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Abstract

Motivated by a question of Brezis and Marcus, we show that the Lp–Hardy inequality involving the
distance to the boundary of a convex domain, can be improved by adding an Lq norm q ≥ p, with a
constant depending on the interior diameter of Ω.

1 Introduction

Recently a lot of attention has been paid to the so called improved Hardy inequalities; see e.g. [BV],
[BM], [BFT], [DD], [HHL], [FT],[M], [VZ], [T], and references therein. By “improved” it is meant that one
considers a classical Hardy inequality with best constant and adds a positive term in the right hand side,
as for instance in (1.1) or (1.2) below. These inequalities play an essential role into some applications in
elliptic and parabolic equations, see e.g. [BV], [CM], [DD], [GP], [VZ].

Multidimensional inequalities of this kind first appeared in [M, sec. 2.1.6] where functions defined
in the whole space IRn were considered. More recently, Brezis and Marcus [BM] showed that if Ω is a
bounded convex domain in IRn and d(x) = dist(x, ∂Ω) then for u ∈ C∞

0 (Ω),

∫

Ω
|∇u|2dx −

1

4

∫

Ω

u2

d2
dx ≥

1

4diam2(Ω)

∫

Ω
u2dx, (1.1)

and they asked whether the constant in the right hand side can be replaced by one depending only on
the volume of Ω. This question was answered in affirmative in [HHL] for p = 2 and later in [T] for any
p > 1. The constant obtained in these two papers has the form C = c(p, n) (vol(Ω))−p/n, where c(p, n) is
an explicitly given constant independent of the domain Ω.

The main goal of the present work is to study the dependence of the best constant C(Ω) in the
inequality

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥ C

(
∫

Ω
|u|qdαdx

)
p

q

, (1.2)

1
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u ∈ C∞
0 (Ω), on the domain Ω. We establish that C(Ω) depends on Ω through its interior diameter

Dint := 2 supx∈Ω d(x).

In case α = 0, we have

Theorem 1.1 Suppose Ω ⊂ IRn is a convex domain with Dint finite. For 1 < p < n and p ≤ q < np
n−p , let

C(Ω) be the best constant in the inequality

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥ C(Ω)

(
∫

Ω
|u|qdx

)
p

q

, u ∈ W 1,p
0 (Ω). (1.3)

Then, there exist positive constants ci = ci(p, q, n), i = 1, 2 independent of Ω, such that

c1(p, q, n)D
n−p−np

q

int ≥ C(Ω) ≥ c2(p, q, n)D
n−p−np

q

int . (1.4)

This kind of dependence of the best constant appears for example when estimating the first eigenvalue
λ1(Ω) of the p−Laplacian under the Dirichlet boundary conditions,

∫

Ω
|∇u|pdx ≥ λ1(Ω)

∫

Ω
|u|pdx . (1.5)

In particular if Ω is convex with Dint finite, then (see [PS] section 5.11 for p = 2 and in [M] Theorem
11.4.1 on page 434 for the general case) there are positive constants ci(p, n), i = 1, 2 independent of Ω,
such that

c1(p, n)D−p
int ≥ λ1(Ω) ≥ c2(p, n)D−p

int. (1.6)

For p = q = 2 our lower bound for C(Ω) in (1.4) is 3D−2
int. Needless to say, it is better than the bound

1/4(diam(Ω))−2 in (1.1) of Brezis and Marcus [BM]. Moreover, since 3D−2
int ≥ 3/4(vn/vol(Ω))2/n, where

vn is the volume of the unit ball, it also gives estimates in terms of vol(Ω) as in [HHL]. In particular our
bound is stronger than that in [HHL] in the three dimensional case. However these estimates do not imply
each other for n > 3.

The Sobolev exponent q = np
n−p is not allowed in (1.3) since our proof fails. For some results in this

case we refer to [FMT1,2].

We actually establish lower bounds of the best constant in inequality (1.2) for a suitable range of the
parameters p, q, α. These results are formulated in Theorems 3.1 and 3.2 of Section 3. Theorem 3.1 deals
with the special case p = q = 2, which is particularly simple and allows for the calculation of an explicit
lower bound of the best constant in (1.2). In Theorem 3.2 then we consider the general case. In Section
3 we also have the proof of Theorem 1.1. An auxiliary estimate is presented in Section 2.

2 Preliminaries

Here we will present an auxiliary estimate. Let X(t) = (1 − log t)−1, for t ∈ [0, 1]. X(t) is an increasing

function with X(0) = 0 and X(1) = 1. In the sequel we will write X instead of X( d(x)
Rint

), where Rint =
supx∈Ω d(x) is the interior radius of Ω.

