump) <c (Hf”/\/l*zv”(u/mpp + ||g||J\/'§’1"’(z,{/mD)
+ vy, woemy +pllvg ., aoem )

where Y’ = {x € D : n(x) = 1}. This proves the lemma. O
Next, we prove a regularity assertion for the solution in the class of the spaces Cé’”,

Lemma 2.8 Let (u,p) € W25 (D\M)3 x WL5(D\M) be a solution of problem (2.8), (2.9), and let ¢, n be

loc loc

smooth functions with compact supports, n = 1 in a neighborhood of supp (. Suppose that nu € C’é:ll’g(D)3,
np € C5_7°(D), nf € C5 >7(D)?, g € Cy V7(D), ph* € C57(T)P47, yg* € Cf 17 (T4)T, where
1>2,6>1,0<0<1. Then ((u,p) € Cé"( )3 x C5 17 (D).

P roof By Lemma 1.2, there are the representations
nu=1u' +u", np=p +p’

where v/ € Ni_17 (D)3, p/ € NIZ37(D), v € CL7(D)3, and p’" € CL (D). Let x be a smooth cut-off
function equal to one in a nelghborhood of supp ¢ such that 7 =1 in a neighborhood of supp x. Then

X(=Au' +Vp') = xf + x(Au” = Vp'") € C27(D)?, —xV -/ = xg+xV -u" € C5H(D).
In the case 6 > [—2+0, the space Cl %7(D) coincides with NliQ’U(D) and in the case 1 < § < {—2+0 we
have [ > 3 and x(—Au’ + Vp') € J\/l $7(D)3. From Lemma 1.2 it follows that Ni_2°(D) N CL>7(D) C
N} 727(D). Therefore in both cases, we obtain y(—Au/ + Vp') € N3~ >7(D)3. Analogously, xV - u’ €
NIY9(D), xSHu! € Né’a(Fi)B’di, and YN*(u',p') € Né_l’U(Fi)di. This together with Lemma 2.7
implies (u’ € ./\/;"7(1))37 Cp e Ngfl"a(D). The result follows. O

We define the operator A()) as follows
A()\) (U(QD), P(SO)) = (TQ_)\(_AU + Vp) ) _Tl_AV “Uu, T_ASiuLp:i@/Z 5 Tl_)\Ni (uap)|tp:i9/2)7

where u = 1 U(p), p = r*"1P(yp), A € C, 7, ¢ are the polar coordinates of the point ' = (1, 73). The
operator A(X) depends quadratically on the parameter A\ and realizes a continuous mapping

W2 (=5, +5))° x Wh((=5,+9)) = W ((=§,+5))> x L*((=5,§)) x C° x C°

for every A € C. In [22] a description of the spectrum of the pencil A(\) is given for different d~ and d*.
For example, in the cases of the Dirichlet problem (d* = d~ = 0) and Neumann problem (d* = d~ = 3),
the spectrum of A()\) consists of the solutions of the equation

sin(A0) (A sin® § — sin®(\0)) = 0,

A #0 for dt =d~ =0. In the case d~ =0, d* = 1, the eigenvalues of A()) are the nonzero solutions of
the equation
sin(A\g) (Asin(26) + sin(2)\0)) =0

If d™ =0, d* = 2, then the eigenvalues are the nonzero solutions of the equation
sin(2A0) (Asin(260) — sin(2A0)) =0

while the nonzero solutions of the equation
sin(2A0) (A\?sin? @ — cos?(N\0)) =

are eigenvalues of A(\) if d~ =0 and d* = 3.
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Lemma 2.9 Let (,n be the same functions as in Lemma 2.8, and let (u,p) be a solution of problem (2.8),
(2.9) such that nd3, (u,p) € Ny7(D)? x N3~ "7(D) for j =0 and j = 1, where 1 >2,0< o < 1. If

nf € Ny 7D, ng € N§°(D), nh* € NyFHo (D24, o e N7 (0%)™,
and the strip l+ 0 — 5 < ReA <14+ 1+ 0 —§ does not contain eigenvalues of the pencil A(N), then
((u,p) € N5TH7(D)* x Ny7(D).
Proof Let x be asmooth cut-off function such that y = 1 in a neighborhood of supp{ and n =1 in
a neighborhood of supp x. We denote by A/, V. the Laplace and Nabla operators in the coordinates
a’ = (z1,22). Then

—Agr(xus) = F3 = x(f3 4+ 02,u3 — 02,p) — 2V X - Vyruz — uz Agrx € Né_l’g(D)~

Furthermore, yus satisfies the boundary conditions

a(Xuza)
on=*

on 't where Hy = xyhi and ®F = x ((4—di)¢>§[ —nE -0y u) +uz 0x/0,+. Analogously for u' = (u,us)
and p, we obtain the equations

—Ap () + Vo (xp) = F, —Va-(xu)=G, S*(a)|re =H™, NEx, xp)lrs = &'F

Xus|p. = Hy € NyTHo(T%) for d* <1, — 0 € NYO(T%) for d* > 2

T+

with certain functions F/ € N} "7(D)%, G € N} (D), H'® e NI (I%), o/F e NL7(TF), where
S*u' = S*(u',0) and N*(u/,p) = N*(«/,0,p). Consequently, by [?, Th.8.4], we obtain (yu)(-,z3) €
NGFH(R)P, (xp) (- 2s) € N7 (K), and

H(Xu)('ax?))||j\/§+l="([()3 + ”(Xp)('ax?))HN;Hv”(K) < c (HF("xi’»)HNé—lv“(Kp + ”G('ax?»)”/\/';v”(;()

+ Z ||HH/\/;+LU(7¢) + Z ||(I>i||_/\/;"7(,yj:))
+ +

with a constant ¢ independent of x3. From this and from the inclusions 1nd,,u € J\/’é’”(D)3, NOzyp €
NE17(D) we conclude that ¢(u,p) € NiTH7(D)? x N (D). O

We prove the analogous result for the spaces C’é’g.

Lemma 2.10 Let ¢,n be the same functions as in Lemma 2.8, and let (u,p) be a solution of problem
(2.8), (2.9) such that ndi, (u,p) € CY7 (D)3 x C5 17 (D) for j =0 and j =1, where | > 2,0 < o < 1,
0 — o is not integer. If

nf c C(lsfl,U(D)3, ng € C(ls’g(D)7 nhi c C(ls+1,a(l—\i)3—di7 n¢i c C(ls’o(l—‘i)di,
and the strip l + 0 — 3§ < ReA <1+ 14 0 — 4 does not contain eigenvalues of the pencil A(X), then
C(u,p) € C577(D)? x C57 (D).

Proof. Supposethat k—1 < d—o0 <k, where k is an integer, k < {. Then both nu and 9,,(nu) belong
to C'~kk=9+7(D)3. Consequently, the traces u(*7) of 9L 87, (nu) on M are from Cl=k—imjtLk=d+o (A3
for i + j < 1 — k. Analogously, the traces p(7) of 9% 09 (np) on M are from C'=F=i=3k=3%o(Dr) for
i+j<l—k—1. By Lemma 1.2, there are the representations

Eultd) Epltd)
Cu=¢ Y Tj!xﬁx‘;—i—v, r=¢ > Tj!ﬂx;‘f‘q,
i+j<l—k i+j<l—k—1

where E is the extension operator (1.3), 9], v € N;’U(D)3, and 9] q € J\/;_l’"(D) for j = 0,1. From the
properties of the extension operator E it follows that

Cu—veC (D), (p—qeCi (D),
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Therefore, —Av + Vg € Oy (D)3, -V -v € Cy (D), S*v ¢ C’f;rl"’(l"i)?”di7 and N*(v,q) €
C’(l;H’U(I‘i)di. Since v € N3°(D)? and ¢ € N} "7 (D), we have 92 (Vg—Av) = 0 on M for o] <1—k—2
and 02V -v = 0 on M for |a| < 1—k—1. Furthermore, 97STv =0 on M for j <1—k and 9N+ (v,q) =0
on M for j <I—k—1. We put

) = 8;13£2(Vq — Av)|M fori+j=1—k—1, ¢%) = —8;18:{2V . v|M fori+j=101—-k,
H* = 9L F18%y| 5, and ®F = 0L FN+(v,q)|as. Obviously f9), ¢h3) HE &+ belong to the space
COk+o=9()). By virtue of Lemma 1.2, we have

(&3 . (&.3) .
n(Vq—Av— Z Ej acix%)6/\/;71’0(1))37 n(V-v+ Z Elg _'J xﬁx%)eNg’o(D),

i1l 171
i+j=l—k—1 tJ i+j=l—k J
EH* _ - ot E®* _ - +
n(Siv— (1_k+1)lrl k+1) 6N§+1’ (0E)3-d* n(Ni(v,q)— (l_k)lrl k) ENg’ (T)d*

Since A = [ — k + 1 is not an eigenvalue of the pencil A()), there exist homogeneous vector-valued
polynomials U7#) (1, x5) of degree | — k + 1 and homogeneous polynomials P71 (z1, z5) of degree
l—k,np=1,234, i+j=1—k—1-0,4, satisfying the equations

) o i - i d
S 4 0y, POI) =5y S for v =1,2,2, VUG =6,y S
il gl

il gl

and the boundary conditions STU®7#) = 0, N*(U 3+ Pdi)) = 0 on I'F (see Remark 2.2). We define

3
V) = 3 Y USRI EEN@+ Y U@ (EBg)@)

p=1 itj=l—k—1 i+j=l—k—2
3

P) = Y > PUEOM@)EF) )+ D PEII) (B (x)
p=1 itj=l—k—1 itj=l—k—2

Then 7(U, P) € C5™7(D)? x C3° (D), nd4, (U, P) € Ny° (D) x Ny~ "7(D) for j = 0,1, S*U = 0 on I'*
n (AU —v) = V(P —q)) e Ny (D), V- (U-v)e N7 (D), nNEU,P)eN(TH).
For the last, we used the fact that nd,, Ef(0-9) e Nbo (D)? and 7d,, Eg) e Nb7 (D) for

S+l—k+1 +l—k+1
v=12,3.

Analogously there exist functions V and Q such that 7(V,Q) € C57"7(D)? x C57(D), nds, (V,Q) €
NET(D)? x NF17(D) for j = 0,1,

N(AV = VQ) e N~ (D), V-V e N;7(D)

nSEV —v) e NFHI(ITE), nNEV —0,Q —q) € Ny7(TF).
Applying Lemma 2.9 to the vector-function (U +V — v, P4+Q — q), we obtain x(U+V —v,P+Q —¢q) €
NI (D)? x N7(D), where x is the same cut-off function as in the proof of Lemma 2.9. The result
follows. 0
3 Solvability of the problem in a cone
Let d; € {0,1,2,3} for j =1,..., N. We consider the boundary value problem

—Au+Vp=f —V.-u=g ink,
SjU:hj, Nj(u,p):(bj on Fj, j:1,...,N7

~—~
N

13



where

u for d; =0, —p + 2epn(u) for d;j =1,
Sju=< u—up,n ford;=1, Nj(u,p) =< en(u) —epn(u)n for d; =2,
Un, for d; = 2, —pn + 2e,(w) for d; = 3.

We will prove that this problem is uniquely solvable in Céjg (K)3 x C}izg(lC) under certain conditions on
the data g, h;,¢; and on 3 and §.

3.1 Operator pencils

1) Let T'y, be the sides of K adjacent to the edge My, and let 6 be the angle at the edge M. We
consider the Stokes system in the dihedron D; bounded by the half-planes Iy, D 'k, with the boundary
conditions

Spou=hE N, (u,p) = ¢ on Ly,

By Ai(A) we denote the operator pencil introduced before Lemma 2.9 for this problem. Furthermore,

let /\gk) denote the eigenvalue with smallest positive real part of this pencil, while /\ék) is the eigenvalue
with smallest real part greater than 1. Finally, we define

O . .
e = { Re A} if dg, +di_ isodd or dp, +di_ is even and oy > w/my, (3.3)

Re A if dy, +dy_ is even and 0 < m/my,

where my = 1if dp, =dj_, my =2 if dp, # dy_.

