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Abstract

A mixed boundary value problem for the Stokes system in a polyhedral domain is considered.
Here different boundary conditions (in particular, Dirichlet, Neumann, free surface conditions) are
prescribed on the sides of the polyhedron. The authors prove the existence of solutions in (weighted
and non-weighted) L, Sobolev spaces and obtain regularity assertions for weak solutions. The results
are based on point estimates of Green’s matrix.

0 Introduction
Steady-state flows of incompressible viscous Newtonian fluids are modelled by the Navier-Stokes equations
—vAu+ (u-V)u+Vp=f, V-u=0 (0.1)

for the velocity v and the pressure p. To this system, one may add a variety of boundary conditions on
different parts of the boundary (see e.g. [12]). For example, there is the Dirichlet condition u = 0 on
solid walls. On other parts of the boundary (an artificial boundary such as the exit of a canal, or a free
surface) a no-friction condition 2ve(u)n — pn = 0 may be useful. Here e(u) denotes the matrix with the
components %(axiuj + &mj u;), and n is the outward normal. It is also of interest to consider boundary
conditions containing components of the velocity and of the friction. Frequently used combinations are
the normal component of the velocity and the tangential component of the friction (slip condition for
uncovered fluid surfaces) or the tangential component of the velocity and the normal component of the
friction (condition for in/out-stream surfaces).
In the present paper, we consider a mixed boundary value problem for the linear Stokes system

—Au+Vp=f, —-V-u=g (0.2)

in a three-dimensional domain of polyhedral type, where components of the velocity and/or the friction
are given on the boundary. To be more precise, we have one of the following boundary conditions on
each side I';:

() u="h,
(ii) ur =h, —p+2enn(u) =09,
(iil) up =h, epn(u) =9,

)

(iv) —pn + 2e,(u) = ¢,

where u,, = u-n denotes the normal and u, = u—u,n the tangential component of u, &, (u) is the vector
e(u) n, €n.n(u) is the normal component and €, - (u) the tangential component of &, (u).

In the last decades a number of mathematical papers appeared which treat elliptic boundary value
problems in piecewise smooth domains. For a historical account of this development we refer to the books
of Grisvard [5], Dauge [2], Nazarov and Plamenevskii [26], Kozlov, Maz’ya and Rossmann [9]. Our main
goal is to prove regularity assertions for weak solutions of the mixed problem to the Stokes system. For



the Dirichlet problem such results were obtained in papers by Maz’ya and Plamenevskii [19] and Dauge
[3]. Fabes, Kenig and Verchota [4] studied the Dirichlet problem for the Stokes system in Lipschitz
domains. Spectral properties of operator pencils generated by the mixed boundary value problem in a
cone were investigated by Kozlov, Maz’ya and Rossmann [10, Ch.6].

It is well-known that the singularities of solutions of elliptic problems near edges and corners have
power (or power-logarithmic) form. For this reason, it is natural to use weighted Sobolev spaces, where
the weights are powers of the distances to the edges and corners. Special boundary value problems
(e.g., the Dirichlet problem) can be studied in weighted Sobolev spaces with “homogeneous” norms
(see e.g. [19, 20]). However, the more general problem with boundary conditions (i)—(iv) requires the
use of weighted spaces with “nonhomogenous” norms. This makes the consideration of the boundary
value problem more difficult. On the other hand, in some cases (e.g. the Dirichlet problem in convex
polyhedral domains), the results can be improved when considering solutions in weighted spaces with
nonhomogeneous norms. We also note that the class of weighted Sobolev spaces with nonhomogeneous
norms contains the nonweighted Sobolev spaces.

The largest part of the paper (Sections 3 and 4) concerns the boundary value problem for the Stokes
system in a polyhedral cone K with sides I'y,...,I';, and edges Mi,...,M,. Section 3 deals with the
existence of solutions (u,p) € Wg:g(/C)?’ X Wg;(IC) of the boundary value problem if f € Wg:;(/C)?’,
g € Wﬂlj(lC), and the boundary data h, ¢ are from the corresponding trace spaces. Here, for integer

1>0,8€R, 0= (,...,0,) €ER" and 1 < s < 00, the space Wéf;(lC) is defined as the set all functions
u such that

n §
o~ (/o)™ 05w € Lo(K) for la] <1,
k=1

p is the distance to the vertex of the cone, and r; denotes the distance to the edge Mjj. The estimates of
the solutions in these spaces are essentially based on point estimates for Green’s matrix obtained in our
previous paper [24, 25]. It is shown that there is a uniquely determined solution if g and the boundary
data satisfy certain compatibility conditions on the edges, the line Re A = 2— (3 —3/s is free of eigenvalues
of a certain operator pencil 2()\), and max(2 — pg,0) < d +2/s < 2 for k = 1,...,n, where u; are
certain positive numbers depending on the angle 6 at the edge M. For example, in the case of the
Dirichlet problem, we have uj = 7/0y if 0, < 7, while u; is the smallest positive solution of the equation
sin(ufy) + psin @, = 0 if 0, > 7. Estimates for the eigenvalues of the pencil 20(\) can be found e.g. in
[3, 10, 11, 19].

In Section 4 we consider weak solutions of the boundary value problem, i.e. vector functions (u,p) €
Wﬁljg(lC)?’ X Wg:g(lC) satisfying

3
2/}C Z Em(u)ei)j(v)dx—/Kprdac:F(v) for allvEWi’g:75(lC)3, Sjv=0onT}y,

ij=1

—V-u=g inK, Sju=h; only, j=1,...,n.

Here Sju = w in the case of the Dirichlet condition on I';, Sju = u, in the case of condition (ii), and
S;u = u, in the case of condition (iii). We prove that a unique weak solution exists if the boundary data
h; satisfy certain compatibility conditions on the edges, the line ReA =1 — § — 3/s is free of eigenvalues
of the pencil 2A(\), and max(l — pg,0) < d +2/s < 1 for k = 1,...,n. In the case s = 2, the last
condition can be replaced by — min(ug, 1) < 0 < 0.

Moreover, we obtain regularity assertions for the weak solution. For example, let (u,p) € I/Vol_’o2 (K)
Lo (K) be the weak solution of the boundary value problem, where '

3%

Fe (Wog(K))2n (W _s(K))?, g€ La(K) NWY(K), hy € Woi*(Ty) N W55 (Ty),

s'=s/(s—1). f max(1 — pg,0) < d; + 2/s < 1 and there are no eigenvalues of the pencil 2(()) in the
strip —1/2 < ReA < 1— (8 —3/s, then

(u,p) € W55 (K)? x W3 (K).



Suppose the functional F' € (VV1 2(K)*)? has the form

:/gf-uda;JrZ/Fja;j-vdx

wherefEWéfS( )3, 95 € Wl 1=s5(1)), 1 > 2. If, moreover, g € Wl 5 7°K), hy € Wé;/ss( ), the
data g, h; and ¢; satisfy certam compatlblhty conditions on the edges of the cone, the components d; of
0 satisfy the inequalities max(l — pg,0) < 6 +2/s < [, and the strip —1/2 < ReX <1 — § —3/s is free
of eigenvalues of the pencil 2(\), then

(u,p) € WE5(K)? x Wi b (K).

In Section 5 we consider the boundary value problem for the Stokes system (0.2) in a bounded domain
G of polyhedral type. Under certain compatibility conditions, there exists a weak solution (u,p) €
W12(G)3 x Ly(G) which is unique up to a certain subspace of linear vector functions. Using the results
of Section 4, we obtain regularity assertions for this solution.

As an example, we consider the weak solution of the Dirichlet problem to the Stokes system in a
polyhedron with boundary data h; = 0. From our results and from estimates for the eigenvalues of the
pencil A(\) (see [3, 10, 11, 19]) it follows that

(u,p) € WH*(G)? x Ly(G), 2<s<3,

if f e W=b%(G)3, g € Ls(G). If the polyhedron G is convex, then this result is true for all s > 2.
Furthermore, the following W?*-regularity result holds for the weak solution (u,p) € W12(G)3 x La(G)
of the Dirichlet problem:
(u,p) € WHS(K)? x Wh4(K), 1<s<4/3,

if f € W(G)3NLs(G)3, g € L2(G)NW#(G). If the edge angles are less than 3 arccost ~ 1.2587x, then
this result is true for 1 < s < 3/2. In the case of a convex polyhedron, this result is true for 1 < s < 2.
If, moreover, the edge angles are less then %W, then the result holds even for 1 < s < 3. However, in the
case s > 2 the trace of the function g on the edges must be equal to zero, while in the case s = 2 the
function g must be such that

/%1Hrmymem<w, (0.3)

kEN;

for every j, where p; denotes the distance to the vertex Oj;, r; denotes the distance to the edge My,
and Nj is the set of all k such that My > O;. In the case s = 2 the W25 regularity result for convex
polyhedrons was also proved by Dauge [3].

Similar W1* and W?2* regularity results can be obtained for Neumann and mixed problems. Let
us consider, for example, the mixed boundary value problem with boundary conditions (i)—(iii). We
assume that for every edge, the Dirichlet condition is given on at least one of the adjoining sides. Then
the following W regularity result holds. The weak solution (u,p) € W12(G)? x La(G) belongs to
WLs(G)3 x Ly(G) if F € (W' (G)*)3, g € Ly(G), hj = 0,2 <5 <8/3, 8 =s/(s—1). If at every edge
with boundary condition (i) or (iii) on one of the adjoining sides, the angle is less than 37, then this
result is even true for 2 < s < 3.

Lastly, we present a W?2#° regularity result for the mixed problem with Dirichlet and Neumann
boundary conditions. Suppose that (u,p) € W12(G)3 x La(G) is a weak solution of this problem with
data f € Ly(G)%, g € WY5(G), hj € W2~ 1/*5(T,)3, and ¢; € W'=V/*5(I';)3, 1 < s < 8/7. Then
(u,p) € W25(G) x W(G).

Other examples are given at the end of Section 5. In a forthcoming paper, we extend the results to
mixed problems for the nonlinear Navier-Stokes system.

1 Weighted Sobolev spaces

1.1 Weighted Sobolev spaces in a dihedron

Let D be the dihedron
D={x= (2 23): 2’ € K, z3 € R}, (1.1)



where K is an infinite angle which has the form {2’ = (z1,72) € R?: 0 <r < oo, —0/2 < ¢ < 0/2} in
polar coordinates r,¢. The boundary of D consists of the half-planes I'* : ¢ = +60/2 and the edge M.
We denote by V;’S(D) and Wé’s(D), 1 < s < 00, the weighted Sobolev spaces with the norms

s 1/s s 1S 1/s
||7-LHV;’5(D) _ (/ Z |$/|s(5fl+‘oé|) |a§u| dm) s Hu”Wé’S(D) = (/ Z ‘.’ﬂl‘ g |azu| dl’) .

D lal<i D lal<i

Analogously, the spaces V(;l *(K) and Wé’S(K ) are defined (here in the above norms D has to be replaced

by K and dx by dz’). By Hardy’s inequality, every function v € C§°(D) satisfies the inequality

/7‘5(671)|u\2dz < c/ 70 |Vul|? dx
D D

for 6 > 1 — 2/s with a constant ¢ depending only on s and §. Consequently, the space Wé’S(D) is
continuously imbedded into Wi~1*(D) if § > 1 —2/s. If § > | — 2/s, then W}*(D)  V}*(D).
Let ‘/;_1/5’8(Fi) and Wé_l/s’s(Fi) be the trace spaces corresponding to V;**(D) and W} *(D), re-

spectively. The trace spaces for V;’S(K) and Wé’S(K) on the sides y* of K are denoted by V(;l_l/s’s(yi)

and Wéfl/s’s(vi), respectively.

Note that the trace of a function u € Wé’s(’D) oru € Wéil/s’s(Fi) on the edge M exists if —2/s <
§ < 1—2/s. Tt belongs to the Sobolev-Slobodetskii space W!=9=2/%:(M) if | — § — 2/s is not integer.

There is the following relation between the spaces Vél’S and Wé’s (see [21, 27]).
Lemma 1.1 1) Let u € Wé’s(D), —2/s <0 <1—2/s, If 6 + 2/s is not integer, then
u € V;SZ’S(D) < Ou(xr) =0 on M for|a] <l—40—2/s. (1.2)

If § + 2/s is integer, then for the inclusion u € V(SZ’S(D) it s mecessary and sufficient that the conditions
(1.2) and

/7’72|6£‘,u(x)lsdx<oo forlal=1—0—2/s
D

are satisfied.
2) Let u € Wéil/s’s(F‘*‘), —2/s <6 <1—2/s. If 6+ 2/s is not integer, then

w€ VS (0F) & du(r,vs) =0 on M for j <1—06—2/s. (1.3)

If § + 2/s is integer, then for the inclusion u € Vél’s(D) is it mecessary and sufficient that the conditions
(1.3) and

// r_l‘ai_é_z/su(r,x3)’sdrdxg < 00
R JO

are satisfied.
We introduce the following extension operator E mapping W'=9=2/%5(M) into W*(D) or Wéil/p’p(lji).
(BA(@) = x(r) [ Flasttr)oie) (1.4

where r = |2/|, x is a smooth function on (0, 00) with support in [0,1] equal to 1 in (0,1), and v is a
smooth function on R with support in [—1, +1] satisfying the condition

/w(t)dtzl, /tjw(t)dtzo for j=1,2,...,1
R R

Since the function E f depends only on r and x3, it can be also considered as a function on the half-planes
't and I'". For the following lemma we refer to [21].



Lemma 1.2 Let —2/s <6 <1 —2/s and 6 + 2/s be not integer. Then
(DL, Ef)lv =0 f forj <l—6—2/s. (1.5)

Moreover, if Ef is considered as a function on D, then 0% Ef € V;f‘al’S(D) for1 <|a| <. In particular,
the trace of 0% Ef on M wanishes for 1 < |a| <l —3§ —2/s.
If Ef is considered as a function on T'F, then OJEf € V(;l_J_l/s’S(I‘i) forj=1,...,1—1.

If fe Wg_l/S’S(FJ’), § < 1—2/2, then the traces of f and 9., f on M exist. Obviously, (9., f)|xm =
Oxs (flar)- The following result for the limit case 6 = 1 — 2/s follows from [27, Le.7, Rem.4].

Lemma 1.3 If f € VV2 21//: *(T*) and f|y =0, then

—1 ] S < s
/R/O P O S )| drdey < el yey ey

for arbitrary positive €.
For the following lemma we refer to [23, Le.2.1].

Lemma 1.4 If 9 u € V{*(D), 1 < s <2, for j = 0,1,2, then u € V.

5— 3+2/S(D)'

Corollary 1.1 If 8%3u € WS’S(D) for j = 0,1,2, where 1 < s < 2 and § > 2 — 2/s, then u €
Walf3+2/s(p)'

Proof: By Lemma 1.4, the inclusion 97 u € W2 (D) = ViP(D) for j < 2 implies u € Vé0 23+2/Q(D).
Furthermore, by our assumptions, 8£3Vu € ‘/52’8(7))3 for 7 = 0,1, 2 and, therefore, Vu € V5O 23+2/3(D)3'
The result follows. m

1.2 Weighted Sobolev spaces in a cone

Let K be the cone
K={zecR®: z/|z| € Q} (1.6)
where () is a domain on the unit sphere of polygonal type ...

