Traces of multipliers in pairs of weighted Sobolev spaces

Vladimir Maz'ya, Tatyana Shaposhnikova*

Department of Mathematics, University of Linköping SE-581 83 Linköping, Sweden

Abstract. We prove that the pointwise multipliers acting in a pair of fractional Sobolev spaces form the space of boundary traces of multipliers in a pair of weighted Sobolev space of functions in a domain.

AMS Subject Classifications: 46E35, 46E25

Key words: multipliers, weighted Sobolev spaces, fractional Sobolev spaces

1 Introduction

By a multiplier acting from one Banach function space S_1 into another S_2 we call a function γ such that $\gamma u \in S_2$ for any $u \in S_1$. By $M(S_1 \to S_2)$ we denote the space of multipliers $\gamma: S_1 \to S_2$ with the norm

$$\|\gamma\|_{M(S_1 \to S_2)} = \sup\{\|\gamma u\|_{S_2} : \|u\|_{S_1} \le 1\}.$$

We write MS instead of $M(S \to S)$, where S is a Banach function space. We shall use the same notation both for spaces of scalar and vector-valued multipliers.

Let Ω be a bounded domain in \mathbf{R}^n with smooth boundary $\partial\Omega$. It is well known that the fractional Sobolev space $W^l_p(\partial\Omega)$ is the space of traces of the weighted Sobolev space $W^{s,\alpha}_p(\Omega)$ endowed with the norm

$$\left(\int_{\Omega} \left(\operatorname{dist}(x,\partial\Omega)\right)^{p\alpha} \sum_{\{\tau:0\leq |\tau|\leq s\}} |D^{\tau}u|^{p} dx\right)^{1/p},$$

where $\alpha = 1 - \{l\} - 1/p$, s = [l] + 1 and $p \in (1, \infty)$ (see [5]). It is straightforward to deduce from this fact that the trace γ of the function

$$\Gamma \in M(W^{t,\beta}_p(\Omega) \to W^{s,\alpha}_p(\Omega)) \tag{1}$$

belongs to $M(W_p^m(\partial\Omega) \to W_p^l(\partial\Omega))$. Here m and l are nonintegers, $m \ge l > 0$, s and α are given above, t = [m] + 1, $\beta = 1 - \{m\} - 1/p$.

In the present paper we prove that the converse assertion is also true showing that there exists an extension Γ of $\gamma \in M(W_p^m(\partial\Omega) \to W_p^m(\partial\Omega))$ subject to (1).

^{*}The authors were supported by grants of the Swedish National Science Foundation.

2 The space $M(W_p^m(\mathbf{R}^{n-1}) \to W_p^l(\mathbf{R}^{n-1}))$

By $\mathcal{B}_r^{n-1}(x)$ we mean the ball $\{\xi \in \mathbf{R}^{n-1} : |\xi - x| < r\}$ and write \mathcal{B}_r^{n-1} instead of $\mathcal{B}_r^{n-1}(0)$.

We need the spaces S_{loc} and S_{unif} of functions on \mathbf{R}^{n-1} defined as follows. By S_{loc} we denote the space

$$\{u: \eta u \in S \text{ for all } \eta \in C_0^{\infty}(\mathbf{R}^{n-1})\}$$

and by S_{unif} we mean the space

$$\{u: \sup_{\xi} \|\eta_{\xi}u\|_{S} < \infty\},\,$$

where $\eta_{\xi}(x) = \eta(x-\xi)$, $\eta \in C_0^{\infty}(\mathbf{R}^{n-1})$, $\eta = 1$ on \mathcal{B}_1^{n-1} . The space S_{unif} is endowed with the norm

$$||u||_{S_{unif}} = \sup_{\xi} ||\eta_{\xi}u||_{S}.$$

Let $W^l_p(\mathbf{R}^{n-1})$ denote the fractional Sobolev space with the norm

$$||D_{p,l}u; \mathbf{R}^{n-1}||_{L_p} + ||u; \mathbf{R}^{n-1}||_{L_p},$$

where

$$(D_{p,l}u)(x) = \left(\int_{\mathbf{R}^{n-1}} |\nabla_{[l]}u(x+h) - \nabla_{[l]}u(x)|^p |h|^{1-n-p\{l\}} dh\right)^{1/p},\tag{2}$$

with $\nabla_{[l]}$ being the gradient of order [l], i.e. $\nabla_{[l]} = \{\partial_{x_1}^{\tau_1}, \dots, \partial_{x_{n-1}}^{\tau_{n-1}}\}, \tau_1 + \dots + \tau_{n-1} = [l]$.

In this section we collect some known properties of multipliers between fractional Sobolev spaces $W_p^m(\mathbf{R}^{n-1})$ and $W_p^l(\mathbf{R}^{n-1})$, $m \ge l \ge 0$. The equivalence $a \sim b$ means that a/b is bounded and separated from zero by positive constants depending on n, p, m, and l.

Proposition 1 [3] Let m and l be nonintegers, $m \ge l \ge 0$, and let $p \in (1, \infty)$.

(i) There holds

$$\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)} \sim \|D_{p,l}\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to L_p)} + \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}.$$

(ii) If $\gamma \in M(W_p^m(\mathbf{R}^{n-1}) \to W_p^l(\mathbf{R}^{n-1}))$ then for any multi-index σ , $|\sigma| \leq [l]$,

$$D^{\sigma}\gamma\in M(W^m_p(\mathbf{R}^{n-1})\to W^{l-|\sigma|}_p(\mathbf{R}^{n-1})).$$

(iii) Let $0 < \lambda < \mu$. Then

$$\|\gamma^{\lambda/\mu}; \mathbf{R}^{n-1}\|_{M(W_p^{\lambda} \to L_p)} \le c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{\mu} \to L_p)}^{\lambda/\mu}.$$

Proposition 2 [3] Let m and l be nonintegers, $m \ge l \ge 0$, and let $p \in (1, \infty)$. Then

$$\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)} \sim \sup_{\substack{e \subset \mathbf{R}^{n-1} \\ \text{diam}(e) \le 1}} \frac{\|D_{p,l}\gamma; e\|_{L_p}}{(\text{cap}_{p,m}(e))^{1/p}}$$

$$+ \begin{cases} \sup_{x \in \mathbf{R}^{n-1}} \|\gamma; \mathcal{B}_1^{n-1}(x)\|_{L_1} & \text{for } m > l, \\ \|\gamma; \mathbf{R}^{n-1}\|_{L_{\infty}} & \text{for } m = l, \end{cases}$$

where e is a compact set in \mathbb{R}^{n-1} and $\operatorname{cap}_{n,m}(e)$ is the (p,m)-capacity of e defined by

$$\operatorname{cap}_{p,m}(e) = \inf\{\|u; \mathbf{R}^{n-1}\|_{W_{\infty}^{m}}^{p} : u \in C_{0}^{\infty}(\mathbf{R}^{n-1}), u \geq 1 \text{ on } e\}$$

For l = 0 one should replace $D_{p,l}\gamma$ by γ .

Upper estimates for the norm in $M(W_p^m(\mathbf{R}^{n-1}) \to W_p^l(\mathbf{R}^{n-1}))$ are given in the following assertion. By mes_{n-1} we mean the (n-1)-dimensional Lebesgue measure of a compact set e.

Proposition 3 [3] Let m and l be nonintegers, $m \ge l \ge 0$, and let $p \in (1, \infty)$.

(i) If mp < n - 1, then

$$c\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)} \le \sup_{\substack{e \subset \mathbf{R}^n \\ \text{diam}(e) \le 1}} \frac{\|D_{p,l}\gamma; e\|_{L_p}}{(\text{mes}_{n-1}(e))^{1/p - m/(n-1)}} + \begin{cases} \sup_{x \in \mathbf{R}^{n-1}} \|\gamma; \mathcal{B}_1^{n-1}(x)\|_{L_1} & \text{for } m > l, \\ \|\gamma; \mathbf{R}^{n-1}\|_{L_{\infty}} & \text{for } m = l. \end{cases}$$

(ii) If mp = n - 1, then

$$c\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)} \le \sup_{\substack{e \subset \mathbf{R}^{n-1} \\ \text{diam}(e) \le 1}} \left(\log \frac{2^{n-1}}{\max_{n-1}(e)}\right)^{1-1/p} \|D_{p,l}\gamma; e\|_{L_p} + \begin{cases} \sup_{x \in \mathbf{R}^{n-1}} \|\gamma; \mathcal{B}_1^{n-1}(x)\|_{L_1} & \text{for } m > l, \\ \|\gamma; \mathbf{R}^{n-1}\|_{L_{\infty}} & \text{for } m = l. \end{cases}$$

Now we list lower estimates for the norm in $M(W_p^m \to W_p^l)$.

Proposition 4 [3] Let m and l be nonintegers, $m \ge l \ge 0$, and let $p \in (1, \infty)$.