The Proposition that follows has been proved in [BFT], but we include its proof here for completeness.
The proof we present is slightly simpler than in [BFT].

Proposition 2.1 Let Ω ⊂ IRn be a convex domain. For u ∈ C∞
0 (Ω) we set u(x) = v(x)d

p−1
p .
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(i) If 1 < p < 2 then

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥

≥ c(p, n)

[
∫

Ω
dp−1X2−p|∇v|p dx +

∫

Ω
(−∆d)|v|p dx

]

. (2.1)

(ii) If p ≥ 2 then

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥ c(p, n)

[
∫

Ω
dp−1|∇v|pdx

∫

Ω
(−∆d)|v|pdx

]

. (2.2)

Proof: We first consider the case p ≥ 2 which is easier. For p ≥ 2 we will use the following pointwise
inequality valid for any a, b ∈ IRn,

|a + b|p − |a|p ≥ c(p, n)|b|p + p|a|p−2a · b . (2.3)

We have that

∇u =
p − 1

p
d
− 1

p v∇d + d
p−1

p ∇v =: a + b,
p − 1

p

|u|

d
=

p − 1

p
|v|d

− 1
p = |a|. (2.4)

Using (2.3) we obtain

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥ c(p, n)

[
∫

Ω
dp−1|∇v|pdx +

∫

Ω
∇d · ∇|v|pdx

]

. (2.5)

For any domain Ω, the distance function is a Lipschitz continuous function and therefore differentiable
a.e.. Moreover, if Ω is convex, then −d(x), x ∈ Ω is a convex function. It then follows that −∆d(x) is a
nonnegative Radon measure, see e.g., [EG, sec. 6.3]. That is

∫

Ω
∇d · ∇φdx =

∫

Ω
φdµ, φ ∈ C1

0 (Ω), (2.6)

with dµ ≥ 0. For convenience we will write (−∆d(x)) dx in the place of dµ, and in this sense, integration
by parts is permissible in the left hand side of (2.6).

Integrating by parts the last term in (2.5) we obtain (2.2).
Next we consider the case 1 < p < 2. In this case, the following pointwise inequality is true for a,

b ∈ IRn,

|a + b|p − |a|p ≥ c(p, n)
|b|2

(|a| + |b|)2−p
+ p|a|p−2a · b. (2.7)

In view of (2.4) we have that

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥

c(p, n)

[
∫

Ω

d|∇v|2

(|v| + |d∇v|)2−p
dx +

∫

Ω
(−∆d)|v|pdx

]

. (2.8)

To simplify the subsequent calculations we set

A1 :=

∫

Ω

d|∇v|2

(|v| + |d∇v|)2−p dx, A2 :=

∫

Ω
d−1X2|v|pdx,
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A3 :=

∫

Ω
dp−1X2−p|∇v|pdx, A4 :=

∫

Ω
(−∆d)|v|pdx.

Taking into account (2.8) we need to show that for some constant c depending only on p, n there holds

(A3 + A4) ≤ c(A1 + A4). (2.9)

To this end, using elementary inequalities we have

A3 =

∫

Ω

d
p

2 |∇v|p

(|v| + |d∇v|)p(2−p)/2
· (|v| + |d∇v|)p(2−p)/2 d

p−2
2 X2−pdx

≤ A
p/2
1

(
∫

Ω
d−1X2 (|v| + |d∇v|)p dx

)(2−p)/2

≤ c A
p/2
1

(
∫

Ω
d−1X2|v|pdx +

∫

Ω
dp−1X2−p|∇v|pdx

)(2−p)/2

≤ c A
p/2
1 A

(2−p)/2
2 + c A

p/2
1 A

(2−p)/2
3

≤ cεA1 + εA2 + εA3 + cεA1,

where ε is small and the constant cε depends only on ε and p. Hence,

(1 − ε)A3 ≤ 2cεA1 + εA2. (2.10)

We will also use the estimate

A2 ≤ c0(p, n)(A3 + A4). (2.11)

If we accept this we get from (2.10) that

(1 − ε − εc0)A3 ≤ 2cεA1 + εc0A4,

from which (2.9) follows.