We denote by S the set My U --- U M, U {0} of all singular boundary points. Furthermore, for an
arbitrary point € K we denote by p(z) = |z| the distance to the vertex of the cone, by r;(x) the distance
to the edge Mj;, and by r(z) the regularized distance to S, i.e., an infinitely differentiable function in K
which satisfies the estimates

o dist(z,S) < r(z) < cpdist(z,S) and  [0%r(z)| < ¢, dist(z, S) 1

for all x € K and all multi-indices «.. Here ¢y, ¢2, ¢, are positive constants independent of x.
Let [ be a nonnegative integer, § € R, 6 = (d1,...,0,) € R", §; > —2/s for j = 1,...,n, and
1 < s < 0o. We define Vﬂlf;(IC) and Wéfs (K) as the weighted Sobolev spaces with the norms

s(6;—l+]|al) 1/s
ol e / S Jafo 5D (g H( (|)) )"

|| <1
- i\ 504 1/s
Il ) = (/ S et g TT () ar)
lal<l j=1 P

respectively. Furthermore, we introduce the following notation. If d is real number, then Vé:Z(IC) and
Wé‘il(lC) denote the above introduced spaces with 6 = (d,...,d). If § = (61,...,0,) and d is a real
number, then we define W5 551aK) = Wé 5(K), where ¢ = (61 +d, ..., 0, + d).



Passing to spherical coordinates p = |z|,w = z/|z|, one obtains the following equivalent norm in
l,s .
W55(K):

1/s
i = (| o ”“ZH 00, (. vy )

where the norm in Wé’S(Q) is given by

s 1/s
||U||W§’S(Q) - ( / Z |03 v(x H 36J da:)

i || <1 j=1
1<|z|<2

(here the function v on Q is extended by v(z) = v(z/|z|) to the cone K).

By Hardy’s inequality, the space Wlill 5 () is continuously imbedded into Wéfs(ﬂ) if§ = (01,...,0n),

6" = (d1,...,0y,) are such that d;,d% > 2/s and 05 —0; < 1 for j = 1,...,n. This implies that, under

rn

the above assumptions on § and §’, there is the imbedding Wéillf;, (K) c Wéf;(lC) In particular, we have

Vﬁl:f;(IC) = Wﬁ S(K)ifé; >1—2/sfor j=1,.
Let ¢ be smooth functlons depending only on p = |x| such that

+oo
supp Gx C (2°71,280), 0 3" =1, [(p9,) (o)l < ¢ (1.7)

k=—o0

with constants ¢; independent of k and p. It can be easily shown (cf. [9, Le.6.1.1]) that the norms in
Vﬁl,g(IC) and Wéf;(lC) are equivalent to

+oo +oo

1/s 1/s
lll = (D2 I6kulljraey) — and = (D0 IGuliy ) (18)

k=—oc0 k=—oc0
respectively. We denote the trace spaces for Vﬁl’g(lC) and Wé’fs(lC), 1 >1,onTIy by Vﬁl_gl/s’s(Fj), and
Wé}l/ S’S(I‘j)7 respectively. The norms in these spaces are also equivalent to

+oo —+oo

1/s 1/s
lull = (32 I6ulyarreng) and full= (30 Mauliyag,) 0 (09)

k=—o00 k=—o00

respectively. The trace of a function u € Wéfs(lC) (or u € Wé:sl/ ®°(T';)) on the edge M} exists if
dr < 1—2/s. Using Lemma 1.3, we obtain the following result.

Lemma 1.5 Let ' be a side of the cone K adjacent to the edge My and let f € Wg’gl/s’s(F), where
O =1—2/s. If f|p, =0, then

o) et
/ / s(A=D+2 -1 ‘&gf(n t)|8dr dt < oo
o Jo

for sufficiently small € > 0. Here r = dist (x, M) and t is the coordinate on Mj.

Proof: Let ny, = Co—1 + G + Cos1, Ti(2) = me(2¥), and f(r,t) = f(2%r, 2%t). By our assumptions on
the functions (j, we have 7j;(z) = 1 for 1/2 < |z| < 2. From Lemma 1.3 it follows that

2 et
-1 7 s ~ s
of(r,t)|" drdt < s
L el e < el

Here,

2k+1

/ / 1|6t rt{ dr dt = 2k~ 1)/ / 1‘325 rt| drdt and
1/2 ok—1

. < C2 ks(B— 2 —3k e .
||77kf|| 2 1/ (ry = ||77kf||W52)51/- (I



This implies

ok+1

/21@71

Summing up over all integer k£ and using the equivalence of the norm in Wé}l/ #*(T';j) with the the second
norm in (1.9), we obtain the desired inequality. m

et
/ ps(B-1)+2  —1 |(9tf(r, t)’s drdt <c ||77kf||;v§;”s*s(r)'
0 ,

2 The boundary value problem in a dihedron

We consider a boundary value problem for the Stokes system, where on each of the sides I't one of the

boundary conditions (i)-(iv) is given. Let n* = (ni, nT,0) be the exterior normal to TF, e (u) = e(u) n*

and et (u) = et (u)-n*. Furthermore, let d* € {0, 1,2, 3} be integer numbers characterizing the boundary

conditions on I'™ and I'", respectively. We put
o STu=u ford*=0,
o STu=u— (u-nF)nt, N*(up)=—p+2t, (u) ford* =1,
o STu=wu-n*, NF(u,p)=ct(u)—ek, (u)nt ford* =2
o N*(u,p) = —pn* +2¢F(u) for d* =3

and consider the boundary value problem

—Au+Vp=f, —-V-u=g inD, (2.1)
Stu=h%, N*(u,p)=¢* onT=.

Here the condition N*(u,p) = ¢T is absent in the case d* = 0, while the condition STu = h* is absent
in the case d* = 3. The Dirichlet problem for Stokes system and the mixed problem with Dirichlet
condition (i) on Tt and condition (ii) on T~ were studied by Maz’ya, Plamenevskii and Stupelis [20] (see
also the book of Stupelis [28]). In contrast to [20, 28], we will use here weighted Sobolev spaces Wé’S(D)
with nonhomogeneous norms.

2.1 Reduction to homogeneous boundary conditions
For the following lemma we refer to [24, 25].

Lemma 2.1 Let h* ¢ V;_I/S’S(Fi)?’_di, o* € V;_l_l/s’s(f‘i)di, I > 2. Then there exists a vector
function u € V;’S(D)3 such that S*u = h* and N*(u,0) = ¢* on T'F satisfying the estimate

+ +
||u‘|\/;vs(D)3 <c (Hh ”V;—l/svs(pi)zfdi + H¢ ”V;—l—l/s’s(pi)di>

with a constant ¢ independent of h* and ¢*. If h* and ¢F vanish for |z'| > 1, then also u can be chosen
such that u(x) =0 for 2’| > 1.

Now let h* € W2V 5 (rE)3=d g ¢ Wwl=l/*3(+)d* and g € W}*(D), § < 2 — 2/s, be given
functions vanishing for |z/| > 1. We want to answer the question under which conditions there exist
functions u € W;*(D)? and p € W, *(D) such that

STu=h*, NE¥(u,p)=¢* onTF and V-u+ge VD) (2.3)

For § > 1 — 2/s the answer follows immediately from the following lemma and from Lemma 2.1.



Lemma 2.2 Let h* € Wéil/s’s(I‘i)‘?_di, l—1-2/s<d<1-2/s,1>1, h¥(z) =0 for |2/| > 1.
Suppose that h™ and h™ satisfy the compatibility condition

(Pl h™lar) € R(T), (2.4)

where R(T) denotes the range of the operator T = (S*,S7) (here ST are considered as operators on
W'=0=2/55(M)3). Then there exists a vector function u € I/Vé’S(D)3 such that u(z) =0 for |2'| > 1 and
S*u = ht.

Proof: By (2.4), there exists a vector function ¢ € W!=9=2/%5(M)? such that ST+ = h*|y. Let
v E Wté’s(l))3 be an extension of ¢ vanishing for |z/| > 1. Then the traces of STv|p= — h™ are zero on
M and, consequently, S¥v|p+ — h* € \/:;lfl/s’s(l"i)?’_di (see Lemma 1.1). Applying Lemma 2.1 (in the
case | = 1 see [16, Le.3.1]), we obtain the assertion of the lemma. m

Note that condition (2.4) can be also written in the form
An*|ar = Bh™ |ar, (25)

where A and B are certain matrices. For example, A = B = [ in the case of the Dirichlet problem
(dt=d=0),A=(n") =(n;,n;,0), B=1ifd" =0and d~ = 2.

If hE e W2TV/os(re)3=d® gt ¢ Wi mVoN(0E)d and g € WE(D), —2/s < 6 < 1—2/s, then the
traces of g, h*, 9,hT and ¢* on M exist. Suppose that (u,p) € Wf’s(D)P’ X W;’S(D) satisfies (2.3). We
put

b:u|Mv c= (azlu)|M7 d= (612u)‘M and q:p|M-

Then from the equations S*u = h* on I'* it follows that S*0,u = 0,h* on I't, and therefore,

S%b = hF|u, (2.6)
S5%(ccos g +dsing) = (0-hF) s - (2.7)

Moreover V -u + g € Vél’s (D) if and only if the trace of V -« + g on M vanishes, i.e.,
c1 + ds +8w3b: —g|]w. (28)

Obviously, the trace of N¥(u,p) on M can be written as a linear form M¥*(c,d, 9,,b,q). Thus, from
N#*(u,p) = ¢* on T'* it follows that

M*(c,d, 0y,b,q) = ¢ a1 - (2.9)

Lemma 2.3 Suppose that there doesn’t exist a pair (u,p) # (0,0) of a linear vector function u = cxq+dxs
and a constant p satisfying

~V-u=0 inD, S*u=0, N*(u,p)=0 onT=. (2.10)
Then the linear system (2.7)~(2.9) has a unique solution (c,d,q) for arbitrary h*, ¢+, g, and b.
Proof: Inserting u = cxy + dxg and p = ¢ = const. into (2.10), we obtain
c1+dy =0, SF (ccos $ £ dsin %) =0, and M%*(c,d,0,q) =0. (2.11)

By the assumption of the lemma, the homogeneous system (2.11) of 7 linear equations with 7 unknowns
has only the trivial solution ¢ = d = 0, ¢ = 0. Consequently, the inhomogeneous system (2.7)—(2.9) is
uniquely solvable. m

The last lemma together with Lemmas 1.1 and 1.2 allows us to obtain the following result.



Lemma 2.4 Let ht € W2™V/5(DE)3-4% g+ ¢ W)Y*3(T£)d gnd g € WH*(D), —2/s < 6 <2-2/s,
be given functions vanishing for |x'| > 1, and let h* and h™ satisfy the compatibility condition (2.5) on
M. If§ <1—2/s we assume additionally that the assumption of Lemma 2.3 is satisfied. Then there
exist a vector function u € 1/1/62’3(@)3 and a function p € Wél’s(D) vanishing for |z'| > 1 and satisfying
(2.3) and the estimate

||UHW62’S(D)3 + ||p||wsl=~‘(p) <c (Z Hhi”Wt?*l/svs(pi)Sfdi + Z “¢i||wé*1*1/sfs(pi)di + ||g||W51‘S(D))'
+ +

Proof: For 6 > 1 — 2/s the assertion of the lemma follows immediately from Lemmas 2.1 and 2.2.
Let § < 1 —2/s. Then there exist b € W27972/5:5(M)3, ¢,d € W'972/55(M)3 and q € W'=9=2/55(M)
satisfying (2.6)-(2.9). We put

v=FEb+x1 Fc+ 29 Ed, p= Eq,

where F is the extension operator (1.4). Then, by Lemma 1.2,
S*olv = h* v, (0:5Tw) v = (00 m s —(V-w)|ar = gla-

and
Ni(’Uap)h\/f = M:t(cvdvaw;;ba q) = ¢i|M .

Consequently, by Lemma 1.1, we have
Sty —hE e V2TV (rEPAT oy 4 g e VIS(D), and NE(v,p) — ¢t € VTV o(E)d
By Lemma 2.1, there exist a vector function w € V(;Q’S(D)S, w(z) =0 for |2/| > 1 such that
S*tw = h* — S*v, N*(w,0) = ¢ — N*(v,p) on I,

Then the pair (u,p) = (v + w,p) has the desired properties. In the case § = 1 — 2/s the lemma can be
proved analogously using the relations between the spaces V;’S(D) and Wé’S(D) given in [27]. m

Remark 2.1 The condition of Lemma 2.3 is satisfied for d* +d~ = 3, sin 20 # 0 and for d*+d~ € {1,5},
cosf cos20 # 0. If d* +d~ is an even number, then the condition of Lemma 2.3 fails for all §. If d* and
d~ are both even, then obviously (u,p) = (0, 1) satisfies (2.10), while in the case of odd d* and d~, the
vector (u,p) = (x1,—2x2,0,0) satisfies (2.10). In these cases the assertion of Lemma 2.4 holds only under
additional compatibility conditions on the functions h*, ¢* and g.

We give here the corresponding result for the Dirichlet boundary condition.

Lemma 2.5 Let h* ¢ ngl/s’s(f‘i)?’ and g € Wy*(D), —2/s < § < 2 —2/s, be given functions
vanishing for |z'| > 1 such that h™ |y = h™|pm. If 6 < 1 —2/s, we assume additionally that 6 # T,
0 # 27, and

n” - OhT v+ 0t 0:hT v = (gl + Oushd 1) sind, (2.12)

while for 6 =1 — 2/s the "generalized trace condition”

/ / rt ’n_ L Ouh (r,5) + 1T - 0,07 (ry ) — (9 (r,m) — Ouhi (7, w3)) sinf Cdydr < o0
0 R

is assumed to be valid. Here

. L
g(r,x3) = 9/0/ g(rcosp,rsing, x3) dp
—0/2

denotes the average of g with respect to the variable . Then there exists a vector function u € Wg’S(D)?’
vanishing for |z'| > 1 such that u=h* on T and V-u+g € V52’S(D).



Proof: 1f § < 1 —2/s, then the traces of h*, 9,h*, and g on M exist and there are vector functions
c,d € WI=0=2/5:5( )3 satisfying

ccos § £dsin§ = (0rhi)|M and ¢; +dy = —9,hT | — glar-

Analogously to the proof of Lemma 2.4, it can be shown that v = Eh*|y + 11 Ec + x9 Ed satisfies the
conditions v|p+ — h* € %2’S(Fi)3 and V-v+g € V;’S (D). Applying Lemma 2.1, we obtain the assertion
of the lemma for § < 1 — 2/s. Analogously, it can be proved for § =1—2/s. m

Remark 2.2 Analogous results are valid for even d* + d~ # 0. Then of course the conditions h'|y, =
h~|a and (2.12) have to be replaced by another compatibility conditions on M. If 6 < 1 —2/s, then
the traces of h™ 9.h* ¢+ and g on M must be such that the system (2.6)-(2.9) with the unknowns
b, c,d, q is solvable. For example, in the case of the Neumann problem (d* = d~ = 3), 6 # m, 0 # 2m, the
boundary data ¢* and ¢~ must satisfy the condition
6T -nT =¢ -nT on M.
In the case d~ = 0, d* = 2, the data h™, h™, ¢* and g must satisfy the compatibility conditions
h™-nT =hT and
1
Or-ht cos20 — (2nT cos@ +n7)9.hT + 2sin? 0 (¢ cos0/2 + ¢ sin6/2) + i(g + Oy, hy ) sin20 =0

on the edge M.

2.2 Regularity results

The following two lemmas are proved in [23, Le.3.1,Le.3.4] for boundary value problems to elliptic systems
of the form

3
=) Aij0y, Ou=f

2,j=1

The proof for the Stokes system is essentially the same.