2) Let p=|z], w=z/|z|, Vo = {u e WHQ)3: S;u=0o0n~; for j=1,...,n}, and
o((3)(5)N) =5
p q log 2
K
1<|z|<2

where U = pru(w), V = p~ 1" o(w), P = p* " Ipw), Q = p~2 A q(w), u,v € Vo, p,q € L2(Q), and X € C,
gi,;(U) = 5 (0:,U; + 0,,U;). The bilinear form a(-,-; ) generates the linear and continuous operator

Ql()\) : VQ X LQ(Q) — Vgi; X LQ(Q)

/QQl()\)< g)(z )dw:a(( Z )( g );A), w,v € Va, p,q € La(9).

3.2 Reduction to homogeneous boundary conditions

Lemma 3.1 Let hj € Né’;(ljj)?’_dj, ¢ € J\/’é}l’g(Fj)df, j=1,...,N,1>1, be given. Then there exists

a vector function u € ./\/'é‘g(lC)‘3 such that Sju = h; and N;(u,0) = ¢; on I';. The norm of u can be
estimated by the norms of h; and ¢;.

/ (2 23: Ei,j(U)'é‘i,j(V)*PV'V*(V'U)Q) dx,

ij=1

by

P roof. Let ¢, be smooth functions on (0,c0) such that

+oo
supp ( C (2871, 28, lagg‘k(p)’ <¢27%, and Z (= 1. (3.4)

k=—o00
We set
hiej(w) = Ge(2%|2]) by (2F2), ¢ j(x) = 2% Gu(2¥[]) (27 2).
The supports of hy ; and ¢y ; are contained in {z : 1/2 < |z| < 2}. Consequently, by Lemma 2.1, there
exists a vector function vy € ./\fé’;(lC)?’ such that vi(z) = 0 for || < 1/4 and |z| > 4, S;vx = hi; on
Nj(vg,0) =hg;onT;, j=1,...,N,

N
lorllyz o < € D2 (Mrsllato o + 190l o) (3.5)
j=1
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where ¢ is independent of k. From this we conclude that the functions ug(z) = vi(27%z) satisfy
Sijur(z) = Ce(|z]) gj(x), Nj(ur,0) = Cu(|z]) ¢j(x) on T'j, and the estimate (3.5) with (phj, (po; in-
stead of hy ; and ¢y ;, respectively. Thus, u = Y uy has the desired properties. O

An analogous result in C’lﬂ’fg (K) is only valid under additional compatibility conditions on the boundary
data. Denote by I'y, and I'y_ the sides of the cone K adjacent to the edge M} and by 6, the inner angle
at M. If u e C’l@’fg(lC) and 0 < [+ o, then the trace of u on M}, exists and from the equations Sju = h;
on I'; it follows that the pair (h;€+ |ng s Pk |Mj) belongs to the range of the matrix operator (S, ,Sk_).
This condition can be also written in the form

Afhi, |y, = Ay by | s (3.6)

where A, A, are certain constant matrices (see Section 2.1).
Using Lemma 2.4, one can prove the following result analogously to Lemma 3.1.

Lemma 3.2 Let h; € Clﬁ’;(Fj)3_di, ¢; € C,l@jél’o(Fj)dj, f e C’/l@’_f’U(IC)g, and g € C,g;;l’”(lC), where
1>1,0<6 <l+o0, 0 —0c not integer for k = 1,...,N (in the case | = 1 the condition on [ can
be omitted). Suppose that the boundary data h; satisfy the compatibility condition (3.6) and that in the
case 0, < I — 1+ o the functions g, hy, , dr,. satisfy the compatibility conditions given in Lemma 2.3.
Furthermore, we assume that the numbers 2,3, ..., [l+ 0 — 0] do not belong to the spectrum of the pencil
Ap(X) if 0 <1 —2+4 0. Then there exists a vector function (u,p) € CEE(K)?’ X 0[137—61,0(,0 satisfying

Sju = hj, Nj(uap) = ¢j on F_]7 .7 =1,....n, Au—Vp—i—f € N[lj:52’o-(lc)3, VU-I—g EN[{}:;LU(K:) (37)
The norms of u and p can be estimated by the norms of f, g, h; and ¢;.

Note again that the condition of Lemma 2.3 is always satisfied if dy, 4+ dx_ = 3 and sin(26) # 0 or
di, +di_ € {1,5} and cos 6}, cos(260;,) # 0. For even dj, + dj,_, one can find explicit conditions on gz, ,
hiy |1, » and ¢, |ar, for different combinations of boundary conditions on I'y, and I'y,_, see Remark 2.1.

3.3 Regularity result for solutions of the boundary value problem

Lemma 3.3 Let (u,p) € W25 (K\S)? x WL5(K\S) be a solution of problem (3.1), (3.2) such that

loc loc

N —l—0o N ro(x k—l+1—0
sup o= TT ()™ o) +-sup ka1 T (Z2)™ 7 e < ox.

el L\ z]

Iff e NG (K3, 1> 2, g € Ngio(K), by € NGGIT,)3%, ¢ € Ngm7(Ty)%, j =1,...,N, then
u € Né’%(lC)?’ and p € Né}l’U(IC).

P roof DuetoLemma 3.1, we may assume without loss of generality that h; = 0 and ¢; = 0. From
Lemma 2.7 it follows that (u € N, é”‘;(lC)3 and (p € N, é:sl’”(lC) for every smooth function ¢ with compact
support vanishing in a neighborhood of the origin.

Let p be a positive integer, K, = {x € K : p/2 < [z| < 2p}, and K, = {z € K : p/4 < |z| < 4p}.
Furthermore, let @(z) = u(pz), p(z) = pp(px), f(z) = p? f(px), and §(z) = pg(pz). Then —Au+Vp = f
and —V-u = ¢ in K. Moreover @ and p satisfy the homogeneous boundary conditions (3.2). Consequently,
by Lemma 2.7, we have

||ﬂ||/\[év;(;c1)3 + ||I5||N[l;51’0(;c1) < c (”f”/\féjf«d(;cl)s + ”g“N},f;’”(K;)

+ l[allng

B—l—0,6—l—0

e+ WBlng v s en) (39)

with a constant ¢ independent of u,p and p. Here the norm in ./\/’ég (K,) is defined by (1.6), where K has
to be replaced by K,. Since

~ _ l4o-p
HUHN[g:E(Kl)s =p 4 ||u||Néfs(’Cp)3’
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we obtain an analogous estimate for the norms of u and p in N é’[{;(le)?’ and N, é}l’U(ICp), respectively.

Here, the constant c is the same as in (3.8). The result follows. U
In the same way, the following two lemmas can be proved using Lemmas 2.8 and 2.9.

Lemma 3.4 Let (u,p) € W2 (K\S)>x W5 (K\S) be a solution of problem (3.1), (3.2). Suppose that u €

loc loc
l—1,0 1—2,0 1—2,0 l—1,0 l,o —d; l—1,0 .
05—11,5—1(76)37 pe 05—21,5—1(K)7 fe 05,52 (K)?, g € 05,51 (K), h; € C55(T;)° 4, ;€ Cﬁ,al (Ty)%,

where 1l > 2,6, > 1 fork=1,...,N,0< o <1. Then (u,p) € C'lﬂ’fg(lC)g X C'lﬁ)_gl’o(lC).

Lemma 3.5 Let (u,p) be a solution of problem (3.1), (3.2) such that (pd,)’ (u,p) € C’é’%(IC)‘3 X C’é’_gl’a(lC)
for 7 =0,1, wherel >2,0< 0o < 1. If

FeCi (K, geCy5(K), hyjeCil (L)%, ¢;eChsry)™,

j=1,...,N, and the strip l + 0 — 6 <Re A <1+ 1+ 0 — § does not contain eigenvalues of the pencil
Ar(N), k=1,...,n, then (u,p) € C’Erél’g(lC)?’ X Clﬂ’:;(lC).

3.4 Estimates of Green’s matrix

We denote by V!(K) the weighted Sobolev space wit the norm

_ o o 1/2
vy = ([ 3 laPe i ogu(o)l ds)

o] <1

A matrix G(z,€) = (Gi7j(z,§))jj:1 is called Green’s matrix for problem (3.1), (3.2) if

—8,G5(w,€) + VoGaj(@,8) = 8(z — €) (015,025, 055)" for 2, €K, (3.9)
V.- Gj(x,8) =64, 0(x — &) forz,& €K, (3.10)
SkGj(2,6) =0, Ni(0y) (Gj(2,6),Gaj(2,6)) =0 forzely, E€K, k=1,...,N. (3.11)

Here éj denotes the vector with the components G1 ;, G2 ;,G3 ;.

Suppose that the line Re A\ = —x — 1/2 is free of eigenvalues of the pencil 2(\). Then, by [22, Th.4.5],
there exists a unique Green matrix G(z,§) such that the function z — ((|x — £|/r(§)) Gi ;(x,&) belongs
to VI(K) for i = 1,2,3 and to V?(K) for i = 4, where ¢ is an arbitrary smooth function on (0, 00) equal
to one in (1,00) and to zero in (0, 1).

We denote by A_ < ReA < Ay the widest strip in the complex plane which is free of eigenvalues of
the pencil 2(\) and which contains the line Re A = —x — 1/2. Furthermore, we introduce the following
notation.

Okio =min(0, g — |o| — ;4 —€),  04o(x) =min(0, uy — || — ;.4 —€)

Here ¢ is an arbitrarily small positive real number, p1, = fix(,), and k(z) is the smallest integer & such
that r(x) = ri(z). For the following theorem we refer to [22, Th.4.5,Th.4.6].

Theorem 3.1 Let G(z,&) be the above introduced Green matriz. Then for |x| > 2|¢| there is the estimate

aav Al —68;4—alte “A_—1-6;4—|y|—¢ il ’I“;g(x) Ok,i,a N Tk(g) Ok,j,y
0207 G y(@,9)| < el €l 1) I (%)
k=1

o) U
For |€] > 2|z| we have
N

e Ay =bia—|al—c |¢|=Ap—1=65a—|v]+e T (2) \ Oksia a WACIANEER
0207 G (@, 9)] < el €l ) I (5

A L
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while for |z|/2 < |£| < 2|z| the estimates
0207 Gy j(2,€)| < cle—&7T71Mif |2 — ¢| < min(r(2), r(€)),

T, (T) 7j,~(§)
0200 (2,6)] < cla — g -T—olh (Jfg) (|;(f)€|) if |2 — €] > min(r(z), r(€))

are valid, where T' =1+ 0;4 + 0j.4. Furthermore, for i =1,...,4 there is the representation G; 4(x,§) =
—Ve "ﬁi(l',f) + Q;(z,§), where 'ﬁi(l',f) n=0 for £ €Ty, x €D, and P; and Q; satisfy the estimates

1050 Pi(, )| < Cay |z — &7 07100119207 i, €)] < cay r(€) 2 eI
for |z — ] < min(r(z), r(£))-

Remark 3.1 For derivatives with respect to p = |x| there are the sharper estimates

oy A —1—6samlalte (oA —1—8; 4—|y|—= N ri () okise N 75 (§) \ 7k
10,0007 G5(, )| < cla] €] IT(%2) I (%) ™

AT
N N
ey Ne—dualole (g -Ap-1-dyamiee TT (M@)o T (TR
0p0507 G, )] < claf 67 " H( o) H( )

if |¢] < |z|/2 and |£] > 2|z, respectively. For |z|/2 < [£| < 2|z, |x — &| > min(r(x),r(£)), the estimate

ﬂ)m’a(m) ( r(€) )Uj,w(f)

0,000 G s (1, €)| < ¢l — €[ ~T—1-lal=h]
A e Gij( O <clz—¢ (|$—§| g

is valid.
3.5 Representation of the solution by Green’s matrix
Suppose that f € Ng:g(/C), g€ Bljg(IC), where 3 € R and 6 = (61,...,dx) € [0,00)"V are such that

2 —pp <0 —o <2, O — o notinteger for k=1,..., N, (3.12)
A_<2+4+0-0F<Ay. (3.13)

Here A4, A_ are the same numbers as in Theorem 3.1. We consider the functions
3
we) = 3 [ (5O +090) G de+ [ 9O Cuate e =123 (314
j=1

3
pa) = —a@+ Y [ (5O +0,9() Guyle.Ode+ [ 00 Gralw e (319)

The vector-function (u,p) is a solution of problem (3.1), (3.2) with h; =0, ¢; = 0 (see [22, Th.4.5]). Let
X be an arbitrary smooth cut-off function on [0, 00), x(t) = 1 for ¢ < 1/4, x(¢t) =0 for t > 1/2. We put

[z — ¢l
r(x)

Then xT(x,£) =0 for |z — &| > r(x)/2, x (z,€) =0 for |z — &] < r(x)/4, and

V@8 = x () X T@, =1 - xF(@,9).