(i) If mp < n - 1, then

$$c\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)} \ge \sup_{\substack{x \in \mathbf{R}^{n-1} \\ r \in (0,1)}} \frac{\|D_{p,l}\gamma; \mathcal{B}_r^{n-1}(x)\|_{L_p}}{r^{(n-1)/p-m}} + \begin{cases} \sup_{x \in \mathbf{R}^{n-1}} \|\gamma; \mathcal{B}_1^{n-1}(x)\|_{L_1} & \text{for } m > l, \\ \|\gamma; \mathbf{R}^{n-1}\|_{L_\infty} & \text{for } m = l. \end{cases}$$

(ii) If mp = n - 1, then

$$c\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)} \ge \sup_{\substack{x \in \mathbf{R}^n \\ r \in (0,1)}} \left(\log \frac{2}{r}\right)^{1-1/p} \|D_{p,l}\gamma; \mathcal{B}_r^{n-1}(x)\|_{L_p}$$

$$+ \begin{cases} \sup_{x \in \mathbf{R}^{n-1}} \|\gamma; \mathcal{B}_1^{n-1}(x)\|_{L_1} & \text{for } m > l, \\ \|\gamma; \mathbf{R}^{n-1}\|_{L_{\infty}} & \text{for } m = l. \end{cases}$$

3 Multipliers in pairs of weighted Sobolev spaces in \mathbb{R}^n_+

3.1 Preliminary facts

Let \mathbf{R}_{+}^{n} denote the upper half-space $\{z=(x,y):x\in\mathbf{R}^{n-1},\ y>0\}$. We introduce the weighted Sobolev space $W_{p}^{s,\alpha}(\mathbf{R}_{+}^{n})$ with the norm

$$\|(\min\{1,y\})^{\alpha}\nabla_{s}U;\mathbf{R}_{+}^{n}\|_{L_{n}} + \|(\min\{1,y\})^{\alpha}U;\mathbf{R}_{+}^{n}\|_{L_{n}},\tag{3}$$

where s is nonnegative integer. We always assume that $-1 < \alpha p < p - 1$.

It is well known that the fractional Sobolev space $W_p^l(\mathbf{R}^{n-1})$, is the space of traces on \mathbf{R}^{n-1} of functions in the space $W_p^{s,\alpha}(\mathbf{R}_+^n)$, where s=[l]+1, $\alpha=1-\{l\}-1/p$, and $p\in(1,\infty)$ (see [5]). We show that a similar result holds for spaces of pointwise multipliers acting in a pair of fractional Sobolev spaces. To be precise, we prove that for all noninteger m and $l, m \geq l > 0$, the multiplier space $M(W_p^m(\mathbf{R}^{n-1}) \to W_p^l(\mathbf{R}^{n-1}))$ is the space of traces on \mathbf{R}^{n-1} of functions in $M(W_p^{t,\beta}(\mathbf{R}_+^n) \to W_p^{s,\alpha}(\mathbf{R}_+^n))$, where s and α are as above and $\beta=1-\{m\}-1/p, t=[m]+1$. Different positive constants depending on n,p,l,m,s,t will be denoted by c. We shall omit \mathbf{R}_+^n in notations of norms.

We introduce the notion of (p, s, α) -capacity of a compact set $e \subset \mathbf{R}^n_+$:

$${\rm cap}_{p,s,\alpha}(e) = \inf\{\|U; {\bf R}^n_+\|^p_{W^{s,\alpha}_n}: \ U \in C^\infty_0({\bf R}^n_+), \ U \geq 1 \ {\rm on} \ e\}.$$

The following result is essentially known (see [2], Sect. 8.1, 8.2).

Proposition 5 Let k be a nonnegative integer, $-1 < \beta p < p-1$, and let 1 . $Then <math>\Gamma \in M(W_p^{k,\beta}(\mathbf{R}_+^n) \to W_p^{0,\alpha}(\mathbf{R}_+^n))$ if and only if

$$\sup_{\substack{e \subset \mathbf{R}_+^n \\ \operatorname{diam}(e) \le 1}} \frac{\|(\min\{1, y\})^{\alpha} \Gamma; e\|_{L_p}}{(\operatorname{cap}_{p, k, \beta}(e))^{1/p}} < \infty.$$

The equivalence relation

$$\|\Gamma\|_{M(W_p^{k,\beta} \to W_p^{0,\alpha})} \sim \sup_{\substack{e \subset \mathbf{R}_+^n \\ \text{diam}(e) \le 1}} \frac{\|(\min\{1,y\})^{\alpha} \Gamma; e\|_{L_p}}{(\text{cap}_{p,k,\beta}(e))^{1/p}}$$
(4)

is valid.

We shall use some general properties of multipliers. We start with the inequality

$$\|\Gamma\|_{M(W_n^{t-j,\beta}\to W_n^{s-j,\alpha})}$$

$$\leq c \|\Gamma\|_{M(W_{\bullet}^{t,\beta} \to W_{\bullet}^{s,\alpha})}^{(s-j)/s} \|\Gamma\|_{M(W_{\bullet}^{t-s,\beta} \to W_{\bullet}^{0,\alpha})}^{j/s}, \tag{5}$$

where $0 \le j \le s$, $-1 < \alpha p < p-1$, $-1 < \beta p < p-1$, which follows from the interpolation property of weighted Sobolev spaces (see [4], Sect.3.4.2).

The next assertion contains inequalities between multipliers and their mollifiers in variables x.

Lemma 1 Let Γ_{ρ} denote a mollifier of a function Γ defined by

$$\Gamma_{\rho}(x,y) = \rho^{-n+1} \int_{\mathbf{R}^{n-1}} K(\rho^{-1}(x-\xi)) \Gamma(\xi,y) d\xi,$$

where $K \in C_0^{\infty}(\mathcal{B}_1^{n-1}), K \ge 0$, and $\|K; \mathbf{R}^{n-1}\|_{L_1} = 1$. Then

$$\|\Gamma_{\rho}\|_{M(W_{p}^{t,\beta} \to W_{p}^{s,\alpha})} \le \|\Gamma\|_{M(W_{p}^{t,\beta} \to W_{p}^{s,\alpha})} \le \liminf_{\rho \to 0} \|\Gamma_{\rho}\|_{M(W_{p}^{t,\beta} \to W_{p}^{s,\alpha})}. \tag{6}$$

Proof. Let $U \in C_0^{\infty}$. By Minkowski's inequality

$$\left(\int_{\mathbf{R}_{+}^{n}} (\min\{1,y\})^{p\alpha} \left| \nabla_{j,z} \int_{\mathbf{R}^{n-1}} \rho^{-n} K(\xi/\rho) \Gamma(x-\xi,y) U(x,y) d\xi \right|^{p} dz \right)^{1/p}$$

$$\leq \int_{\mathbf{R}^{n-1}} \rho^{-n} K(\xi/\rho) \Big(\int_{\mathbf{R}^n} (\min\{1,y\})^{p\alpha} |\nabla_{j,z} \big(\Gamma(x,y) U(x+\xi,y) \big)|^p dz \Big)^{1/p} d\xi,$$

where j = 0, s. Therefore,

$$\|\Gamma_{\rho} u\|_{W_{p}^{s,\alpha}} \leq \|\Gamma\|_{M(W_{p}^{t,\beta} \to W_{p}^{s,\alpha})}$$

$$\times \int_{\mathbf{R}^{n-1}} \rho^{-n} K(\xi/\rho) \left\{ \left(\int_{\mathbf{R}_{+}^{n}} (\min\{1,y\})^{p\beta} |\nabla_{t,z} U(x+\xi,y)|^{p} dz \right)^{1/p} + \left(\int_{\mathbf{R}_{+}^{n}} (\min\{1,y\})^{p\beta} |U(x+\xi,y)|^{p} dz \right)^{1/p} \right\} d\xi$$

$$\leq \|\Gamma\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})} \|U\|_{W_p^{t,\beta}}.$$

This gives the left inequality (6). The right inequality (6) follows from

$$\|\Gamma u\|_{W^{s,\alpha}_p} = \liminf_{\rho \to 0} \|\Gamma_\rho U\|_{W^{s,\alpha}_p} \leq \liminf_{\rho \to 0} \|\Gamma_\rho\|_{M(W^{t,\beta}_p \to W^{s,\alpha}_p)} \|U\|_{W^{t,\beta}_p}.$$

The proof is complete.

Lemma 2 Let $\Gamma \in L_{p,loc}$, $p \in (1, \infty)$, $-1 < \beta p < p - 1$, and let U be an arbitrary function in $C_0^{\infty}(\mathbf{R}^n_+)$. The best constant in the inequality

$$\|(\min\{1,y\})^{\alpha}\Gamma\nabla_{s}U\|_{L_{p}} + \|(\min\{1,y\})^{\alpha}\Gamma U\|_{L_{p}} \le C \|U\|_{W_{p}^{t,\beta}}$$
(7)

is equivalent to the norm $\|\Gamma\|_{M(W_p^{t-s,\beta} \to W_p^{0,\alpha})}$.