Lemma 2.6 Let (u,p) € Wllo’s (D\M)? lelO_cl’s(@\M) be a solution of problem (2.1), (2.2). Furthermore,

C

let ¢, n be infinitely differentiable functions with compact supports on D such that n = 1 in a neighborhood
of supp . N

1) If u € V(D) mp € Vi (D), mf € Vi~**(D)%, mg € Vy~1(D), mh* € V" (D)3,
and no* € V;_I_U‘S’S(I‘i)di, 1> 2, then Cu € Vy*(D)?, ¢p € V{~"%(D) and

HC“”V;S(DV + ||Cp||véz—1,3(p) < c (||77U||v503(p)3 + H77p||v5°j+1(p) + an”v;*?ﬂsw)s + ||779HV;*1=5(D)

Il ot D MOF yrrrn s ) (2:13)
+ +

s —1,s —2,s —1,s —1/s,s _ g%
2) Ifnu € WS, (D)?, ip € WD), nf € Wim>*(D)?, ng € Wy~ 1*(D), nh* € Wy~ /=" (0¥)3=4%,
and ng* € WSS 1> k4122, 6> 1—k—2/s, then Cu € W (D)3, ¢p € W 1*(D) and

an estimate analogous to (2.13) holds.
We define the operator A(A) as follows
A()‘) (U(QD), P((p)) = (r2i/\(_Au + Vp) ) _Tli/\v CU, riASiu|Lp=:|:0/2 ) Tli}\Ni (uvp)|tp=:|:9/2)v

where u = 1 U(p), p = r*"1P(p), A € C, r,p are the polar coordinates of the point 2’ = (z1,22). The
operator A(X) depends quadratically on the parameter A and realizes a continuous mapping

W2 (=5, +5))° x Wh((=§,+9)) = W ((=§,+5))> x L*((=5,5)) x C° x C°
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for every A € C. In [24, 25] a description of the spectrum of the pencil A()) is given for different d—
and dT. For example, in the cases of the Dirichlet problem (d* = d~ = 0) and Neumann problem
(dT = d~ = 3), the spectrum of A()) consists of the solutions of the equation

sin(Af) (A*sin® § — sin®(\0)) = 0,

A #£ 0 for dt =d~ = 0. In the case d~ =0, d* = 1, the eigenvalues of A()) are the nonzero solutions of
the equation
sin(A\0) (Asin(26) + sin(2A0)) = 0.

If d~ =0, d* = 2, then the eigenvalues are the nonzero solutions of the equation
sin(2A0) (Asin(260) — sin(2A0)) = 0,

while the nonzero solutions of the equation
sin(2A0) (A?sin® @ — cos*(A0)) = 0

are eigenvalues of A(\) if d~ =0 and d* = 3.

Lemma 2.7 Let (, n be smooth functions on D with compact supports such that n = 1 in a neighborhood
of supp ¢, and let (u,p) be a solution of problem (2.1), (2.2) such that

nue Wyt (D)3, np e Wy V5 (D), 1dp,u € WhH(D)?, 1dp,p € Wi H*(D)
where 1 > 2, —=2/s < 6 < ¢ <6+ 1. Furthermore, we assume that
nf € WD), ng e W (D), nh*t e WiHTYos(E)3—dt gk oyl )dt
If there are no eigenvalues of the pencil A(N\) in the strip | — 0 —2/s < ReA <1+ 1—¢ —2/s, then

Cu e WL (D)3, ¢p e Wi (D).

3 Solvability of the boundary value problem in a polyhedral
cone

Let K be the cone (1.6) introduced in Section 1.2. For every j = 1,...,n let d; be one of numbers
0,1,2,3. We consider the boundary value problem

—Au+Vp=f, —-V-u=g ink, (3.1)
Siju=h;, Nij(u,p)=¢;, only, j=1,...,n (3.2)

Here S; is defined as
Sju=uifd; =0, Sju=u,=u-nifd; =2, Sju=u =u—-uynifd; =1,
while the operators NN; are defined as
Nj(u,p) = —p+2enn(u) if dj =1, Nj(u,p) =en(u) if dj =2, Nj(u,p) = —pn+ 2e,(u) if d; = 3.

In the case d; = 0 the condition N;(u,p) = ¢; does not appear in (3.2), whereas the condition S;u = h;
does not appear if d; = 3.

11



3.1 Reduction to homogeneous boundary conditions

Lemma 3.1 Let h; € Vﬁl_él/s’s(rj)g’*djy ¢; € Vé:gl_l/s’s(Fj)dj, 1 > 2. Then there exists a vector function
u € Vé:;(lc)'g such that Sju = hj and Nj (U, O) — ¢j on Fj and

||u||v5l1§(;c)3 <c z; (||hj||vﬁl:;1/svs(pj)3*dj + ||¢j||vé:51*1/~*3(pj)dj) (3-3)
]:

with a constant c independent of h; and ¢;.

Proof: Let (j be smooth functions depending only on p = |z| such that

+oo
supp G C (2571, 280 N Ge=1, [(00,)G(p) < ¢ (3.4)
k=—o00
with constants ¢; independent of k and p. We set hy ;(x) = (r(2%x) h;(282), ¢r ; () = 2% e (2K2) ¢ (25 ).
These functions vanish for |z| < 1 and |z > 2. Consequently, by Lemma 2.1, there exist vector functions
v € Vé:;(lC)3 such that S;vr, = hy; and N;(vg,0) = ¢ jon T for j=1,...,n,

||U7€||Vl§:§()c)3 <c Z (thw'Hvéjsl/svs(rjf*dj + H‘bk,j”Vﬁl:;l*l/svs(rj)dj)’ (3-5)

Jj=1

and vy, (z) = 0 for |z| < 1 and |z| > 4. Hence for the functions uy(z) = vi(27*z) we obtain S;uj, = (xh;
and Nj(u,0) = (x¢; on I, ug(x) = 0 for |z| < 282 and |z| > 2¥+2. Furthermore, uy, satisfies (3.5) with
Cihj and (¢ instead of hy ; and ¢y, ;. Here the constant c is independent of k, h; and ¢;. Consequently,

for w = > uy we have Sju = h; on and N;(u,0) = ¢; on I'; for j = 1,...,n. Inequality (3.3) follows
from the equivalence of the norms in Vﬂlf;(IC) and Vé}l/s’s(Fj) with the norms

“+o00 “+ o0

1/s 1/s
lul = (32 IGkulfage)  and = (D0 0Ghlrng)) (3.6)

k=—o00 k=—o00
respectively (cf. [9, Sect.6.1]). m

An analogous result in Wé;(IC) is only valid under additional compatibility conditions on the bound-
ary data. Denote by I'y, and I'y_ the sides of the cone K adjacent to the edge M}, and by 6 the inner

angle at M. If u € Wg;(lC) and 0y < 2 — 2/s, then the trace of u on M}, exists and from the equations
Sju = h; on I'; it follows that the pair (hk+|Mj,hk7 |Mj) belongs to the range of the matrix operator
(Sky»Sk_). This condition can be also written in the form

Akthr ‘Mk = Byhy_ |Mk ) (37)

where Ay, By, are certain constant matrices (see Section 2.1).
Using Lemma 2.4 (see also Remark 2.1), one can prove the following result analogously to Lemma
3.1.

Lemma 3.2 Let hj € W53 '/**(T;)3~%, ¢; € Wil 7V (D)% and g € Wy(K), —2/s < 6 <2 —2/s
fork=1,...,n, be given functions such that the compatibility condition (3.7) is satisfied fork =1,... n.
In the case 6, < 1 —2/s we assume additionally that di. +di_ is odd and

sin20, #0 if dp, +dp. =3, cosO cos20y #0 ifd, +d,_ €{1,5}.
Then there exist a vector function u € Wg; (K)? and a function p € Wﬁlg(lC) satisfying
Sju=hj, Nj(u,p)=¢; onTy, j=1,....n, V-u+ge V;;;(IC) (3.8)
and the estimate

||u||W§§()C)3 + ||p||W$§(}C) <c (zi: ||hj||W52:§1/s,5(Fi)37dj + 2 ||¢j||Wé:sl—1/s,s(Fj)dj + HgHW;(;(,C))
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If 6 <1—2/s and dj, + di_ is even for at least one k, then the assertion of Lemma 3.2 holds only
under an additional compatibility condition on the edge M}, (cf. Lemma 2.5, Remark 2.2). We give here
the corresponding result for the Dirichlet problem. An analogous result is valid in the general case.

Lemma 3.3 Let h; € Wg;l/s’s(l‘j)g’ and g € Wg:;(lC), where —2/s < 6, <2—2/s fork=1,...,n, be
gien functions such that
hk+|Mk = hk,|Mk fork = 1,...,n.

In the case 6, < 1 —2/s we assume additionally that 0y, # m, 0y # 27 and
ni_ - (Orhi, ) |ay + niey - (Orhi_ )| g, = (9lar, + Ou(hie, - €x) |, ) sin by, (3.9)

where ey, is the unit vector on My, r = dist(x, M), and t denotes the coordinate on My. For §, =1—2/s
instead of (3.9) the generalized trace condition

[e%e} et o s
/ / t‘9(5—1)+2 r_l Nie_ '8rhk+ (Tat) +nk+ -Ophy,_ (Ta t) - ( g(T7 t) _8t(h/€+ (T’ t) 'ek)) sinb| drdt < oo
0 0

is assumed to be valid. Here ¢ is a small positive number, the functions hy, are considered near My, as

functions in the variables r,t, and 5(7“, t) denotes the average of g with respect to the angle p in the plane
perpendicular to My, (cf. Lemma 2.5). Then there exists a vector function u € Wg’g(lC)?’ such that u = h;

onT; forj=1,...,n andV'u—l-géV[jl”;(lC).

3.2 Operator pencils generated by the boundary value problem
We introduce the following operator pencils 2 and A;.

1) Let 'y, be the sides of K adjacent to the edge My, and let 6y be the angle at the edge M. We
consider the Stokes system in the dihedron Dy bounded by the half-planes I'; | D I'y, with the boundary

conditions
Skou = ht, Ni, (u,p) = éT on Ly, -

By Ai(A) we denote the operator pencil introduced before Lemma 2.7 for this problem. Furthermore,

let /\gk) denote the eigenvalue with smallest positive real part of this pencil, while /\gk) is the eigenvalue
with smallest real part greater than 1. Finally, we define

(3.10)

Re /\gk) if dp, +dy_isodd or dy, +dy_ is even and ap > 7/my,
M= Real®

if dy, + dj_ is even and oy < 7/my,
where mg = 1 1fdk+ :dk_, mi =2 1fdk+ %dk_.
2) Let p=|z], w =z/|z|, Vo = {u e W'(Q)?: S;ju=0o0n~; for j=1,...,n}, and

() (D)) =15 | (gi;gmw).gi,j(mpv.vw.m) i,

K
1<|z|<2

where U = pru(w), V = p~ 1" o(w), P = p*Ipw), Q = p~2 A q(w), u,v € Vo, p,q € L2(Q), and ) € C.
The bilinear form a(-, -; A\) generates the linear and continuous operator

AN) : Vo x La(Q) — V& x La(Q)

/QQl()\)< Z)(Z )dw:a(( Z ),( Z );/\), u,v € V, p,q € Ly(2).
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3.3 Regularity results for the problem in the cone

The following results are based on Lemmas 2.6, 2.7

Lemma 3.4 Let (u,p) € W22 (K\S)? x WL 1 (K\S) be a solution of problem (3.1), (3.2).

,S ,S —2,s —1,s 1—1/s,s —d.
1) Ifu € Vi 511 (K% p € VIS 5o (K), F € Vi (K)%, g € Vi (K), hy € Vit ™" (1,)2~%,
and ¢; € delfl/s’s(Fj)dj, 1 >2, thenu € Vﬁlzg(lC)3, pE Vé:;l’s(lC) and

||UHV[§:§(/C)3 + Hp”\/é;;l’s(;c) < c (||U||\/[g1’_5l+175_1+1(lc)3 + Hp”V[?’_SzH,a_z-;.l(’C) + ”fHV[ﬁ;f*S(IC)S + ”gHV[ﬁ}l’S(IC)
n n

+ z; [ p—— z; 165110 0 ). (3.11)
J= J=

s < —1,s —2,8 S - yS

2) If u € Wg’_l+k,§—l+k—(lc)3; p € Wé_ﬁkﬂﬁ_m(’@, I € Wé; (K)?, g € Wg,gl (K), h; €
Wh /T34, and ¢ € Wi SN0, 1> k41> 2,8 > 1~k —2/s, then u € WS3(K)?,
D E Wé:sl’s(/C) and an estimate analogous to (3.11) holds.

Proof: 1) Due to Lemma 3.1, we may assume, without loss of generality, that h; = 0 and ¢; = 0
for j = 1,...,n. Let (;x be the same functions as in the proof of Lemma 3.1. Furthermore, let n; =
Cor + G+ Cotrs (@) = Gu(24), k(@) = (%), (z) = u(2*z), and f(z) = 2p(2*a). By (3.4),
the support of (i is contained in the set {z : 1/2 < |z| < 2} and the derivatives of (j are bounded by
constants independent of k. Obviously,

—Au+Vp=f, -Va=g inK
S;ju=0, N;j(a,p) =0 onTy, j=1,...,n,

where f(z) = 22)f(2%z) and §(x) = 2¥g(2*z). Consequently, from Lemma 2.6 it follows that (i €
Vs (K)°, G € Vg3 (K), and

||Cka||vé:§(;c)3 + ||CkﬁHvé:51=a‘(;c)

<c <||77ka||vg>_-*lyé_1()c)3 + ||7~7k]5||\/[0~* ) + |‘77kf||vﬂlfd?‘5(;<)3 =+ ||77k§||vﬁl)—6115(,c)>-

3—l+1,5—l+1(lc

where c is independent of u, p, and k. Using the coordinate change 2F2 = 5, we obtain the same estimate
with (g, mk,u, p, f, g instead of (x, 7k, @, p, f and g, respectively. Since the norm in Vé;(IC) is equivalent
to the first norm in (1.8), this implies (3.11) for { =n = 1.

2) The second assertion can be proved analogously. m

Corollary 3.1 Let (u,p) € V[/lloi(lC\S)3 X Wllgcl’s(lﬁ\S) be a solution of problem (3.1), (3.2), and let ¢,

1 be infinitely differentiable functions on K with compact supports szlwh that n =1 inla neighborhood
s 0,s —2,5 —1,s

of supp (. If mu € V' 511 (K)3, mp € V5 51 (K), nf € V32" (K)®, ng € Vi5*(K), nh; €

Vé;sl/s’s(Fj)3_di, andng; € ‘/;7171/5’5(11]')‘19', 1>2, thenCu € Vﬁlzg(KP, (pe Vﬁl;sl’s(lC) and an estimate

analogous to (3.11) holds.

Proof. We apply Lemma 3.4 to the vector function ((u,(p). Obviously,

3
—A(Cu) +V(Cp) = Cf =2 (02,0) Ou,u—uAC+pVE¢ and  — V- (Cu)=(g—g-VE,

Jj=1

Moreover, (Cu,(p) satisfies the boundary conditions (3.2) with the data H; = (h; and ®; = (¢; +
N;(VC) u, where N;(VC) are certain matrices depending on V(. Thus, in the case [ = 2 the assertion
of the corolllary follows immediately from Lemma 3.4. Using induction in [, we obtain the assertion for
[>3. =
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Lemma 3.5 Let (u,p) € Wé’:}(IC)3 X Wé}l’s(/C) be a solution of problem (3.1), (3.2) such that
l,s l—1,s
dpu € Wiy 5(K)?, 8pp € Wiy (K),
where 1 > 2, —=2/s < 6, < §), <0+ 1 for k=1,...,n. Furthermore, we assume that
I—1,s l,s I+1—-1/s,s —d. l—1/s,s . .
FEWLTS0?, geWh oK), hy e Wit/ (¥4, ¢, e Wi /ss(@H)%, j=1,...,n.

If there are no eigenvalues of the pencils Ax(X\) in the strip I — 6 —2/s < ReX < 1+ 1—4; —2/s,
k=1,....n, thenue Wi 5,/(K)3, ¢pe Wity 5(K).