02X (2,6)] < er(a) 1
with a constant ¢ independent of z and £. We write v nd p in the form

u=ut+u, p=p"+p,
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3
) = Y /’C (£5(6) + B, 9(6)) X* (. €) Gy (x, €) dE + /,< 9(6) x* (2.6 Cral ) d, (3,16

j=1

3
pi(x) = gT z_:/ fJ +6§3 (g)) Xi(xag) G4,j(‘r’§) d§+/’Cg(§)Xi($,§) G4,4(£a§) df

(3.17)

3.6 Weighted L, estimates for ut, p™

We consider the functions v+, p™ defined by (3.16), (3.17), where G(z, £) is the Green matrix introduced
in Section 3.4.

Lemma 3.6 Suppose conditions (3.12), (3.13) are satisfied. Then for arbitrary f € ./\/:g:g(IC)3 and g €
Ng:g(lC), there are the estimates

N 9o 3

P20 U (TTQ(;”)) e ; |u ()] < ¢ <||f||N§:§’(ic)3 + ||9HN§,’§’(K))’ (3.18)
N S o

e ] (TTx‘ ) - (Z 00t @)+ 57 @)]) < e (10 + lallatz e ) (3:19)
k=1

P roof We have |0, u) (v)] < A+ B, where
3
A= S| [ (000 + 06,06 20, (v 0:6) G, 6)) e
j=1

B =

0. [ 9" .6 Gua(an ]

On the support of x* there are the inequalities |z|/2 < |¢| < 3|x|/2, ri(z)/2 < ri(€) < 3ri(z)/2. This
together with Theorem 3.1 implies

N
o T (T)\ 7 _
A < el (2 ) (Mg s+ 190l 0) [ el
=1 |e—&|<r(x)/2

N
. i)\ o =oe+
< el IT(7T) (g oo +198llns_ )
k=1

Using the representation G; 4(x, &) = =V Pi(z, &)+ Qi(x,£) in Theorem 3.1 and the properties of P;, Q;,
we obtain

B = |o, /}C (9(6) (Tex* (@,€) - Palw, &) + Qilw,€)) +x* (2,€) Veg &) - Pilw,€) ) ]
N
o—fB+1 Ty () \ ook H -3
< el IL(T) T Mol s r(a)*dg
=t lo—¢|<r(z)/2
N
o—8 rp(z)\ 70 —2
el TL(FT) 199l 00 IS
=t o —€]<r(x)/2
o—0k+1
< clorH H( = 2 e (P e L (e §
This proves the desired estimate for Vu. Analogously, the estimates for v and p hold. d
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3.7 Weighted L., estimates for the derivatives of u=, p

Next we show that
o+l max(0,5.7270+\a|) o —
2027+ ‘H( m : 020 @) < e (Iflyorep +lolnien) — (3:20)

and

max(0,0,—1—o+|al) o —
) |0¢p~(2)] < ¢ (||f||/\/0 oy T ||9||N1 ”(IC)> (3.21)

|| P—1- ”HO"H( =
X

for an arbitrary multi-index . For this we need the following lemmas.

Lemma 3.7 Let f € ég(K) and

/ K (. €) £(€) de,

K
1€l<|z]/2

where the kernel K satisfies the estimate

N
K (,)] < efaf- e g1t T (DLt E’H(

1)

)mln (0, —t—¢)

€]

with nonnegative integers s,t. Suppose that (3,6 satisfy conditions (3.12), (3.13). Then

N
ot T'k(x) max(0,0, —2+s—0)
a2 T () [o(@)] < ¢l g

Pt |$| B—t—0c,6—t—0

0 (3.22)

with a constant ¢ independent of x.

P r oo f. Obviously

A_—s+e a Tk(x) min (0, —s—e)
@) < el T (1) I I—
k=1

N .
A 1o r é‘ min(0,pur —t—e)—dp+t+o
<[l “TT (25 € B2
k=1

€l
K
GREE

From the conditions on 3 and § it follows that —A_—1—3+0c > —3 and min(0, ux, —t—¢) = +t+o > —2.
Hence the integral on the right-hand side of (3.23) is equal to c|z|~A-+2-#+o==_ Therefore,

et TT (Th(@) MR OH—s)
[o(@)] < cfal~#+2ste TT (B2) 1l

|x| B—t—oc,6—t—0o
k=1

(K)

Using the inequality min(0, pur — s —€) > min(0,2 — 0y, + 0 — s) = —max(0,d; — 2+ s — o), we obtain the
desired estimate for v. O

Analogously, the following lemma can be proved.

Lemma 3.8 Let f € Nﬂt‘g(lC) and



where the kernel K satisfies the estimate

N N

|K($a§>| < C|x|/\+—s+s |£|—A+—1—t—e H (’I"k(x))min(o,ﬂk_s_e) H (Tk(g)
k

H L\

) min(0,u,—t—e)

with nonnegative integers s,t. Suppose that 3,0 satisfy conditions (3.12), (3.13). Then (3.22) is valid
with a constant c independent of x.

Note that the functions 909G, ;(x,€) satisfy the assumption on the kernel K in Lemmas 3.7 and
3.8 with s = |a| + d;4, t = J;4. For the proof of an analogous estimate for the integral over the set
{r e K: |x|/2 < |¢] < 2|z|}, we need the following lemma.

Lemma 3.9 Let D be a dihedron, x € D and R > r(x)/4. Then

/ v — &7 7€) 0 dE < e R0 ifa+6<3, §<2, (3.24)
D
r(z)/4<|z—&|<R
[ lemdrer@d s R pasasa s< (3.25)
D
le—¢[>R

Here the constant c is independent of x and R.

P roof. 1) We denote the left-hand side of (3.24) by A. Substituting z/r(z) = y and &/r(z) = n, we
obtain

A= r(z)tod / ly — =% r(m) % dn,
D
1/4<|y—n|<R/r(x)

where 7(y) = 1. Obviously the integral

/) ly —nl~*r(n)~"dn
D
1/4<|y—n|<2

is finite and can be estimated by a constant independent of y. We denote by y* = (0,0, y3) the orthogonal
projection of y onto the edge M. Then, for 2 < |y —n| < R/r(x), we have 1 < |n — y*| < 1+ R/r(z),
2|n —y*|/3 < |y — n| < 2|n — y*| and, therefore,

=i an<e [ ey =) < e (o
2<ly—n|<R/r(=z) 1<|n—y*|<1+R/r(x)
This proves (3.24).
2) If § <0, then a >3 and r(§) 2 <c(r(z) °+ |z —&7°) <c(R°+ |z — &%), and

/ o — €7 r(€) P dg < e / (| =€~ R +]o — €7*70) de < e R* 7.

|z—&[>R |z—&|>R

Let 6 > 0. Then

/ |z =& r(€)’ds < c / |z — €70 de < e R3O0,

D D
r(§)>le—¢I>R le—¢|>R
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If [z —¢&[ > r(§) > R, then [{ —a*| > 7(§) > Rand [{ —2”| < [ =& |+ — 2™ < r(§) + [ —a] <26 —xl.
Here again z* = (0,0, z3), & = (0,0,&3) denote the nearest points to 2 and £ on M. Therefore,
/ lw — &7 r ()0 dé < c / |€ —a*|7r(& —2*)70de < e R3O0,
D D
lz—¢[>r(&)>R l¢—z*|>R

Finally, since 2|z — £| > R+ |z3 — &3] for | — €| > R, we obtain

+oo R
/ o =& r(g)_é d§ < c/ (R+ |23 —§3|)_a dgs / 1= dr = ¢ R3~279,
e 0

D
lz—¢|>R>r(£)

This proves (3.25). O
Lemma 3.10 Let f € ég(lC) and
W= [ K@

K
lz]/2<|¢] <2|x]

where K (x,€) vanishes for |x —&| < r(x)/4 and satisfies the estimate

(z) \min(0.us—s—e) (&) \min(0pe—t—e)
|;f§\> ! (|;Z—g|) o

with nonnegative integers s, t. Suppose that § satisfy condition (3.12). Then (3.22) is valid with a constant
¢ independent of x.

K (2,6)| < ¢z — g1t (

P r o o f. Obviously,

N o+t—0k
()] < clzl”T 2 £l / O] ( €] ) " d¢

i k=1
lz]/2<|€|<2]x]

(here by |lfll, we mean the NJ 5—t—o5—t_o-norm of f). If r(x) > |z[/2, then |z[/2 < ry(x) < |z| for
k=1,...,N and |z|/8 < |z — ¢| < 3|:I:| for all £ € K satisfying the inequalities |z|/2 < |£| < 2|z|,
|z —¢| > 1"( )/4. This implies

v(x clz|~t-Bste
@) < clel 191 / H(|£|

|$|/2<|£|<2\w|

dg

>J+t76k+min(0,uk7t75)

Since o +t — 0 + min(0, u, —t — €) > o — o > —2, it follows that

N
—max(0,0, —2+s—0)
(o)) < elef P-4 1] < elaf~o+ 7 T] (*5) -
T
k=1

This proves (3.22) for the case r(z) > |z|/2.
Suppose now that r(x) = r1(z) < |z|/2 and f(€) = 0 for r1(§) < 2r(£). Then there exist positive
constants ¢y, co such that

. N
’I"(I’) min(0,puy —s—e) min(0,ur—s—e)
crlel <fe—g <3l (1 g) H( = 2
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for £ € supp K(z,) f, |z|/2 < |€] < 2|z|. From this and from the inequality py > 2 — 0 + o we conclude
that

sio Tk min(0,ur—s—e)
p(@)] < ela| 1A ||an( )
k=
N .
o4+t—08+min(0,pur —t—e)
<[ I e
€]
|T|/2<|£|<2\x|
N .
f—sto ’I"k({E) min(0,2—s—d;+0)
< el T (7))
k=1

what implies (3.22).
Next we suppose that r(z) = r1(z) < |z|/2 and f(§) = 0 for r1(£) > 3r(£). Then there exist positive
constants ¢y, co such that

min(0, e —t—¢ min(0,1; —t—¢) N o+t—0 o+i—61
(g(—g)f) v )Scl(ﬁ{%) REIC € D SC(TTS)) .

k=1

for £ € supp K (z,-) f, |=|/2 < |£| < 2|x|. Thus,
W@ < clal (@m0 | 1)

% / |J? - §|71787t7min(0,/,1,17376)71‘(1111(0,#171576) - (§)a+t761+min(0,u17tfe) df, (326)

x

where K, denotes the domain {€ € K : |z|/2 < [§] < 2|z|, r1(§) < 3r(§), |z — & > r(x)/4}. Let
d1 — o > 2 — s. Then according to (3.12), we have
—1—s—min(0,uy —s—e)+0—06 =—-3+max(2—s,2—p +¢)+0—d < —3.
Hence, using (3.25) with R = r(x)/4, we can estimate the integral on the right of (3.26) by
e ()2 s IO —s—e)+o 6y

what implies

(@) < el ra(e)? 8o ] = elaf oo () 1111
If2—p <6 —0<2—s,then —1—s—min(0, 4y —s—¢)+0—38 = —1—s+o0—05; > —3. Consequently,
using (3.24) with R = 3|z, the integral on the right of (3.26) can be estimated by c|z|>~% 5+ from
what we obtain

) 2—61—s+o

(@) < el ] = a2 (1)

>min(0,2—61 —s+o0)
||

171l

Thus, both in the cases 1 —o > 2 — s and §; — o < 2 — s, the estimate (3.22) follows.
It remains to note that every f € Nt '3 () can be written as a sum f = fi + fa such that fi(§) =0
for r1(&) < 2r(&), f2(£) =0 for r1(£) > 3r(£) and

Il f1llaro o) + 12l

Bta&ta B—t—o,6—t—0o

) < cllfliae

,37t70,57t717(

K)

This completes the proof. O

Theorem 3.2 Let [ € Ng:g(lC) g € ﬂé(lC), and let (u=,p~) be defined by (3.16), (3.17), where
G(z,&) is the Green matriz introduced in Section 3.4. Suppose that (3, 0 satisfy conditions (3.12) and
(3.13). Then u™, p~ satisfy (3.20), (3.21).

