Traces of multipliers in pairs of weighted Sobolev
spaces

Vladimir Maz’ya, Tatyana Shaposhnikova*

Department of Mathematics, University of Linkdping
SE-581 83 Linkdping, Sweden

Abstract. We prove that the pointwise multipliers acting in a pair of fractional Sobolev
spaces form the space of boundary traces of multipliers in a pair of weighted Sobolev
space of functions in a domain.

AMS Subject Classifications: 46E35, 46125

Key words:  multipliers, weighted Sobolev spaces, fractional Sobolev spaces

1 Introduction

By a multiplier acting from one Banach function space S7 into another Sy we call a
function 7 such that yu € Sy for any v € S;. By M(S; — S2) we denote the space of
multipliers v : S — Sy with the norm

IVl az(5, —50) = sup{l[vulls, = [lulls, <1}

We write M S instead of M (S — S), where S is a Banach function space. We shall
use the same notation both for spaces of scalar and vector-valued multipliers.

Let Q be a bounded domain in R™ with smooth boundary 99). It is well known that
the fractional Sobolev space Wé(aQ) is the space of traces of the weighted Sobolev
space W»*(€2) endowed with the norm

(/Q(dist(z,aﬂ))”“ 3 |D7u\”dx)1/p,

{r:0<|7|<s}

where a =1—{l} —1/p, s=[l]+ 1 and p € (1,00) (see [5]). It is straightforward to
deduce from this fact that the trace v of the function

I'e M(W)P(Q) — Wi*(Q)) (1)

belongs to M (W, (052) — WZQ(GQ)) Here m and [ are nonintegers, m > [ > 0, s and
« are given above, t = [m]+1, 3 =1—{m} —1/p.

In the present paper we prove that the converse assertion is also true showing that
there exists an extension I' of v € M (W;"(9Q) — W (02)) subject to (1).

*The authors were supported by grants of the Swedish National Science Foundation.



2 The space M(W;”(R”_l) — Wé(R”_l))

By B"~!(z) we mean the ball {¢ € R"™!: [¢ — 2| < r} and write B2~ ! instead of
Br=1(0).

We need the spaces Sy and Synis of functions on R" ! defined as follows. By
Sioe we denote the space

{u: nue s forall ne C&R" 1)}
and by Suni we mean the space

{u: sgp [neulls < oo},

where ¢ (z) = n(z — €), n € C°(R™ '), n =1 on By ~'. The space Sy;s is endowed
with the norm
ulls,.; = S%PH%UHS-
Let W} (R™™!) denote the fractional Sobolev space with the norm
1Dp,u; R |z, + [lus Rz,

where
1/p
Do) = ([ 19wata s m) = TPl rtan) @)

with V[ being the gradient of order [I], i.e. Vi = {07}, .. O T Tt AT =
[1].

In this section we collect some known properties of multipliers between fractional
Sobolev spaces W, (R™~!) and W!(R""'), m > 1 > 0. The equivalence a ~ b means
that a/b is bounded and separated from zero by positive constants depending on n,
p, m, and [.

Proposition 1 [3] Let m and l be nonintegers, m > 1> 0, and let p € (1,00).
(i) There holds

Iy R o wgn—wy ~ [1Dpavs R Hlaewge -,y + 1R g p -
(ii) If y € M(W)"(R") — W;(R”*I)) then for any multi-index o, |o| < [I],
D7y e M(W"(R"™!) — WLl7[(R"~1)).

(iii) Let 0 < A < p. Then
IR arwy —nyy < e R 3 -

Proposition 2 [3] Let m and | be nonintegers, m > 1> 0, and let p € (1,00). Then

_ [ Dp,iv; el
17 R arwyr—wiy ~  sup Gy

eCRN—1 (Capp,m(e))l/p
diam (e)<1



sup |1y By N (@)l|z,  form > 1,
+ { zeR"—1
v R L., form =1,

where e is a compact set in R*™ ! and capp,m(e) is the (p, m)-capacity of e defined by
cap, ,(€) = inf{|lu; R" ||} 1w € CP(R™), u>1one}
For I = 0 one should replace Dy, 7y by 7.

Upper estimates for the norm in M(W,*(R"™!) — Wzl)(R”_l)) are given in the
following assertion. By mes,_; we mean the (n — 1)-dimensional Lebesgue measure
of a compact set e.