3.4 Representation of the solution by Green’s matrix

Let f ¢ Wg:;(IC)3, g€ Wﬁlg(lC), h; € Wﬁz’gl/s’s(l“j)3—da‘7 b € Wé;l/s’s(Fj)dJ. Our goal is to show that
problem (3.1), (3.2) has a unique solution in W;:;(ICP X Wﬁlg (K) if the line Re A = 2 — 3 — 3s does not
contain eigenvalues of the pencil 2A(\) and max(2 — pg,0) < o0 +2/s <2fork=1,...,n.

Let x be a fixed real number such that the closed strip between the lines ReA = —x — 1/2 and
ReX =2 — 8 —3/s is free of eigenvalues of the pencil 2. Then, according to [25, Th.4.5], there exists a

unique solution G(z,§) = (G ;(z, 5))4 of the problem

i,j=1

— 0, Gi(2,8) + VoGaj(2,6) = 6(x — €) (81,4, 025, 055)" for z,€ € K, (3.12)
V. Gj(x,6) =640z — &) forz,& €K, (3.13)
SkGj(x,6) =0, Ni(,) (Gj(2,6),Gaj(2,6)) =0 forzely, €K, k=1,...,n, (3.14)

(here éj denotes the vector with the components G, j,Ga j,G3 ;) such that the function @ — ((|z —

€|/r(€)) Gij(x, &) belongs to Wl o(K) for i = 1,2,3 and to W2 ((K) for i = 4, where ( is an arbitrary

smooth function on (0, 00) equal to one in (1,00) and to zero in (0,1). We denote by A_ < Re X < Ay

the widest strip in the complex plane containing the line Re A = —x — 1/2 which is free of eigenvalues of
the pencil A()\).
If hj =0 and ¢; =0 for j = 1,...,n, then the solution of problem (3.1), (3.2) has the form

3
uz(x) = J_Zl/lc(fj(g)+aﬁjg(§)> Gi,j(x7€>d£+/Kg(£)Gi,4<x7£)d£7 1=1,2,3, (315)

3
p(z) = —g<x>+]§:jl /K (F5(6) + 0, 9(6)) Gy (. €) d + /,< 9(6) Gaa(a, ) de (3.16)

(see [25, Th.4.5]). In the following, we will show that (3.15) and (3.16) define a continuous mapping
W) x Va3 (0) 5 (f.9) = (w,p) € WES(K)* x W3 (K)
if
A_<2-p8-3/s<A;y and max(2— pug,0) < +2/s<2 fork=1,...,n. (3.17)

3.5 Estimates of Green’s matrix

The following estimates of Green’s matrix are proved in [24, 25].
1) For |z| > 2|¢| there is the estimate

020 Gij(2,€)| < cla|t-monamlalte g mAomtmhnanhlze

. Tk (ZL') )mi“(ovﬂk—|a\—5i,4—8)
giler

k=1

(&) \min(0,pk—[v]=8;,4—¢)
[ ()

n
k=
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where ¢ is an arbitrarily small positive number. Analogously for |£| > 2|z|, there is the inequality

0302Gi5(2,6)] < claftrdalele g Ariobamle

. T (z)\ min(0,ur—la|=dia—¢) o (&) \ min(O.pe—lyl=8j4—¢)
XH(m) H(|§|) '

k=1 k=1

2) For [x[/2 < [¢] < 2[a], [x —&| > min(r(z), 7(£)), we have

0502y (2,)] < el — ¢l 711l (1)

)min(o,ﬂm—‘Oé'—(siA—E) r(§) )min(07#§—|’7|—5]‘,4—5)
|z — ¢ (

|z —¢]

)

where T'=1+8;4 + 0 4.
3) Let |z]/2 < |£| < 2|z| and |z — &| < min(r(z),r(£)). Then

0200 G j(2,6)] < cla — g7 lel=h1,
Moreover for 4,j = 1,...,4, there are the representations
Guj(,€) = =V Pi(,8) + Qj(x,8), Gialx,&) = —Ve - Pi(w,&) + Qi(w,9),
where P;j(z,€) -n for x € Ty, k=1,...,n, £ € D, Py(x,€) -n for £ € Ty, z € D, and
0208 Py (,€)| < cay o — &7 0471017010207 Q5 (2, €)] < caqyr(€) 72004100
020 Pi(w,€)| < Capy |z — &7 0071110207 Q4 (, €)| < ey r(§) 2 00a I
for |z]/2 < |¢] < 2|z|, |z — £] < min(r(z), 7(£)).

3.6 Auxiliary inequalities

In this subsection we prove estimates for an integral operator with kernel K (z,£) which satisfies the same
point estimates as the elements G; ;(x,&) of Green’s matrix with ¢ = 6; 4 and 7 = §; 4.

Lemma 3.6 Let (i be the same function as in the proof of Lemma 2.1 and let
() = Gno) [ GE) £(6) K .) e
K

Suppose that m >1+3, f € WO* (K), and

—7,0—T7

. [ —o—lol+e () \ min(@nmo—lal=2) Ty () min(Omk 7<)
|00 K (z,6)] < ¢ Pt H( " ) k]i[l( s ) (3.18)

for|z| > 2|¢|, |a] <2 — 0, where o,7 € {0,1} and € is a sufficiently small positive real number. If 3 and
d satisfy condition (3.17), then

—|m—1
ol a=ee iy < €2 |m |<H<zfllwg=_;é_,(m

with positive constants ¢ and s independent of f. The same estimates holds if | > m + 3 and

|8§K(x,§)} <ec |x|A+—o—\a|—e ﬁ (Tk($))min(0,#k*0*‘a|*€) ﬁ (rk(f))min(o,ukyf*s)

e LT H g

for [&] > 2|z|, |a| <2 —0.
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Proof: For x € supp (m, € € supp (g, we have 2771 < |z| < 2™+ 2071 < |¢| < 2!*!. In particular,
|z| > 2|¢| if m > 1+ 3. Therefore, by (3.18) and by Holder’s inequality,

n sOg
s(B—2+0+]|a|) e s
/}CM kl_[l( 2] ) |0gv(x)|" da

< 25— +8-2+e) / H ( - )S(5k+mm( wk*ff*\ﬂél*ﬁ))dx
x

277L71<|1:‘<27n+1

< L I ()™ oo ae)’
k=1

o s . " () SOk Amin(0,up—o—|a|—e))
< 2sMUA-+B=2+e) CLFIIS, 0.0 ® / H (L) dx
prmenr i k=1

]
217171<‘:E‘<27n+1

><< / |£‘s/(—A,—1—B ﬁ ( 5 )S,(min(o,ﬂk—T—E)—ék—‘,—T) dg) s/’

k=1

K
2l=lc|g|<al+t

for || < 2—0, where s’ = s/(s—1). Since s(6x+min(0, pp—o—|al) > —2 and ' (min(0, pr —7)—dx+7) >
—2, we obtain

S0 .
/ |x|9([3 24+0+|al) H( " ) k\a;;v(x)]édx < c28(m=D(A_+B—2+e+3/s) ||le“$/V°’S (K)
x B—7,5—7

This proves the lemma for m > [ 4+ 3. The proof for the case [ > m + 3 proceeds analogously. m

We will show an analogous result for the case |l — m| < 2. For this we need the following lemma.

Lemma 3.7 Let D be the dihedron (1.1), and let r(x) denote the distance of x to the edge. If o+ 3 > 3
and 3 < 2, then

/ € — |~ 1(€) P de < er(a)Po"

D
|€—z|>r(z)/3

with a constant ¢ independent of x.

Proof: The substitution y = z/r(x), n = £/r(z) yields

[ ke @ de=rt@pe [ e al ) dn
D D
[E—z|>r(x)/3 [n—y[>1/3
Since r(y) = 1, the integral on the right is majorized by a finite constant ¢. This proves the lemma. m
In the sequel, let k(z) denote the smallest integer k such that 74,y = 7(x).

Corollary 3.2 Let c1,c2,a, B,74,0; be real numbers such that v; +6; < 2 and 3 —a+ 85 —d; < 0 for
j=1,...,n. Furthermore, let K, = {{ € K : c1]z| < |¢] < colz|, |€ — x| > r(x)/3}. Then

/|m_£|_a<|x(fc)§|>—ﬁk<m><|;_§|> Ve (€) f[( 5 ) e < cmg_a ]f[l (r']ii‘:r)):ﬁ—a—éj (3.19)

x

with ¢ independent of x.

17



Proof: Without loss of generality, we may assume that r(x) = r1(z), i.e. k(x) = 1. Then the left-hand
side of (3.19) is equal to

1 [l () T () an 320

Jj=1

y

where y = z/|x|, n = &/|z|.

Suppose first that r(y) = r1(y) < r;(y) for i = 2,...,n. We denote by Kél) the set of all € IC;, such
that 7(n) = r(n) < rj(n) for j = 2,...,n. Obviously, this set is contained in a dihedron D with edge
M D M;. Therefore, by Lemma 3.7,

[ e () T (5 )

1 Jj=1
Ky

IN

c / |n — y‘—a+/31+’n 7“1(77)_'“_51 dn

< en (y)3—oé+l31—51.

Let IC?(f), i=2,...,n, be the set of all n € K, such that (n) = r;(n). Obviously, there exists a constant
co > 0 such that 4
co<ly—ml<eca+1 ifr(y) <ri(y), nelC?(j)7 i>2.

Consequently,
n
a1 r(n k() —Vk(n) —Ok( 3—a+pB1—61
e H Van<e [ ey oo dy < e < eni(y)
Y-
l@(]) n =t Kjg;“

for i > 2. This together with (3.20) proves (3.19) if 7(y) = r1(y) <r;(y) for j =2,...,n
Suppose now that r(y) = r1(y) = r;(y) for a certain ¢ > 2. Then, there are the inequalities

co<ry)<|yl=1 and co/3<|y—n| <c2+1 fornek,

with a positive constant c¢y. Therefore,

/|y nl~ a+,81(| 7( ‘)_’Yk(v H( o )—"/j dn < ¢ /T(n)fﬁk(n)*‘sk(n) dn<c Scrl(y)BfaJrﬁlfél
y—n i=1 n

y ’Cy

what implies (3.19). The proof is complete. m

We introduce the functions

ey -
GO =x(F ) C@wo=1-9), (3.21)

where y is an arbitrary smooth cut-off function on [0,00), x(¢t) = 1 for t < 1/4, x(t) = 0 for t > 1/2.
Furthermore, let 1, = piy (), where k() is the smallest integer k such that r(z) = ri(z).

Lemma 3.8 Let (i be the same function as in the proof of Lemma 2.1 and let

= Gale) [ GO SO (. Kl de.
where [l —m| <2 and f € ngT’FT(IC). Suppose that
.  el—1—o—1—|a| T(.’E) min(0,pu, —o—|a|—¢) ’I"(f) min(0,pe —7—¢)
|00 K (2,6)] < cla —¢] (r_ 5|) (u_ ﬂ) (3.22)

for|z|/32 < |€] < 32|z, |x —&| > r(z)/4, |a| < 2—0, where 0,7 € {0,1}, € is a sufficiently small positive
real number. If max(0,2 — pp) < 8, +2/s < 2 fork=1,...,n, then

lollwz-oo ey < ellGfllwes -
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Proof: Let |o| <2 — 0. Obviously, |9gv(z)| < ¢ Z |z| 7 A, (z), where

J+v=lal
L min(0,py —o—|v|—¢) T(§> min(0,pe —7—¢)
A — o l—o—7—|v| ’I’({,U) d
(@) Z’ o ¢l (%) (%) )16 de
lz—¢|>r(2)/4
We have to prove that
o B2+ ﬁ (M)Sékm @) dz < e[| f|: (3.23)
K k=1 |£TJ| 7 o : VBOfT,E—T(’C) '

for |y] <2 — 0. Let first 0 + 7+ |y| #0, and let s’ = s/(s — 1). Using Holder’s inequality and Corollary
3.2, we obtain

min(0,p1s —o—|y|—e) min(0,e—7—)
it se [ lemenr (T (T

K
lz—¢[>r(x)/4

X ﬁ (Tk(f)>SSk|le|s d§( / |z — f‘—l—g_T_M< r(x) )Inin(o,urg,hFe)

€] |z — ¢
=t |1 /32<]¢|<32]a]
lz—&|>r(x)/4
7‘(5) min(0,ug —7—¢€) 4 Tk(é-) —s'sk s—1
X dg
(7—g) (%) %)
(o " rre()\ - D@-o—T—[v])=ssk o
< asmDE=e=T=hD) H |z — ¢~ t-o—m=hl
P! ( |z] ) J
lz—€|>r(x)/4
r(z) \min(Opuz—o—|yl=€) / (&) \min(0ue—7—e) n 7 (€) 55 B
X G(&) f(&| d¢ 3.24
(ra) (r=a) I (")l 7o) (3.24)
provided sj satisfies the inequalities
max(2 —o —7— |[v,2 =7 — px) < §'sp <min(2,2 — 7 + ). (3.25)

We put t, = —7 if 0 + |y| = 2, tp = max(1 — 7,2 — 7 — pg) — max(0,2 — ug) if o + |y| = 1. In the case
o =|y| =0, 7 = 1 let t be arbitrary numbers in the intervals 1 —d; —2/s < tp < 1—0; —2/s+min(1, ug).
Obviously, —7 <t <2 — o — |y| — 7. Due to condition (ii), the numbers s; can be chosen such that,
additionally to condition (3.25), the inequalities

1 1 .
6k+tk+gmax(077'—,uk) < Sk <(5k+tk+gmln(o—|—7+|'y|,7+uk).

19



are satisfied. Consequently, by Corollory 3.2,

n s6k s
|x|8(ﬁf2+a+\“/\ ( ) A, (x)| dz
/;c 1;[ Ed |
5(0k—sk)+(s—1)(2—o—7—|v])
<c / |z |$(B=T) =2+ 4] H ( = ) / |z —¢|7tmemm=hl

K K
9m =1 <z <2t |z—&[>r(z)/4

X<|;(j)f|)min(0,um—a—lvl—s)<|;(_§)E|)min(07ug—7 €) ﬁ ( ] )ssk‘clﬂsdgdx

< c/ |2 =2 ot ﬁ <T|§| )SS’“ 1Gi(€) ‘ / |z — |t
P k=1

277L71<|:E|<2nz+1

jo—€l>r(2)/5
r(x) \minOpe—o—lyl=e) , p(£) \min0pne—7—¢) . 1 (2)\ SOk —sktti) —2+o++|y|
dzd
X(|m—§|) (|m—§|) H( 2] ) vdt

<e [ L) ™™ ool a

This proves (3.23) for o + 7 + |y| # 0. If 0 = 7 = || = 0, then Holder’s inequality yields

/| — ¢ 1H |€| )s5k|Cz(§)f(§)|d£< / ¢l 1H< ¢ >—96k £>s—1

K
2= 1cje| <2l

et [lom g T (%)™ ats) ae.
i k=1

Therefore,

/ms(ﬁ 2)H ( )S‘“
< [l ZH( ) Moser ([ e TH(RE) ™) v

K
2m x| <2mt?
s . Tk(f) sk s
<c [ 1 I (%) " atrer ae

This proves the lemma. =

Lemma 3.9 Let x* be defined by (3.21), o € {0,1}, and
= Gale) [ GO SO @O Kyt f1=m| <2
DV Iffe VBO,’(;S(IC), and K (x,£) satisfies the estimate

00K (2,8)] < clo— &[T 7771 for |2]/32 < €] < 32|, |z — & <r(z)/2, la| <1—0,  (3.26)

then
”UHvl oK) S < C”Qf”v 2(K) -
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2) If K(x,€) has the representation K(x,&) = VeP(x, &) + Q(z, &), where
02 P(2,€)| < cla — 7177719 [00Q(r, €)] < er(e) 2ol (3.27)

for|z|/32 < €] < 32|z, |[v—&| < r(2)/2, |a| < 1—0, and P(z,£) - n) =0 for£ €T, j=1,...,n (here
n9) denotes the exterior normal to T';), then

||UHV/§1__Y,’;_1(’C) <c ||le||vﬁl:§(76) ‘

Proof: 1) By our definition, the function x*(z, ) vanishes for |z — &| > r(x)/2. Note that

5 r(z), (3.28)

3%|x| <[] < 32]z], %rk(x) <ri(é) < §rk(:c), and 17"(33) <r() < 3

-2 2

for € supp (pm, € € supp ¢, and |z — & < r(x)/2. Let K, ={£ € K: |z]/32 < |§] < 32|z|, |z —&| <
r(x)/2}. Then

020(z)| < ¢ / o — €7 |G (6) £(6)] de

x

and, consequently,

|02 v(@)["

IN

A el IO G G R e O

lz—¢|<r(z)/2

< er(z)mDEo=a /’C o — g7l | 6) £(o)|° de

x

for o] <1 — 0. Using (3.28), we obtain

/ |x‘s(ﬁ—2+a+|a|) f[ (Tk($>)5(6k72+0'+‘a|) |agv($)‘é dx
K k=1

||

<ec /IC |£|s(ﬁ—2+a+|a|) H (TTéf>)S(6k_2+o+la) r(g)(s—l)(2—o—|a\) G fI? ( / |z — £|—1—a—|a| dx) d¢
h=t ja—gl<r(©)

C ] o rR(€) ) #0n s
<c [ I ()™ lat@s @ ae.