P roof. It is sufficient to note that K (z,&) = 82 (x ™~ (z,£)Gi ;(,€)) satisfies the conditions of Lemmas
3.7, 3.8 and 3.10 with s = || + 0;.4, t = d;,4 for |&] < |z|/2, |£] > 2|z| and |z|/2 < |{| < 2|z|, respectively.
Hence, the result follows immediately from the representation of =, p~ and from Lemmas 3.7, 3.8 and
3.10. 0
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3.8 Holder estimates for u=,p~
Let K, ={z € K: r,(x) <3r(x)/2} forv=1,...,N.

/Kx£ ) de.

We assume that (3,6 satisfy conditions (3.12), (3.13), K(z,§) vanishes for |x —&| > r(z)/4 and that the
estimates

Lemma 3.11 Let f € ég(lC) and

05K (x, €)]|

IN

min(0,pue —t—e)
el — g5t (EIN™ T for kol < < 2lal, s =0,

A k A Al 7 (&) \ min(Opn—t=e)
claf A kete g At TT (T2 for @ € Ky, [¢] < 3lal/4,

10, (2,€)]
. g

IA

N .
r min(0,ur —t—e)
0K (@) < eleft R g hemite T Tg(f)) forz €Ky, Il > 3lal/2
k=1

are valid, where k, =1+ [§, — o] and p = |x|. Then there ist the estimate

s, o(@) = v(y)]
ol e el Lo (3.27)

forx e Ky, y=71x,4/5 <71 <5/4, |x —y| > r(z)/4, where ¢ is independent of f,xz,T.

Proof Letx e K, andy =17z, 4/5 <7 <5/4, |x —y| > r(r)/4. Then 4|z — y| < min(|z],|y|). We
have |v(z) —v(y)| < A1 + As + A3, where

A = / K (x.€) f(€)] de, Ay = / K (4.€) F(6)] de.

c c
[§—z|<2]|z—y| [E—z|<2|z—y|
Ay = / (K (2,€) — K(,)) £(6)] de.
|£—I\>/CQII—y\

From |z — &| < 2|z — y| < |x|/2 it follows that |x|/2 < |¢] < 3|x|/2. Therefore,

. o N .
() e ﬁ/\x g3ty ( r() ‘> (Opg—t—e) ]___[ (rTéf))H 5 k.
k=1

|z —

Ar < el fllag

B—t—0,6—t—0

where the domain of integration is contained in the set of all £ € K satisfying the inequalities |z|/2 <
€] < 2|x|, r(x)/4 < |z — €] < 2|z —y|. Since ky, + 0 — 6, > 0 and min(0, pup, —t —€) +t + 0 — 0 > —2,
by virtue of (3.24), we obtain

Ar <cl|fllao

=B | _ 4|7 —0v+ky
B—t—oc,6—t—o0o |:I; yl :

(K) |z

Analogously, this estimate holds for As. For the proof, one can use the fact that [£ — x| < 2|z — y| implies

€ —yl <3|z —y| and [y|/4 < [¢] < 2ly].
We consider the expression A3. By the mean value theorem, there is the inequality

where Z is a certain point on the line between z and y, i.e. 4|x|/5 < |#| < 5|z|/4. Hence,
Mzlo-yl [ 0K O]

K
[E—z|>2[z—y|
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Here, for the integral over the set of all £ € K such that |£| < |z|/2, we obtain

/ 0,K (%, €) f(£)] d¢

n t+¢7—5-+min(0,# —t—¢)
S e el | ) B
B—t—o,5—t— o’ . |§|
<clflag, ., oo lzl77PHEt

The same estimate holds for the integral over the set of all £ € K such that |£| > 2|z|, while for the
integral over the set of all £ € K satisfying |z|/2 < |£| < 2|z| and |§ — x| > 2|x — y| we have

/ 0,K (%,€) f(£)] d¢

B t—ob—t—ol Ky lz[t+o=7 /Ix gl Atk <|T(§)§|>min(07ug—t €) ﬁ< ‘§| )t+ﬂ—6k "

<c|fllao
k=1

< cllfllarg ) el 7P o =yl

Htaéta

Here, we used the inequality |z — £|/2 < |Z — &| < 3|z — £]/2 and the estimate (3.25) with R = 2|z — y|.
Thus, we obtain

Ay < elflwe, o, oo le =yl (|7 PRt o] 7P o — |70 e
< cllfllve, s, oo |2l o=yl
This proves the lemma. .

Theorem 3.3 Let the condition of Theorem 3.2 be satisfied. Then u~ € C’;:g(IC)‘?, p- € C’é:g(/C), and
there is the inequality

lulleza g + 107 lonr ey < € (I llvor s + l9late ) (3.28)

38,5
with a constant ¢ independent of f and g.

P roof. According to Theorem 3.2, the vector function u~ satisfies (3.20). We show that

5o () - o= ()
‘x'ﬁﬂ( ) O L O < (1 + ol 10) (3.29

for || =2, | —y| < r(z)/2. By the mean value theorem, we have

0%u(x) — 0%u(y) = (x —y) - VO“u(Z),

where & = x + t(y — x), t € (0,1). Furthermore, for |z — y| < r(z)/2, there are the inequalities
lz]/2 < |Z| < 3|z|/2, rj(x)/2 < r;(Z) < 3rj(x)/2, j=1,...,N. From this and from (1.5) it follows that
ok |00u™ (x) — 9w~ (y)|
6] x Yy < Jé] 1—0o Vo%u
a H( = 2y Ea—" < Jal H( D) () = [V ou(@)
i1 N (%) \ o —1to .
< cl@fHi-e i
< el II(RE0) T Ivotu@)

el
for |ao| = 2. This together with (3.20) implies (3.29). Analogously, the estimate

|05 u” (2) — 95w (y)]

5_61/
|-T| |$ _ y|kl,+o—51, <c (Hf”j\[g;’(;c)s + ||g||Né’g(’C)> (330)
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holds for || =2 -k, =1—[6, — 0], 2,y €Ky, |t —y| <r(x)/2,v=1,...,N.
Next we prove that (3.30) is valid for |o| = 2—k,, z € K, y = 7|z|, 1/2 < 7 < 3/2. For |[z—y| < r(z)/2
this is already shown. For 1/2 < 7 < 4/5 or 5/4 < 7 < 3/2, the left-hand side of (3.30) does not exceed

c (|x|ﬁ7"7k”

o™ ()] + Iyl o5 ()] )

and can estimated by means of (3.20). For |z —y| > r(z)/2, 7 € (4/5,5/4), we may refer to Lemma
3.11, since K(z,&) = 0% (x~ (2,£) G j(,€)) satisfies the conditions of this lemma for |a| =2 — ;4 — k,
t =04, kv <2 —0;4 (see Theorem 3.1, Remark 3.1).

Hence, the norm of v~ in C’;”‘(;(IC)3 is majorized by the right-hand side of (3.28). Analogously, the
desired estimate for p~ can be proved by means of (3.21) and Lemma 3.11. The proof is complete. [

3.9 Solvability in C5§(K)® x C55(K)

Theorem 3.4 Let f € C’g:g(KP, g e Cé:g(lC), hj € C’g:g(Fj)3_dj, ¢ € C’é:‘;(Fj)dﬂ, j=1,...,N, where
d satisfies condition (3.12) and B is such that the line Re\ = 2+ o — 3 is free of eigenvalues of the
pencil A(N). Suppose that the boundary data h; satisfy the compatibility condition (3.6)and that in the
case 6 < 1+ o the functions g, hy, , pr. satisfy the compatibility conditions given in Lemma 2.3. Then

problem (3.1), (3.2) has a unique solution (u,p) € C’g:‘;(lC)?’ X C’ég(lC)

P r o o f. Due to condition (3.12), we have uy > 2 if §; < o. This means, the number A = 2 does not
belong to the spectrum of the pencil Ag(A) if dy < o. Hence, Lemma 3.2 allows us to restrict ourselves
in the proof to the case f € Ng:g(K)B, g€ é:g(/C), h; =0, ¢; = 0.

Let x be an arbitrary real number such that the closed strip between the lines Re A =2+ ¢ — 5 and
Re A = —k —1/2 is free of eigenvalues of the pencil 2(\), and let G(z, &) be the Green matrix introduced
in Section 3.4. Then condition (3.13) is satisfied. We consider the vector-functions (u™, p™) and (u=,p™)
defined by (3.16), (3.17).

By Theorem 3.3, the vector-function (u~, p~) belongs to the space C’;:g(le’ X C’é:‘g (K), while (u™,p*)
satisfies the estimates (3.18), (3.19). From the definition of =, p~ and from the equation

_AzGi,j(xag) + amiGﬁl,j(xvg) = 51',]' 6(x - g)a 1= ]-7 27 37

it follows that
1 3
— A (2) + 0o, p” (2) = =5 0n,9(2) = D / (£5(€) + 0e,9()) Ki j(,€) dé — / 9() Kia(x,€) dt,
=YK K

where

K@j(df,f) = Gi,j(xvg) Aacxf(%ﬁ) + vaGi,j(‘rag) : vxxi(zaf) - G4,j(xv§) axixi (1‘,£)

The functions K; ;(x,§) vanish for |z — £| < r(z)/4 and for |z — &| > r(x)/2 and satisfy the estimate
00K j(2,6)| < car(a) ?7lol=00s

with constants ¢, independent of x and £. Consequently,

05 [ (5 +0e,0(€)) Kyl €) ]
K

N o—0k
<ellfy 0l oo e TT () [ Joeio o] ae
k=1

]

B N C N
<cllfy+0u9lng ., oo lal I1(".)
k=1
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for arbitrary multi-indices «, j = 1,2, 3, and analogously

N

B la re(x)\ o0k —lal

o8 [ a(6) Kualo € de] < cllaly ool 1o I (P
k=1

Thus, —Au™ + Vp € N}, 541_0(K)? CNGT(K)? and

| —Au™ + Vp”/\fg:g(icw <c (||f|\/\/g’a(;c)3 + HQHN;:S’(;C))-

.6

Analogously, we obtain V - u~ € g:g’(lC), Sju~ = 0 on I'; and Nj(u=,p~) € ;:g(I‘j)dJ‘. Since

(u,p) = (™ +u~,p* +p7) is a solution of problem (3.1), (3.2), it follows that

—Aut +Vpt = f+Aum —VpT e Ng(K)?, —V-ut =g+ V-u € Ng7(K),

SjU+|FJ‘ = Oa Nj(u+7p+)|1—‘j = 7Nj(u77p7)‘1—‘j € Nﬁljg(rj)a .] = 17 cee 7N'
Applying Lemma 3.3, we conclude that (u™,p™) € g:g(lC)?’x ﬁlg(lC) and, therefore, (u,p) € C’;:‘g(IC)3 X
C’ég(lC) This proves the existence of a solution.