Proposition 3 [3] Let m and | be nonintegers, m > 1> 0, and let p € (1,00).
(i) If mp <n —1, then

o ‘ 1Dp1v:ellL,
el R v —wyy < sup (tes,,_1 () L/p—m/(n—D)
diam(e)<1

sup |1y By N @)z, form > 1,
+ { zeR"—1
I R form=1.

(ii) If mp =n — 1, then

n—1

_ 1-1/
c|v;R" 1HM(W;"—>W;’})S sup (log ) p||Dp,l’Y§€HLp

P mes,_1(e)
diam(e)<1

sup |lvi By N @)L, form > 1,

+ { zeR™ 1
lv; R |z form =1.

Now we list lower estimates for the norm in M(W," — W}).

Proposition 4 [3] Let m and | be nonintegers, m >1> 0, and let p € (1,00).
(i) If mp <n—1, then

1Dp.v: By~ ()|,
r(n=1)/p—m

el R wp—wyy > sup
zeRN—1
r€(0,1)

sup ||y BY (@) ||z, form > 1,
+ { zeR"—1

v R |r., form =1.
(ii) If mp =n — 1, then
e 2\1-1/ —
el R Harawp—wy) = sup (log-) 1Dy Br (@),
o)
sup |1y By N (@)l|z,  form > 1,

+ { zeR"—1
%R L form =1.



3 Multipliers in pairs of weighted
Sobolev spaces in R}

3.1 Preliminary facts

Let R’} denote the upper half-space {z = (z,y) : z € R"!, y > 0}. We introduce
the weighted Sobolev space W,**(R!;) with the norm

[(min{1,y})*VU; RY (|1, + [[(min{1, y})*U; RY ||, 3)

where s is nonnegative integer. We always asume that —1 < ap <p — 1.

It is well known that the fractional Sobolev space Wé(R"’l), is the space of traces
on R™"~! of functions in the space W3*(R'}), where s = [I[]+1, « = 1—{l} —1/p, and
p € (1,00) (see [5]). We show that a similar result holds for spaces of pointwise mul-
tipliers acting in a pair of fractional Sobolev spaces. To be precise, we prove that for
all noninteger m and I, m > 1 > 0, the multiplier space M (W (R"~') — W}(R"1))
is the space of traces on R"™* of functions in M(W/:P(R) — Wi*(R'})), where s
and « are as above and =1 — {m} — 1/p, t = [m] + 1. Different positive constants
depending on n,p,l,m,s,t will be denoted by c. We shall omit R’} in notations of
norms.

We introduce the notion of (p, s, av)-capacity of a compact set e C R}
cap, ¢ o(€) = f{||[U; R |[}s0 = U € CP(RY), U>1 on e}.
The following result is essentially known (see [2], Sect. 8.1, 8.2).

Proposition 5 Let k be a nonnegative integer, —1 < fp <p—1, and let 1 < p < oco.
Then T € M(W}FP(R7) — W2*(RY)) if and only if

[|(min{1,y})*L; €|z,

sup

ccrn (capy, j g(€)) /P
diam(e)<1
The equivalence relation
(| (min{1, y})°T;ellz
IIT| kB 0ay ~  SUD £ 4)
IV[(WP Wp ) eCRi (Capp’kﬁ(e))l/Z)
diam(e)<1

s valid.

We shall use some general properties of multipliers. We start with the inequality

”F”M(W;*j’ﬁﬁwgﬁ'v“)

< e PN sy ITIE

Gl tms.8_ ypr0rays (5)
M(WpP =Wy, W, 2P =W, %)

where 0 < j < s, -1 <ap <p-—1, =1 < fBp < p — 1, which follows from the
interpolation property of weighted Sobolev spaces (see [4], Sect.3.4.2).

The next assertion contains inequalities between multipliers and their mollifiers in
variables z.



Lemma 1 LetI', denote a mollifier of a function I' defined by
Mo =0 [ KT @ - T

where K € C(BY™Y), K >0, and |[K; R Y|z, = 1. Then

< lim inf||T

p—0 ollarwio wgey: (6)

HFPHM(W;«‘?_>W15‘1) < ”FHM(W;’B_)W;;*‘«“)

Proof. Let U € Cg°. By Minkowski’s inequality

( /R (min{L,y})* |V, /R TR U ) az)

1/p
< [, e ([ v s i) e

where j = 0, s. Therefore,
Tyl < I s -
. 1/p
<o {( [ mingphreLUe g Pds)
Rn—1 R7
. 1/p
H([ i oG+ gras) g
RY

< IPlarwgeo g 1Ulwgos-

This gives the left inequality (6). The right inequality (6) follows from
Tl = T I, e < i i I, oy e
The proof is complete.