Proof. The estimate $C \leq c \|\Gamma\|_{M(W_p^{t-s,\beta} \to W_p^{0,\alpha})}$ is obvious. To derive the converse estimate, we introduce a function $x \to \sigma$ which is positive on $[0,\infty)$ and is equal to x for x > 1. For any $U \in C_0^{\infty}(\mathbb{R}^n_+)$ there holds

$$U = (-\Delta)^s (\sigma(-\Delta))^{-[l]-1} u + T(-\Delta)u,$$

where T is a function in $C_0^{\infty}([0,\infty))$. Since

$$(-\Delta)^s = (-1)^s \sum_{|\tau|=s} \frac{s!}{\tau!} D^{2\tau},$$

it follows from (7) and the theorem on the boundedness of convolution operators in weighted L_p spaces (see [1]) that

$$\int_{\mathbf{R}_{\perp}^{n}} (\min\{1, y\})^{p\alpha} |\Gamma(z)U(z)|^{p} dz$$

$$\leq c \ C(\|\nabla_s(\sigma(-\Delta))^{-s}U\|_{W^{t,\beta}_p}^p + \|TU\|_{W^{t,\beta}_p}^p) \leq c \ C\|U\|_{W^{t-s,\beta}_p}^p.$$

The proof is complete.

4 Characterisation of the space $M(W^{t,\beta}_p \to W^{s,\alpha}_p)$

Here we derive necessary and sufficient conditions for a function to belong to the space $M(W_p^{t,\beta} \to W_p^{s,\alpha})$ for $p \in (1,\infty)$ with α and β satisfying

$$-1 < \alpha p < p - 1, \quad -1 < \beta p < p - 1, \quad t \ge s.$$
 (8)

These inequalities will be assumed everywhere. We start with an assertion on derivatives of multipliers. We shall omit \mathbf{R}_{+}^{n+1} in notations of spaces, norms, and integrals.

Lemma 3 Suppose

$$\Gamma \in M(W_p^{t,\beta} \to W_p^{s,\alpha}) \cap M(W_p^{t-s,\beta} \to W_p^{0,\alpha}), \quad p \in (1,\infty).$$

Then $D^{\sigma}\Gamma \in M(W_p^{t,\beta} \to W_p^{s-|\sigma|,\alpha})$ for any multiindex σ of order $|\sigma| \leq s$ and

$$||D^{\sigma}\Gamma||_{M(W_p^{t,\beta}\to W_p^{s-|\sigma|,\alpha})}$$

$$\leq \varepsilon \left\| \Gamma \right\|_{M(W_p^{t-s,\beta} \to W_p^{0,\alpha})} + c(\varepsilon) \left\| \Gamma \right\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})}, \tag{9}$$

where ε is an arbitrary positive number.

Proof. Let $U \in W_p^{s,\alpha}$ and let φ be an arbitrary function in C_0^{∞} . Applying Leibniz formula

$$D^{\sigma}(\varphi U) = \sum_{\{\tau: \sigma \ge \tau \ge 0\}} \frac{\sigma!}{\tau!(\sigma - \tau)!} D^{\tau} \varphi D^{\sigma - \tau} U,$$

we find

$$\int \varphi U(-D)^{\sigma} \Gamma dz = \int \Gamma D^{\sigma}(\varphi U) dz = \sum_{\{\tau: \sigma \ge \tau \ge 0\}} \frac{\sigma!}{\tau!(\sigma - \tau)!} \Gamma D^{\tau} \varphi D^{\sigma - \tau} U dz$$
$$= \int \varphi \sum_{\{\beta: \sigma \ge \tau \ge 0\}} \frac{\sigma!}{\tau!(\sigma - \tau)!} (-D)^{\tau} (\Gamma D^{\sigma - \tau} U) dz.$$

Therefore,

$$UD^{\sigma}\Gamma = \sum_{\{\tau:\sigma > \tau > 0\}} \frac{\sigma!}{\tau!(\sigma - \tau)!} (D)^{\tau} (\Gamma(-D)^{\sigma - \tau}U),$$

which implies the estimate

$$\|UD^{\sigma}\Gamma\|_{W^{s-|\sigma|,\alpha}_p} \leq c \sum_{\{\tau:\sigma \geq \tau \geq 0\}} \|\Gamma D^{\sigma-\tau}U\|_{W^{s-|\sigma|+|\tau|,\alpha}_p}.$$

Hence, it suffices to prove (9) for $|\sigma| = 1$. We have

$$\begin{aligned} & \|U\nabla\Gamma\|_{W_p^{s-1,\alpha}} \leq \|U\Gamma\|_{W_p^{s,\alpha}} + \|\Gamma\nabla U\|_{W_p^{s-1,\alpha}} \\ & \leq \left(\|\Gamma\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})} + \|\Gamma\|_{M(W_p^{t-1,\beta} \to W_p^{s-1,\alpha})}\right) \|U\|_{W_p^{t,\beta}}. \end{aligned}$$

Estimating the norm $\|\Gamma\|_{M(W_n^{t-1,\beta}\to W_n^{s-1,\alpha})}$ by (5) we arrive at (9).

We pass now to two-sided estimates of norms in $M(W^{t,\beta}_p \to W^{s,\alpha}_p), p \in (1,\infty)$, given in terms of the spaces $M(W^{k,\beta}_p \to W^{0,\alpha}_p)$. We start with lower estimates.

Lemma 4 Let $\Gamma \in M(W_p^{t,\beta} \to W_p^{s,\alpha})$. Then

$$\|\nabla_{s}\Gamma\|_{M(W_{n}^{t,\beta}\to W_{n}^{0,\alpha})} + \|\Gamma\|_{M(W_{n}^{t-s,\beta}\to W_{n}^{0,\alpha})} \le c\|\Gamma\|_{M(W_{n}^{t,\beta}\to W_{n}^{s,\alpha})}.$$
 (10)

Proof. Suppose first that $\Gamma \in M(W_p^{t-s,\beta} \to W_p^{0,\alpha})$. We have

$$\|\Gamma \nabla_s U\|_{W_p^{0,\alpha}} \le \|\Gamma\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})} \|U\|_{W_p^{t,\beta}} + c \sum_{\substack{|\sigma| + |\tau| = s, \\ \tau \ne 0}} \|D^{\sigma} U D^{\tau} \Gamma\|_{W_p^{0,\alpha}}$$

$$\leq \left(\|\Gamma\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})} + c \sum_{j=1}^s \|\nabla_j \Gamma\|_{M(W_p^{t-s+j} \to W_p^{0,\alpha})} \right) \|U\|_{W_p^{t,\beta}}.$$
(11)

By Lemma 3,

$$\|\nabla_j \Gamma\|_{M(W_n^{t-s+j,\beta} \to W_n^{0,\alpha})}$$

$$\leq \varepsilon \left\| \Gamma \right\|_{M(W_n^{t-s,\beta} \to W_n^{0,\alpha})} + c(\varepsilon) \left\| \Gamma \right\|_{M(W_n^{t-s+j,\beta} \to W_n^{j,\alpha})}. \tag{12}$$

Estimating the last norm by (5) we obtain

$$\|\nabla_j \Gamma\|_{M(W_n^{t-s+j,\beta} \to W_n^{0,\alpha})}$$

$$\leq \varepsilon \|\Gamma\|_{M(W_n^{t-s,\beta} \to W_n^{0,\alpha})} + c(\varepsilon) \|\Gamma\|_{M(W_n^{t,\beta} \to W_n^{s,\alpha})}.$$

Substitution of this into (11) gives

$$\|\Gamma \nabla_s U\|_{W_n^{0,\alpha}} \le \left(\varepsilon \|\Gamma\|_{M(W_n^{t-s,\beta} \to W^{0,\alpha})} + c(\varepsilon) \|\Gamma\|_{M(W_n^{t,\beta} \to W^{s,\alpha})}\right) \|U\|_{W_n^{t,\beta}}. \tag{13}$$

Besides,

$$\|\Gamma U\|_{W_p^{0,\alpha}} \le \|\Gamma\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})} \|U\|_{W_p^{t,\beta}}. \tag{14}$$

Summing up two last estimates and applying Lemma 2 we arrive at

$$\|\Gamma\|_{M(W^{t-s,\beta}_p \to W^{0,\alpha}_p)} \leq \varepsilon \; \|\Gamma\|_{M(W^{t-s,\beta}_p \to W^{0,\alpha}_p)} + c(\varepsilon) \; \|\Gamma\|_{M(W^{t,\beta}_p \to W^{s,\alpha}_p)}.$$

Hence,

$$\|\Gamma\|_{M(W_p^{t-s,\beta} \to W_p^{0,\alpha})} \le c \|\Gamma\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})}.$$
 (15)

Now, we are going to remove the assumption $\Gamma \in M(W_p^{t-s,\beta} \to W_p^{0,\alpha})$. Since $\Gamma \in M(W_p^{t,\beta} \to W_p^{s,\alpha})$, then

$$\|\Gamma\eta\|_{W_n^{s,\alpha}} \leq c \|\eta\|_{W_n^{t,\beta}}$$
,

where $\eta \in C_0^{\infty}(\mathcal{B}_2^n(z))$, $\eta = 1$ on $\mathcal{B}_1^n(z)$, and z is an arbitrary point in \mathbf{R}_+^n . Hence $\Gamma \in W_{p,\mathrm{unif}}^{s,\alpha}(\mathbf{R}_+^n)$ which implies that for any (n-1)-dimensional multiindex τ the derivative $D_x^{\tau}\Gamma_{\rho}$ belongs to $W_{p,\mathrm{unif}}^{s,\alpha}(\mathbf{R}_+^n)$. Therefore, $\Gamma_{\rho} \in L_{\infty}(\mathbf{R}_+^n)$ which in its turn guarantees that $\Gamma_{\rho} \in M(W_p^{t-s,\beta} \to W_p^{0,\alpha})$. Thus, we may put Γ_{ρ} into (15) in order to obtain

$$\|\Gamma_{\rho}\|_{M(W_{p}^{t-s,\beta} \to W_{p}^{0,\alpha})} \le c \|\Gamma_{\rho}\|_{M(W_{p}^{t,\beta} \to W_{p}^{s,\alpha})}.$$

Letting $\rho \to 0$ and using Lemma 1 we arrive at (15) for all $\Gamma \in M(W_p^{t,\beta} \to W_p^{s,\alpha})$.