This proves the first part.
2) The second part can be proved analogously using the estimate

00| < [ (lo— el Vel + r() 20 ) de
Ke
which follows from our assumptions on K(x,&). m

3.7 Existence of solutions

Let f € Wg:g(lC)3, g€ Wﬁlj(lC), hj € W;’;l/s’s(Fj)B_dj, o; € Wﬁl’gl/s’s(f‘j)dﬂ'. Our goal is to show that
there exists a solution (u,p) € Wg;(lC)?’ x Wé;(K) of problem (3.1), (3.2) if the following conditions are
satisfied.

(i) there are no eigenvalues of the pencil 2(\) on the line ReA =2 — 5 —3/s,
(i) max(2 — p,0) <9 +2/s <2fork=1,...,n.

(iii) hj,¢; and g are such that there exist u € Wﬁzg(IC)g’ and p € Wﬁlg (K) satistying (3.8).
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The last is a condition on the traces of g, ¢;, h; and the derivatives of h; on the edges of the cone I (see
Section 3.1).

Lemma 3.10 Let X, Y be Banach spaces of functions on K in each of them the multiplication with a
scalar function from C§°(K\{0}) is defined. We suppose that the inequalities

I 1/s I 1/s
1l ze (32 I6a%) T Tl <e (DD Iguly)

j=—00 j=—00

are satisfied for all f € X, w € Y. Furthermore, let O be a linear operator from X into ) defined on
functions with compact support in K\{0} such that

€O flly < e27=m1¢ £l 2

with positive constants c, s independent of I, m and f. Then ||Of|ly < c||fllx for all f € X with compact
support in K\{0}.

The proof of this lemma can be found in [18].
Theorem 3.1 Let f € Wg:;(IC)?’, g € Wé;(lC), h; € Wg;l/s’s(Fj)g_dj, and ¢; € Wﬁl,gl/s’s(I‘j)dj.

Suppose that conditions (1)—(iil) are satisfied. Then there exists a solution (u,p) € Wg:g(lC)g X Wﬂlg(lC)
of problem (3.1), (3.2) satisfying the estimate

n
el 2 xys DBl sy < € (1 hwesgers + 9w+ (1 llya-srme oy omss + 105 lhssrme ;) )
j=1 ’

Proof: Without loss of generality we may assume that h; =0, ¢; =0, and g € Vﬂl,’(? (K). We consider
the operator

X WK x Vi (K) 3 (£.9) = O(f.9) = (u.p).

where u and p are defined by (3.15), (3.16) and G, ; are the elements of Green’s matrix introduced in
Section 3.4. Then by Lemma 3.6,

16nOG(f, )y < 27 ™Gl f, 9) |l (3.29)

for |l —m| > 3, where ) = Wg’;(IC)3 X Wé;(IC) and ¢, are positive constants independent of f,g,1, m.
In order to prove the same inequality for [l — m| < 2, we introduce the functions

u?<w>=; /,< G(E) (&) xE (2, 6) Gy j(x,€) dE + /}C G(&)g(€) x* (2,€) Gia(a,€) dg, i=1,2,3,

3
PE@) = =G(@) 9(0) + 3 [ GO [0 @, Gy de + [ GO 9O (2.Gnala ) e,

where Y+ and x~ are defined by (3.21). Then
“Aw+u )+ VT +p)=0f, -V (uT+uT)=Gqg nK

and Sj(ut +u~) =0, N;(ut +u",pT +p~) =0 on I';. Furthermore, by Lemmas 3.8, 3.9, there are the
inequalities

(™)l < elalFo)lles 1Gn (™ 05y oo, 0 clG(fia)le (330
if |l —m| < 3, where c¢ is independent of f,g,l,m. Let 1, = (-1 + Gn + Cm+1- Then, by Corollary 3.1,
||Cmu+“v[f;§(;c)3 + ||Cmp+||vf,1;§(1c)

ol lves e+ G 9l + (™27l )

< ¢ (lmmtlly e 5

B—1,6—
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for |l —m| < 2. Due to (3.30), the right hand side of the last inequality can be estimated by the norm of
G(f,g) in X. Consequently,

[Gm(u +u™,p" +p7)lly < cllQ(f g)llx for [I—m| <2.

Thus, estimate (3.29) is valid for arbitrary [ and m. Now the assertion of the theorem follows immediately
from Lemma 3.10. m

3.8 Uniqueness of the solution

First we prove the uniqueness of the solution in Theorem 3.1 in the case s > 2.

Lemma 3.11 Let s > 2, and let the conditions (i), (i) be satisfied. Then the homogeneous boundary
value problem (3.1), (3.2) has only the trivial solution (u,p) = (0,0) in Wg:;(IC)S X Wﬂl,g(lC)

Proof: Let (u,p) € Wg:S(IC)S X ng(lC) be a solution of the homogeneous problem (3.1), (3.2). By x

we denote a smooth cut-off function on K equal to one for |z| < 1 and to zero for |z| > 2. Furthermore,
we set #/ = — 32+ 2 and 8 =0 —1+ 2 for j =1,...,n. Then, by Holder’s inequality,

2(8 +e—2+|al) 75\ 205+e) 5o 2

X T1(%) ™ ozt e
s(B—2+|a|) Ty 804 / —3+ss 'rj —24qe 2/s’
§</ H( ) | X“|d$ J p) dr) ",

|| <2

Where s’ = 2s/(s — 2). The second integral on the right is finite if > 0. Consequently, yu €
I/Ifﬁ,_~_E e (IC)3 and xp € Wg,’is75+a(IC). Analogously, we obtain (1—x)u € Wﬁ,_E s_.(K)*and (1-x)u €

Wﬁ,_&é .(K). This implies
—A(xu) + V(xp) = A((1 = ¢)u) — V(1 = x)p) € W2, 5_.(K)?,

and, analogously, V-(xu) € Wg,za s—c(K), Sj(xu) € W;’Pfa _(T;)3~% and N;(xu, xp) € W;’/E;%(;_E(Fj)di.
From this and from [25, Th.4.1] it follows that yu € W s o(K)? and xp € W,B'—e 5—c(K). The same
is then obviously true for v and p. Hence, by Theorem [25 Th.4. 1], we have u =0 and p=0. m

It remains to prove the uniqueness of the solution in Theorem 3.1 in the case s < 2. In this case we

pass to the coordinates t,w, where t = logp = log|z| and w = z/|z|. We denote by Wé’s(R x ) the
weighted Sobolev space with the norm

1/s
— J s
Il ey = (/Zua ey )

N;)te that u € Wéf;(lC) if and only if p%~+3/5y (as function of the variables ¢ and w) belongs to Wy™* (R x
).

For an arbitrary function v € Wé’S(R x Q) we define by v, the mollification with respect to the variable
t of v, ie.,

ve(t,w) = /RU(T, w) he(t —7)dr,

where h.(t) = e 'h(t/e) and h is a smooth function with compact support, [ h(t)dt = 1. Since
020] e (w, t) = / (0%0Fv)(w, 7) R (t — 7) d,
R
it follows that /v, € Wé’S(R x Q) for v € WS’S(R x),e>0,7=0,1,....
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Theorem 3.2 Let f € R, § € R", f € Wo3(K), g € Wis(K), hy € W35/ (T;)* %, and ¢; €
Wﬁl’;l/s’s(f‘j)dﬂ' be such that conditions (1)—(iii) are satisfied. Then problem (3.1), (3.2) has a unique
solution (u,p) € W;;(KP X Wﬁl;(lC)

Proof: The existence existence of the solution and the uniqueness for s > 2 are already proved. We
show the uniqueness for the case 1 < s < 2. Let (u,p) € Wg;(/C)3 X W;g(lC) be a solution of the
homogeneous problem (3.1), (3.2). Since Wéf;(lC) C Wé’f;,(lC) if 9; < ¢} for j =1,...,n, we may assume,
without loss of generality, that max(2 — p;,1) < d; +2/s < 2.

From Lemma 3.4 it follows that u € W§f175+1(lC)é and p € ngm“(lC). We set v = pf=2+3/5y
and ¢ = p?~1+3/p. Then, in the coordinates ¢ = log |z and w = x/|z|, we have v € W;", (R x Q) and
qe€ W52f1 (Rx Q)= Vf_;sl (R x Q). Consequently, &/v. € Wg’fl (R x Q)3 for j =0,1,2,.... From Corollary
1.1 we conclude that v. € W;’_22+2/S(R x Q)3 ¢ Wy ?(R x Q)3. Thus, the function u, = p=#+2-3/5y,
(as function in x) belongs to the spaces ngg/sfs/zo(’c)g' Analogously, using Lemma 1.4, we obtain
pe = p PH13/5q. € W§f3/5,5/2,0(lC)- It can be easily seen that (u.,p.) is also a solution of the
homogeneous problem (3.1), (3.2). According to [25, Th.4.2], this problem has no nonzero solutions

in Wéf3/s_5/2,o(lC)3 X W§;3/S_5/270(IC). Therefore, u. = 0, p. = 0 what implies u = 0, v = 0. The proof

is complete. m

Theorem 3.3 Let (u,p) € W;JZ;,(/C)‘?’ X Wﬁl,’g, (K) be a solution of problem (3.1), (3.2), where

FEWSHK)?P nWe% (K),  geWis(K)n W% (K),
2—1/s,s —d. 2—1/0,0 —d. 1-1/s,s . 1-1/o0,0 .
hy € Wi o803 4 Wi /77 (D)%, ¢ e Wi/ ()& n Wi /77 (0)%.

Suppose that there are no eigenvalues of the pencil A(X) in the closed strip between the lines Re A =
2—03—-3/s and ReA =2—03" —3/0, 0 and ¢ satisfy the inequalities max(0,2 — ux) > o + 2/s < 2,
max (0,2 — p) > 0, +2/0 <2 and g, hj, ¢; satisfy condition (iii) of Section 3.6. Then u € W;:;(IC)?’ and

p e Wgi(K).

Proof: By Theorem 3.2, there are unique solutions of problem (3.1), (3.2) in Wg; (K)3 x Wﬁlg (K) and
Wﬁz}g, (K)3 x Wﬁlg(lC) These solutions coincide, since they are represented by the same Green’s matrix.
=

4 Weak solutions of the boundary value problem in a cone

4.1 Definition of weak solutions

Obviously, the bilinear form

3
b(u,v) = 2 /K 3 ciilu)ens(v) do (4.1)

ij=1

is continuous on I/Vgg(IC)d X Wi’,;:_é(lC)g, where s = s/(s —1). We suppose in this section that the line
ReA =1— [ —3/s is free of eigenvalues of the pencil 2(X) and that

max(1l — p,0) <o +2/s <1 fork=1,...,n. (4.2)

Then —6; > 1 — 2/s’ and, therefore, Wi’[‘j:fé(lC) = Vfl’;:fé(lC). By Vﬁ_’;’s(lC) we denote the dual space

of VEE’L(;(IC)‘O’. It can be shown analogously to [1, Th.3.8] that every functional F € Vg_,él’s(lC)?’ has the
form

3
Fv) = / fO . vdr + Z/ f® o, v-da forallve Vj,’;’:é(IC)g, (4.3)
K ik
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where f(©) ¢ V£f1,5+1(lC)3 and fF) ¢ V[;)”;(IC)g’, k=1,2,3.
Let F ¢ Vﬂ_’;’s(lC)g, g e Wg:;(K) and h; € Wé;l/s’s(l“j), j=1,...,n. By a weak solution of problem
.1), (3.2) we mean a pair (u,p) € i X s satisfying
3.1), (3.2 i W5 (K)? x W5 (K)? satisf;

b(u,v)—/’CpV'v:F(v) for allveVl’;’,_é(lC)?’, Sjuy=0only, j=1,...,n, (4.4)
—-V.-u=g inK, Sju=h; onl, j=1,...,n. (4.5)

From Green’s formula
b(u,v) — / pV - -vdr = / (—Au—VV -u+ Vp) ~vdm+2/ (—pn') 4 2e(u)nP) - v dz
K K — Jr;
=177

it follows that every solution (u,p) € VVﬁlg(lC)‘3 X Wg:g(lC)g’ of problem (4.4), (4.5) satisfies (3.1), (3.2) if

ge WéfLéH(lC), h; € Wg;%/&il(rj)a and F has the form

F(v)z/}c(erVg).ud:erZ/F ¢j-vdx for aHUGV_l,ﬁs:_é(lC):g, Sjv=0only, j=1,...,n,
i=17T;

0,s 1-1/s
where f € W92 5.1 (K), 6; € W15 (L))
Let x be a fixed real number such that the closed strip between the lines ReA = —x — 1/2 and
ReA =1— 3 —3/s is free of eigenvalues of the pencil 2[. Then, according to [25, Th.4.5], there exists

a unique solution G(z,§) = (G (x,{))?jzl of the problem (3.12)-(3.14) such that the function z —
C(|lz—¢&|/7(€)) Gi,j(z, &) belongs to Wnlg (K) fori=1,2,3 and to WS”%(}C) for ¢ = 4, where ( is an arbitrary

smooth function on (0, 00) equal to one in (1,00) and to zero in (0,%). We denote by A_ < ReX < A
the widest strip in the complex plane containing the line Re A = —k — 1/2 which is free of eigenvalues of
the pencil A(\).

Suppose that h; =0for j=1,...,nand F € Vﬁ_’(;l’s(lC)3 is given in the form (4.3). Then, analogously

to (3.15), (3.16), the following representation for the solution of problem (4.4), (4.5) holds.
3 3
i) =) / (£966) Gis.€) + - 17(€)96, Gy, €)) dé + / 9() Gialw, ) de, (4.6)
j=1"K k=1 K
3 3
p(e) = —g(x) + Y /,< (12€) Gag(@. &) + 3 1 (€)06,Ga(w,€) ) de + /’C 9(6) Gaa(w,€) de. (A7)
j=1 k=1

4.2 Auxiliary inequalities

Our goal is to prove that (4.6), (4.7) define a continuous mapping
Ve s (K x VIS0 x V() 5 (FO, fD, 1@, 1O g) — (u,p) € W5 (K)? x W5 (K)
if ¢ satisfies condition (4.2) and g satisfies the inequalities
A_<1-p-3/s<Ay. (4.8)

The following lemmas allow us to estimate the integrals containing f*), k = 1,2,3, and ¢ in (4.6) and
(4.7).