Lemma 2 LetT' € Ly joc, p € (1,00), =1 < fp < p—1, and let U be an arbitrary
Junction in C3°(R). The best constant in the inequality

|(minf1 g} TV.Ulls, + | min{L g} TU |1, < C [U]ys0 ™
is equivalent to the norm ||F||M(Wlf;—s‘[f_)wg,a).

Proof. The estimate C' < C”F”M(Wt—s,ﬂ*)WO,a) is obvious. To derive the converse
p p

estimate, we introduce a function @ — ¢ which is positive on [0, 00) and is equal to =
for > 1. For any U € C§°(R) there holds

U= (A (o(-A) "+ T(-A),

where T is a function in C§°([0, 00)). Since



it follows from (7) and the theorem on the boundedness of convolution operators in
weighted L, spaces (see [1]) that

/ (min{1,y})P° T (2)U (2)|Pd
Ry
< cC(IVu(o(-A) U205 + ITUIE,, ) < e CIUI, .o

The proof is complete.

4 Characterisation of the space M (Wgﬂ — W)

Here we derive necessary and sufficient conditions for a function to belong to the
space M (WP — W) for p € (1,00) with o and 3 satisfying

—-l<ap<p-1, —-1<pfp<p-—-1, t>s. (8)

These inequalities will be assumed everywhere. We start with an assertion on deriva-
tives of multipliers. We shall omit Ri“ in notations of spaces, norms, and integrals.

Lemma 3 Suppose
e MWy — W) n MW, =% = W), pe(l,00).
Then D°T € M(W}F — W;flgl’a) for any multiindex o of order |o| < s and

||DUF||M(W;=5HW{:‘*\U\YO<)

<e¢ HF||M(W1§—S=/’_>WI?=”) + c(e) ”F”M(W;ﬁ_,m/;vﬂ)a (9)
where € is an arbitrary positive number.

Proof. Let U € W and let ¢ be an arbitrary function in C5°. Applying Leibniz

formula |

o!
DO' — DT DO’*T
(?U) Z 7o —71)! v v
{ric>7>0}
we find
o o _ O! T o—T
/apU(—D) Fdz:/FD (eU)dz= Y ml‘D ©D°TUdz
{r:ic>7>0}
ol T o—T
= /50 Y 5 (=D)(TD7U)dz.
Ti(o —7)!
{B:o>72>0}
Therefore,
o!
DT = ———(D)"(T'(-=D)* "
v > (O DY),

{T:0>7>0} T
which implies the estimate

IUD T yyetota < ¢ Y LD Ullypetorsietia
{r:6>7>0}



Hence, it suffices to prove (9) for |o| = 1. We have

|UVTlys-s0 < 10Tl + [TVT |zt
< (||F||M(W£’B~>Wg'a) + ”FHM(W;’LBHW;*LO‘))”U”W;’B'

Estimating the norm [T ;yy1-1.6_yys-1.0) by (5) we arrive at (9).
p p

We pass now to two-sided estimates of norms in M(W;ﬂ — W), p € (1,00),

given in terms of the spaces M (W;f’ﬁ — Wg’o‘). We start with lower estimates.

Lemma 4 Let I'e M(W}F — W), Then
||vsr||M(W;’5HWgﬂ) + HF”M(W;*S»f‘ﬂWZ?v“) < CHF”M(W;’BHWJQ)'
Proof. Suppose first that I' € M(W;*S’ﬂ — W), We have

IPY.Ullwge < M lasug g [0lhwgs + ¢ S ID7UD Ty

lol+]T]=s,

T#0

< (IParwt gy + € 3 IVTlgag-o+i ) )10 o
Jj=1

By Lemma 3,

HVJ'FHM(W;*SHﬂ_)W;’“)

<e ||F||M(W;75’B~>WS’D‘) +c(e) HF”M(W;*S“"HWg"‘)'

Estimating the last norm by (5) we obtain

HVJ'F|‘M(W1§7”+”"5~>WS’Q)