We prove the uniqueness. Let (u,p) € C’é:g(lC)?’ X C’é‘;(IC) be a solution of the homogeneous problem

(3.1), (3.2), and let x be a smooth cut-off function on K equal to one for |z| < 1 and to zero for |x| > 2.
Furthermore, let 3’ = 3 — o — 3/2 and ¢}, be real numbers such that max(0,d — 0,2 — pug) —1 < J;, < 1.
We denote by Wé 5(K) the weighted Sobolev space with the norm

—l+]a - r (.’E) 20k « 1/2
lullws, o) = (/K 3 a2 |>kUl(Tx|) 0u(a)? dx)

| <t

and by Wé:sl/z(l‘j) the corresponding trace space. Then x(u,p) € Wj,,  5(K)? x W3, 5(K) and
(1= x)(u,p) € Wj,__ 5(K)*> x W}, __ 5/(K), where ¢ is an arbitrary positive number. Consequently,

—A(xu) + V(xp) = Alu—xu) — V(p—xp) € W

ﬂ/_575'/ (IC)B

and analogously, V - (xu) € Wg,__ 5(K), S;(xu) = 0, N;(xu, xp) € Wg,/iﬁ, (T';). Applying [23, Th.3.3],
we obtain x(u,p) € WBQ,_&(;, (K)? x Wﬁl,_&é, (K) if e is sufficiently small. Hence, u € W,azug g,(IC)?’ X
Wé/_&g/ (K) and [23, Th.3.2] implies u = 0, p = 0. The proof of the theorem is complete. O

Theorem 3.5 Let (u,p) € 02}75/, (K) x C’é’,j‘;, (K) be a solution of problem (3.1), (3.2), where

0, 0,0’ 1, Lo’
fe g3k’ nCy%(K)?, ge Cys(K)nCyl (K),
2, —dj A 2.0 —d; 1, P~ Lo »
hj € Cas(T;)> 4 NC% ()%, ¢ € Cgi(L;)% NCg% (D)%,
We suppose that oy, 0), are nonnegative numbers such that 0 — o and 6}, — o’ are not integer and

2—pp <0 —0<2, 2—pp<6&,—o <2

fork=1,...,N. Furthermore, we assume that there are no eigenvalues of the pencil A(N\) in the closed
strip between the lines ReA = 2+ 0 — 8 and ReX = 2+ o' — ' and that g,h;, ¢; satisfy the same
compatibility conditions as in Theorem 3.4. Then (u,p) € C’é:g(IC)S X Cé’g(IC).

Proof. 1) Let first 6 = ¢’ and 0 = o’. Then analogously to Lemma 3.2, there exist v € C;ZZ(IC)?’ N
C;}i;(IC)?’ and ¢q € 01137; Kyn C’é}% (K) such that

Av—Vq+ feNJIKPANGGK),  V-v+geNyT(K)NNG5(K)
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S;v = h; and Nj(v,q) = ¢; on I';. Therefore, we may assume without loss of generality that f €
Ng:g(lC)3 ﬂNO,’is(IC)?’, g € Ngg(lC) ﬂNl}ig(/C), h; =0, and ¢; = 0. Then, as was shown in the proof
Theorem 3.4, the solution (u,p) € CQ’,‘,T(;UC) X C;,;%(IC) is given by (3.14), (3.15), where G(z,&) is the
Green matrix introduced in Section 3.4 with k = § — o —5/2. However, the uniquely determined solution
in C’;;g(lC)g’ X C’é:g(lC) has also the representation (3.14), (3.15) with the same Green matrix G(z,§).
This proves the theorem in the case § = ¢, 0 = o’.

2) By Theorem 3.4, there exists a unique solution (v, q) € Cé’g (K)? x ng(lC) of problem (3.1), (3.2).
We put ¢” = min(o, 0’), §;, = max(dy — o + 0”,8;, — o’ +¢”,0). Then

(U,p) € C;fa-‘ro”,é”(lc)g X C,[li’fa+a”,6” (IC)7 (Uv Q) € 02;(:0’+U”,5”(IC)3 X C,[li’;(:o’-&-o”,é”(lc)'

From the first part of the proof and from Theorem 3.4 it follows that (u,p) = (v, q). O

3.10 Solvability in Cg%(K)? x Ch47(K)
Theorem 3.6 Let (u,p) € 02}75/, (K) x C’é}%’, (K) be a solution of problem (3.1), (3.2), where
feC P K NCY%(K), geCh(K)nCy (K),
hj € CHFIT;)* 5 N O35 (T;)P%, g5 € Ol b7 (D)% N Ch% (D)%,
We suppose that oy, 0), are nonnegative numbers such that 0, — o and &), — o’ are not integer and
l—pp <0 —o<l, 2—pp<6d,—0o <2.
Furthermore, we assume that there are no eigenvalues of the pencil A(N) in the closed strip between the

lines Re A =1+0— [ and Re A =2+ 0" — ' and that in the case 6, <1 —1+ 0 the data g, hj,¢; satisfy

the same compatibility conditions as in Theorem 3.4. Then (u,p) € C’é%(/C) X C;{(;l’a(lC).

Proof. 1) Suppose that | —2 < §, <l+o for k=1,...,N. Then

0, 3 1, 2, 3—d, 1, d
FE€C a5 112(D) 9€CE 05 115(D), hj € C5% s s 140(T5)"7 %, 65 € C5% 05 10T,

and Theorem 3.5 implies (u,p) € C’;sz’éflJrQ(D)3 X C’éflﬁ’éfl”(])). Using Lemma 3.4, we obtain
(u,p) € C55(D)® x Ch 7 (D).
2)Let l—m < 0p <l—m+1for k=1,...,N, where m is an integer, 2 < m < [. Then we prove

the assertion of the theorem by induction in m. For m = 2 we may refer to part 1). Suppose that m > 3
and the assertion of the theorem is true for 6 > — m + 1. Since
-2, -3, 1-2, -1, —d, 1-2, ,
fECy;7(K)? CCyi5(K)% geCyi5(K), hjeCay5(T)° Y, ¢;€Cay5(T)%,
the induction hypothesis implies (u,p) € Clﬁill’f;(lC)?’ X Cé:zl’g(lC). Furthermore, from Lemma 3.4 it
follows that (u,p) € C§3+1(IC)3 X C’éjél_ﬁ(lC). Consequently, pd,u € C’lﬁill’fs+1(lC)3 C Céfl+272_E(IC)3,

o

where 0 < ¢ < min(2,! — d; — 2). Analogously, pd,p € C’é’_l+2,2_6(IC). From the equalities

—A(pdpu) + V(pdpp +p) = (p0, +2)f € 0/16)7_31,;(103’ =V pdyu=(pd, +1)g € 02;_21’;(/@,
SipOpu = pdph; € Clﬁi—lffs(rj)sidjv N;(pOpu, pdpp + p) = (PO, + 1)¢; € O;;iiﬁjs(Fj)dj

and from the induction hypothesis it follows that pd,(u,p) € Clﬁill’f;(lC)3 X CZB?L% (K). Applying Lemma
3.5, we obtain (u,p) € C’g%(lC)3 X Clﬁ;;l’o(lC).
3) Finally, we assume that | —d; € (m; —1,my] for j = 1,..., N with different m; € {0,1,...,1}.

Then let 91, ...,1, be smooth functions on €2 such that ¢; > 0, ¥; = 1 near M; NS?, and >, =1. We
extend 1; to K by the equality v;(x) = ¥;(z/|z|). Then 9%¢;(z) < c|z|~1*l. Using the first two parts
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of the proof, one can show by induction in ! that ¢;u € C (IC)3 and ¥;p € Clﬁ;;l’a(lC) forj=1,...,N.
The proof of the theorem is complete. O

In [22], we considered weak solutions (u,p) € V.1(K)3 x VO(K) of problem (3.1), (3.2), i.e., solutions
of the problem
b(u,v) — / pV - -vdx =F(v) forallveV_,, (3.31)
K
—-V.u=g inK, Sju=h; onl';, j=1,...,N, (3.32)
where V_,, = {v € V1 _(K)3, Sju=0o0nT;, j=1,...,N} and

“U—Q/ng €i,j(v) dz

i,5=1

According to [22, Th.4.2], problem (3.31), (3.32) is uniquely solvable in V,}(K)? x VO(K) for arbitrary
FeV*,h geVXK), h; € V;/Q(Fj)S*df provided the line Re A = —x — 1/2 is free of eigenvalues of the
pencil 2()\) and the boundary data h; are such that there exists a vector function w € V,} (K)? satisfying
Sjw=hjonl;forj=1,...,n

Theorem 3.7 Let g € VI(K) N C,ZBT;’U(IC), h; € VA2(T,)34 n Cg%(Fj)g_di, and let the functional

F € VZ*,. have the form
F(v):/(f+Vg).vd:L‘+Z/ ¢; - vdz,
K j=171

where f € C, 27 (K), ¢ € Chi"(T3)%, 65 = (6 -m)n ifdj =1, ¢;-n =0 if dj =2 (if d; = 0,
then the integral over I'; does not appear in the representation of F'). Suppose that on the lines lines
ReA=—-xk—-1/2 and Re)\ =1+ 0 — 3, there are no eigenvalues of the pencil A(\), the components oy, of
0 satisfy the condition

l—pp <o —o<l, 0 >0, Op — o not integer, (3.33)

and the data g, h; and ¢; satisfy the same compatibility conditions as in Theorem 3.4. Then the solution
(u,p) € VHK)? x VO(K) of problem (3.31), (3.32) admits the decomposition

I, ku,j—1

N
(wp) =) Z Cu,jis Z (log p)” (™ u 2= (w), P T p* =D (W) + (wyq),  (3:34)

v=1j=1 s=0

where (w,q) € C’é”%(K)g X C,lgy_él’o(lC) is a solution of problem (3.1)—(3.2), A\, are the eigenvalues of the

pencil A between the lines ReA = —k —1/2 and ReA =1+ 0 — 8 and (u(”’j’s),p(”7j’s)) are eigenvectors
and generalized eigenvectors corresponding to the eigenvalue A, .