Lemma 4.1 Let (i be the same function as in the proof of Lemma 2.1 and let

o(&) = Cu (@) /K GE) F(6) K (x,€) de.
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Suppose that m > 1+ 3, f € Wg:g(lC), and

|07 K (2,6)] <

(4.9)

|l,|A_7af\oc|+e: n (Tk(z)>min(0,pkfo'f|a|fs)ﬁ(Tk(é‘))min((),p,kflfs)
A_+2+
g[i-r2e 1L\ P

for |z > 2|¢|, |a] <1 — 0, where o € {0,1} and € is a sufficiently small positive real number. If § and 3
satisfy conditions (4.2) and (4.8), then

sy < €27 Imls .
||UHW;‘5 Sy = c2 Hle”ngs(;c)

with positive constants ¢ and s independent of f. The same estimates holds if | > m + 3 and

|6§K(x,§)| <ec ‘$|A+—o—\a|—€ ﬁ (rk(x))min(O,,uk—a—\ozl—s) ﬁ (Tk(f)>min(07uk—l—s)

gz L H g

for [&] > 2|z|, |a| < 1—0.
The proof of Lemma 4.1 proceeds analogously to Lemma 3.6. Note that the elements G; 4(z,€) of
Green’s matrix and the derivatives 0¢, G; ;(x,§), j = 1,2, 3, satisfy the assumptions on the kernel K (z, &)

(with 0 = §;4) of Lemma 4.1 and of the following lemma.

Lemma 4.2 Let (i be the same function as in the proof of Lemma 2.1 and let
o) = Gule) [ GO FEOX (0.8 K (o€

where |l —m| < 2, x~ is defined by (3.21), and f € ngT7§7T(IC). Suppose that

r(2) >min(o,ufof\a|fe>< r(€) )mi“(o’“f’“e) (4.10)

8.0 < ele = (T =g

for|x|/32 < |€| < 32|z, |z — &| > r(x)/4, |a] <1 — 0, where o € {0,1}, € is a sufficiently small positive
real number. If 0 satisfies condition (4.2), then

HU”W;;;M()C) < CHle”WgJ;()c) :

Proof: Let |a| < 1—0. Obviously, |08v(z)| < ¢ Z |z| 7 A, (2), where A, satisfies the inequality

J+lvI=lel
(3.24) with 7 = 1 provided
max(l — o — |y[,1 — pg) < §'sp, <min(2,1 4 pg), s =s/(s—1). (4.11)
If additionally
1 1.
O +tr + 3 max (0,1 — pg) < s < 0+t + 3 min(1+ o + |y], 1+ pg), (4.12)
where

. 1 —max(0,1 — pg) foro=|y|=0,
k 0 for o + |v] =1,
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then, using Corollory 3.2, we obtain

s(B—1+o+|v]) s
<o / |x‘5f3 ot H ( - )5(5k—sk)+(s—l)(1—a—\“/|) / o — £|*2*U*|W|

e K
2m—1<|m|<2m+1 ‘17_£|>7‘($)/4
’I“({,C) min(0,puy —o—|vy|—¢) T‘(é-) min(0,pue —1—¢) n 7"]@(5) S5k
sded
() (m=a) kr_[l( o) lafldds

< / s 1+"*'V'H( GG B

2mlcz<2m

lz—&[>r(&)/5
><< r(x) )min(ovﬂw_o'_l"fl_g)< r(€) )min(ows—l—f) ﬁ (rk(x))S(5k—3k+tk)—1+o+|’7| do de
€] - g L

s(Ok+tr) s
) GHGIN?

<c [ H

It can be easily verified that for o + |y| < 1 there exist real numbers s, satisfying (4.11), (4.12). This
proves the lemma. =

The assumptions on K (z,§) in the following lemma are satisfied by ¢, G4, j = 1,2, 3, and G4 4.

Lemma 4.3 Let
— / GE) F(€) X (2, €) K (2, €) de,

where [l —m| <2, f € V;’[s( ), and xT is defined by (3.21). Suppose that K(x,£) has the representation

)

K(x7€) =—-Vy- P(CE,&) + Q(x,g)y where

[P(,6)| <clz — €72 |Qx,€)] < er(©)™? (4.13)

for |x|/32 < [¢] < 32|z|, |z — &| < r(x)/2, |a] <1 -0, and P(x,£) -nY) =0 forx €Ty, j=1,...,n
(here n\9) denotes the exterior normal to T';), then

||/UHV57711”?5,1(K:) <c ”Qf”Vg:;(IC) . (4.14)
with a constant ¢ independent of I, m and f.

Proof: Let w € Vllgsﬁl’lﬂs(IC), s’ =s/(s—1). Then

/ v(z)w(z)dx = / A(z) w(z) + B(z) - Vw(x) dz, (4.15)
K K
where
Ax) = / ( (2,€) Vi (G () XF (2,6)) + G (@) XH(2,€) Q(,€) ) G(€) () e,
D)= [ Gula) (0.6 P9 GlE) €
We have to show that A € V,C?”;(IC), Be Vﬁofl,éfl(lC)g’, and

1Ay oy + 1Blves i < el lyes e - (4.16)
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We introduce the set K, = {£ € K : |2]/32 < |§] < 32]z|, |z —&| < r(x)/2}. Note that there are the
inequalities (3.28) for 2 € supp G, € € supp (i, and |z — &| < r(z)/2. Since

|P(2,€) Vi (G (@) X T (2,6 + |G (@) X (2,6) Q(2,6)| < er(a) ™ |o — €72

for £ € supp (;, we obtain

A < er ([ e fa© s de)’
< o [ p-grla@sela ([ e-da)
. |lz—€|<r(z)/2
< erle) [ le— 7 |a© s de
Consequently,

4800 < [ WﬁH " )S‘Skmrl(/& e — €72 |Ge) F(©)] de ) e

<C/|€|85H |§|) O~ late f@l ( / o= €7 dxr) d€ < e G o

le—€l<r(§)

Analogously, we obtain

B@) < cr(@)*! /K e — €72 G(€) F(©)]° de

what implies the desired estimate for the norm of B in V,é(’)fl, s_1(K)3. Estimate (4.14) is an immediate
consequence of (4.15) and (4.16). m
4.3 Existence und uniqueness of weak solutions

Let F € Vg_,(;l’s(/c)g, g € Wg;(IC) and hy € Wé;l/s’s(Fk)3_dk, E =1,...,n. We suppose that the
following conditions are satisfied.

(i) The line ReA =1 — 3 — 3/s does not contain eigenvalues of the pencil 2A(\).
(i) max(0,1 —pp) <0 +2/s<1 fork=1,...,n

(iii) The vector functions h; € Wﬁl;;l/ #%(;)3~% are such that there exists a vector function w €
Wg:;(lC)?’ satisfying the condition S;u =h;jonT;, j=1,...,n
The last is a condition on the traces of the boundary data h; on the edges of K. These traces exist since

5k +2/s<1. Let T';,,T';_ be the sides of K adjacent to the edge M;. Then condition (iii) is equivalent
to (3.7).

)

Theorem 4.1 Let F € Vﬁ_’(;l’s(lC):g, g€ Wg”;(lC), and h; € Wﬂl;;l/s’s(ljj):g_df. Suppose that conditions
(i)-(iii) are satisfied. Then there exists a unique solution (u,p) € Wﬁl”g(/C)3 X Wg:;IC) of problem (4.4),
(4.5).

Proof: Without loss of generality, we may assume that h; = 0. Suppose that the functional F' is given
in the form (4.3), where f®© =0 and f*) ¢ V;*;(IC)?’ for k = 1,2,3. We consider the operator

3
T VS (0)P) < V3 (K) 3 (10, £2), 1D, g) = O(F D, 1, £9), ) = (w,p),

k=1
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where u and p are defined by (4.6), (4.7) (with £ = 0) and G;; are the elements of Green’s matrix
introduced in Section 3.4. Then by Lemma 4.1,

1€mOG(fD, £ B g)lly < c27 = |G (D, 2, 1@ g) | (4.17)

for |l — m| > 3, where

Y Y W00 x Wi (K)

and ¢,¢ are positive constants independent of f*) ¢ 1.m. In order to prove the same inequality for
|l —m| <2, we introduce the functions

3 3
HOEDSDS / ) £ (€) x* (2,€) 0, G (x,€) dE + / Q()g(&) x*t(x,6) Gi alw, €) de,
j=1k=1"K K
3 3
pE() = —G@) g@) + YD /K (&) 17 (€) x* (2,€) O, G (w0, €) de

j=1 k=1

+ [ G€) g(€) x*(,€) Gz, €) d,

K

where Y1 and x~ are defined by (3.21). Then

but +u=,v) — / (pt +p )V -vdr = F(Gu) forallve Vl’g:_é(lC)?’, Skpv =0 on I',
K

-V - (ut+u") = (g in K, and Sj(ut +u~) = 0 on I';. Furthermore, by Lemma 4.2, we have
Cm(u™,p7) €Y and

16 (w™p)ly < clla(FV, F2, £9 g)llx (4.18)
if |l — m| < 3, where c¢ is independent of f,g,l, m. From Lemmas 3.9 and 4.3 it follows that
Iemu Ty ooy T 16mp ™y ey < el D, fP, fD, 9)llx (4.19)

The vector function (u*,p™) is a solution of the problem

b(u*,v)f/K]ﬁde:c:F(v) for all v € V_1§7/_5(IC)3, Spv=0 onTy, k=1,...,n,
~V-ut=@g+V-u" ink, Sju+:—Sju_ only, j=1,...,n,
where

F(v) = F(Gu) — b(u™,v) + /Kp_V-de

Obviously, ¢ F € Vﬁfél’s(lC. Let 9y = Cme1 + Cm + Cma1. Then, by an estimate analogous to that in
Corollary 3.1,

HQnU+“vg§(mﬁ +’HQnP+Hv§§(K)

S c (||nmu+||vg:*1)571(lc)3 + Hnmp+||vﬁilif571(}c) + ||77m<l(f(l)af(Z)af(g)vg)HX + ||"7m(u_ap_)‘|y)
for |l —m| < 2. Due to (4.18) and (4.19), the right hand side of the last inequality can be estimated by
the norm of ¢;(fM), f@), B3 ¢) in X. Consequently,

G (u™ +u™,p" + )y <cllGUfD, FD, P g)lx for I —m| < 2.

Thus, estimate (4.17) is valid for arbitrary ! and m. Consequently, by Lemma 3.10, the operator O
continuously maps X into ). This proves the existence of a solution of problem (4.4), (4.5) in the case
when F has the form (4.3) with f(© =0, f*) ¢ VBO”(SS(IC)?’ for k =1,2,3.
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By what has been shown in the previous section, the mapping f(® — (v, q) defined by
3 3
vi(e) =y /}C £ Gy, €) dg, i =1,2,3, plw) = —g(2) + > /K £7(6) Gyl &) s (420)
Jj=1 j=1

is continuous from V,@(’)f1,5+1(lc)3 into the subspace ngl’éﬂ(lC)3 X ng1,5+1(’C) of Y. Thus, problem
(4.4), (4.5) is solvable for arbitrary F € Vﬁ_’(;l’s(lC).

It remains to prove the uniqueness of the solution. Suppose (u,p) € Y is a solution of the homogeneous
problem (4.4), (4.5). Then (u,p) is also a solution of the homogeneous problem (3.1), (3.2), and from

Lemma 3.4 it follows that u € ngm“(lC)?’ and p € Wﬁlfl,éﬂ(lC). Consequently, by Theorem 3.2, we

have u = 0 and p = 0. The proof is complete. m

Remark 4.3 In [25] the existence and uniqueness of weak solutions in Wﬁljg(lC)B X Wg:g (K) was proved
for arbitrary F € Wﬁ_’é’Q(IC)?’ = (Wi’;yO(IC)*)?’, g€ Wg:g(lC) and h; € Wéféz’Q(Fj), j=1,...,n. Note
that every F € W y'*(K) has the form

3
F(v):/f(o)md:rJrZ/ f® o, v-dx for allvGWi’go(IC)3,
K —1’K ’

where [ € ngl’O(IC), f® e Wg:g(lC), k = 1,2,3. It can be easily shown that the assertions of
Lemmas 4.1-4.3 are also valid if s = 2, 6 = 0, and 3 satisfies (4.8). Consequently, the weak solution
(u,p) € Wﬁl:g(/C)g X Wg:g(lC) has also the form (4.6), (4.7) if h; = 0.

4.4 Regularity assertions for weak solutions

Lemma 4.4 Let (u,p) € Wg,’;, (K)3 x Wg}i;, (K) be a solution of problem

b(u,v)—/}cpv-v:F(v) for allverb’T,;é,(KP, Siv=0o0nTj, j=1,...,n, (4.21)
—-V.ou=g K, Sju=h; only, j=1,...,n, (4.22)
where o' = o /(o0 — 1),

Fe Vi (KP NV 7 (K), geWii(K)NWe%(K), hy e W5/ ()24 nwy /77 (1;) .
If the closed strip between the lines ReA=1—3—3/s and ReA=1— ' —3/0 is free of eigenvalues of
the pencil A(N\) and 6,8’ satisfy the inequalities

max(0,1 — pug) <6 +2/s <1, max(0,1—pu) <&, +2/c<1 fork=1,...,n, (4.23)
then (u,p) € W55 (K)? x W5 (K).

Proof. Under the assumptions on the lemma, the boundary data h; satisfy the compatibility condition
(3.7). Therefore, there exists a vector function v € Wﬁljg(IC)?’ N Wﬂl}[}, (K)3 satisfying Sju = h; on I'j,
j =1,...,n. For this reason, we may restrict ourselves to the case h; = 0. According to Theorem 4.1,
there are unique solutions of problem (4.4), (4.5) in Wé:;(IC)3 X Wg:(?(lC) and Wg,’i;,(lC)?’ X W[g;i;, (K).
Both solutions are given by (4.6), (4.7) with the same Green matrix G(z, ). This proves the lemma. m

The same result is true for weak solutions in I/Vé,’QO(IC)3 X WE;QO(IC) (cf. Remark 4.3). Furthermore,
the following generalization of Lemma 4.4 holds.

Theorem 4.2 Let u,p, F, g, and h; be as in Lemma 4.4. We assume that there are no eigenvalues of the
pencil A(N\) on the lines ReA=1—03—3/s and ReA =1— ' —3/0 and that 6,08" satisfy the inequalities
(4.23). Then (u,p) admits the decomposition

v k=1

N I s
1 j,s—0 — v,j,8S—0
() =YD D cwjs D — (ogp)” (pMul =7 (w), P~ pt "D (w) + (wiq)  (4.24)
4 0!

v=1j=1 s=0 o=
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where (w,q) € Wé:;(/C)g X Wg:g(lC) is a weak solution of problem (3.1)-(3.2), A, are the eigenvalues of
the pencil A between the lines ReA =1— 3 —3/s and ReA =1— " —3/0, and (u(”’j>5),p(”’j’s)) are
etgenvectors and generalized eigenvectors corresponding to the eigenvalue X, .