To estimate the first term in the right-hand side of (10), we combine (15) with (12) for j = s.

The estimate converse to (10) is contained in the following lemma.

Lemma 5 Let $\Gamma \in M(W_p^{t-s,\beta} \to W_p^{0,\alpha})$ and let $\nabla_s \Gamma \in M(W_p^{t,\beta} \to W_p^{0,\alpha})$. Then $\Gamma \in M(W_p^{t,\beta} \to W_p^{s,\alpha})$ and the estimate

$$\|\Gamma\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})} \le c \left(\|\nabla_s \Gamma\|_{M(W_p^{t,\beta} \to W_p^{0,\alpha})} + \|\Gamma\|_{M(W_p^{t-s,\beta} \to W_p^{0,\alpha})} \right) \tag{16}$$

is valid.

Proof. By Lemma 4 and (5) we have

$$\|\nabla_{j}\Gamma\|_{M(W_{p}^{t-s+j,\beta}\to W_{p}^{0,\alpha})} \leq c \|\Gamma\|_{M(W_{p}^{t-s+j,\beta}\to W_{p}^{j,\alpha})}$$

$$\leq c \|\Gamma\|_{M(W_{p}^{t,\beta}\to W_{p}^{s,\alpha})}^{j/s} \|\Gamma\|_{M(W_{p}^{t-s,\beta}\to W_{p}^{0,\alpha})}^{1-j/s}, \tag{17}$$

where $j = 1, \ldots, s$. For any $U \in C_0^{\infty}$,

$$\begin{split} &\|(\min\{1,y\})^{\alpha} \nabla_{s}(\Gamma U)\|_{L_{p}} \leq c \sum_{j=0}^{s} \|(\min\{1,y\})^{\alpha} |\nabla_{j}\Gamma| |\nabla_{s-j}U| \|_{L_{p}} \\ &\leq c \Big(\|\nabla_{s}\Gamma\|_{M(W_{p}^{t,\beta} \to W_{p}^{0,\alpha})} + \|\Gamma\|_{M(W_{p}^{t-s,\beta} \to W_{p}^{0,\alpha})} \\ &+ \sum_{j=1}^{s-1} \|\nabla_{j}\Gamma\|_{M(W_{p}^{t-s+j,\beta} \to W_{p}^{0,\alpha})} \Big) \|U\|_{W_{p}^{t,\beta}}. \end{split}$$

This and (17) imply

$$\|(\min\{1,y\})^{\alpha} \nabla_{s}(\Gamma U)\|_{L_{p}}$$

$$\leq c \left(\|\nabla_{s} \Gamma\|_{M(W_{p}^{t,\beta} \to W_{p}^{0,\alpha})} + \|\Gamma\|_{M(W_{p}^{t-s,\beta} \to W_{p}^{0,\alpha})}\right) \|U\|_{W_{p}^{t,\beta}}.$$

It remains to note that

$$\|(\min\{1,y\})^{\alpha}\Gamma U\|_{L_{p}} \leq \|\Gamma\|_{M(W_{p}^{t-s,\beta} \to W_{p}^{0,\alpha})} \|U\|_{W_{p}^{t-s,\beta}}.$$

The proof is complete.

Using Lemmas 4 and 5 we arrive at the following description of the space $M(W^{t,\beta}_p(\mathbf{R}^n_+) \to W^{s,\alpha}_p(\mathbf{R}^n_+))$.

Theorem 1 A function Γ belongs to the space $M(W_p^{t,\beta} \to W_p^{s,\alpha})$ if and only if $\Gamma \in W_{p,\text{loc}}^{s,\alpha}$, $\Gamma \in M(W_p^{t-s,\beta} \to W_p^{0,\alpha})$, and $\nabla_s \Gamma \in M(W_p^{t,\beta} \to W_p^{0,\alpha})$. Moreover,

$$\|\Gamma\|_{M(W_{p}^{t,\beta}\to W_{p}^{s,\alpha})} \sim \|\nabla_{s}\Gamma\|_{M(W_{p}^{t,\beta}\to W_{p}^{0,\alpha})} + \|\Gamma\|_{M(W_{p}^{t-s,\beta}\to W_{p}^{0,\alpha})}.$$

The equivalence relation (4) enables one to reformulate Theorem 1.

Theorem 2 A function Γ belongs to the space $M(W_p^{t,\beta} \to W_p^{s,\alpha})$ if and only if $\Gamma \in W_{p,\text{loc}}^{s,\alpha}$ and for any compact set $e \subset \mathbf{R}_+^n$

$$\|(\min\{1,y\})^{\alpha}\nabla_s\Gamma;e\|_{L_p}^p \le c \operatorname{cap}_{p,t,\beta}(e),$$

$$\|(\min\{1,y\})^{\alpha}\Gamma;e\|_{L_{n}}^{p} \le c \operatorname{cap}_{p,t-s,\beta}(e).$$

Moreover,

$$\|\Gamma\|_{M(W_n^{t,\beta}\to W_n^{s,\alpha})}$$

$$\sim \sup_{\substack{e \in \mathbf{R}_{+}^{n} \\ \text{diam}(e) \leq 1}} \left(\frac{\|(\min\{1, y\})^{\alpha} \nabla_{s} \Gamma; e\|_{L_{p}}}{(\operatorname{cap}_{p, t, \beta}(e))^{1/p}} + \frac{\|(\min\{1, y\})^{\alpha} \Gamma; e\|_{L_{p}}}{(\operatorname{cap}_{p, t - s, \beta}(e))^{1/p}} \right). \tag{18}$$

An important particular case of Theorem 2 is t = s.

Corollary 1 A function Γ belongs to the space $MW_p^{s,\alpha}$ if and only if $\Gamma \in W_{p,\text{loc}}^{s,\alpha}$ and for any compact set $e \subset \mathbf{R}_+^n$

$$\|(\min\{1,y\})^{\alpha}\nabla_{s}\Gamma; e\|_{L_{p}}^{p} \le c \operatorname{cap}_{p,s,\alpha}(e),$$

Moreover,

$$\|\Gamma\|_{MW_p^{s,\alpha}} \sim \sup_{\substack{e \in \mathbb{R}_+^n \\ +}} \frac{\|(\min\{1,y\})^{\alpha} \nabla_s \Gamma; e\|_{L_p}}{(\operatorname{cap}_{p,s,\alpha}(e))^{1/p}} + \|\Gamma\|_{L_{\infty}}.$$
 (19)

5 Trace theorems for multipliers in weighted Sobolev spaces

We start with the following simple fact concerning traces of multipliers.

Theorem 3 Let m and l be positive noninteger, $m \ge l$ and let

$$\Gamma \in M(W_p^{t,\beta}(\mathbf{R}_+^n) \to W_p^{s,\alpha}(\mathbf{R}_+^n))$$

where t = [m] + 1, s = [l] + 1, $\beta = 1 - \{m\} - 1/p$, and $\alpha = 1 - \{l\} - 1/p$. If γ is the trace of Γ on \mathbf{R}^{n-1} , then

$$\gamma \in M(W_p^m(\mathbf{R}^{n-1}) \ \to \ W_p^l(\mathbf{R}^{n-1}))$$

and the estimate

$$\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)} \le c \|\Gamma; \mathbf{R}_+^n\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})}$$
 (20)

holds.

Proof. Let $U \in W_p^{t,\beta}(\mathbf{R}^n_+)$ and let u be the trace of U on \mathbf{R}^{n-1} . By setting ΓU and γu instead of U and u, respectively, in the inequality

$$||u; \mathbf{R}^{n-1}||_{W_p^l} \le c||U; \mathbf{R}_+^n||_{W_p^{s,\alpha}}$$

we arrive at the estimate

$$\|\gamma u; \mathbf{R}^{n-1}\|_{W_p^l} \le c \|\Gamma; \mathbf{R}_+^n\|_{M(W_p^{t,\beta} \to W_p^{s,\alpha})} \|U; \mathbf{R}_+^n\|_{W_p^{t,\beta}}.$$

Minimizing the right-hand side over all extensions U of u we obtain

$$\|\gamma u; \mathbf{R}^{n-1}\|_{W_n^l} \le c \|\Gamma; \mathbf{R}_+^n\|_{M(W_n^{t,\beta} \to W_n^{s,\alpha})} \|u; \mathbf{R}^{n-1}\|_{W_n^m}$$

which gives (20).

We state an extension theorem for functions in $M(W_p^m(\mathbf{R}^{n-1}) \to W_p^l(\mathbf{R}^{n-1}))$ to be proved in Sect. 7.