P r oo f. By Theorems 3.4 and 3.6, there exists a solution (w,q) € CE%(IC)S X Céfél’U(IC) of problem
(3.1), (3.2). Let ¢,n be smooth functions on K equal to one near the vertex which vanish outside the unit
ball and satisfy the equality {(n = (. Due to the inequality 0 < I+ o, we have

C(w,Q) € Vﬁ1’+e(lc)3 X Vﬁque(IC)’ (1 - C)(w’q) € Vﬁ}’fe(lc)g X Vﬁo’fe(K»?

where 3’ = 3 — 1 — o0 —1/2 and ¢ is an arbitrarily small positive number. Since (w, q) satisfies (3.31) for
all v € C§°(K\{0})3, S;ju =0 on I';, we obtain

bcw,w) ~ [ CaV-vdn =) Y Fp) - b((1 = Qune) + [ 1=V (o) da.
K K
Obviously, ® € V*,.. Furthermore,

—V-(w)=Cg—w-VCeVIK) and S;(Cw) = Ch; € VI(T;) 4.
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From [22, Th.4.4] it follows that there exists a sum X of the same form as in (3.34) such that {(w, ¢)—%; €
V1(K)? x VI(K). Analogously, we obtain (1 — () (w,q) — 32 € VI(K)? x VI(K), where ¥ is also a sum
of the same form as in (3.34). Consequently, there is the representation

(U}, Q) = El + 22 + (w/7q/)7

where (w’,q’) € VI(K)? xVI(K). Since 7 and 35 are solutions of the homogeneous problem (3.1), (3.2),
the vector function (w’,q") solves problem (3.31), (3.32). By virtue of the uniqueness of the solution in
V3I(K)3 x VO(K) (see [22, Th.4.2]), we conclude that (w’,q’) = (u, p). This proves the theorem. O

4 Weak solutions in weighted Holder spaces

In this section, we prove the existence of solutions (u,p) € C’é‘;‘g(lC)?’ X C’g:‘g(lC) to problem (3.1), (3.2)
for data

fE€Cas7 (), g€ CRi(K), hy € CRRTy)*™", 65 € Cy(Ty)™h.
Here, CE,};’U (K) denotes the set of all distributions of the form

3
F=FO+> 0., %), where f0 ey 5., (K), f&eCfiK), k=1,2,3.

4.1 Representation of weak solutions by Green’s matrix

Let G(x,&) be the Green matrix introduced in Section 3.4. We suppose that 5 and § are such that

l_ﬂk<5k_0<17 0k >0, (Sk#O' fork=1,...,N, (41)
A_<1+U*B<A+, (42)

where Ay, A_ are as in Section 3.4. We consider the functions (3.14), (3.15) for
fi=F+V-09 Felyy ;.. (K), 9 e Ch(K)?, (4.3)

and g € Ngg(lC) If § satisfies (4.1), then Cﬁ’f:l sp1(K) = Nﬁ+1 541(K). Furthermore, every ®U) €
C’g:g (K)3 can be written as

oW = wl) 4 £ where WU € CB+1 s ()3, f9) e Ng:g(/C)B
(cf. Lemma 1.2). Consequently, every f; given by (4.3) has also the representation
=17+ V-9 10 € NGYL 50 (K), 9 € NG ()™, (4.4)

Here, f;o) = F;+ V- U0, If the vector function f() belongs to the subspace Néf175+1(lC)3 of Ng:g (K)3,
then integration by parts yields

N
/(V~f(j))vdx:—/ f(j)~Vvd:E+Z/ f9v - ndx
K K = Jr,

for arbitrary v € C7%; ;. Here, C2% 5 denotes the set of all v € C* (K\S) such that

/| |7=h H m )rrfék (r(@)~" fo(z)| + |Vo(z)]) de < 0.

Therefore, it is natural to extend the distributions f; to C2% 5 by
= [0 o de+ Y [ fO0nds
K v=1"Tv
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Then for the functions (3.14), (3.15), we obtain the representation

u=uf +u;, p=pt+p,

where
3
GONEDY /}C (F12€) x*(.) Gij(@,€) = FD(E) - Ve (x* (2.€) Giy(w,€)) ) de
+ [0 (.6 Gualo6) - 2557 §)Gis(6))) de
3 N )
2.2 | (1) n+g(€)ny) x* (2,6) Gy, €) de (45)
and
9(z) < :
pH(a) = —7+]§:: /,< (2 XF(@,8) Gaj(@,€) = FD(E) - Ve (xH(2,6) Guy(x,€)) )

+/,Cg<g> (x*(,6) Gaale.€) - Z% (@:6) Gasa.)) ) de

3 N
+ XN [ OO et glOm) . G o €) (46)
Here, x™ and x~ are the same functions as in Section 3.5.

4.2 Weighted L., estimates for ut, p™

Lemma 4.1 Under the assumption of Section 4.1, there is the estimate

3 3
0 j
lF il oo 1P e, ey Se (Zl 1552, 00 + Zl 17 vz eys + ||g||Ng;g(,Q)
= =
(4.7)
with a constant independent of f;o), 9 and g.
P r o o f. The estimate for u™ holds easily by means of the estimate
|08 (x* (2,€) Giy(@,€))| < cla — g1l =onah (4.8)
and of the inequalities
|z — & <ri(x)/2, |x]/2 <|€] <3lz|/2, ri(2)/2 <re(§) < 3rp(x)/2 onsuppx™ (4.9)

(cf. proof of Lemma 3.6). In the same way, the integrals

/f“” (2,€) G 5 (1, €) de

in the representation of p* can be estimated. We consider the expressions

N
A = - /}C f(j)(ﬁ)~Vs(x*(fc,ﬁ)G4,j(fv,£))df+Z / FOE) - x* (,6) Gaj(w, ) nds,
By = f/Kg@)agj( (,€) Gaj(,9)) d£+Z/ T (@,€) Gas(, ) my dt,
¢ - / 9(6) X+ (@,€) Gaale, &) d
K
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in the representation of p*. Since

A

i /,C (Ve ) XF(@,€) G (w.€) d = /K (Ve (f9U) = £ (@))) X T (2,€) Gay(x, €) de
= [ U9 = 19@) - Vel (@.6) Ga .) e
+Z/ FOE) = 1)) X () G, ) e,

we obtain by means of (4.8) and (4.9),

N
- ()~
il = ela ™ TT (5 ) 1D g e
k=1

/\x_g‘U}V5 (x,€) Gy j(x, ) ‘df—FZ/ |z — ¢ |U’X x§G4J(m§)’d§)

N
5 TT (7@ % o) ~ae TT (&) ™7 50
< clal H( ) @I g < elel H( o) 1 gz

Analogously, this estimates holds for B;. For the estimation of C', we use the representation G4 4(z,§) =
—Ve-P(2,€) +Q(x,£), where P(z,&)-n = 0 for & € Ty, [0¢P(2,8)] < cla—&[7271 | Q(a, )| < ()2
for | — &| < r(z)/2 (see Theorem 3.1). This implies

€= /,< ((9(6) = 9(2)) X" (2,€) Ve - Pl2,€) = glx) VexH(w,€) - Pla, ) + (&) xH (2,)Qx.€) ) .

Due to (4.8) and (4.9), we have

[2I” H ( 2] )

((9(6) = 9@)) x* (,€) Ve - Pla €) ]

K
<clolwgw, [ € de< el @)
lo—¢g|<r(x)/2
and
oo TT (1E(@)) " N
= T (57) /K (9(2) Vext(@,6) - P(@,€) = 9(&) X" (2,0) Q. ) ) d¢| < ellglng ., -
k=1
This proves the desired inequality for p*. O
4.3 Holder estimates for u—,p~
First, we show that the functions u~ and p~ defined by (4.5), (4.6) satisfy the estimates
max (0,6, —1—o+]|a|) max(0,0, —o+|al)
B—1—0c+|a| ( ) %~ B—o+|al ( ) 9%p~
] H - 0 @) + H " 09 (2)]
(0) -
0 .
c (Z 1 e, oo+ 20 WP ler s + lollyeree ) (4.10)
j=1 j=1

for arbitrary x € K and for arbitrary multi-index « if 5 and § satisfy conditions (4.1) and (4.2). The
integrals over K in the representations for ©~ and p~ can be estimated by means of Lemmas 3.7, 3.8 and
3.10. In order to estimate the integrals over the sides I',,, we prove the following lemma.
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Lemma 4.2 Let g € J\/g:g(lC) and let

o(z) = / K(r.€) g(€) de,

where K (z,§) vanishes for |x —&| < r(x)/4 and satisfies the inequalities

A_—s+e |¢|—A_—1—¢ o Tk(‘r) min (0 —s—e)
claf=mste g A= te T () for I¢] < lal/2,

K <

K| < 11 (%
N min(0,pur—s—e)

K] = elateme it TLZE)™ M por g > otal,
k=1
min(0,pu, —s—¢)

K] = elo-e (FE) ™ o2 <l <20

with an arbitrarily small positive €. Suppose that B an § satisfy conditions (4.1) and (4.2). Then there is
the estimate

N
“leots ri(2)\ max (0,5 —1—c-+s)
] 1 H( 2] ) (@) < cllglag ;o) (4.11)
k=1

P r oo f. By the assumptions on K(x,¢), we have

) >max(0,§k—l—a+s)

N
|.T|B_1_U+S H (Tk(x
||

k=1

/ K(x,€) g(¢) dé

r,
l€l<|=/2

N
< C|$|ﬂ_l_U+A_+E H (Tk(x)

max(0,0, —1—o+s)+min(0,u,—s—e)
|| )
k=1

||g||/\/g_ay5_0(/c>

% / |£|07B7A77175 II—V[ (W(Q)"_&’“ de.

¢
l¢|<|z]/2 s N gl

Sincec—F—A_—1> -2 0—0; > —1 and max(0,0; —1—oc+s)+min(0, up —s —¢) > 0, the right-hand
side of the last inequality does not exceed the right hand side of (4.11). Analogously,

()
xﬁ—l—a-&-s TE\T
@] IT( =

)max(0,6k—1—a+s)

[ K@ e < clgly

oo (K)
k=1 r
€1>2]|
We consider the expression
P N Tk(m) max (0,6, —1—0o+s)
A= oo T (2 | K@oa©de
k=1

r,
x| /2<|€|<2]x]

and assume that M; is the nearest edge to =. If M; N T, = {0}, then there exists a positive constant ¢
such that |z — &| > c|z| for £ € T, and we obtain

oo (T1(2 max(0,61 —1—o+s)+min(0,u; —s—¢) o N T}cf o—0y
A< claft2e (B) ol [ e T e
k=1

Ty
lz]/2<]€]<2lx|

Here by |lg||, we mean the ./\/:870’570 norm of g. Since the integral on the right-hand side of the last
inequality does not exceed ¢ |z|” %2 we obtain A < c||g||. If My C T, and g(¢) = 0 for r1(£) < 27(),
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then |z — &| > clz| for & € T, Nsuppg. Therefore, as in the case My N T, = {0}, we obtain A < ¢/g]|.
Suppose finally that My C T, and g(¢) = 0 for r1(§) > 37(£). Then

r1(§)

o—01
9€)] < elél (7)ol

and
T (ZC) )max(07617170'+s)

A< elafnrmots( =

Tl(m)min(o,ul—s—e) Hg” / |x_£‘—1—s—min(07u1—s—6) 7‘1(5)0_61 df,
where the domain of integration is the set of all £ € T, satisfying the inequalities |z|/2 < |§] < 2|z
and |z — &| > r(z)/4. For the estimation of the integral in the last inequality, we use the following two
inequalities analogous to (3.24) and (3.25):

/ |z — &7 (€)% dé <cR*™ % ifa+d<2 6<1, (4.12)
Ty
r1(z)/4<|z—¢|<R
/ lo — &7 (6)°dé <cR*™7° ifa+d§>2, §<1, (4.13)
Ty
le—€|>R

where c¢ is independent of z and R, R > ri(x)/4. If 4 — 1 — 0+ s < 0, then
>, —1—s—min(0,u —s—¢e)+o0—-0=—-1—-s+0—9 > -2,
and (4.13) with R = 3|z| implies

A< clafo ot g [l - g a0 de < g

If6—1—0+s >0, then —1—s—min(0, u; —s—¢e)+0 —3§; < —2, and we obtain the same estimate using
(4.12) with R = r1(z)/4. Thus, the estimate A < ¢||g|| is true for functions g vanishing for r(§) < 2r(§)
or for r1(§) > 3r(£). It remains to note that every g € ./\/gg(/C) can be written as a sum g = g1 + go,

s

where g1(£) = 0 for 1 (§) < 2r(£), g2(&) = 0 for r1(£) > 3r(£), and

i) t llg2llare w0 <clglve ;)

B—0,6—0

lglag

B—0,6—0c

This completes the proof. O

Lemma 4.3 Let f;o) €N1541(K), f9 e NJ5(K)3, 5 =1,2,3, and g € N§j 5(K). Suppose that 3 and
d satisfy conditions (4.1) and (4.2), respectively. Then estimate (4.10) is valid for the functions (4.5),
(4.6).