It remains to prove (2.11). Using the fact that ∇d · ∇d = 1 a.e. and noticing that ∇d · ∇X =
d−1X2∇d · ∇d = d−1X2 we integrate by parts to get

A2 = −

∫

Ω
Xdiv(∇d|v|p)dx

≤ p

∫

Ω
X|v|p−1|∇v|dx +

∫

Ω
(−∆d)X|v|p

≤ p

(
∫

Ω
d−1X2|v|pdx

)
p−1

p
(
∫

Ω
d−1X2|∇v|pdx

)
1
p

+

∫

Ω
(−∆d)X|v|p

≤ pA
p−1

p

2 A
1
p

3 + A4

≤ pεA2 + pCεA3 + A4,

form which (2.11) follows. The proof of the Proposition is now complete. 2

3 Main Theorems and proofs

We first consider the special case p = q = 2. We have
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Theorem 3.1 If Ω ⊂ IRn is a convex domain then for any α > −2 and all u ∈ H1
0 (Ω),

∫

Ω
|∇u|2dx −

1

4

∫

Ω

u2

d2
dx ≥ Cα D

−(α+2)
int

∫

Ω
u2dαdx, (3.1)

with Cα = 2α(α + 2)2 if −2 < α < −1 and Cα = 2α(2α + 3) if α ≥ −1.

Proof: We will prove the result for u ∈ C∞
0 (Ω), the general case following by a density argument.

Using the change of variables u(x) = d
1
2 (x)v(x) we have

∫

Ω
u2dαdx =

∫

Ω
v2dα+1dx, (3.2)

and
∫

Ω
|∇u|2dx −

1

4

∫

Ω

u2

d2
dx =

∫

Ω
d|∇v|2dx +

1

2

∫

Ω
(−∆d)|v|2dx. (3.3)

Using the fact that |∇d(x)| = 1 a.e and integrating by parts we get

∫

Ω
dα+1v2dx =

1

α + 2

∫

Ω
∇dα+2 · ∇d v2dx = −

1

α + 2

∫

Ω
dα+2div(∇d v2)dx

= −
2

α + 2

∫

Ω
dα+2|v|∇d · ∇vdx +

1

α + 2

∫

Ω
dα+2(−∆d)v2dx.

Using elementary inequalities we have

(α + 2)

∫

Ω
dα+1v2dx ≤ 2

(
∫

Ω
dα+1v2dx

)
1
2
(
∫

Ω
dα+3|∇v|2

)
1
2

+ Rα+2
int

∫

Ω
(−∆d)v2dx

≤ δ

∫

Ω
dα+1v2dx + δ−1

∫

Ω
dα+3|∇v|2 + Rα+2

int

∫

Ω
(−∆d)v2dx

≤ δ

∫

Ω
dα+1v2dx + 2Rα+2

int

(

1

2δ

∫

Ω
d|∇v|2 +

1

2

∫

Ω
(−∆d)v2dx

)

.

Hence, we have

(α + 2 − δ)

∫

Ω
dα+1v2dx ≤ 2Rα+2

int

(

1

2δ

∫

Ω
d|∇v|2 +

1

2

∫

Ω
(−∆d)v2dx

)

. (3.4)

We next choose δ = min{ 1
2 , α+2

2 } and recall that Dint = 2Rint. The result then follows taking into account
(3.2) and (3.3). 2

We next consider the general case.

Theorem 3.2 Let Ω ⊂ IRn be a convex domain. Then for any u ∈ W 1,p
0 (Ω) we have

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥ c D

−

(

p(α+n)
q

−n+p
)

int

(
∫

Ω
dα|u|qdx

)
p

q

, (3.5)

with c = c(p, q, n, α) > 0 a constant independent of Ω and

1 < p ≤ q ≤
np

n − p
, n > p, α >

q

p
(n − p) − n. (3.6)

If p = q then n = p is allowed.



6

Proof: By standard density arguments it is enough to prove (3.5) for u ∈ C∞
0 (Ω).

We first consider the case 1 < p < 2. Using the change of variables u(x) = v(x)d
p−1

p we have by
Proposition 2.1 that

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥ (3.7)

≥ c(p, n)

(
∫

Ω
dp−1X2−p|∇v|pdx +

∫

Ω
(−∆d)|v|pdx

)

.

On the other hand
∫

Ω
dα|u|qdx =

∫

Ω
dα+q− q

p |v|qdx. (3.8)

For simplicity we set

A = α + q −
q

p
. (3.9)

Let {Qm}, m = 1, 2, . . ., be a covering of Ω by Whitney cubes (see [S, chapter VI, sec. 1]). In particular
each side of the cube Qm has length dm such that c0dm ≤ d(x) ≤ c1dm and

c′0X

(

dm

Rin

)

≤ X

(

d(x)

Rin

)

≤ c′1X

(

dm

Rin

)

,

for any x ∈ Qm and any m = 1, 2 . . ., where c0, c1, c′0, c′1 are universal constants. Then, for a universal
constant c we have

(
∫

Ω
dA|v|qdx

)
p

q

≤ c

(

∑

m

∫

Qm

dA
m|v|qdx

)
p

q

≤ c
∑

m

d
pA

q
m

(
∫

Qm

|v|qdx

)
p

q

. (3.10)

From now on we denote by c a positive constant, not necessarily the same in each occurrence, that
may depend only on n, p, q or α. Using Sobolev’s inequality in Qm for functions defined in W 1,p(Qm),
we have

c

(
∫

Qm

|v|qdx

)
p

q

≤ d
np

q
−n+p

m

∫

Qm

|∇v|pdx + d
np

q
−n

m

∫

Qm

|v|pdx.

