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Abstract

Asymptotic approximations for Green’s function for the operator −∆ in a long rod
are derived. These approximations are uniformly valid over the whole domain includ-
ing the end regions of the rod. Connections are established between the asymptotic
approximations in a long rod and the asymptotics in thin domains. Comparison
between the structures of asymptotic approximations in a long rod and a domain
with a small hole is also given.
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1 Introduction

The interest to the asymptotic analysis of Green’s functions for domains with
perturbed boundaries was initiated by the classical work of Hadamard [1].
The question of uniform asymptotic approximations of Green’s functions for



boundary value problems in singularly and regularly perturbed domains was
addressed in [2], and the detailed analysis for the Dirichlet problems in do-
mains with small holes was presented in [3]. Although some types of asymp-
totic approximations for Green’s functions in singularly perturbed domains
(for example, domains with small holes) have already been used in the exist-
ing literature (see, for example, [4], [5]), the question of uniformity of such
approximations remained open until recently.
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Fig. 1. A domain with a small hole.

To illustrate a concept of uniform asymptotic approximations for Green’s func-
tions, we suggest an example of a domain with a small hole. Let Ω and ω be
bounded domains in Rn, n > 2. Assume that Ω and ω contain the origin O
and introduce the domain ωε = {x : ε−1x ∈ ω}, as shown in Fig. 1. Without
loss of generality, we can also assume that the minimum distance between
the origin and the points of ∂Ω as well as the maximum distance between
the origin and the points of ∂ω are equal to 1. Let Gε be Green’s function
of the Dirichlet problem for the Laplace operator in Ωε = Ω \ ωε. We use
the notation |Sn−1| for the (n − 1)-dimensional measure of the unit sphere.
By G and G we denote Green’s functions of the Dirichelt problems in Ω and
Rn \ ω, respectively. Also the notation H is used for the regular part of G,
that is H(x,y) = ((n− 2)|Sn−1|)−1|x− y|2−n−G(x,y), and P stands for the
harmonic capacitary potential of ω. The following asymptotic formula holds
(see [2]):

Gε(x,y) = G(x,y) + ε2−nG(ε−1x, ε−1y)− ((n− 2)|Sn−1|)−1|x− y|2−n

+H(0,y)P (ε−1x) + H(x, 0)P (ε−1y)−H(0, 0)P (ε−1x)P (ε−1y)

−εn−2 cap ω H(x, 0)H(0,y) + O
( εn−1

(min{|x|, |y|})n−2

)
(1)

uniformly with respect to x and y in Ωε. (Note that the remainder term in
(1) is O(ε) on ∂ωε and O(εn−1) on ∂Ω. )
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Although the above formula is uniformly valid in the whole domain Ωε, it
can be simplified if additional constraints are imposed on the positions of the
points x and y. Namely, if min{|x|, |y|} > 2ε, then

Gε(x,y)−G(x,y)

+εn−2cap ω G(x, 0)G(0,y) = O(
εn−1

(|x||y|)n−1 min{|x|, |y|}). (2)

On the other hand, if max{|x|, |y|} < 1/2, then

Gε(x,y)− ε2−nG(
x

ε
,
y

ε
)

+H(0, 0)(P (ε−1x)− 1)(P (ε−1y)− 1) = O(max{|x|, |y|}). (3)

The asymptotic approximations above employ solutions of model problems
defined in Ω and Rn \ω, independent of the small parameter ε, and such solu-
tions can be efficiently implemented in the numerical algorithms incorporating
the asymptotic formulae for Green’s functions.

In the present paper we extend the idea of uniform asymptotic approximations
of Green’s functions to a mixed boundary value problem for the Laplacian in a
long (or thin) domain. Dirichlet boundary conditions are set at the end regions
of this domain, whereas the Neumann boundary condition are prescribed on
the lateral surface.