Theorem 4 Let m and l be positive nonintegers, $m \ge l$, $p \in (1, \infty)$, and let

$$\gamma \in M(W_p^m(\mathbf{R}^{n-1}) \to W_p^l(\mathbf{R}^{n-1})).$$

Then the Dirichlet problem

$$\Delta\Gamma = 0 \text{ on } \mathbf{R}_{+}^{n}, \ \Gamma|_{\mathbf{R}^{n-1}} = \gamma$$
 (21)

has a unique solution in $M(W^{t,\beta}_p(\mathbf{R}^n_+) \to W^{s,\alpha}_p(\mathbf{R}^n_+))$, where t = [m]+1, s = [l]+1, $\beta = 1 - \{m\} - 1/p$, and $\alpha = 1 - \{l\} - 1/p$. There holds the estimate

$$\|\Gamma; \mathbf{R}_{+}^{n}\|_{M(W_{p}^{t,\beta} \to W_{p}^{s,\alpha})} \le c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_{p}^{m} \to W_{p}^{l})}.$$
(22)

6 Auxiliary estimates for an extension operator

6.1 Pointwise estimate for $T\gamma$ and $\nabla T\gamma$

For functions $\gamma \in L_{1,unif}(\mathbf{R}^{n-1})$, we introduce the operator

$$(T\gamma)(x,y) = y^{1-n} \int_{\mathbf{R}^{n-1}} \zeta\left(\frac{x-\xi}{y}\right) \gamma(\xi) d\xi, \quad (x,y) \in \mathbf{R}_+^n, \tag{23}$$

where ζ is a continuously differentiable function defined on $\overline{\mathbf{R}^n_+}$ outside the origin. We assume that

$$(|z|+1)|\nabla\zeta(z)| + |\zeta(z)| \le C(|z|+1)^{-n}.$$
 (24)

Lemma 6 Let $\gamma \in M(W_p^{m-l}(\mathbf{R}^{n-1}) \to L_p(\mathbf{R}^{n-1}))$, where $m \ge l$ and 1 . Then

$$|T\gamma(z)| + y|\nabla(T\gamma(z))| \le c(1+y^{l-m})||\gamma; \mathbf{R}^{n-1}||_{M(W_p^{m-l} \to L_p)}.$$

Proof. In view of (24)

$$|T\gamma(z)| + y|\nabla(T\gamma(z))|$$

$$\leq cy^{1-n} \left(\int_{\mathcal{B}_{y}^{n-1}(x)} |\gamma(\xi)| d\xi + y^{n} \int_{\mathbf{R}^{n-1} \setminus \mathcal{B}_{y}^{n-1}(x)} \frac{|\gamma(\xi)| d\xi}{|\xi - x|^{n}} \right).$$
(25)

By Hölder's inequality,

$$\int_{\mathcal{B}_{y}^{n-1}(x)} |\gamma(\xi)| d\xi \le c y^{(n-1)(p-1)/p} \|\gamma; \mathcal{B}_{y}^{n-1}(x)\|_{L_{p}}.$$
 (26)

Let $y \in (0,1)$. The right-hand side in (26) does not exceed

$$cy^{-m+l+n-1} \sup_{\substack{r \in (0,1) \\ x \in \mathbf{R}^{n-1}}} (1 + r^{m-l-\frac{n-1}{p}}) \|\gamma; \mathcal{B}_r^{n-1}(x)\|_{L_p}$$

$$\leq cy^{-m+l+n-1} \sup_{\substack{r \in (0,1) \\ x \in \mathbf{R}^{n-1}}} \left(\operatorname{cap}_{p,m-l}(\mathcal{B}_r^{n-1}(x)) \right)^{-1/p} \|\gamma; \mathcal{B}_r^{n-1}(x)\|_{L_p}.$$
(27)

This and Proposition 2 show that for $y \in (0,1)$

$$\int_{\mathcal{B}_{y}^{n-1}(x)} |\gamma(\xi)| d\xi \le cy^{-m+l+n-1} \|\gamma; \mathbf{R}^{n-1}\|_{M(W_{p}^{m-l} \to L_{p})}.$$
 (28)

Suppose y > 1. Since

$$cap_{p,m-l}(\mathcal{B}_r^{n-1}(x)) \sim r^{n-1} \text{ for } r > 1,$$
 (29)

it follows that the right-hand side of (26) is dominated by

$$cy^{n-1} \left(cap_{p,m-l}(\mathcal{B}_y^{n-1}(x)) \right)^{-1/p} \| \gamma; \mathcal{B}_y^{n-1}(x) \|_{L_p}.$$

Combining this with (27) and Proposition 2 we conclude that

$$\int_{\mathcal{B}_{y}^{n-1}(x)} |\gamma(\xi)| d\xi \le c y^{n-1} (1 + y^{l-m}) \|\gamma; \mathbf{R}^{n-1}\|_{M(W_{p}^{m-l} \to L_{p})}.$$
 (30)

We now estimate the second integral in the right-hand side of (25). Clearly,

$$\int_{\mathbf{R}^{n-1}\setminus\mathcal{B}_{y}^{n-1}(x)} \frac{|\gamma(\xi)|d\xi}{|\xi-x|^{n}} \le n \int_{y}^{\infty} \frac{d\rho}{\rho^{n+1}} \int_{\mathcal{B}_{\rho}^{n-1}(x)} |\gamma(\xi)|d\xi. \tag{31}$$

By Hölder's inequality the right-hand side of (31) admits the majorant

$$c \int_{y}^{\infty} \rho^{-2 - \frac{n-1}{p}} \|\gamma; \mathcal{B}_{\rho}^{n-1}(x)\|_{L_{p}} d\rho.$$
 (32)

Using (29) we see that the function (32), for y > 1, does not exceed

$$cy^{-1} \sup_{\substack{r \in (0,1) \\ x \in \mathbb{R}^{n-1}}} \left(\text{cap}_{p,m-1}(\mathcal{B}_r^{n-1}(x)) \right)^{-1/p} \|\gamma; \mathcal{B}_r^{n-1}(x)\|_{L_p}$$

which in view of Proposition 2 is dominated by

$$cy^{-1} \| \gamma; \mathbf{R}^{n-1} \|_{M(W_p^{m-l} \to L_p)}.$$
 (33)

Let y < 1. Then

$$\int_{y}^{1} \rho^{-2-\frac{n-1}{p}} \|\gamma; \mathcal{B}_{\rho}^{n-1}(x)\|_{L_{p}} d\rho$$

$$\leq cy^{-m+l-1} \sup_{\substack{r \in (0,1) \\ x \in \mathbf{R}^{n-1}}} (1 + r^{m-1 - \frac{n-1}{p}}) \|\gamma; \mathcal{B}_r^{n-1}(x)\|_{L_p}$$

$$\leq cy^{-m+l-1} \sup_{\substack{r \in (0,1) \\ x \in \mathbb{R}^{n-1}}} \left(\operatorname{cap}_{p,m-l}(\mathcal{B}_r^{n-1}(x)) \right)^{-1/p} \|\gamma; \mathcal{B}_r^{n-1}(x)\|_{L_p}. \tag{34}$$

Furthermore, by (29)

$$\int_{1}^{\infty} \rho^{-2-\frac{n-1}{p}} \|\gamma; \mathcal{B}_{\rho}^{n-1}(x)\|_{L_{p}} d\rho$$

$$\leq c \int_{1}^{\infty} \rho^{-2} \left(\operatorname{cap}_{p,m-l}(\mathcal{B}_{\rho}^{n-1}(x)) \right)^{-1/p} \|\gamma; \mathcal{B}_{\rho}^{n-1}(x)\|_{L_{p}} d\rho$$

$$\leq c \sup_{\substack{r>0\\x \in \mathbb{R}^{n-1}}} \left(\operatorname{cap}_{p,m-l}(\mathcal{B}_{r}^{n-1}(x)) \right)^{-1/p} \|\gamma; \mathcal{B}_{r}^{n-1}(x)\|_{L_{p}}.$$

Summing up this inequality and (34), and using Proposition 2 we conclude that the integral (32) is majorized, for y < 1, by

$$cy^{-m+l-1}\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l}\to L_p)}.$$

This, together with (33), imply that for all y > 0 the integral (32) does not exceed

$$cy^{-1}(1+y^{l-m})\|\gamma; \mathbf{R}^{n-1}\|_{M(W_n^{m-l}\to L_n)}.$$

Hence, the result follows from (30), (31), and (25).

6.2 Weighted L_p -estimates for $T\gamma$ and $\nabla T\gamma$

Lemma 7 Let the extension operator T be defined by (23) and suppose that $\gamma \in M(W_p^{m-l}(\mathbf{R}^{n-1})) \to L_p(\mathbf{R}^{n-1})$, where $l \in (0,1)$, $[m] \geq 1$, $1 . Then, for <math>k = 1, \ldots, [m]$,

$$\left(\int_0^1 y^{p(k-l)-1} \left(|T\gamma(z)| + y |\nabla(T\gamma)(z)| \right)^p dy \right)^{1/p}$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^{\frac{k-l}{m-l}} [(\mathcal{M}\gamma)(x)]^{\frac{m-k}{m-l}}, \tag{35}$$

where \mathcal{M} is the Hardy-Littlewood maximal operator in \mathbb{R}^{n-1} .