Then it follows

c

(
∫

Qm

|v|qdx

)
p

q

≤ d
np

q
−n+1

m Xp−2

(

dm

Rint

)
∫

Qm

dp−1X2−p|∇v|pdx

+ d
np

q
−n

m Xp−2

(

dm

Rint

)
∫

Qm

X2−p|v|pdx.

Combining this with (3.10) we get

(
∫

Ω
dA|v|qdx

)
p

q

≤ c
∑

m

[

d
(A+n)p

q
−n+1

m Xp−2

(

dm

Rint

)
∫

Qm

dp−1X2−p|∇v|pdx

+ d
(A+n)p

q
−n

m Xp−2

(

dm

Rint

)
∫

Qm

X2−p|v|pdx

]

. (3.11)

For the first term in the bracket in (3.11), noting that

(A + n)p

q
− n + 1 =

(α + n)p

q
− n + p > 0, (3.12)
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we use the estimate

d
(A+n)p

q
−n+1

m Xp−2

(

dm

Rint

)

≤ max
0≤t≤1

{t
(A+n)p

q
−n+1

Xp−2(t)} R
(A+n)p

q
−n+1

int

= c R
(A+n)p

q
−n+1

int . (3.13)

To estimate the second term in the brackets in (3.11) we notice that, by (3.12) there exists an ε =

ε(p, q, n, α) > 0 such that (A+n)p
q − n − ε > −1. Then we have

d
(A+n)p

q
−n

m Xp−2

(

dm

Rint

)
∫

Qm

X2−p|v|pdx ≤

≤ cdε
mXp−2

(

dm

Rint

)
∫

Qm

d
(A+n)p

q
−n−ε

X2−p|v|pdx

≤ c Rε
int

∫

Qm

d
(A+n)p

q
−n−ε

X2−p|v|pdx. (3.14)

Combining (3.11), (3.13) and (3.14) we get

(
∫

Ω
dA|v|qdx

)
p

q

≤ cR
(A+n)p

q
−n+1

int

∫

Ω
dp−1X2−p|∇v|pdx

+ c Rε
int

∫

Ω
d

(A+n)p
q

−n−ε
X2−p|v|pdx. (3.15)

To continue we will estimate the last term in (3.15). For simplicity we set

θ :=
(A + n)p

q
− n − ε + 1 > 0. (3.16)

Using the fact that ∇d · ∇d = 1 a.e. and integrating by parts we have

∫

Ω
dθ−1X2−p|v|pdx = θ−1

∫

Ω
∇dθ · ∇d X2−p|v|pdx

= −θ−1

∫

Ω
dθ div(∇d X2−p |v|p)dx

= θ−1

∫

Ω
dθ(−∆d)X2−p|v|pdx − (2 − p)θ−1

∫

Ω
dθ−1X3−p|v|pdx

−pθ−1

∫

Ω
dθX2−p|v|p−1∇d · ∇|v|dx

≤ θ−1

∫

Ω
dθ(−∆d)X2−p|v|pdx + pθ−1

∫

Ω
dθX2−p|v|p−1|∇v|dx. (3.17)

Using Hölder’s inequality for the last term in (3.17) we have

∫

Ω
dθX2−p|v|p−1|∇v|dx ≤

(
∫

Ω
dθ−1X2−p|v|pdx

)
p−1

p
(
∫

Ω
dθ−1+pX2−p|∇v|pdx

)
1
p

≤ δ

∫

Ω
dθ−1X2−p|v|pdx + cδ

∫

Ω
dθ−1+pX2−p|∇v|pdx.
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Combining this with (3.17) we easily arrive at

c

∫

Ω
dθ−1X2−p|v|pdx ≤

∫

Ω
dθ−1+pX2−p|∇v|pdx +

∫

Ω
dθ(−∆d)X2−p|v|pdx

≤ Rθ
int

[
∫

Ω
dp−1X2−p|∇v|pdx +

∫

Ω
(−∆d)|v|pdx

]

.