We use a version of the method of compound asymptotic expansions of solu-
tions to boundary value problems in singularly perturbed domains, developed
in [6], in order to construct uniform asymptotic approximations of Green’s
kernels in elongated domains.

The structure of the paper can be described is as follows. Section 2 presents
formulation of the problem and description of the model domains. Section
3 introduces the capacitary potential and its asymptotic approximation in
the elongated domain. Asymptotic approximation of Green’s function in the
long rod is discussed in Sections 4 and 5. Finally, Sections 6 and 7 present
the asymptotic formula for Green’s function in a thin domain and concluding
remarks related to the structures of asymptotic expansions in long (or thin)
domains and domains with small holes.
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2 The Dirichlet-Neumann problem in a long rod.

Let C be the infinite cylinder {(x′, xn) : x′ ∈ ω, xn ∈ R}, where ω is
a bounded domain in Rn−1 with smooth boundary; here n ≥ 2. Also let
C± denote Lipschitz subdomains of C separated from ±∞ by surfaces γ±,
respectively.

Let us introduce a positive number M and the vector M = (O′,M), where O′

is the origin of Rn−1. It is assumed that the ratio (diam ω)/M is small.

A long rod CM is defined as follows

CM = {x : (x−M) ∈ C+, (x + M) ∈ C−},

the lateral surface of the rod is denoted by Γ, as shown in Fig. 2.
CM
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Fig. 2. A long rod CM and associated unbounded model domains.

Let GM(x,y) denote the fundamental solution for −∆ in the domain CM

subject to zero Neumann condition on the lateral surface Γ and zero Dirichlet
conditions on the end parts γ± of the boundary of the long rod:

∆xGM(x,y) + δ(x− y) = 0, x,y ∈ CM ,

∂GM

∂nx

(x,y) = 0, x ∈ Γ, y ∈ CM ,

GM(x,y) = 0, x ∈ γ±, y ∈ CM .

In order to obtain an approximation of GM we also introduce several model
problems independent of the cylinder length M .
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By G∞(x,y) we denote Green’s function of the Neumann problem in C

∆xG∞(x,y) + δ(x− y) = 0, x,y ∈ C,

∂G∞
∂nx

(x,y) = 0, x ∈ Γ,y ∈ C,

G∞(x,y) = −(2|ω|)−1|xn − yn|+ O(exp(−α|xn − yn|)) as |xn| → ∞,

where α is a positive constant, and |ω| is the (n− 1)-dimensional measure of
ω.

Similarly, G+ and G− stand for the fundamental solutions for −∆ in the
domains C±, with the homogeneous boundary conditions defined as follows

∆G±(x±,y±) + δ(x± − y±) = 0, x±,y± ∈ C±,

G±(x±,y±) = 0, x± ∈ γ±,y± ∈ C±,

∂G±

∂n
(x±,y±) = 0, x± ∈ Γ,y± ∈ C±,

and it is also assumed that G±(x±,y±) are bounded as x±n → ∓∞.

3 Capacitary potential.

The capacitary potential PM is defined as a solution of the Dirichlet-Neumann
boundary value problem in CM :

∆PM(x) = 0, x ∈ CM , (4)

∂PM

∂n
(x) = 0, x ∈ Γ, (5)

PM(x) = 1, x ∈ γ− and PM(x) = 0, x ∈ γ+. (6)

We shall also use the solutions ζ± of the homogeneous Dirichelt-Neumann
problems in semi-infinite domains C±, as follows:

∆ζ±(x±) = 0, x ∈ C±, (7)

∂ζ±

∂n
(x±) = 0, x± ∈ Γ, (8)

ζ±(x±) = 0, x ∈ γ±, (9)

and

ζ±(x±) = ∓x±n + ζ±∞ + O(exp(−α|x±n |)) as |x±n | → ∞, (10)

5



where α is a positive constant, x± = (x′, xn ∓ M) are local coordinates at
the ends of the long rod CM , and ζ±∞ are constant terms that depend on the
geometry of the cross-section ω and the end parts γ± of the boundary of the
long rod.