Proof. Let δ be a number in (0,1] to be chosen later. We set

$$\int_0^1 y^{p(k-l)-1} (|T\gamma| + y|\nabla(T\gamma)(z)|)^p dy = \int_0^\delta \dots dy + \int_\delta^1 \dots dy.$$

In view of (25)

$$\int_{0}^{\delta} \dots dy \le c \int_{0}^{\delta} y^{p(k+1-l-n)-1} \left(\int_{\mathcal{B}_{y}^{n-1}(x)} |\gamma(\xi)| d\xi \right)^{p} dy$$
$$+c \int_{0}^{\delta} y^{p(k+1-l)-1} \left(\int_{\mathbf{R}^{n-1}\setminus\mathcal{B}_{y}^{n-1}(x)} \frac{|\gamma(\xi)| d\xi}{|\xi-x|^{n}} \right)^{p} dy.$$

By the definition of \mathcal{M} ,

$$\int_0^\delta y^{p(k+1-l-n)-1} \left(\int_{\mathcal{B}_n^{n-1}(x)} |\gamma(\xi)| d\xi \right)^p dy \le c[(\mathcal{M}\gamma)(x)]^p \delta^{p(k-l)}. \tag{36}$$

Using (31) we obtain

$$\int_0^\delta y^{p(k+1-l)-1} \left(\int_{\mathbf{R}^{n-1} \setminus \mathcal{B}_n^{n-1}(x)} \frac{|\gamma(\xi)| d\xi}{|\xi - x|^n} \right)^p dy \le c[(\mathcal{M}\gamma)(x)]^p \delta^{p(k-l)}. \tag{37}$$

Combining (36) and (37) we conclude that

$$\int_0^\delta \dots dy \le c[(\mathcal{M}\gamma)(x)]^p \delta^{p(k-l)}. \tag{38}$$

By Lemma 6,

$$\int_{\delta}^{1} y^{p(k-l)-1} (|T\gamma| + y|\nabla(T\gamma)(z)|)^{p} dy$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_n^{m-l} \to L_n)}^p \delta^{p(k-m)}. \tag{39}$$

Summing up (38) and (39) we find

$$\int_0^1 y^{p(k-l)-1} (|T\gamma| + y|\nabla(T\gamma)(z)|)^p dy$$

$$\leq c ([(\mathcal{M}\gamma)(x)]^p \delta^{p(k-l)} + \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^p \delta^{p(k-m)}).$$

The right-hand side in this inequality attains its minimum value for

$$\delta \ = \ \Big(\frac{\|\gamma;\mathbf{R}^{n-1}\|_{M(W_p^{m-l}\to L_p)}}{(\mathcal{M}\gamma)(x)}\Big)^{1/(m-l)}.$$

The proof is complete.

Lemma 8 Let the operators T and $D_{p,l}$ be defined by (23) and (2). Then

$$\int_0^1 y^{p(1-l)-1} |\nabla(T\gamma)(z)|^p dy \le c \left((D_{p,l}\gamma)(x) \right)^p.$$

Proof. Let $R(\xi, x) = \gamma(\xi) - \gamma(x)$. Using the identity

$$y^{-n+1} \int_{\mathbf{R}^{n-1}} \zeta\left(\frac{\xi - x}{y}\right) d\xi = const$$

we have

$$\frac{\partial T\gamma}{\partial y}(x,y) = \frac{\partial}{\partial y} \left(y^{-n+1} \int_{\mathbf{R}^{n-1}} \zeta\left(\frac{\xi - x}{y}\right) R(\xi, x) d\xi \right). \tag{40}$$

Furthermore, it is clear that

$$\frac{\partial T\gamma}{\partial x_j}(x,y) = y^{-n+1} \int_{\mathbf{R}^{n-1}} R(\xi,x) \frac{\partial}{\partial x_j} \zeta\left(\frac{\xi - x}{y}\right) d\xi.$$

Therefore,

$$|\nabla(T\gamma)(x,y)| \le cy^{-n} \sum_{k=0}^{1} \int_{\mathbf{R}^{n-1}} \left| \nabla_k \zeta \left(\frac{\xi - x}{y} \right) \right| \left(1 + \frac{|\xi - x|}{y} \right)^k |R(\xi, x)| d\xi.$$

This estimate and (24) imply

$$|\nabla(T\gamma)(x,y)| \le cy^{-n} \int_{\mathbf{R}^{n-1}} \left(1 + \frac{|\xi - x|}{y}\right)^{-n} |R(\xi,x)| d\xi$$
$$= cy^{-1/p} \int_{\mathbf{R}^{n-1}} \left(\frac{|\xi - x|}{y}\right)^{n-1/p} \left(1 + \frac{|\xi - x|}{y}\right)^{-n} \frac{|R(\xi,x)|}{|\xi - x|^{n-1/p}} d\xi.$$

Consequently,

$$\int_{0}^{1} y^{p(1-l)-1} |\nabla(T\gamma)(x,y)|^{p} dy$$

$$\leq c \int_{0}^{1} \left(\int_{\mathbb{R}^{n-1}} f\left(\frac{|\xi-x|}{y}\right) \frac{|R(\xi,x)|}{|\xi-x|^{n-1/p}} d\xi \right)^{p} y^{p(1-l)-1} \frac{dy}{y},$$

where $f(\eta) = \eta^{n-1/p} (1+\eta)^{-n}$. We write the last integral over (0,1) as

$$\int_{0}^{1} \left(\int_{0}^{\infty} f(\frac{t}{y}) g(t, x) \frac{dt}{t} \right)^{p} y^{p(1-l)-1} \frac{dy}{y}$$

$$= \int_{0}^{1} \left(\int_{0}^{\infty} f(s) g(sy, x) \frac{ds}{s} \right)^{p} y^{p(1-l)-1} \frac{dy}{y}, \tag{41}$$

with

$$g(t,x) = t^{1/p-1} \int_{\partial \mathcal{B}_1^{n-1}} |R(t\theta + x, x)| d\theta.$$

By Minkowski's inequality, the right-hand side of (41) does not exceed

$$\left(\int_{0}^{\infty} \left(\int_{0}^{1} (f(s))^{p} (g(sy,x))^{p} y^{p(1-l)-1} \frac{dy}{y}\right)^{1/p} \frac{ds}{s}\right)^{p} \\
= \left(\int_{0}^{\infty} f(s) \left(\int_{0}^{s} (g(\tau,x))^{p} \tau^{p(1-l)-1} \frac{d\tau}{\tau}\right)^{1/p} \frac{ds}{s^{2-l-1/p}}\right)^{p} \\
\leq \left(\int_{0}^{\infty} f(s) \frac{ds}{s^{2-l-1/p}}\right)^{p} \int_{0}^{\infty} (g(\tau,x))^{p} \tau^{p(1-l)-1} \frac{d\tau}{\tau}. \tag{42}$$

Therefore,

$$\int_0^1 y^{p(1-l)-1} |\nabla(T\gamma)(x,y)|^p dy \le c \int_0^\infty (g(\tau,x))^p \tau^{p(1-l)-1} \frac{d\tau}{\tau}.$$

It remains to note that

$$\int_0^\infty (g(\tau,x))^p \tau^{p(1-l)-1} \frac{d\tau}{\tau} = \int_0^\infty \tau^{-pl} \left(\int_{\partial \mathcal{B}_1^{n-1}} |\gamma(\tau\theta+x) - \gamma(x)| d\theta \right)^p \frac{d\tau}{\tau}$$

$$\leq c \int_0^\infty \int_{\partial \mathcal{B}_1^{n-1}} |\gamma(\tau\theta+x) - \gamma(x)|^p d\theta \frac{d\tau}{\tau^{pl+1}} \leq c \int_{\mathbf{R}^{n-1}} \frac{|\gamma(x+h) - \gamma(x)|^p}{|h|^{pl+n-1}} dh$$

$$= c \left(\left(D_{p,l} \gamma \right)(x) \right)^p.$$

The result follows.

7 Proof of Theorem 4

7.1 The case l < 1

Our aim now is to prove that for l<1 and s=1 the operator T defined by (23) maps $M(W_p^m(\mathbf{R}^{n-1}) \to W_p^l(\mathbf{R}^{n-1}))$ into $M(W_p^{[m]+1,\beta}(\mathbf{R}_+^n) \to W_p^{1,\alpha}(\mathbf{R}_+^n))$ with $\alpha=1-l-1/p, \ \beta=1-\{m\}-1/p$ and there holds the estimate

$$||T\gamma; \mathbf{R}_{+}^{n}||_{M(W_{p}^{t,\beta} \to W_{p}^{1,\alpha})} \le c C||\gamma; \mathbf{R}^{n-1}||_{M(W_{p}^{m} \to W_{p}^{l})}, \tag{43}$$

where C is the constant in (24).