Proof. If 3 and d; satisfy conditions (4.1) and (4.2), then 5’ = 841 and 6;, = 05 + 1 satisfy conditions
(3.12) and (3.13), respectively. By Theorem 3.1, the functions K(z,£) = 0% (x ™ (z,€) Gij(z,€)), j =
1,2, 3, satisfy the assumptions of Lemmas 3.7, 3.8 and 3.10 with s = |a| + J; 4 and ¢ = 0. Consequently,

N
ﬁ’—2—0+\o¢|+57~,)4 Tk (Z‘)
2 11 (=

)max(0,6;7270+|a\+6i,4)
||

o [ 10O (0.0 G 0]

k=1

0 0
<elf e oo =l e -

Using the fact that K(z,&) = 050, (X’(x,f) G j (x,ﬁ)), j = 1,2,3, satisfies the conditions of Lemmas
3.7, 3.8 and 3.10 with s = |a| + J; 4 and ¢t = 1, we obtain

N
|x|ﬁ’—2—a+|a\+§i,4 H (Tk(x)

)max(0,6;—2—0+|a|+6i14)
€T
k=1 | |

02 [ 1) Telx (0.6 Gus(,) de
K

< ellf o

Bl —1—0,8

e = el Pl poe

57(7,570‘(I<’)3 ’

33



Since the functions 0% (x~ (z,&) Gia(x,€)) and 999, (x (2,£) G; ;(x,€)) also satisfy the conditions of
Lemmas 3.7, 3.8 and 3.10 with s = |a| + §; 4 and ¢ = 1, the same inequality with g instead of ) holds

for the integral
3
[ 900 (¢ (0.0 G = 3 0, (1 (0.6 Gu (0. 6)) ) .

Finally, using Lemma 4.2 with K (z,£) = 0% (X’(a:,f) Gi,j(:c,f)), s = |a| 4 0; 4, we obtain

) >max(0,5k7170+\a|+5i’4)

N
a1l T <7"k(x

el

<c(IfPNva ., Loop +lallas ., oo

/F (FDE) -n+ g(€) ny) X~ (. €) Gy (. €) de

The proof of the theorem is complete. O

The proof of the following lemma proceeds analogously to Lemma 3.11.

Lemma 4.4 Letz € K, ={£ € K: r,(§) <3r(§)/2}, f €N, ( ), and

0= [ K@

We assume that 3,9 satisfy conditions (4.1), (4.2), K(x,§) vanishes for |x —&| > r(x)/4 and that there
exists a constant ¢ independent of x and & such that

0K (2,6)] < clz— E|7E R for x| /4 < €] < 2|x|, s =0,1,
|0, K (2, €)| clat=T2HREE TR for €] < 3l /4,

<
0K (2, )] < claf™ T2 TR for Je| > 3lal /2,
where k, =1+ [0, — o] and p = |z|. Then there ist the estimate

58—, [v(z) —v(y)|
|l’| ‘.’E — y|g_5u+k <c ”.f”/\/’g oo (K)

fory=r1x,4/5 <1 <5/4, |x —y| > r(x)/4, where ¢ is independent of f,x,T.

Theorem 4.1 Let f;o) € /\/'84_1,54_1(/0, f9) e NYs(K)P, j=1,23, g€ Ngé(lC), and let u=,p~ be
defined by (4.5), (4.6). If 8 and ¢ satisfy conditions (4.1) and (4.2), then u~ € Cé:g(lC)?’, p- € Cg:g(IC),
and

3
— — 0
e lles oo + 17 lesz oy < e (0 1757 g +1H1<K>+Z||f g, e + gl o))

with a constant ¢ independent of f;o), 9 and g.

Proof By Lemma 4.3, u~ and p~ satisfy (4.10). From this it follows analogously to the proof of
Theorem 3.3 that

Ok |8()¢ ( ) (9 u- 3 (O) .
IBH( ] 2y T <o (3 (g0 + 1Pl ) + g )
Jj=1
for |a| =1, z,y € K, |z —y| < r(x)/2, and
|05 (x) — dgu~ S
e e e 5 < e (30 Nva,, pnv0 + 15D g i) + llgllavg o )
j=1



for |a| =1-k,, z,y € Ky, lz—y| <r(z)/2,v=1,...,N. Here, k, = [0, —o|+1. We have u; =v; +w; ,
where

o (@) = Z / (€)X (2.8) Guy(@.) — FOE) - Ve (X~ (2.6) G (2.)) ) de
+/Kg<§)( “(@.8) Grale.) - Zagg §)Gis(.6))) de

wi () =

N
Z / (FDE) - 1+ g(€) ny) X~ (2. €) Gy (x, €) dE.

”M“’

If 5 and 0 satisfy (4.1) and (4.2), then 8’ = 8+ 1 and 6}, = 0 + 1 satisfy (3.12) and (3.13). Consequently
using Lemma 3.11, we obtain

10507 (2) — O] 2
2]~ ‘x_ e 5, <c (U s, oo+ D, i) +lgllas s o)
j=1

forze K, y=72,1/2 <7 <3/2, |a|] =2 — kI, where k|, = k, + 1. According to Lemma 4.4, the same
estimate is valid for w; . Thus, u~ € Cé:g (K)3. Analogously, the inclusion p~ € Cg:‘;(IC) holds. O

Remark 4.1 From Lemma 4.3 it follows that even u~ € C%7 511, 541 (K)? and p~ € C1+1 541 (K)-

4.4 Existence of weak solutions

Analogously to Lemma 3.3, the following regularity result holds. For the proof, one has to apply a regu-
larity assertion for weak solutions of elliptic boundary value problems in domains with smooth boundaries
(see [24, Th.6.4.8]).

Lemma 4.5 Let (u,p) € WL (K\S)? x W.25(K\S) be a weak solution of problem (3.1), (3.2) such that

sup x| =17 ﬁ (r’f(x))érlia |u(z)| + sup |z~ ﬁ (rﬁx))‘”«*" Ip(x)| < oco.
k=1 k=1

|| ||

IfFfeN; ;7 (K)?, g e Ng§(K), hy € Nyg(T;)3 %, ¢; € Ng§(T;)%, j=1,....N, then u € Nj§ (K)?
00’
and p € Ng5 (K).

Theorem 4.2 Let f € C537(K)?, g € CR3(K), hy € C55(L;)% %, ¢; € CR3(Ty)%, j =1,....n
where § satisfies condztzon (4 1) and (8 is such that the line ReA = 1+ o — [ is free of eigenvalues of
the pencil A(N). Suppose that the boundary data h; satisfy the compatibility condition (3.6)and that in
the case 6, < o the functions g, hi, , ¢r, satisfy the compatibility conditions given in Lemma 2.3. Then

problem (3.1), (3.2) has a unique solution (u,p) € C’é:g(lC)?’ X C,gzg(lC).

P roof. Lemma 3.2 allows us to restrict ourselves to the case g € Ng:g(lC), h; =0, ¢; =0. Let k be an
arbitrary real number such that the closed strip between the lines ReA =140 — 8 and ReA = —x —1/2
is free of eigenvalues of the pencil 2(X), and let G(z,€) be the Green matrix introduced in Section 3.4.
Then condition (4.2) is satisfied. We consider the vector-functions (4.5), (4.6) and define u = u™ 4+ u™,
p=p"t +p. Since (u",p7) € C’ﬁ+1 51 (K)? x Céfl s+1(K), we have Au~ — Vp~ € Nﬁ+1 541 (K)? and
therefore,

—Aut + Vpt = f+Aum —Vp~ e N7 (K)%.

Furthermore analogously to the proof of Theorem 3.4,

~Veut € NGT(K), Sputle, =0, Nyt phle, € Mg ()"
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Using Lemmas 4.1 and 4.5, we conclude that (ut,p™) € Nﬁlg (K)? x Ng:g (K). This together with Theo-

rem 4.1 implies (u,p) € C’é:g (K)? x Cg:g (K). The uniqueness of the solution (u,p) holds analogously to
the proof of Theorem 3.4. O

Analogously to Theorem 3.7, the following result holds.

Theorem 4.3 Let g € VI(K) N Cg:g(lC), hj € V,gl/Q(l"j)?’—da' N Cg:g(Fj)3_dj, and let the functional
F € VZ*,. have the form

F(v) :f(v)+Z/F 6, - vdz,
=17

where f € C57(K)%, ¢; € CR3(T5)%, ¢ = (65 -m)n ifd; =1, ¢;-n =0 if dj =2 (if dj = 0,
then the integral over I'; does not appear in the representation of F'). Suppose that on the lines lines
ReA=—k—1/2 and Re\ =1+ 0 — 3, there are no eigenvalues of the pencil A(N), ¢ satisfy condition
(4.1), and the data g, h; and ¢; satisfy the same compatibility conditions as in Theorem 3.4. Then
the solution (u,p) € V.H(K)? x VO(K) of problem (3.31), (3.32) admits the decomposition (3.34), where
(w,q) € C’é’,‘;(lC)?’ X Cg,zg (K) and X\, are the eigenvalues of the pencil A between the lines Re A = —k—1/2
and Re A = 1+0—p0. In particular, if the closed strip between the lines Re A = —k—1/2 and Re A = 1+0—0
is free of eigenvalues of the pencil A(N), then (u,p) € C’é:g(/C)B X C’g:g(lC).

E x am ple. We consider the weak solution (u,p) € V3 (K)3 x Ly(K) of the Dirichlet problem

b(u,v)f/pvovdx:F(v) for all v € Vi (K)?, v[r, =0, (4.14)
K
—V-ou=g inK, u=0 only, j=1,...,N. (4.15)

We assume that g € C%?(K), g=0on M, for j =1,...,n,and F € C~19(K)3, i.e. F is a distribution
of the form s
F=F"+%"9, FU), where F9) € C*7(K)?, j=0,1,2,3. (4.16)
j=1

One can write any distribution (4.16) also in the form

3
F=304 Z 8Ij<1>(j), where @) € C’g:g(lC)?’, j=0,1,2,3,

j=1

For example, we can put ®(©) = F(O—(x(z)+1 2-Vx) F(9(0), and V) = FO—F)(0)+1 x(z) 2, F9(0),
where y is a differentiable function on K, y(z) = 1 for |z| < 1, x(x) = 0 for |x| > 2. Thus, we have
F e Cyy?(K)® = NO_,&’”(IC)?’. Furthermore, every g € C%7(K) satisfying g = 0 on M, for j =1,...,n
belongs to the space N(?;(;’ (K).

According to [13, Th.5.5.5,Th.5.5.6], the strip —1 < Re A < 0 is free of eigenvalues of the pencil 2A()).
If the cone is convex, then the eigenvalue with smallest positive real part is A; = 1. This eigenvalue is
simple and has the eigenvector (0,0,0,1). Moreover for 6, < 7, we have u = 7/6; > 1. Consequently
we obtain the following regularity result.

Let F e VyNnC~19(K)3, g € Lo(K)NC*(K), g=0 on M; for j=1,...,N. If K is convex
and o is such that 1 + o < /0 and the strip 1 < Re X < 14 o contains only the eigenvalue
Ay =1 of the pencil A(N\), then ((u,p) € CH7(K)? x C%7(K) for every smooth function ¢
with compact support.