é 13 ||F||M(ngs,5*>wg,a) + 6(6) H]-—‘”M(W;aB*)W;,(Y).
Substitution of this into (11) gives
||FVSU||W,?*°‘ < (E ”FHM(W;**BHWIQ”‘) + C(E) HF”M(W;’BHWvaa))”UHW;B‘

Besides,

IU g < Mg gm0 g

Summing up two last estimates and applying Lemma 2 we arrive at

||F||M(W1§*S*B_>W1?*“) <¢ ”FHM(W;*&B_)WI?*‘) +c(e) HF”M(WT’;‘B_)WI;"“)'
Hence,

<c|

||F||M(W1§*Svﬁ_,wg*’) |F||M(WI§’B—>W§’“)'

(10)

(11)

(12)

(15)



Now, we are going to remove the assumption I' € M(Wz’fs’ﬁ — Wg"l). Since
I'e M(WEP — W), then

ICnllwze < elnllygs

where n € Cg°(B3(z)), n = 1 on BY(z), and z is an arbitrary point in R’;. Hence
I' e W -(R%) which implies that for any (n — 1)-dimensional multiindex 7 the

p,unif

derivative DT, belongs to W> ..(R"). Therefore, I', € Lo (R’) which in its turn

p,unif
guarantees that I', € M(VV;*S“6 — W2). Thus, we may put I', into (15) in order
to obtain

<c|

||Fp||M(WéfsﬁHWSﬂ) ‘I‘PHM(W:;‘?HW’?’Q)'

Letting p — 0 and using Lemma 1 we arrive at (15) for all T € M(W;}[3 — W5e).
To estimate the first term in the right-hand side of (10), we combine (15) with
(12) for j = s.

The estimate converse to (10) is contained in the following lemma.
Lemma 5 Let I' € M(W/!=*F — W) and let V,I' € M(WLP — W), Then
I'e M(WEP — W) and the estimate
||F||M(W;’5_>szv“) < C(||vsr||M(W;v3_>ng“) + HF||M(WI§*S=3_>W;’=“)) (16)
is valid.

Proof. By Lemma 4 and (5) we have

||vjr||M(W;—S+J>ﬁ_>Wl9=a) <c ||F||M(WI§—S+J"/5_>W1§*“)

1-j/s (17)

ils
S c ||FHM(W1§’L}HW;’Q)||FHM(W1§75'B—>W19'Q)’

where j =1,...,s. Forany U € C§°,

[(min{1,y})*V.@TU)|L, <Y [lmin{1,y})*|V,T| [Ver;U| |z,
=0

< (VT arqas 2wy + T asu- o oy

s—1
+ Z ||vj1—‘||M(W,§*SHY5HW§*O‘)> ||UHW;=5~

j=1
This and (17) imply
[[(min{1, y})*V(TU)||,
<c (HVSFHM(W;,"B—)V[/;’*Q) + ||F||M(W;*Sv5ﬁwg«“)> ||U||W;ﬁ-

It remains to note that

min{L,y})° U, < [T ygqs-esppoony | U lys-eon-

The proof is complete.

Using Lemmas 4 and 5 we arrive at the following description of the space
M(WpP(RL) — Wy (R%)).



Theorem 1 A function T belongs to the space M(Wpt’ﬁ — Wy®) if and only if
Fewr e . Te MW/ - W>), and V,I' € M(W}F — W*). Moreover,

p,loc’
||F||M(W;’f’_>wgva) ~ ‘|VSFHM(W;=‘*_>W;’=Q) + ”FHM(W;*W’_»WI‘}&)'
The equivalence relation (4) enables one to reformulate Theorem 1.

Theorem 2 A function T' belongs to the space M(W;ﬂ — W) if and only if

I'e Wps)’fzc and for any compact set e C R}

|(min{1,y})*V.Lselh < ccap,, (),

[[(min{1,y})*Tsell7 < ccap,,_,s(e).
Moreover,

‘|F||M(W;ﬁ_>wg’“)

oy (MmnOLDV Tl o) Tiel)
S U (capy ()77 (P oo ()7
diam(e)<1

An important particular case of Theorem 2 is t = s.

Corollary 1 A function I' belongs to the space MW > if and only if I' € W;fm and
for any compact set e C R?