This is the sought for estimate for the last term in (3.15); see (3.16) for the value of θ. Using this estimate
in (3.15) we conclude

(
∫

Ω
dA|v|qdx

)
p

q

≤ c R
(A+n)p

q
−n+1

int

[
∫

Ω
dp−1X2−p|∇v|pdx +

∫

Ω
(−∆d)|v|pdx

]

. (3.18)

From this and (3.7)–(3.9) the result follows. The case 1 < p < 2 has been proved.
The case p ≥ 2 is similar but simpler since no logarithmic corrections are involved in this case. We

will therefore sketch it.
For u(x) = v(x)d

p−1
p we have by Proposition 2.1 that

∫

Ω
|∇u|pdx −

(

p − 1

p

)p ∫

Ω

|u|p

dp
dx ≥ (3.19)

≥ c(p, n)

(
∫

Ω
dp−1|∇v|pdx +

∫

Ω
(−∆d)|v|pdx

)

.

The Lq–integral is again given by (3.8)–(3.9).
By the same covering argument as before and the fact that d(x) ≤ Rin we obtain the analogue of

(3.15) which is

(
∫

Ω
dA|v|qdx

)
p

q

≤ cR
(A+n)p

q
−n+1

int

∫

Ω
dp−1|∇v|pdx + c

∫

Ω
d

(A+n)p
q

−n
|v|pdx. (3.20)

We note that (3.20) is trivially true in the case p = q = n.
As before, we will estimate the last term in (3.20). For simplicity we now set

θ :=
(A + n)p

q
− n + 1 > 0. (3.21)

Using the identity dθ−1 = θ−1∇dθ · ∇d and integration by parts we have

∫

Ω
dθ−1|v|pdx = −θ−1

∫

Ω
dθ div(∇d |v|p)dx

≤ θ−1

∫

Ω
dθ(−∆d)|v|pdx + pθ−1

∫

Ω
dθ|v|p−1|∇v|dx. (3.22)

The last term above is estimated using Hölder’s inequality to get

∫

Ω
dθ|v|p−1|∇v|dx ≤ δ

∫

Ω
dθ−1|v|pdx + cδ

∫

Ω
dθ−1+p|∇v|pdx.

Combining this with (3.22) we obtain

∫

Ω
d

(A+n)p
q

−n
|v|pdx ≤ c R

(A+n)p
q

−n+1

int

(
∫

Ω
dp−1|∇v|pdx +

∫

Ω
(−∆d)|v|pdx

)

. (3.23)
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The result follows by (3.8)–(3.9) and (3.19). 2

Proof of Theorem 1.1: The lower bound of C(Ω) comes from Theorems 3.1, 3.2. The upper bound is
a consequence of the corresponding upper bound for the best constant cp,q(Ω) in

∫

Ω
|∇u|pdx ≥ cp,q(Ω)

(
∫

Ω
|u|qdx

)
p

q

, (3.24)

for u ∈ W 1,p
0 (Ω) and 1 < p ≤ q < np

n−p . In particular if Bint is the ball of maximum interior diameter, we
have that cp,q(Ω) ≤ cp,q(Bint) and then the result follows.
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[CM] Cabré X. and Martel Y. Existence versus instantaneous blowup for linear heat equations with
singular potentials. C.R. Acad. Sci. Paris Ser. I Math. 329 (1999) 973-978

[DD] Dávila, J. and Dupaigne, L. Hardy-type inequalities. J. Eur. Math. Soc. 6(3) (2004) 335–365.

[EG] Evans L. C. and Gariepy R. F., Measure Theory and Fine Properties of Functions. Studies in
Advanced Math., CRC Press, 1992.

[FMT1] Filippas S., Maz’ya V. and Tertikas A. A sharp Hardy Sobolev inequality. C. R. Acad. Paris Ser.
I, 339, (2004), 483–486.

[FMT2] Filippas S., Maz’ya V. and Tertikas A. Critical Hardy Sobolev Inequalities. In preparation.

[FT] Filippas S. and Tertikas A. Optimizing Improved Hardy inequalities. J. Funct. Anal. 192 (2002)
186–233.

[GP] Garcia J.P. and Peral I. Hardy inequalities and some critical elliptic and parabolic problems. J.
Diff. Equations 144 (1998) 441-476.

[HHL] Hoffmann-Ostenhof M., Hoffmann-Ostenhof T. and Laptev A. A geometrical version of Hardy’s
inequality. J. Funct. Anal. 189, (2002), 539–548.

[M] Maz’ya V., Sobolev spaces. Springer 1985.
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