Under the above assumptions, the decomposition (3.34) for (u,p) in Theorem 4.3 has the simple form
(u,p) =¢(0,1) + (w, q), where (w,q) € C’é:g(lC)‘3 X C’g:g(lC).
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5 The problem in a bounded domain

5.1 Formulation of the problem
Let G be a bounded domain of polyhedral type in R3. This means that

(i) the boundary 0G consists of smooth (of class C*°) open two-dimensional manifolds I'; (the faces of
G),7=1,...,N, smooth curves M, (the edges), k=1,...,N’, and corners (M), ... z(®

(ii) for every { € My, there exist a neighborhood U and a diffeomorphism (a C° mapping) k¢ which
maps G NUe onto D¢ N By, where D¢ is a dihedron of the form K¢ x R with a plane wedge K¢ and
B is the unit ball,

(iii) for every corner 2\) there exist a neighborhood U; and a diffeomorphism x; mapping G NU; onto
K; N By, where K; is a cone with vertex at the origin.

We consider the problem

—Au+Vp=f, —-V-u=g ing, (5.1)
Sju:hj, Nj(u,p):qu on Fj, ‘]‘:].,...7]\[7

where S;, N; are the same operators as in Section 3.

5.2 Model problems and corresponding operator pencils

We introduce the operator pencils generated by problem (5.1), (5.2) for the singular boundary points.

1) Let £ € My be an edge point, and let I'y, ,I'y_ be the faces of G adjacent to {. Then by D¢, we
denote the dihedron which is bounded by the half-planes I'; | tangential to 'y, at {. The angle between
I'y, and I';_ is denoted by 6(¢). We consider the model problem

—Au+Vp=f, —-V-u=g in D,
Skiu:hi7 Nki(uﬂp):(bi on Fii

and denote the operator pencil corresponding to this problem (see Section 2.2) by A¢(A). Furthermore,
we denote by A;(§) the eigenvalue with smallest positive real part and by A2(§) the eigenvalue of A¢(A)
with smallest real part greater than 1. In the case when dj,, +dj_ is even and 0(§) < 27 /(|dy, —di_|+2),
we define 1(§) = Re A2(€). Otherwise, we put p(§) = Re A1(€). Furthermore, let
= inf .
pp = inf 1(€)
2) Let 2\9) be a corner of G, and let I¢) be the set of all indices k such that 2U) € Ty. By our
assumptions, there exist a neighborhood U of () and a diffeomorphism & mapping G N U onto K N By
and I'y, "YU onto I'; N By for k € IU), where K is a polyhedral cone with vertex 0 and I'? are the faces of

this cone. Without loss of generality, we may assume that the Jacobian matrix «/(z) coincides with the
identity matrix I at 2/). We consider the model problem

—Au+Vp=f, —-V-u=g inKk,
Sgu = hg, Ng(u,p)=¢r onTy for k e 1V,

The operator pencil generated by this model problem (see Section 3.1) is denoted by 2;(\).

5.3 Smoothness of solutions

We denote by 74 (z) the distance of = to the edge My, by p;(x) the distance to the corner 9 by
r(z) the distance to S (the set of all edge points and corners), and by p(z) the distance to the set
X ={aW . 2D} Let Gix = {x € G: rj(z) < 3r(z)/2, pr(z) < 3p(z)/2} and k; = [§; — o] + 1.
Furthermore, let 3 = (B1,...,04) € R%, § = (61,...,0n7) eRY 6, >0fork=1,...,N,and0 <o < 1.
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Then Clﬁ’%(g), is defined as the set of all [ times continuously differentiable functions on G\S with finite
norm

l—o+|al)

N’ . max (0,0, —l—
lulleye gy = D sup Hpk . ZGHO‘H(TZ((xxb [0 u()]
j=1

o<t T€9 k=1

d N O%u(x) — 0Su(y
3D M A e

k=1 j=1|a|= TYET;
Lasted=t=ks <o) /2

d N’

+> 0 sup [ ee@)® ] (Tj(@)&j - \x—y\g

S leul<r@)/2 5 jo1 ° P@)

The trace space on I'; for C’é’fg(g) is denoted by C[lj,’fs (Ty).
We consider the solution (u, p) € W(G) x La(G) of problem (5.1), (5.2). This means (see [23, Sec.5.3])
that v and p satisfy

b(u,v)f/medx:F(v) for all v € W(G), Sju =0 on T}, (5.3)
g
—V-u=g ingG, Sju=h; only, j=1,...,N, (5.4)

where

N
b(u,v —2/26” g j(v)dr and F(v)= /g(erVg)-vd:c—F;/quzﬁj-vdx

’L]l

The vectors ¢; are orthogonal to I'; if d; = 1 and tangent to I'; if d; = 2. In the case d; = 0, the integral
over I'; does not appear in (5.3). Using Theorems 3.7 (with £ = 0) and 3.6, one can easily prove the
following theorem.

Theorem 5.1 Suppose that f € C’Ef’”(g)g, g € C’é}l’a(g) h; € C’é%( 3 by € C’lﬁ%( )3,
where 1 > 2,0 < o <1, the strip —1/2 <ReA <l+0—f; contams no ezgenvalues of the pencil Q( (N,
j=1,...,d, and that | — ux, < 0 — o <1, 6, — o is not integer for k =1,...,N'. Suppose furthermore
that g, h;, ¢; satisfy the same compatibility conditions on the edges as in Theorem 3.4. Then the solution
(u,p) € WHG)? x Lo(G) of problem (5.3), (5.4) belongs to Cé’f;(g) Cl +7(9).

Note that under the conditions of the theorem, the right-hand side of (5.3) defines a continuous
functional on W(G)3.

5.4 Examples

We consider the boundary value problem (5.1), (5.2) in a polyhedron G with sides I';, edges M; and
corners /). Under certain compatibility conditions on the data f € C’é{f’a(g)?’, g € C’é}l’g(g),
h; € Clg( [;)37% and ¢; € C’l 577(T;)%, there exists a weak solution (u,p) € W(G)? x La(G) (see
[23 Th. 5 1]). We establish regularlty assertions for this solution. For the sake of simplicity, we restrict
ourselves to homogeneous boundary conditions.

1) The Dirichlet problem. Let (u,p) € W1(G)? x La(G) be a weak solution of the problem
—Au+Vp=f, —V-u=g ing, u=0 only, j=1,...,N.

It is known for this problem (see [13, Th.5.5.6]) that the strip —1 < Re A < 0 is free of eigenvalues of the
pencil 2;(A). We denote by A; the eigenvalue with smallest positive real part. By [13, Th.5.5.6], there is
the estimate

Re Aj >

)

a;
aj+4
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where a;(a; + 1) is the first eigenvalue of the Beltrami operator —§ with Dirichlet boundary condition
on the intersection €2; of the cone IC; with the unit sphere, a; > 0. If the polyhedron G is convex, then
A; =1 is the smallest positive eigenvalue of the pencil 2(;(\). The numbers p, depend on the angles 6y, at
the edges My. If 0y > , then g is the smallest positive solution of the equation sin(ufy) + psin 6 = 0.
It can be easily verified that p, > 1/2. If 6, < 7, then pur = 7/60, > 1 (see [13, Sec.5.1]). Consequently,
Theorem 5.1 implies the following results.

o It f€C;*7(G)%, g € C};17(G), and 0 < o < min(ReAj, ), then (u,p) € C7(G)* x €17 (G).
In particular, we have u € C%?(G)3. If the polyhedron G is convex, then this result is true for
arbitrary o € (0,1).

o If f € C'729, g € C'=17 in a neighborhood of an edge point £ € My, g|a,—o and | + o < m/0,
then u € C»? and p € C'~1 in a neighborhood of ¢.

For the last result, we refer also to the regularity results in weighted L, Sobolev spaces given in [23].
Furthermore, there is the following result (see the example at the end of Section 4).

o If G is convex, f € C~19(G)3, g € C*9(G), g|m,—o for all k, and o is sufficiently small (such that
140 < /6 and there are no eigenvalues of the pencils () in the strip 1 < ReA <1+ 0), then
(u,p) € CH7(G) x C*7(G) .

2) The Neumann problem. Let (u,p) € W1(G)3 x La(G) be a weak solution of the problem
—Au+Vp=f, —-V-u=g ingG, —pn+2e,(u) =0 only, j=1,...,N.

By [13, Th.6.3.2], the strip —1 < Re A < 0 contains only the eigenvalues A = 0 and A = 1 of the operator
pencils 2(;(A) if the polyhedron G is Lipschitz. The eigenvectors corresponding to A = 0 have the form
(¢,0), where ¢ € C3 is an arbitrary constant vector, while generalized eigenvectors do not exist. The
numbers py, are the same as for the Dirichlet problem. Let A; be the eigenvalue of 2(;(\) with smallest
positive real part. Applying Theorems 3.7, 3.6 and [22, Th.4.4], we obtain the following results.

o If f € C}f"(g)s and g € Cf;l"’(g), where 0 < o < min(ReAj, uy), then p € C};l"’(g) and

¥;(u—u(z))) € C{f’(g)3 for every smooth cut-off function v; equal to one near 2(/) and to zero
3

near the other corners. In particular, we have u € C%7(G)3.
o If f € C'=27 g € C'"17 in a neighborhood of an edge point & € M, and [ + ¢ < 7/0}, then
uw e Ch? and p € C'~17 in a neighborhood of &.

3) The mized problem with boundary conditions (i)—(iii). Let (u,p) € W(G)3 x L2(G) be a weak
solution of problem (5.1), (5.2), where d; < 2 for all j (i.e., the Neumann condition does not appear
in the boundary conditions). For the sake of simplicity, we restrict ourselves to homogeneous boundary
conditions. We assume that the Dirichlet condition is given on at least one of the adjoining sides of every
edge. Then pp > 1/4 for all k. For 0, < m/2, we have ug > m/(26y). If the Dirichlet condition is given
on both adjoining sides of the edge M}, then there are the sharper estimates for g given in Example 1.
Furthermore by [13, Th.6.1.5], the strip —1 < Re A < 0 is free of eigenvalues of the pencils 2; (). Thus,
the following results hold.

o If f € C;’?Z’a(g)?’ and g € C’ZZII’U(Q), where 0 < ¢ < min(ReA;, p), then (u,p) € C’llf(g)?’ X
Clljl’a(g). In particular, we have u € C%7(G)3.

o Let f € C'"29, g € C'"17 in a neighborhood of an edge point ¢ € My, and g|y, = 0 (if the
boundary condition (i) is given on one of the adjoining sides of My, then the last assumption can
be omitted.) We suppose furthermore that [ + o < 7/6y if the Dirichlet condition is given on
both adjoining sides of M. Otherwise, let I + o < 7/(20)). Then u € C%° and p € C!=%7 in a
neighborhood of &.

Finally, we describe two situations, where a global C“ regularity result holds for the solution of the
mixed boundary value problem.
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o Let (u,p) be a weak solution of equation (5.1), (5.2), where d; < 1 for all j (i.e., only the boundary
conditions (i) and (ii) appear in (5.2)). We assume that G is convex and that 0, < m/2 if the
boundary condition (ii) is given on at least one of the adjoining sides of the edge My. Furthermore,
let f € C719(G)3, g € C%7(G), and g, = 0 if the Dirichlet condition (i) is given on both adjoining
sides of Mj. Then (u,p) € C*7(G)3? x C%9(G).

e Suppose the polyhedron G is convex, the Dirichlet condition is given on all sides except I', where
the boundary condition (iii) is prescribed, and the angles between I'y and the adjoining sides
are less than 7/2. If f € C717(G)3, g € C*?(G), glm, = 0 for all k, then the weak solution
(u,p) € WHG)3 x La(G) of problem (5.1), (5.2) belongs to the space C1:7(G)? x C%7(G).

the last two results, we refer to [13, Th.6.2.6,Th.6.2.7]. In the first case, we have ReA; > 1 and
> 1, while in the second case the eigenvalue with smallest positive real part of the pencil 2;(\) is

A; = 1. However, this eigenvalue is simple, and the corresponding eigenvector is (0,0,0,1). Thus as in

the

case of the Dirichlet problem, the desired result can be easily deduced from Theorem 4.3.
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