[(min{1,y})*V,Tiell} < ccap,,q(e),

Moreover,
[[(min{1, y})* VT el
T s, ~  SU 2 || . 19
|| ||MWP eCR% (Capp’s,a(e))l/p || HLoc ( )
diam(e)<1

5 Trace theorems for multipliers in weighted Sobolev
spaces

We start with the following simple fact concerning traces of multipliers.
Theorem 3 Let m and | be positive noninteger, m > 1 and let
re M(W)PRY) — WP*(RY))

wheret =[m|+ 1, s=[l]+1, 8=1—{m} —1/p, and a« =1 —{l} — 1/p. If ~ is the
trace of T' on R™™ 1, then

v €MW" (R — Wy(R"™)

and the estimate

(% R"! HM(W;;”LHWpl) <c||T; RiHM(W;ﬁHWvaa) (20)

holds.



Proof. Let U € W.#(R7) and let u be the trace of U on R"~!. By setting U
and vu instead of U and u, respectively, in the inequality

[u; R™ Ml < | U5 R [y

we arrive at the estimate

H’yu;R”_1||W1§ <c Hl";RiHM(W;,aHW;,a) U;RiHW;,a.

Minimizing the right-hand side over all extensions U of u we obtain
s R s < ¢ 105 R gy gp 0 R o

which gives (20).

We state an extension theorem for functions in M(W}"(R"~') — W}(R"™1)) to
be proved in Sect. 7.

Theorem 4 Let m and l be positive nonintegers, m > 1, p € (1,00), and let
Y€ MOV R - WiR)
Then the Dirichlet problem
AI' =0 on R}, T|gn-1 =7 (21)

has a unique solution in M(WP(R) — W*(R%)), where t = [m] +1, s = [I] + 1,
B=1—{m}—1/p, and a =1 —{i} —1/p. There holds the estimate

1D R [yt ey < € IR larwp ). (22)

6 Auxiliary estimates for an extension operator

6.1 Pointwise estimate for Ty and VT~

For functions v € Ll,um-f(Rnfl), we introduce the operator

) = [ () @) e R, (23)

where ( is a continuously differentiable function defined on R—’_ﬁ outside the origin.
We assume that

Izl + DIVCE) +[C(2) < C (2] + 1)~ (24)

Lemma 6 Let v € M(W,* '(R"™!) — L,(R"™')), where m > 1 and 1 < p < oo.
Then

Ty +yV(Ty(2)] < e+ y" ™R i,

Proof. In view of (24)
Tv(2)| + y[V(T(2)]

< ([ NG ST / n(©ldey, (25)

ne\Br 1 (2) € — 2|”

10



By Holder’s inequality,
/B"l( : [y(§)ldg < Cy(n_l)(p_l)/p\l'y;Bg_l(x)HLp.
y x

Let y € (0,1). The right-hand side in (26) does not exceed

n—1
cy ML qup (L) |y BN,
mreef(t(:{i)l

—-m n— mn— -1 n—
< ey ™ sup (capy oy (B2 @) v B @), -

r€(0,1)
zeRM—1

This and Proposition 2 show that for y € (0, 1)
Jo ) PO < e R
y xr

Suppose y > 1. Since
capnm_l(B,’f*l(x)) ~ " for r> 1,
it follows that the right-hand side of (26) is dominated by

e n— -1 n—
ey (capy i (B (@) 7 7 By @),

Combining this with (27) and Proposition 2 we conclude that

Jos POIE < e 0y IR et
y xr

We now estimate the second integral in the right-hand side of (25). Clearly,

Iv(§)]d€ /°° dp /
<n v(&)|dE.
/Rnl\zsgl(x) |§ — x| y P B',’}’l(ac)‘ ©

By Holder’s inequality the right-hand side of (31) admits the majorant

SN | —
o [ o By @), de
y
Using (29) we see that the function (32), for y > 1, does not exceed

— — -1 —
™ sup - (capy o (B (@) i B (@)1,
weRd_l

which in view of Proposition 2 is dominated by
-1 -1
cy v R” ||M(WI’§”*l—>Lp)'

Let y < 1. Then
1
_g_n—1 —
[ o T 1By @), do
Y

11

(28)

(29)

(32)



_]_n=1 _
<ey ™ sup (L") [l B (@) |,
re(0,1)
meR"*l

—m+l— n— -1/ n—
Sey "N sup - (capy (BN @) s BT (@)l (39)
seRn—1

Furthermore, by (29)
o0
_9_n=1 —
[ o T By @)l do
1

< - -1 e
<e / P2 ey (B @) | By @) 1, dp

<c suwp (capy (B (@) v Br (@),

>0
IER.77‘_1

Summing up this inequality and (34), and using Proposition 2 we conclude that the
integral (32) is majorized, for y < 1, by

|y
9

~1
cy R" |‘M(W;nfl_>Lp).