Theorem 1. The following asymptotic formula, uniform with respect to x ∈
CM , for the capacitary potential PM(x) holds:

PM(x) =
M + xn + ζ−∞ − ζ−(x−) + ζ+(x+)

2M + ζ+∞ + ζ−∞
+ O(exp(−αM)). (11)

Here, the functions ζ±, variables x± and the constants ζ±∞ are the same as in
(7)–(10), α is a positive constant.

The proof of this statement is achieved by the direct substitution of (11) into
(5)–(6) and applying the energy estimate to the function PM .

4 Asymptotic approximation of Green’s function.

Let H±(x±,y±) be functions defined in semi-infinite domains C±, and assume
that they also satisfy the Dirichlet-Neumann boundary value problems

∆xH
±(x±,y±) = 0, x±,y± ∈ C±, (12)

∂H±

∂nx

(x±,y±) = 0, x± ∈ Γ, y± ∈ C±, (13)

H±(x±,y±) = G∞(x,y) + (2|ω|)−1ζ±(y±), x ∈ γ±, y± ∈ C±, (14)

and

H±(x±,y±) → 0 as x±n → ∓∞. (15)

The asymptotic approximation is given by the following statement.

Theorem 2. Green’s function GM(x,y) is approximated by the asymptotic
formula, uniform with respect to x,y ∈ CM

GM(x,y) = G∞(x,y)−H+(x+,y+)−H−(x−,y−)

−AM

|ω| (
1

2
− PM(x))(

1

2
− PM(y)) +

AM

4|ω| + O(−αM), (16)
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where AM = 2M + ζ+
∞ + ζ−∞, and α is a positive constant.

In the text below we present a formal argument that leads to the asymptotic
formula (16).

Let

GM(x,y) = G∞(x,y)−H+
M(x,y)−H−

M(x,y), (17)

where the functions H±
M are defined as solutions of the boundary value prob-

lems
∆xH

±
M(x,y) = 0, x,y ∈ CM ,

∂H±
M

∂n
(x,y) = 0, x ∈ Γ,y ∈ CM ,

H±
M(x,y) = G∞(x,y), x ∈ γ±,y ∈ CM ,

H±
M(x,y) = 0, x ∈ γ∓, y ∈ CM .

We note that the sum
∑
± H±

M is symmetric, i.e.

H+
M(x,y) + H−

M(x,y) = H+
M(y,x) + H−

M(y,x).

The functions H±
M can be approximated by the formulae

H+
M(x,y) = H+(x+,y+)− 1

2|ω|ζ
+(y+)

−PM(x)
(
H+(x+′,−∞,y+)− 1

2|ω|ζ
+(y+)

)
+ h+

M ,

and

H−
M(x,y) = H−(x−,y−)− 1

2|ω|ζ
−(y−)

−PM(x)
(
H−(x−′, +∞,y−)− 1

2|ω|ζ
−(y−)

)
+ h−M ,

with exponentially small remainder terms h±M . Applying Green’s formula to
the functions H± and ζ± in the domains C±, respectively, we deduce that

H−(x−′, +∞,y−) = − 1

2|ω|{ζ
−(y−)− (M + yn + ζ∞− )},

and

H+(x+′,−∞,y+) = − 1

2|ω|{ζ
+(y+)− (M − yn + ζ∞+ )}.

The condition (10) yields

lim
y−n→+∞

H−(y−′, +∞,y−) = 0,
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and
lim

y+
n→−∞

H+(y+′,−∞,y+) = 0.

If A = 2M + ζ+
∞ + ζ−∞, then the following identity holds

H+
M(x,y) + H−

M(x,y) = H+(x+,y+) + H−(x−,y−)

+
A

|ω|
(1

2
− PM(x)

)(1

2
− PM(y)

)
− AM

4|ω| . (18)

Combining the formulae (17) and (18) we deduce (16).