Proof: As in the proof of Lemma 4.4, we may restrict ourselves to the case h; = 0. Let {F;} C
CSe(K\{0})3, {9} € Cg°(K\{0}) be sequences converging to F in Vﬁ_’(;l’s(lC)3 N Vﬂ_,}(;’,g(IC) and g in
Wg:g (K)yn W/g,’;, (K), respectively. According to [25, Th.3.2], there exist unique solutions

(WD, p) € W52y )00 O X W24 5 a00(K) and (W™, qP) € Wiy o (0P XW2s 11 a ) 0(K)

of the problem

b(u,v)—/pV-U:Fi(v) for all v € Cg°(K\{0})?, Sju=00onT}, j=1,...,n,
K
—Vu=g; inkK, Sju=0only, j=1,...,n

By what has been shown above, the vector functions (u(?,p*) and (w(®, ¢(?) belong also to Wg}i;, (K)3 x
Wg,’%, (K) and‘ Wé;(IC)?’ X Wg:;(lC), respectively. Fu?the?more, from Theorem 4.1 it follows that the
sequence {(u(”,p()} converges to (u,p), while {(w¥,¢®)} converges to a vector function (w,q) €
Wﬁlg (K)3 x Wg; (K). Let X denote the linear span of the vector functions

S

1 o v,j,s—0 — v,j,s—0
> 5 (logp)? (P ul == (w), T Ipl o) (w))

o=0

appearing in (4.24). By [25, Th.4.4], we have (u(® — w® p() — ¢} € X and, consequently, also
(u —w,p—q) € X. This proves the theorem. m

Theorem 4.3 Let (u,p) € Wﬁl}i;, (K)? x Wg;f:;, (K) be a solution of problem (4.21), (4.22). We suppose
that F € Vﬁf,}é’ff (K)? and

F(v):/f.vdgc—i—Z/ ¢;j-vdr for allv e CP(K\{0})?, Sju=0 onTj, j=1,...,n, (4.25)
K j=1"T;

where f € Wg:g(lC)S, ¢; € W517_61/S’S(Fj)df Furthermore, we assume that g € Wg:(?(/C) N Wﬁl}f},(lC),
hj € Wg;l/s’s(I‘j)S_dj ﬂW;:tsl,/U’a(Fj)3_dj, there are no eigenvalues of the pencil A(N) in the closed strip
between the lines ReA=1— 3" —3/c and ReA=2—3—3/s, § and &' satisfy the inequalities

max (0,1 — pg) >0, +2/0 <1, max(0,2 — ) >0 +2/s<2, k=1,...,n,

and g, h;, ¢; satisfy the compatibility condition (iil) of Section 3.6. Then u € Wﬁz; (K)3 and p € Wﬁlg (K).

Proof: Suppose first that max(2 — pg,1) < 6 +2/s < 2 for k = 1,...,n. Then Wé:sl/s’s(I‘j) =
Vﬁl’gl/s’s(f‘j) and, therefore, the functional F' defined by (4.25) belongs to ng_ll’;_l(lC)?’. Using Theorem
4.2, we obtain u € ng175_1(lC)3 and p € Wg’_sl’(;_l(lC), and from the second part of Lemma 3.4 we
conclude that u € Wé:g(lC)?’, pE Wé;(IC)

If 6, +2/s < 1 for at least one k, then in a first step we obtain u € Wg:;,,(lC)?’ and p € Wg:;, (K,
where §; are arbitrary numbers satisfying max(2 — px, 1) < 0) +2/s < 2 and §}/ > ;. Then Theorem
3.3 implies the assertion of the theorem. m

Lemma 4.5 Let g € Wé:sl’s(lC), h; € Wé;sl/s’s(I‘j)?’*dg b; € Wé}l_l/s’s(I‘j)dj, 1 >3, -2/s < <

1 —2/s. Suppose there exist u € Wéfuz,sfz/s(lc)s and p € ngHQ’EiQ/S(IC), 0 <e <1, such that
V-u+gce€ Vﬁlfl+2,e—2/s(lc)7 Sju=hj, N;(u,p)=¢; onT;. (4.26)
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Then there exist v € Wﬁzfl+276,(lC)3, qe Wéfl+276/(lC), where §' =6 if | =3, 8, = —2/s if | >4, such
that

Vvt (pd, +1)g € V20 5/(K),  Sjv=pdohi, Nj(v,q) = (pd, +1)¢; onT;. (4.27)

Proof: We prove the lemma for the Dirichlet problem. The proof for other boundary conditions
proceeds analogously. The existence of u and p satisfying (4.26) is equivalent to the trace conditions in
Lemma 3.3. We assume, without loss of generality, that M}, coincides with the x3-axis. Then the trace
conditions on M}, have the form

Wiy I, = hoe_ s 1 - (Brhi )y + nky - (Db )|ar, = (9las, + Oshia ke |ar, ) sin . (4.28)

Here I'y, and T'y_ are the sides adjacent to the edge My, ni, and ni_ denote the exterior normals to
these sides, 0y is the inner angle at My, and h3, denotes the third component of the vector hy, .

Suppose first that { > 4 or | = 3 and 0, < 1 —2/s. Then the traces of 0,,0,hi, and J,,9 on M
exist, and from (4.28) it follows that O0p,h, |n, = Ozyhi_ |, and

N - (2300, + 1) (Ophie, )|t + ey - (€305, + 1) (Orhi_ )| s, = (2302, + 1) (9]a1, + Oughs iy |ar,) sin by

Since pd, = 10, + 1305, = 104, + ©204, + 1305, and x; = 29 = 0 on My, from the last equalities it
follows that (pd,hi_ )|, = (pOphi_ )|, and

g - (0rpphi, ) ar, + 1y - (OrpBphi_)ar, = ((p8p + 1)glar, + Bug (p0pha ke, )|ar,) sinby.

This is the trace condition on M} for the existence of v and ¢ satisfying (4.27). In the case | = 3,
0 = 1 — 2/s the validity of the trace condition can be proved analogously by means of Lemma 1.5. m

Theorem 4.4 Let (u,p) € Wg;;, (K)3 x Wg;is' (K) be a solution of problem (4.21), (4.22). We suppose
that F € Vﬂ_,}(;’,g(/C)?’ has the representation (4.25), where f € Wé}Q’S(IC)S, b; € Wé}l_l/s’s(I‘j)dj.
Furthermore, we assume that g € Wé}l’s(lC) N Wg,’i;, (K), h; € Wé;sl/s’s(I‘j)‘g*di N Wg,jél//”’a(Fj)3*dj,
there are no eigenvalues of the pencil A(N\) in the closed strip between the lines ReA=1— 3 —3/c and
ReA=1—03-3/s, § and &' satisfy the inequalities

max(0,1 — pug) <0, +2/0 <1, max(0,l —ug) <o +2/s<1l, k=1,...,n, (4.29)

and g,h;, ¢; satisfy condition (iii) of Section 3.6 with 3" = 3 — 1+ 2 and 0} = max(d, — [ + 2,4 — %)
instead of B and &, respectively. Then u € Wé’f;(lC)?’ and p € Wé:sl’s(lC).

Proof: By Theorem 4.3, the assertion of the theorem is true for I = 2. We suppose that the assertion
is true for [ = m — 1 > 2 and show that it is true for | = m. Let first oy +2/s > 1 for k =1,...,n. Then
Wis(K) Wéj:g_l(lC), Wg;l_l/s’s(Fk) C Wg;l/s’s(Fk) for j > 1 and from the induction hypothesis
it follows that u € Wé:ll’j;il(lCP7 pE Wé_j”f;fl(lC). Applying Lemma 3.4, we obtain u € I/Vlé,’j;(lC)3 and
pE Wi (K). |

Suppose now that dx +2/s < 1 for all k. Then, in particular, y, > 1 — 1 for all k. Since W}3(K) C

ng’;Q/s(lC) for j > 1, € > 0, it follows from the induction hypothesis that u € Wé:ll’sgﬁ/s(lC)?’

and p € Wé:Zl’;_Q/S(IC). Using again Lemma 3.4, we conclude that u € Wé’,i+1_2/s(lC)3 and p €
Wé_sfl_Q/s(lC). Consequently, pd,u € Wé__ll’serl_Q/s(lC)?’ and pd,p € Wé__Ql’;H_Q/S(IC). Since the vector

function (p0,u, pd,p + p) is a solution of the problem
—A(pdyu) + V(pdpp +p) = (pd, +2)f € WET5(K)2, =V - (p0pu) = (pd, + 1)g € Wi_15(K),
Sipduu = pdohs € Wi\ 5™ (), Nj(pDu, ppp +p) = (p0, + 1)y € W3/ (I)),

the induction hypothesis and Lemma 4.5 imply pd,u € Wé:ll’y‘}(lC)s and pd,p € Wéflf;(lC) This together
with the inclusion (u,p) € Wé__ll’;_Q/s(lC)g’ X Wé__gl’;_z/s(lC) and Lemma 3.5 yields u € Wé’f;(/C)?’ and
pE Wi (K).
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Finally, we assume that 6 +2/s < 1 for some but not all k. Then let ¢y,..., %, be smooth functions
on (2 such that ¢, > 0, ¢ = 1 near M; NS? and > 1, = 1. We extend v, to K by the equality ¢y (z) =
Yr(z/|z]). Then 0% (x) < c|z|~!l. From the results proved above it follows that ¢pu € Wéf; (K)? and

YEp € Wé:sl’s(lC)?’ for k =1,...,n. This completes the proof. m

Corollary 4.1 Let u,p, F,g,h; be as in Theorem 4.4. We assume that there are no eigenvalues of the

pencil A(N) on the linesReA=1—0"—3/c and ReA =1— 3 —3/s, and that 6,0’ satisfy the inequalities
(4.29). Then (u,p) admits the decomposition (4.24), where w € W S(K)3, q € Wl X S(IC), and A\, are
the eigenvalues of the pencil A(N) between the lines ReA =1 — ﬁ’ - 3/0 and Re)\ =1—03-3/s, and

(u(”7j’s),p(”*j’s)) are eigenvectors and generalized eigenvectors corresponding to the ezgenvalue A

Proof: Under our assumptions on ', the functional F belongs to Vﬂl’_sl 1.6 (K)? with arbitrary 6" =
60, . .,8M), 6 > 0 — 1+ 1, max(0,1 — pg) < 6 +2/s < 1. Consequently, by Theorem 4.2, (u,p) has
1 n k w k
the representation (4.24), where (w, q) € Wﬁlflﬂ’&,, (K)3 x W,gflﬂ,&” (K) is a solution of problem (4.21),
(4.22). Applying Theorem 4.4, we obtain w € Wéfs (K)? and q € Wé:sl’s(lC). L]

5 The problem in a bounded domain

Let G be a bounded domain of polyhedral type in R3. This means that

(i) the boundary 0G consists of smooth (of class C*°) open two-dimensional manifolds I'; (the faces of
G), j =1,...,n, smooth curves M, (the edges), k =1,...,m, and corners z(1), ... 2(®,

ii) for every £ € My, there exist a neighborhood U and a diffeomorphism (a C°*° mapping) x¢ which
3 3
maps G NUe onto D¢ N By, where Dy is a dihedron of the form (1.1) and Bj is the unit ball,

(iii) for every corner 2\) there exist a neighborhood U; and a diffeomorphism x; mapping G NU; onto
K; N By, where K; is a cone with vertex at the origin.

We consider the problem
—Au+Vp=f, —-V-u=g ing, (5.1)
Sju:hj, Nj(u,p)szj on Fj, j:l,...,n

where S; and N; as well as the numbers d; € {0,1,2,3} are defined as in Section 3.

5.1 Sobolev spaces in G

We denote by p;(x) the distance of « to the corner (), by p(z) the distance to the set X = {z(1), ... 2@},
and by 7, (z) the distance to the edge M. Then Wéj;(g) is defined as the weighted Sobolev space with

the norm
s(Bj—l+]|a
Iulgie = ( f, 3 lozal” Lo+ T1
|a|<l k=1
Here 1 < s < o0, = (B1,...,34) € RY, § = ((51,...,(5m) e R™, 6 > —2/sfor k=1,...,m, and [ is
a nonnegative integer. Note that the space W&ﬁ(g) (where both 8 and § are zero) coincides with the
nonweighted Sobolev space W12(G).

For arbitrary 3 € R%, § € R™, 1 < s < oo and integer [ > 0 let Vé;(g) be the weighted Sobolev space
with the norm

i S(Sk )1/5
p

o s(B—t4lal) TT (ThysGe—itlal) , \1/*
||u||Vz§(g /Z|8 u| Hp J kl;[l(?) * dm) .

la| <1

The dual space of V[ﬁ;(g) is denoted by V_l ol 5(G), where s’ = s/(s — 1).

Finally, we denote the trace spaces on I'; for Vé’;(g) and Wéfg(g) by Vﬁl_(sl/s’s(Fj) and Wé_él/s’s(Fj),
respectively.
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5.2 Model problems and corresponding operator pencils

We introduce the operator pencils generated by problem (5.1), (5.2) for the edge points and vertices of
the domain G.

1) Let £ be a point on an edge My, and let 'y ,I'x_ be the faces of G adjacent to £&. Then by D¢ we
denote the dihedron which is bounded by the half-planes I'} . tangent to I'y, at . The angle between
the half-planes I'y is denoted by 0(¢). We consider the model problem

-Au+Vp=f, —-V-.-u=g inD,
SkiUZh;@i, Nki(u,p):(bki Onrzi.

The operator pencil corresponding to this model problem (see Section 2.2) is denoted by A¢(\). Fur-
thermore, let A;(€) be the eigenvalue with smallest positive real part of this pencil, while A\2(&) is the
eigenvalue with smallest real part greater than 1. We define

(€)= ReAi(§) if dip, +di_isodd or di, +dy_ is even and (&) > 7/my,
me) = ReXo(§) if di, + di_ is even and oy, < 7/my,

where my = 1 if dk+ =di_,mp =2if dk+ 2 dy_. Finally, let

pp = inf 1(§)- (5.3)

2) Let 2 be a corner of G and let I; be the set of all indices k such that ) e Tg. By our
assumptions, there exist a neighborhood U of #(9) and a diffeomorphism x mapping G N onto K; N By
and I'y, NU onto I'y N By for k € I;, where K; is a polyhedral cone with vertex 0 and I'} are the faces
of this cone. Without loss of generality, we may assume that the Jacobian matrix £’(x) is equal to the
identity matrix I at the point 27). We consider the model problem

-Au+Vp=f, —V-u=g inkj,
Sguw = hg, Ni(u,p)=¢, onTy for k€ I,.

The operator pencil generated by this model problem (see Section 3.2) is denoted by 2A;(A).

5.3 Existence of weak solutions

We introduce the spaces
V={ueW"G)?: Sju=0onTly, j=1,...,n}, Vo={ueV: V- -u=0}

Furthermore, we denote by Ly the set of all u € V such that ¢;;(u) = 0 for ¢,j = 1,2,3. It
can be easily seen that Ly is contained in the span of all all constant vectors and of the vectors
(x2, —21,0), (0,23, —22), (—x3,0,21). In particular, we have Ly C Vj.

Let the bilinear form b be defined as

3
b(u,v) = 2/9 Z ;5 (u) g ;(v) de.

1,7=1
We consider the problem
b(u,v)—/pV~vda:=F(v) forallv eV (5.4)
g
—V-u=g inG, Sju=h; only, j=1,...,n, (5.5)

where F is a given linear an continuous functional on V, g € Lo(G), h; € W/22(T;)37%. We assume
that the vector functions h; are such that there exists a vector function v € W2?(G)? satisfying the
boundary conditions S;v = h; on I'; for j = 1,...,n. This means, the boundary data h; must satisfy a
certain trace condition on the edges of the domain (see Section 3.1).
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Lemma 5.1 Let g € La(G), and let h; € WY/22(T';)3=% are such that there exists a vector function
v € WH2(G)3, Sjv = h; on T for j =1,...,n. In the case when d; € {0,2} for all j, we assume

additionally that
/gda:—|— Z / hj-ndx+ Z / hjdx = 0. (5.6)
g jid;=0"Ti jidj=2"Ti

Then there exists a vector function u € W%(G)3 such that V-u = —g and S;u = hj onT; forj=1,...,n.

Proof: Let v € WH2(G)3, Sjv="hjonTl;forj=1,...,n. We have to show that there exists a vector
function w € V such that V-w = —g — V -v. Then u = v 4+ w is the desired vector function.

Let first d; € {0,2} for all j. By [6, Ch.1,Cor.2.4], there exists a vector function w 61/?/1’2(9)3 cVv
satisfying V.-w = —g -V -v if

/g(g+V-v)dx:0.