We have

$$\|(\min\{1,y\})^{\alpha}\nabla(UT\gamma); \mathbf{R}_{+}^{n}\|_{L_{p}}^{p} \leq c \int_{0}^{1} y^{p\alpha} \int_{\mathbf{R}^{n-1}} \left(|\nabla(T\gamma)|^{p}|U|^{p} + |T\gamma|^{p}|\nabla U|^{p}\right) dz$$

$$+c \int_{1}^{\infty} \int_{\mathbf{R}^{n-1}} \left(|\nabla(T\gamma)|^{p}|U|^{p} + |T\gamma|^{p}|\nabla U|^{p}\right) dz$$

$$= c \int_{0 < y < 1} \dots dz + c \int_{y > 1} \dots dz. \tag{44}$$

By Lemma 1, for y > 1

$$y|\nabla(T\gamma)(z)| + |(T\gamma)(z)| \le c||\gamma; \mathbf{R}^{n-1}||_{M(W_n^{m-1} \to L_n)}.$$

Hence,

$$\int_{y>1} \dots dz \le c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^p \|U; \mathbf{R}_+^n\|_{W_p^{1,\alpha}}^p. \tag{45}$$

It remains to refer to the estimate

$$||U; \mathbf{R}_{+}^{n}||_{W_{p}^{1,\alpha}} \le c||U; \mathbf{R}_{+}^{n}||_{W_{p}^{t,\beta}}$$

which follows from the one dimensional Hardy inequality.

Introducing the notation

$$\mathcal{R}_0 U(z) = U(z) - \sum_{k=0}^{[m]} \frac{\partial^k}{\partial y^k} U(x, 0) \frac{y^k}{k!},$$

$$\mathcal{R}_1 U(z) = \begin{cases} \nabla U(z) - \sum_{k=0}^{[m]-1} \frac{\partial^k}{\partial y^k} \nabla U(x, 0) \frac{y^k}{k!} & \text{for } m > 1\\ \nabla U(z) & \text{for } m < 1 \end{cases}$$

we have

$$\int_{0 < y < 1} \dots dz \le c \int_{0 < y < 1} y^{p(1-l)-1} \sum_{j=0}^{1} |\nabla_j(T\gamma)|^p |\mathcal{R}_{1-j}U(z)|^p dz$$

$$+c \int_{0 < y < 1} y^{-pl-1} (|T\gamma(z)| + y|\nabla(T\gamma)(z)|)^p \sum_{k=1}^{[m]} |\nabla_k U(x,0)|^p y^{pk} dz$$

$$+c\int_{0< u<1} y^{p(1-l)-1} |\nabla T\gamma(z)|^p |U(x,0)|^p dz \tag{46}$$

for m > 1. In case m < 1 the second integral in the right hand side of (46) should be omitted.

By Lemma 6, for 0 < y < 1

$$|T\gamma(z)| + y|\nabla(T\gamma)(z)| \le c y^{l-m} \|\gamma; \mathbf{R}^{n-1}\|_{M(W_n^{m-l} \to L_n)}.$$
 (47)

Since for j = 0, 1

$$|\mathcal{R}_{1-j}U(z)| \le \frac{y^{[m]+j-1}}{([m]+j-1)!} \int_0^y |\nabla_t U(x,t)| dt,$$
 (48)

we have

$$\begin{split} & \int_{0 < y < 1} y^{p(1 - \{m\}) - 1} |\mathcal{R}_{1 - j} U(z)|^p dz \\ & \leq c \int_{0 < y < 1} y^{-p\{m\} - 1} \biggl(\int_0^y |\nabla_{[m] + 1} U(x, t)| dt \biggr)^p dz. \end{split}$$

By Hardy's inequality the right-hand side does not exceed $c \parallel U; \mathbf{R}_{+}^{n} \parallel_{W_{p}^{[m]+1,\beta}}^{p}$. Combining this with (47) we obtain that the first integral in the right-hand side of (46) does not exceed

$$\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^p \|U; \mathbf{R}_+^n\|_{W_p^{[m]+1,\beta}}^p. \tag{49}$$

We now pass to the estimate of the second integral in the right-hand side of (46) for k = 1, ..., [m], m > 1. Applying Lemma 7, we find

$$\int_{0 \le y \le 1} y^{p(k-l)-1} \left(|T\gamma(z)| + y |\nabla(T\gamma)(z)| \right)^p |\nabla_k U(x,0)|^p dz$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^{p\frac{k-l}{m-l}} \int_{\mathbf{R}^{n-1}} (\mathcal{M}\gamma(x))^{p\frac{m-k}{m-l}} |\nabla_k U(x,0)|^p dx.$$
(50)

The last integral is not greater than

$$\|(\mathcal{M}\gamma)^{\frac{m-k}{m-l}}; \mathbf{R}^{n-1}\|_{M(W_p^{m-k} \to L_p)}^p \|\nabla_k U(\cdot, 0); \mathbf{R}^{n-1}\|_{W_p^{m-k}}^p.$$
 (51)

Using Proposition 2 with $\lambda = m - k$, $\mu = m - l$ and Verbitsky's theorem on the boundedness of the maximal operator \mathcal{M} in the space $M(W_p^{m-l}(\mathbf{R}^{n-1}) \to L_p(\mathbf{R}^{n-1}))$ (see [3], Ch.2), we find that (51) is dominated by

$$c\|\gamma,\mathbf{R}^{n-1}\|_{M(W_p^{m-l}\to L_p)}^{\frac{p(m-k)}{m-l}}\|U(\cdot,0);\mathbf{R}^{n-1}\|_{W_p^m}^p.$$

Hence and by (50)

$$\int_{0 < y < 1} y^{p(k-l)-1} (|T\gamma(z)| + y|\nabla(T\gamma)(z)|)^p |\nabla_k U(x,0)|^p dz$$

$$\leq c \|\gamma, \mathbf{R}^{n-1}\|_{M(W_n^{m-l} \to L_n)}^p \|U; \mathbf{R}_+^n\|_{W_n^{[m]+1,\beta}}^p. \tag{52}$$

By Lemma 8, the integral

$$\int_{0 < y < 1} y^{p(1-l)-1} |\nabla(T\gamma)(z)|^p |U(x,0)|^p dz \tag{53}$$

does not exceed

$$c\int_{\mathbf{R}^{n-1}} (D_{p,l}\gamma(x))^p |U(x,0)|^p dx$$

$$\leq c \|D_{p,l}\gamma; \mathbf{R}^{n-1}\|_{M(W_n^m \to L_p)}^p \|U(\cdot,0); \mathbf{R}^{n-1}\|_{W_n^m}^p$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)}^p \|U; \mathbf{R}_+^n\|_{W_p^{[m]+1,\beta}}^p.$$
 (54)

Thus we arrive at the inequality

$$\int_{0 < y < 1} y^{p\alpha} |\nabla (UT\gamma)(z)|^p dz \le c \|\gamma; \mathbf{R}^{n-1}\|_{M(W^m_p \to W^l_p)}^p \|U; \mathbf{R}^n_+\|_{W^{[m]+1,\beta}_p}^p.$$

It remains to estimate the integral

$$\int_{0 < y < 1} y^{p(1-l)-1} |(T\gamma)(z)|^p |U(z)|^p dz.$$

Clearly,

$$\int_{0 < y < 1} y^{p(1-l)-1} |(T\gamma)(z)|^p |U(z)|^p dz \le \int_{0 < y < 1} y^{p(1-l)-1} |(T\gamma)(z)|^p |\mathcal{R}_0 U(z)|^p dz$$

$$+\sum_{k=0}^{[m]} \int_{0 < y < 1} y^{pk} y^{p(1-l)-1} |(T\gamma)(z)|^p |\nabla_k U(x,0)|^p dz.$$
 (55)

By (47) and (48) with j = 1 we have

$$\int_{0 < y < 1} y^{p(1-l)-1} |(T\gamma)(z)|^p |\mathcal{R}_0 U(z)|^p dz$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^p \int_{0 < y < 1} y^{p(1 - \{m\}) - 1} \left(\int_0^y |\nabla_{[m] + 1} U(x, t)| dt \right)^p dz$$

which by Hardy's inequality is dominated by (49). In view of (52)

$$\int_{0 < y < 1} y^{p(k-l)-1} |(T\gamma)(z)|^p |\nabla_k U(x,0)|^p dz$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_n^{m-l} \to L_n)}^p \|U; \mathbf{R}_+^n\|_{W_n^{[m]+1,\beta}}^p$$

Thus we arrive at the estimate

$$\int_{0 < y < 1} \dots dz \le c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^m \to W_p^l)}^p \|U; \mathbf{R}_+^n\|_{W_p^{[m]+1,\beta}}^p.$$

Since the Poisson kernel satisfies condition (24), Theorem 4 with l < 1 follows.

7.2 The case l > 1

Lemma 9 Let m and l be nonintegers, $m \ge l > 0$, and let T be the extension operator (23). Suppose that $\gamma \in M(W_p^{m-l}(\mathbf{R}^{n-1}) \to L_p(\mathbf{R}^{n-1}))$. Then

$$T\gamma \in M(W_p^{[m]-[l],\beta}(\mathbf{R}_+^n) \to W_p^{0,\alpha}(\mathbf{R}_+^n))$$

and

$$||T\gamma; \mathbf{R}_{+}^{n}||_{M(W_{n}^{[m]-[l],\beta} \to W_{n}^{0,\alpha})} \le c||\gamma; \mathbf{R}^{n-1}||_{M(W_{n}^{m-l} \to L_{p})}.$$
 (56)

Proof. To begin with, let [m] = [l]. Then by (47)

$$\int_{0 < y < 1} y^{p(1 - \{l\}) - 1} |U(z)(T\gamma)(z)|^p dz$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^p \int_{0 < u < 1} y^{p(1 - \{m\}) - 1} |U(z)|^p dz$$

which gives the result.