The direct substitution of (16) into (13), (14) and application of the energy
estimate completes the proof of the theorem.

Example of Green’s functions in model domains. In some cases, Green’s
functions for model problems required for the above asymptotic approximation
can be constructed in a simple form. As an illustration, we suggest an example
involving a long rectangular strip. In this case, the function G∞(x,y) is the
Neumann function for the Laplacian in the infinite strip Π = {(x1, x2) : −∞ <
x1 < ∞, |x2| < 1/2}, given in the form

G∞(x,y) =
1

2π

∞∫

−∞
G̃(k, x2, y2) exp(−ik(x1 − y1))dk,

where

G̃(k, x2, y2) = − 1

2k
cosh(kx2)/ sinh(k/2)

−




1
2
(x2 − y2), x2 > y2

− 1
2
(x2 − y2), x2 < y2.

Assuming that the end regions of the rectangular domain are ”flat”, i.e. they
are located on the vertical straight lines x1 = ±M , we can construct Green’s
functions G± for semi-infinite strips as follows:

G±(x±,y±) = G∞(x±, y±1 , y±2 )−G∞(x±,−y±1 , y±2 ).

These model fields are readily applicable in the asymptotic formula of Theorem
2.

5 Connection between Green’s function GM and Green’s functions
for unbounded domains.

The result of Section 4 together with definitions of functions G∞ and G± lead
to the following

8



Theorem 3. The Green’s function GM(x,y) and the functions G±, G∞ are
related by the asymptotic formula

GM(x,y) =
∑

±
G±(x±,y±)−G∞(x,y)− 1

2|ω|
∑

±

(
ζ±(x±) + ζ±(y±)

)

−AM

|ω|
(1

2
− PM(x)

)(1

2
− PM(y)

)
+

AM

4|ω| + O(−αM, ) (19)

where α is a positive constant independent of M .

Corollary 1. The formula (19) allows for an equivalent representation in-
volving the model fields ζ± defined as solutions of the boundary value problems
(7)–(10):

GM(x,y) =
∑

±
G±(x±,y±)−G∞(x,y)+

1

4|ω|
{
AM−2

∑

±

(
ζ±(x±)+ζ±(y±)

)}

−
(
|ω|AM

)−1(
xn − 1

2
(ζ+
∞ − ζ−∞) + ζ+(x+)− ζ−(x−)

)
(20)

×
(
yn − 1

2
(ζ+
∞ − ζ−∞) + ζ+(y+)− ζ−(y−)

)
+ O(exp(−αM)),

where α is a positive constant independent of M .

The above formulae can be simplified if we introduce additional constraints
on the positions of the points x and y within CM .

When the points x and y are ”far away” from the ends γ± of the long rod
the quantities H± become exponentially small, and hence we arrive to the
following

Corollary 2. When min{(x ± M)/M, (x ± M)/M} ≥ Const, the Green’s
function GM is approximated by the formula

GM(x,y) ∼ G∞(x,y)− (|ω|AM)−1
(
xn − 1

2
(ζ+
∞ − ζ−∞)

)(
yn − 1

2
(ζ+
∞ − ζ−∞)

)

+
AM

4|ω| , (21)

as M →∞.

Another simplified formula for the Green’s function can be written for the
case when the points x and y are sufficiently close to one of the ends of the
rod.

Corollary 3. Assume that the points x and y are close to the left end γ− of
the long rod CM , i.e. max{x + M,y + M} ≤ Const. Then the function GM is
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approximated by the formula

GM(x,y) ∼ G−(x−,y−)− |ω|G
−(x−′, +∞,y−)G−(x−,y−′, +∞)

AM

, (22)

as M →∞.

Similar approximation is valid near the other end γ+ of the long rod.