The last condition is equivalent to (5.6).
We consider the case when d; € {1,3} for at least one j = jo. Let ¢ € C§°(T,) be a function the
integral of which over I';, is equal to 1. Then there exists a vector function ¢ € W'2(G)? such that

=0 onlyforj#0, ¢,=¢, =0 only

(see Lemma 3.1). Since jp € {1, 3}, the vector function 1 belongs to V. We introduce the function

g/:g+V"U_CV'¢7 Wherec:/(g_‘_v.v)dx'
g

/Jg’dxzc@—/gv-wdx):c(l—/P ¢daz>:07

Jo

Since

there exists a vector function w’ € V such that —V - w’ = ¢’. Consequently, w = w’ — ) satisfies the
equation V- w = —g — V - v. The result follows. m

The necessity of condition (5.6) in Lemma 5.1 is obvious. Moreover, since b(u,v) =0 and V-v =0
for v € Ly, for the solvability of problem (5.4), (5.5) it is necessary that

F(v)=0 forallve Ly. (5.7)

Theorem 5.1 Let g and h; be as in Lemma 5.1, and let F' € V* be a functional satisfying the condition
(5.7). Then there ezists a solution (u,p) € WH2(G)3 x La(G) of problem (5.4), (5.5). Here p is uniquely
determined if d; € {1,3} for at least one j and unique up to constants if d; € {0,2} for all j. The vector
function u is unique up to elements from Ly .

Proof: 1) Let first g = 0 and h; = 0 for j = 1,...,n. We denote by Li; the orthogonal complement
of Ly in V. By Korn’s inequality, we have

b(u,u) > ¢ ||U||%/V112(g)3 for all v € L. (5.8)

Consequently, there exists a unique vector function u € L‘l/ such that b(u,v) = F(v) for all v € L‘l,. Since
both b(u,v) and F(v) vanish for v € Ly, it follows that

b(u,v) = F(v) for all v € V. (5.9)

Let Vit denote the orthogonal complement of V; in V. By Lemma 5.1, the operator B = —div is an
isomorphism from Vi- onto Lo(G) if d; € {1,3} for at least one j and onto the space

72(G) = {q € L»(0) /g o(x) dz = 1}
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if d; € {0,2} for all j. Suppose that d; € {0,2} for all j. Then we consider the mapping

Lo(G) > q— L(q) = F(B™*q) — bu, B~ q), where ¢=q— @ q(z) dz €12(G).

Obviously, ¢ defines a linear and continuous functional on Ls(G). Consequently, there exists a function
p € Ly(G) such that

/pqu ={(q) for all ¢ € La(G).
G
Consequently,
- / pV -vdr =(—=V-v) = F(v) —b(u,v) for all v € V5. (5.10)
g

In the case when d; € {1,3} for at least one j, the existence of p € Ly(G) satisfying (5.9) follows
analogously from the continuity of the mapping

L(G) 2 g — {(g) = F(B™'q) — b(u, B"'q) € C.

Combining (5.9) and (5.10), we conclude that u and p satisfies (5.4). This proves the existence of a
solution.

We prove the uniqueness. Let u € Vy and p € Ly(G) satisfy (5.4) with FF = 0. Then, in particular,
b(u,w) = 0. Obviously, b(u, @) = b(u —w, @ —w), where w is the orthogonal projection of v € V; onto Ly.
Using (5.8), we obtain u — w = 0, i.e., u € Ly. However, then b(u,v) = 0 for all v € V' and, therefore,

/pV~v:0 forallv e V.
g

If d; € {1, 3} for at least one j, then v can be chosen such that Vv = p, and we obtain p = 0. If d; € {0,2}
for all 7, then we obtain

/pquzo for all ¢ € L2(G), /qd:czO.
g g

From this we conclude that p is constant. The proof is complete. m

5.4 Regularity assertions for weak solutions

Our goal is to show that the solution (u,p) € W%(G)3 x La(G) of problem (5.4), (5.5) belongs to
Wé:;(g)3 X ngg(g) under certain conditions on F', g, hj, # and §. For this end, we consider the
perturbed Stokes problem in the cone K;

bl(u,v)+/ pLivdz = F(v) forallve W'2(K;)3, Syv=0o0nT}, k€ I;, (5.11)
Kj

Liu=g inK;, Syu=hy onTy, kel (5.12)

where

3u ou
uv —2/ Z&kl Ekl dl‘+ Z / ;Lukl kaxll/dx

Jkl 1 w,v,k,l=1
ﬁvk
Liv=-V-
eVt Y o2
k=1
We assume that
Z by v ke (z \+Z\Ckl )| <e (5.13)
wv,k,l

with sufficiently small e.
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Lemma 5.2 Let (u,p) € Wﬂl,’?o(le)3 X Wg,’?o(/Cj) be a solution of problem (5.11), (5.12), where
FeWg (K)? NV 206, g€ Wih(K) NWes(Ky), hie Wi 22T n w5 /°(T8)  (5.14)

for k € I;. Suppose that there are no eigenvalues of the pencil 2;(\) in the closed strip between the lines
Red = -3 —1/2 and ReA =1 — 3 — 3/s, the components of § satisfy the inequalities max(1 — pg,0) <
0k +2/s < 1, and that the number e in (5.13) is sufficiently small. Then u € VV;:;(/CJ-)‘3 andp € Wg;(l@)

Proof: Let W, g 5 be the space of all

{hi}rer, € H Wl Hes (g3
kel

such that there exists a vector function u € Wé; (K;) satisfying Spu = hg on I'}, for k € I;. This is a
subspace of vector-functions on I'y satisfying certain compatibility conditions on the edges of the cone
IC; (see Sections 2.1 and 3.1). We define A as the operator

Wi (K)? x Wi (K;) > (u,p) — (F,g,hy) € W 5P (K;) x WHA(K;) x Wasro (5.15)

where F, g and hy are given by (5.11), (5.12). Furthermore, let Ay be the operator (5.15), where

*2/ Zsm u)e; (v dxf/ pV-vdr, g=-V-u, hr=>S,u.

ng 1

By [25, Th.4.2], the operator Ag is an isomorphism. Furthermore, it follows from Theorem 4.1 and
Lemma 4.4 that Ag is an isomorphism

(WA < W) 0 (Wh306,)° x WE(K))
o (W[;}ds(le)?’ X W92 (K;) X wm,,o) N (vﬁj;ﬁ(/c ) X WES(K,) X W, 5) (5.16)

Due to (5.13), the operator norm (5.16) of A — Ay is less than cs. Hence for sufficiently small ¢, the
operator A — Ay is also an isomorphism (5.16). The result follows. m

Theorem 5.2 Let (u,p) € W12(G)3 x La(G) be a solution of problem (5.4), (5.5), where
FeV NV, " (K)® g€La(G)NWs(G), hw € WY2A(T,) n Wy (Th).

Suppose that there are no eigenvalues of the pencils 2A;(X), j = 1,...,d in the closed strip between
the lines ReX = —1/2 and Red = 1 — 8 — 3/s and that the components of & satisfy the inequalities
max (1 — g, 0) < 0 +2/s < 1. Then u € Wﬂl:(‘;(g):‘, pE ng(g)

Proof: It suffices to prove the theorem for vector functions (u,p) with small supports. For solu-
tions with arbitrary support the assertion then can be easily proved by means of a partition of unity
on G. Let the support of (u,p) be contained in a sufficiently small neighborhood U of the vertex (@),
and let x be a diffeomorphism mapping G N U onto K; N B, where K; is a cone with vertex at the
origin and B is a ball centered about the origin. We assume that /(z()) = I. Then the vector func-
tion (w(z),q(z)) = (u(k™*(2)),p(k~*(x))) is a solution of a perturbed Stokes problem (5.11), (5.12),
where the coeflicients b, ,,1; and cp; are zero at the origin and bounded by small constants on the
support of (w,q). Applying Lemma 5.2, we obtain (w,q) € Wéﬂ’_'i;(le)3 X Wg]’_fé(le) and, therefore
(u,p) € Wﬁlg (G)3 x Wg:; (G). For vector functions (u, p) with support in a neighborhood of an edge point,
the assertion of the theorem can be proved analogously. m

Analogously, the following theorem can be proved (cf. Theorem 4.4).
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Theorem 5.3 Let (u,p) € Wé}?O(Q)B X Wg,’?o(g) be a solution of problem (5.11), (5.12), where g €
Wé}l’s(g), hj € Wé}l/s’s(Fj)g_dj, and F € V* has the representation

:/f.vdx—i—Z/ ¢j-vdx  forallveV
g j=1 I;

with f € Wé:sz’s( i), &; € Wl - 1/S(l"j)da'. We suppose that there are mo eigenvalues of the pencils
A;(N), j=1,.. ,d, n the closed strip between the lines ReA = —1/2 and ReX =1 — 3 — 3/s and
that max(l — p,0) < o +2/s < I for k = 1,...,m. Furthermore, we assume that g, h; and ¢;
satisfy compatibility conditions on the edges My, which guarantee that there exist w € W;fl+275, (G)? and

qe I/[/ﬁl’_sl_~_2 5(9), 6, = max(6, — 1+ 2,5 — 2), such that
Sjw=h;, Nj(w,q)=¢; onTj, j=1,...,n, V~w+g€Vﬁ1fl+215,(g).

Then u € W[l,f;(g) and p € W[la 5°(9).

5.5 Examples

Here we establish some regularity assertions for weak solutions of special boundary value problems for
the Stokes system in the class of the nonweighted spaces W%*(G). Let G be a polyhedron with sides T’
7 =1,...,n, and edges My, k = 1,...,m. We denote the angle at the edge M} by ;. For the sake of
51mp11(:1ty, we restrict ourselves to homogeneous boundary conditions

S;ju=0, Nj(u,p)=0 only, j=1,...,n (5.17)

Analogous results are valid for inhomogeneous boundary conditions provided the boundary data satisfy
certain compatibility conditions on the edges.

The Dirichlet problem for the Stokes system. Let f € W—12(G)3 and g € Lo(G) satisfy the compati-
bility conditions of Theorem 5.1. Then there exists a solution (u,p) € W2(G)3 x Ly(G) of the Dirichlet
problem

—Au+Vp=f, -Vu=ginG, u=0only, j=1,...,n
Here u is unique and p is unique up to a constant (see also [6, Th.5.1]). It is known that there are no
eigenvalues of the pencils 2;(\) in the strip —1 < ReX < 0 (see [10, Th.5.5.6]). In the case, when G is
convex, then even the strip —2 < Re A < 1 does not contain eigenvalues of the pencils 2;(\) (see [10,
Th.5.5.5]). Moreover, it can be easily Verlﬁed that pp > 1/2, pp > 2/3 if 0, < Z’»arccos4 1.2587,
e > 1if 0 <, and g > 4/3 if 0 < 7T Using these results together with Theorems 5.2 and 5.3, we
obtain the followmg assertions.

o If f e (les/(g)*)?) and g € Ly(G),2 < s<3,s =s/(s—1), then (u,p) € WH4(G)3 x Ly(G). If
the polyhedron G is convex, then this assertion is true for all s > 2.

o If fe W L2(G)]NLs(G)% and g € La(G)NW5(G), 1 < s < 4/3, then (u,p) € W25(G)3 x WL5(G).
If o, <3 arccosi ~ 1.25877 for k = 1,...,m, then this result is true for 1 < s < 3/2. If G is convex,
then this result is valid for 1 < s < 2 provided ¢ satisfies (0.3) if s = 2. If, moreover, the angles
at the edges are less than 27, then the result holds even for 1 < s < 3 provided g satisfies (0.3) if

1
s=2and g=0on My, k=1,...,m,if s > 2.

Here we used also the facts that W' (G) = V&gf'(g) for s <2 and Wh5(G) = W&’S(Q) for s < 3. In the
case s = 2 the W25-regularity result for convex polyhedrons was also proved by Dauge [3], for convex
two-dimensional polygonal domains we refer to Kellogg and Osborn [7].

The Neumann problem for the Stokes system. We consider the weak solution u € W12(G)3 x La(G)
of the Neumann problem

—Au+Vp=f, —Vu=ging, g—u:Oonfj, j=1...,n
n
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For this problem it is known that the strip —1 < Re A < 0 contains only the eigenvalues A =0 and A =1
of the operator pencils () (see [10, Th.6.3.2]) if G is a Lipschitz polyhedron. The numbers i, are the
same as for the Dirichlet problem. Therefore, the following assertions are valid.

o If f e (W' (G)*)3 and g € Ly(G), 2 < s < 3, then (u,p) € WH5(G)3 x Ly(G).

o If f € (WL2(G)*)3NLs(G)? and g € Lo(G)NW5(G), 1 < s < 4/3, then (u,p) € W2(G)3x WL5(G).
If the angles 6, are less than 3arccos, then this result is true for 1 < s < 3/2.

The mized problem with Dirichlet and Neumann boundary conditions. We assume that on each side
I'; either the Dirichlet condition u = 0 or the Neumann condition g—z = 0 is given. If on the adjoining
sides of the edge M}, the same boundary conditions are given, then uj > 1/2. If on one of the adjoining
sides the Dirichlet condition and on the other side the Neumann condition is given, then py > 1/4. This

implies the following result.

o If f € (WH2(G)* )2 N Ls(G)? and g € La(G) NWL3(G), 1 < s < 8/7, then the weak solution (u,p)
belongs to W2:5(G)3 x Whs(G).

The mized problem with boundary conditions (i)—(iii). Let (u,p) € W12(G)? x Lo(G) be a weak
solution of problem (5.1), (5.17), where dj < 2 for all k (i.e., the Neumann condition does not appear in
the boundary conditions). We assume that the Dirichlet condition is given on at least one of the adjoining
sides of every edge. Then, by [10, Th.6.1.5], the strip —1 < Re A < 0 is free of eigenvalues of the pencils
20, (). Furthermore, we have p > 1/2 if the Dirichlet condition is given on both adjoining sides of the
edge Mj. For the other indices k, we have pp > 1/4 and py > 1/3 if 0 < %77.

o If f e (WH'(G)*)? and g € Ly(G), 2 < s < 8/3, then (u,p) € WH5(G)? x Ly(G). Suppose that
O < %71’ if the boundary condition (ii) or (iii) is given on one of the adjoining sides of the edge M.
Then this result is even true for 2 < s < 3.

o If f € (WH2(G)*)3NLs(G)2 and g € Lo (G)NW5(G), 1 < s < 8/7, then (u,p) € W25(G)3xW3(G).
Suppose that 0, < 3arccos% if the Dirichlet condition is given on both adjoining sides of My,
0, < %arccosi if the boundary condition (i) is given on one of the adjoining sides of My, and
O, < %7‘(‘ if the boundary condition (ii) is given on one of the adjoining sides of M. Then the last

result is true for 1 < s < 3/2.

Note that in the last case, we have ux > 2/3 for k=1,...,m.

Finally, we consider problem (5.1), (5.17) when the Dirichlet condition is given on the sides 'y, ..., I';,_1,
while the boundary condition (ii) is given on I',,. Let I be the set of all k such that My C T,, and
I' ={1,...,n}\I. We suppose that the polyhedron G is convex and 6 < 7/2 for k € I. Then u; > 1
for all k, and the strip —1/2 < Re A < 1 is free of eigenvalues of the pencils 2;(A) (see [10, Th.6.2.7]). If
O < 2mfor k € I and 0}, < 37 for k € I, then even iy, > 4/3. This implies the following result.

o Let f e (WH2(G)*)3 N Ls(K)? and g € La(G) N WH4(G), s > 1. In the case s > 2, we suppose that
glar, = 0 for all k, while condition (0.3) is assumed to be valid for s = 2. Then the weak solution
(u,p) € WH2(G)3 x La(G) of problem (5.1), (5.17) belongs to W2:4(G)3 x W1#(G) for 1 < s < 2. If
0 < %ﬂ' for k € I and 0, < %ﬂ' for k € I, then the result holds even for 1 < s < 3.
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