Suppose $[m] \geq [l] + 1$. We introduce the function

$$\mathcal{R}U = U(z) - \sum_{i=0}^{[m]-[l]-1} \frac{\partial^{j} U}{\partial y^{j}}(x,0) \frac{y^{j}}{j!}$$

which, clearly, satisfies

$$|\mathcal{R}U(z)| \leq \frac{y^{[m]-[l]-1}}{([m]-[l]-1)!} \int_0^y |\nabla_{[m]-[l]}U(x,t)| dt.$$

This and (47) imply

$$\int_{0 < y < 1} y^{p(1 - \{l\}) - 1} |T\gamma(z)|^p |\mathcal{R}U(z)|^p dz$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W^{m-l}_p \to L_p)}^p \int_{0 < y < 1} y^{-p\{m\} - 1} \Bigl(\int_0^y |\nabla_{[m] - [l]} U(x,t)| dt \Bigr)^p dz.$$

By Hardy's inequality the right-hand side is dominated by

$$c\|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^p \|U; \mathbf{R}_+^n\|_{W_p^{[m]-[l],\beta}}^p.$$

Furthermore, by Lemma 7 with m replaced by m-[l], l replaced by $\{l\}$ and k=j+1 we have for $j=0,\ldots,[m]-[l]-1$

$$\int_{0 \le u \le 1} y^{p(j+1-\{l\})-1} |T\gamma(z)|^p |\nabla_j U(x,0)|^p dz$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^{\frac{j+1-\{l\}}{m-l}} \int_{\mathbf{R}^{n-1}} (\mathcal{M}\gamma(x))^{p^{\frac{m-[l]-j-1}{m-l}}} |\nabla_j U(x,0)|^p dx.$$
(57)

The last integral is dominated by

$$\| (\mathcal{M}\gamma)^{p^{\frac{m-[l]-j-1}{m-l}}}; \mathbf{R}^{n-1} \|_{M(W_p^{m-[l]-j-1} \to L_p)}^p \| U(\cdot, 0); \mathbf{R}^{n-1} \|_{W_p^{m-[l]-1}}^p$$

which by Proposition 3 does not exceed

$$\|\mathcal{M}\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^{p\frac{m-[l]-j-1}{m-l}} \|U; \mathbf{R}_+^n\|_{W_p^{[m]-[l],\beta}}^p.$$

Hence and by (57)

$$\int_{0 < y < 1} y^{p(j+1-\{l\})-1} |T\gamma(z)|^p |\nabla_j U(x,0)|^p dz$$

$$\leq c \|\gamma; \mathbf{R}^{n-1}\|_{M(W_p^{m-l} \to L_p)}^p \|U; \mathbf{R}_+^n\|_{W_p^{[m]-[l],\beta}}^p.$$

The result follows.

Proof of Theorem 4 for l > 1.

Suppose Theorem has been proved for $[l] = 1, \ldots, \mathcal{L} - 1$, where $\mathcal{L} \geq 2$. Let $[l] = \mathcal{L}$ and let

$$\gamma \in M(W_p^m(\mathbf{R}^{n-1}) \to W_p^l(\mathbf{R}^{n-1})) \text{ for } m \ge \mathcal{L}.$$
 (58)

Let $T\gamma$ denote the Poisson integral. Since by Proposition 1 one has

$$\gamma \in M(W_p^{m-l}(\mathbf{R}^{n-1}) \to L_p(\mathbf{R}^{n-1})),$$

it follows from Lemma 9 that

$$T\gamma \in M(W_p^{[m]-[l],\beta}(\mathbf{R}^n_+) \to W_p^{0,\alpha}(\mathbf{R}^n_+))$$

and (56) holds. Next we show that

$$\nabla_{\mathcal{L}+1}(T\gamma) \in M(W_p^{[m]+1,\beta}(\mathbf{R}_+^n) \to W_p^{0,\alpha}(\mathbf{R}_+^n)). \tag{59}$$

Using Proposition 1, we obtain

$$\frac{\partial \gamma}{\partial x_k} \in M(W_p^m(\mathbf{R}^{n-1}) \to W_p^{l-1}(\mathbf{R}^{n-1})), \quad k = 1, \dots, n-1.$$

Then, by the induction hypothesis applied to $\partial \gamma / \partial x_k$,

$$\frac{\partial}{\partial x_k}(T\gamma) = T \frac{\partial \gamma}{\partial x_k} \in M(W_p^{[m]+1,\beta}(\mathbf{R}_+^n) \to W_p^{\mathcal{L},\alpha}(\mathbf{R}_+^n)). \tag{60}$$

By Lemma 3,

$$\nabla_{\mathcal{L}} \frac{\partial}{\partial x_k} (T\gamma) \in M(W_p^{[m]+1,\beta}(\mathbf{R}_+^n) \to W_p^{0,\alpha}(\mathbf{R}_+^n)). \tag{61}$$

Using the harmonicity of $T\gamma$ and (61) we find

$$\frac{\partial^{\mathcal{L}+1}(T\gamma)}{\partial y^{\mathcal{L}+1}} = -\frac{\partial^{\mathcal{L}-1}(\Delta_x(T\gamma))}{\partial y^{\mathcal{L}-1}} \in M(W_p^{[m]+1,\beta}(\mathbf{R}_+^n) \to W_p^{0,\alpha}(\mathbf{R}_+^n))$$

which together with (61) implies the inclusion (59). Combining this with (56) we find that $T\gamma \in M(W_p^{[m]+1,\beta}(\mathbf{R}^n_+) \to W_p^{[l]+1,\alpha}(\mathbf{R}^n_+))$. It remains to note that all above inclusions are accompanied by the corresponding estimates. The result follows.

8 Extension of multipliers on $\partial\Omega$

We return to the assertion stated in Introduction.

Theorem 5 Let $\gamma \in M(W_p^m(\partial\Omega) \to W_p^l(\partial\Omega))$, where m and l are nonintegers, $m \ge l > 0$, $p \in (1, \infty)$. There exists a linear extension operator

$$\gamma \to \Gamma \in M(W_p^{t,\beta}(\Omega) \to W_p^{s,\alpha}(\Omega)),$$

where
$$t = [m] + 1$$
, $s = [l] + 1$, $\beta = 1 - \{m\} - 1/p$, and $\alpha = 1 - \{l\} - 1/p$.

Proof. It suffices to construct an extension Γ only for γ with sufficiently small support. To be precise, we assume that $\gamma=0$ outside the ball \mathcal{B}^n_ρ centered at $0\in\partial\Omega$, where ρ is small enough. We introduce a cut off function $\varphi\in C_0^\infty(\mathcal{B}^n_{3\rho})$, equal to one on $\mathcal{B}^n_{2\rho}$. Let us define cartesian coordinates $\zeta=(\xi,\eta)$ with the origin 0, where $\xi\in\mathbf{R}^{n-1}$ and $\eta\in\mathbf{R}^1$. Let $\Omega\cap\mathcal{B}^n_{3\rho}=\{\zeta:\xi\in\mathcal{B}^{n-1}_{3\rho},\ \eta>f(\xi)\}$, where f is a smooth function. We make the standard change of variables $\kappa:\zeta\to(x,y)$, where $x=\xi,\ y=\eta-f(\xi)$. The diffeomorphism κ maps $\Omega\cap\mathcal{B}^n_{3\rho}$ into the half space $\mathbf{R}^n_+=\{(x,y):x\in\mathbf{R}^{n-1},y>0\}$. Clearly, the function $\tilde{\gamma}=\gamma\circ\kappa^{-1}$ belongs to $M(W^m_p(\mathbf{R}^{n-1})\to W^l_p(\mathbf{R}^{n-1}))$. Its harmonic extension to \mathbf{R}^n_+ , denoted by $\tilde{\Gamma}$, is in $M(W^{t,\beta}_p(\mathbf{R}^n_+)\to W^{s,\alpha}_p(\mathbf{R}^n_+))$ and satisfies the estimate (22) according to Theorem 4. Hence the function $\gamma=(\tilde{\Gamma}\circ\kappa)\varphi$ is a desired extension. The proof is complete.

References

- [1] K.F. Andersen, Weighted inequalities for convolutions, Proc. American Math. Soc. 123:4 (1995), 1129-1136.
- [2] V. Maz'ya, Sobolev Spaces, Springer, 1985.
- [3] V. Maz'ya, T. Shaposhnikova, Theory of Multipliers in Spaces of Differentiable Functions, Pitman, 1985.
- [4] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, VEB Deutscher Verlag der Wiss., Berlin, 1978.
- [5] S.V. Uspenskii, Imbedding theorems for classes with weights, Tr. Mat. Inst. Steklova 60 (1961), 282-303 (Russian), English translation: Amer. Math. Soc. Transl. 87 (1970), 121-145.