This, together with (33), imply that for all y > 0 the integral (32) does not exceed
ey (1+y'~™) [l R lrowy—t—r,)

Hence, the result follows from (30), (31), and (25).

6.2 Weighted L,-estimates for 7y and VT1'y

Lemma 7 Let the extension operator T be defined by (23) and suppose that v €
MW= R ) — Ly(R™1)), where I € (0,1), [m] > 1, 1 < p < co. Then, for
k=1,...,[m],

([ v+ wvane)a)”

L m—k

Tt (MY @] FT, (35)

<R

where M is the Hardy-Littlewood mazimal operator in R™~ 1.

Proof. Let § be a number in (0,1] to be chosen later. We set

1 1) 1
/ yp(k—z)—1(|T7|+y|v(T7)(z)\)pdy = / coody + /5 coody.
0 0

In view of (25)

3 g P
[y e ([ ) ay
0 0 By~ (x)

e s / LIGILL
0 R -1\B! " (a) 1§ — [

12



By the definition of M,

5
p(k+1—l—n)—1 P ‘ 2)PsPk=D)
e (L ) a < dompart D

Using (31) we obtain

é
p(k+1—1)—1 [ (§)]dE NP c £)Psple—0)
| () )y < M) @Rt (31

nn\Bp 1 (g) € — "

Combining (36) and (37) we conclude that

/5 cdy < c[(M)(a)]PsP D, (38)
0

By Lemma 6,
1
/5 P EDL (1T | 4 4|V (T)(2))) dy

o e L s (39)

Summing up (38) and (39) we find

1
/0 P E=01 (T + |V (T) (=) dy

< (MY @PEED + [ R e 87T,

The right-hand side in this inequality attains its minimum value for

5 — ( ”'7? R"! ”M(W;"—lﬂl,p) ) 1/(m=1)
(M)(x) '
The proof is complete.
Lemma 8 Let the operators T and D, be defined by (23) and (2). Then
1
| @ Epdy < ¢ (D) @)
0
Proof. Let R(§,x) = v(§) — v(x). Using the identity

y_n+1 /Rn_l C(%)dg = const

we have

S =g [ (5 rieae). (10)

Furthermore, it is clear that

8T’}/ _ . —n+1 8 §—ac
e wn =yt [ R (SE as

13



Therefore,
1
VD) <oy [
k=07 R"

This estimate and (24) imply
€ — =]

Vel <o [ (145

o (S ) e

vic(20)|(+ ) iree iae.

) IR w)lde

Consequently,

1
/ yPI=0N (T (2, ) Py
0

[ O

where f(n) = n""1/P(1 4+ n)~". We write the last integral over (0,1) as

/O1 (/Ooo f(g)g(t,x)%y)yp(l_l)_l%

= /01(/000 f(S)g(sy,w)%)pyf’“‘”‘ldy—y,

with

g(t,z) = /71 / \R(0 + 7, 2)|dO.
Byt

By Minkowski’s inequality, the right-hand side of (41) does not exceed

(/Ooo (/Ol(f(s))p(g(sy,x))PyP(l—l)—l d_y)l/Pﬁ)p

y S

([ 1o [ty e

< (/OOO f(s)%)? /000(9(7_7 x))pr(lfl),ldTT'

Therefore,

1 o [e'e) o dT
/ Y11 (Ty) (2, )Py < e / (g(r, z)prr-0-12

0 0 T

It remains to note that

o _n_qdT < dr
| a0t [T a4 w) — a(a)lde) T
0 T 0 oByr—t

T

= dr (x4 h) = (@)
— p
A e

- c((Dmfy) (x))p.