6 The Dirichlet-Neumann problem in a thin rod.

By rescaling, the above results can be used to find an asymptotic approxima-
tion for Green’s function G(ε) in a thin rod rather than the long rod. Let a
thin domain be defined by

Cε = {x : ε−1(x− a) ∈ C+, ε−1(x + a) ∈ C−},

where the notations C± are the same as in Section 2, 2a is the length of the
rod, and now ε is a positive small parameter. As above, it is assumed that
Green’s function is subject to zero Neumann condition on the cylindrical part
of Cε and zero Dirichlet condition on the remaining part of ∂Cε.

Theorem 4. The following asymptotic formula for G(ε)(x,y), uniform with
respect to x,y ∈ Ωε, holds

G(ε)(x,y) = ε2−n
{
G+(ε−1(x− a), ε−1(y − a)) + G−(ε−1(x + a), ε−1(y + a))

−G∞(ε−1x, ε−1y)

−ε{2|ω|−1a + ε(ζ+
∞ + ζ−∞)}−1(

xn

ε|ω| −
1
2
(ζ−∞ − ζ+

∞) + ζ+(
x− a

ε
)− ζ−(

x + a

ε
))

×(
yn

ε|ω| −
1
2
(ζ−∞ − ζ+

∞) + ζ+(
y − a

ε
)− ζ−(

y + a

ε
))

+
1

4

(
(ε|ω|)−12a + ζ−∞ + ζ+

∞ − 2
∑

±
(ζ±(ε−1(x∓ a)) + ζ±(ε−1(y ∓ a)))

)

+O(exp(−β/ε))
}
, (23)

where β is a positive constant independent of ε.
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7 Concluding remarks and comparison of asymptotic formulae for
long domains and domains with small holes

Although the domains shown in Figures 1 and 2 are very different, we can note
a similarity in the structure of the asymptotic approximations of Green’s func-
tions (see, for example, simplified asymptotic formulae (2), (3) and (21), (22)).
This similarity becomes even more explicit if we consider the two-dimensional
cases of a long strip CM and a domain with a small hole (the latter case was
discussed in [3]).

In particular, the capacitary potential Pε for a two-dimensional domain Ωε

with a small hole ωε is defined as a solution of the boundary value problem:

∆Pε(x) = 0, x ∈ Ωε, (24)

Pε(x) = 0, x ∈ ∂Ω, (25)

Pε(x) = 1, x ∈ ∂ωε. (26)

Its uniform asymptotic approximation, as ε → 0, is given by the formula

Pε(x) ∼ −G(x, 0) + ζ(x
ε
)− 1

2π
log |x|

ε
− ζ∞

1
2π

log ε + H(0, 0)− ζ∞
, (27)

where H(x,y) is the regular part of Green’s function G(x,y) in the limit
domain Ω without the hole, and the quantities ζ and ζ∞ are defined as follows

ζ(η) = lim
|ξ|→∞

g(ξ,η), (28)

and

ζ∞ = lim
|η|→∞

{ζ(η)− (2π)−1 log |η|}. (29)

Here g(ξ,η) stands for Green’s function in the unbounded model domain
R2 \ ω.

The structure of the asymptotic approximation (27) is similar to (11), with
the linear terms (growing at infinity) being replaced by the corresponding
logarithmic terms. Also, the uniform asymptotic approximation (as ε → 0)
of Green’s function Gε in the two-dimensional domain Ωε with the small hole
has the form

Gε(x,y) ∼ G(x,y) + g(ε−1x, ε−1y) + (2π)−1 log(ε−1|x− y|)
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+

(
(2π)−1 log ε + ζ(x

ε
)− ζ∞ + H(x, 0)

)(
(2π)−1 log ε + ζ(y

ε
)− ζ∞ + H(0,y)

)

(2π)−1 log ε + H(0, 0)− ζ∞

−ζ(ε−1x)− ζ(ε−1y) + ζ∞, (30)

whose structure resembles the one of formula (19) (and formula (20)).
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