The result follows.
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7 Proof of Theorem 4

7.1 The casel <1

Our aim now is to prove that for I < 1 and s = 1 the operator T' defined by (23)
maps M (W, (R") — WLR"™)) into MW" (RE) — Whe(R7)) with a =
1-1—1/p, 8=1—{m} —1/p and there holds the estimate

HT'W RinM(W;vBHWI}v‘*) <c CH'Y? Rn_lHM(W;nHWé)a (43)

where C' is the constant in (24).
We have

(min{1, y})°V (UT7); RE |1, <c/ [ (V@RI + T4 9UP) s

ve [© [ (v@nPpp - V) s
1 Jre1

:c/ ...dz+c/ coodz. (44)
0<y<1 y>1

By Lemma 1, for y > 1

yIV T+ (T ()] < elly R w1,

Hence,
. n—1)p p
/y>1...dz§c||%R 12wt JUTREI, (45)
It remains to refer to the estimate
|IU;RY ||W1a < c|U;RY HWtB

which follows from the one dimensional Hardy inequality.
Introducing the notation

y
RoU(z Z ay 0)%7
[m]-1 k
RyU(2) = VU(z) — kZ:O a—kaU(a: 0L o form>1
VU (z) form < 1

we have

/ dz<e / O DS () IRy, U(2) P de
O<y<1 O<y<1

[m]

te / y P (1T (=) + IV (T) (2 meonp Pk
0<y<1

15



te / P00 9T (2) P[U(,0) Pz (46)
O<y<l1

for m > 1. In case m < 1 the second integral in the right hand side of (46) should be
omitted.

By Lemma 6, for 0 <y < 1
Ty () +yIV (TN < ey ™ R - (47)

Since for j = 0,1

m]+j—1
|R1 j )| >~ ] — 1 / |Vt x, t |dt (48)

we have

/0 1 yp(l_{m})_1|R1_jU(z)|pdz
<y<

Y p
< C/ y_p{m}_l (/ |V[m]+1U(x,t)|dt) dz.
0<y<1

By Hardy’s inequality the right-hand side does not exceed ¢ ||U; R" +||p 41,5 Com-

bining this with (47) we obtain that the first integral in the right- hand side of (46)
does not exceed

Iy R U5 RN (49)

AfUV"Ll—aL ) Wﬂnl+1ﬁ

We now pass to the estimate of the second integral in the right-hand side of (46)
for k=1,...,[m], m > 1. Applying Lemma 7, we find

/0 T+ VT VR . 0)

m—k
<c|ly; R 1H i lm . (My(2))" 1| VeU (,0)[Pda. (50)
MW" '=Ly) Jgas
The last integral is not greater than

(51)

I(My) ™= VKU (-, 0); R

AJUVm kL) wk

Using Proposition 2 with A = m — k, u = m — [ and Verbitsky’s theorem on the
boundedness of the maximal operator M in the space M (W,;"~'(R"~!) — L,(R"™1))
(see [3], Ch.2), we find that (51) is dominated by

clly, R

p(m—k)
"};nzl )”[ICﬂO);I{n_IHP fA

Hence and by (50)

/0< _YETHID @+ yV TN E) VR @, 0P dz

< clv, R o IV R

MW i M/Mﬂ+1@
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By Lemma 8, the integral
/ A=D1 |Y(T) () P|U (2, 0) Pz (53)
O<y<1

does not exceed
o[ (Dun@) UG o)pds
R’Vl*

< el Dy R e IUCL 0 R By

<c|v; R ||§\)4(W£,L_,W1§) 1U; Ri ”;,gm]ﬂ,ﬁ- (54)

Thus we arrive at the inequality

L VO < el R g IR
Yy
It remains to estimate the integral

/O PR CEORE
<y<

Clearly,

[, @ [ ) @ R
0<y<1 0<y<1

[m]

$Y [ ) QP 0P, (55)
k=07 0<y<l1

By (47) and (48) with j = 1 we have

/0 DTN PR Pz
<y<

Y P
< .Rpn—1||p p(1—{m})-1
< Ry [ ([ Va0 0ar) "az

which by Hardy’s inequality is dominated by (49). In view of (52)
I R R TR
0<y<1

< cllv; Rn_1||I])VI(W£n—z_,Lp)HU§ Rr-il-||€vj£m]+1,ﬁ~

Thus we arrive at the estimate

codz < |y R U;R"|P :
/0<y<1 z < cllv; ||M(W£”—>Wé)” ) +||W£m]+1,/f

Since the Poisson kernel satisfies condition (24), Theorem 4 with | < 1 follows.
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7.2 The case ! >1

Lemma 9 Letm and!l be nonintegers, m > 1> 0, and let T be the extension operator
(23). Suppose that v € M(W;""H(R"™') — L,(R""')). Then

Ty € M(WM-IARL) — Wi (R7))
and
1T RNy ym-m8 oy < ellvi R g1y (56)

Proof. To begin with, let [m] = [I]. Then by (47)

/0 P )
<y<

< R 4P p(1—{m})—1 P
<R s /y U(:) Pz

which gives the result.
Suppose [m] > [I] + 1. We introduce the function
(m==1 5517 i

RU =U(z) — 5 @05

j=0
which, clearly, satisfies

y[m]—[l]—l y
‘RU(Z)‘ < W/o ‘V[m],[l]U(l‘,t”dt.
This and (47) imply

/0 PTG PRU )z
<y<

an mp-1( [* P
. PN— —p{m}—
<R e L ([ 1¥im-w0 e 01at)

By Hardy’s inequality the right-hand side is dominated by
cllv; Rn_lH?M(W;n—z_}Lp) 1U; Ri||€[,£m]—m,ﬁ~

Furthermore, by Lemma 7 with m replaced by m — [I], I replaced by {l}and k = j +1
we have for j =0,...,[m]—[]] -1

/0 P ) P9, U e 0P
<y<

< R (Mry(@)" T |V,U (@, 0)Pdz.  (57)
= Clls MW =Ly) s T '

The last integral is dominated by
—[]—j—1

m—[]—j
P——m=1 . -1 . -1
M) TR IOCOSRI
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which by Proposition 3 does not exceed

7[1 —i1

IMy; R U R

Wm I.L,) +lyy fmi-

Hence and by (57)

/0 PO T ) P9, U e, 0P
<y<

<R U5 RN o116+
P

M(Wm. l—>L )
The result follows.

Proof of Theorem 4 for [ > 1.

Suppose Theorem has been proved for [[| =1,... ,£—1, where £L > 2. Let [l] = L
and let

yeMWMR"™) - WLR")) for m > L. (58)

Let T denote the Poisson integral. Since by Proposition 1 one has
ve MW (R — Ly(R"),
it follows from Lemma 9 that
Ty e MOV US(RY) — WO(R))

and (56) holds. Next we show that

Vepa(Ty) € MOWHP(RE) — W (RE)). (59)
Using Proposition 1, we obtain

87 m n—1 -1 n—1
6—xkeM(Wp(R )= W, HRY), k=1,...,n—1

Then, by the induction hypothesis applied to 9y/0xy,

8 8 n « n
9 (T = Tﬁ e M(WIMHLH(R?) — WE*(RL)). (60)
By Lemma 3,
8 m n « n
Vz:a (Ty) € M(WMHHP(RY) — W) (RY)). (61)

Using the harmonicity of Ty and (61) we find

O (Ty) _ 9571 (A(TY))
ay£+1 8y£*1

M(WmHLA (R ) — WO (RY))
which together with (61) implies the inclusion (59). Combining this with (56) we

find that Ty € M(W;EmHl”B(Rﬁ) — W,LZ]H’Q(R’_D). It remains to note that all above
inclusions are accompanied by the corresponding estimates. The result follows.
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8 Extension of multipliers on 02
We return to the assertion stated in Introduction.

Theorem 5 Let v € M(W;"(092) — W) (09)), where m and | are nonintegers, m >
>0, p€(1,00). There exists a linear extension operator

v—T e MW (Q) - Wy*(Q)),
wheret =[m|+1,s=[]+1,8=1—{m}—-1/p, anda=1-{I} —1/p.

Proof. It suffices to construct an extension I' only for + with sufficiently small
support. To be precise, we assume that v = 0 outside the ball B) centered at 0 € 952,
where p is small enough. We introduce a cut off function ¢ € C§°(B3,), equal to
one on Bj,. Let us define cartesian coordinates ¢ = (&,m) with the origin 0, where
£eR"andn e R Let QNBE, = {¢: ¢ € ng_l, n > f(€)}, where f is a
smooth function. We make the standard change of variables k : ( — (z,y), where
z =& y=n-— f(§). The diffeomorphism x maps Q N By, into the half space
R = {(z,y) : v € R""1,y > 0}. Clearly, the function ¥ = o x~* belongs to
MW (R 1) — W/(R"1)). Its harmonic extension to R’}, denoted by T, is in
M(W;7B(Ri) — Wo*(R%)) and satisfies the estimate (22) according to Theorem 4.
Hence the function v = (f ) n)gp is a desired extension. The proof is complete.
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