Publications of Vladimir Maz’ya

Books

  1. Burago, Yu. D.; Maz’ya, V. G. Certain Questions of Potential Theory and Function Theory for Regions with Irregular Boundaries. (Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 3 1967 152 pp; English translation: Potential Theory and Function Theory for Irregular Regions. Translated from Russian. Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, Vol. 3 Consultants Bureau, New York 1969 vii+68 pp.
  2. Mazja, W. Einbettungssätze für Sobolewsche Räume. Teil 1. (German) [Imbedding Theorems for Sobolev Spaces. Part 1] Translated from the Russian by J. Nagel. With English, French and Russian summaries. Teubner-Texte zur Mathematik. [Teubner Texts on Mathematics] BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1979. 204 pp.; Einbettungssätze für Sobolewsche Räume. Teil 2. (German) [Imbedding Theorems for Sobolev Spaces. Part 2] With English, French and Russian summaries. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 28. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1980. 188 pp.
  3. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. Asymptotic Behavior of Solutions of Elliptic Boundary Value Problems under Singular Perturbations of the Domain. (Russian) With Georgian and English summaries. Tbilis. Gos. Univ., Inst. Prikl. Mat., Tbilisi, 1981. 207 pp.
  4. Gelman, I. W.; Mazja, W. G. Abschätzungen für Differentialoperatoren im Halbraum. (German) [Estimates for differential operators in the half-space] Translated from the Russian by Ehrhard Herbst and Werner Plischke. Edited by G. Wildenhain. Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 54. Akademie-Verlag, Berlin, 1981. 221 pp.; Birkhäuser Verlag, Basel-Boston, Mass., 1982.
  5. Mazja, W. Zur Theorie Sobolewscher Räume. (German) [On the theory of Sobolev spaces] Translated from the Russian by J. Nagel. With English, French and Russian summaries. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 38. BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1981. 170 pp.
  6. Maz’ya, V. G.; Morozov, N. F.; Plamenevskii; B. A.; Stupialis, L.,Elliptic Boundary Value Problems, Amer. Math. Soc. Transl. (1984), 123, Ser. 2, 268 pp.
  7. Maz’ya, V. G. Sobolev Spaces. (Russian) Leningrad. Univ., Leningrad, 1985. 416 pp.; English translation from the Russian by T. O. Shaposhnikova. Springer-Verlag, Berlin-New York, 1985. xix+486 pp.
  8. Maz’ya, V. G.; Shaposhnikova, T. O. Theory of Multipliers in Spaces of Differentiable Function. Monographs and Studies in Mathematics, 23. Pitman, Boston, Mass.-London, 1985. xiii+344 pp.; Russian edition by Leningrad. Univ., Leningrad, 1986. 404 pp.
  9. Mazja, W. G.; Nasarow, S. A.; Plamenewski, B. A. Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. I. (German) [Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. I.] Störungen isolierter Randsingularitäten. [Perturbations of isolated boundary singularities] Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 82. Akademie-Verlag, Berlin, 1991. 432 pp.; II. (German) [Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. II] Nichtlokale Störungen. [Nonlocal perturbations] Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], 83. Akademie-Verlag, Berlin, 1991. 319 pp.
  10. Kozlov, V.; Maz’ya, V., Theory of a Higher-order Sturm-Liouville Equation. Lecture Notes in Mathematics, 1659. Springer-Verlag, Berlin, 1997. xii+140 pp.
  11. Kozlov, V. A.; Maz’ya, V. G.; Rossmann, J. Elliptic Boundary Value Problems in Domains with Point Singularities. Mathematical Surveys and Monographs, 52. American Mathematical Society, Providence, RI, 1997, x+414 pp.
  12. Maz’ya, V.; Poborchi, S. Differentiable Functions on Bad Domains. World Scientific, 1997, XVIII+481 pp.
  13. Maz’ya, V.; Shaposhnikova, T. Jacques Hadamard, a Universal Mathematician. History of Mathematics, 14. American Mathematical Society, Providence, RI; London Mathematical Society, London, 1998. xxviii+574 pp.
  14. Kozlov, V.; Maz’ya, V. Differential Equations with Operator Coefficients. Springer-Verlag, 1999, XV+441.
  15. Kozlov, V.; Maz’ya, V.; A. Movchan, A. Asymptotic Analysis of Fields in Multistructures. Oxford Science Publications, 1999.
  16. Maz’ya, V.; Nazarov, S.; Plamenevskij, B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, vol. 1-2, Operator Theory. dvances and Applications, vol. 111, XXIII+435 and vol. 112, XXIII+323, Birkhäuser, 2000.
  17. Kozlov, V. A.; Maz’ya, V. G.; Rossmann, J., Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations. Mathematical Surveys and Monographs, vol. 85, 436 pp., American Mathematical Society, 2000.
  18. Kuznetsov, N.; Maz’ya, V.; Vainberg, B. Linear Water Waves. A Mathematical Approach. Cambridge University Press, 2002.
  19. Maz’ya, V., Shaposhnikova, T., Jacques Hadamard, un Mathématicien Universel. EDP Sciences, Paris, 2005 (revised and extended translation from English).
  20. Kresin, G., Maz’ya, V. Sharp Real-Part Theorems. A Unified approach, Lecture Notes in Mathematics, No 1903, xvi+140 pp, Springer, 2007.
  21. Maz’ya, V., Poborchi, S. Imbedding and Extension Theorems for Functions in Non-Lipschitz Domains, St-Petersburg University Publishers, 2007.
  22. Maz’ya, V., Schmidt, G., Approximate Approximations, Mathematical Surveys and Monographs, vol. 141, xiv+349 pp, American Mathematical Society, 2007.
  23. Maz’ya V., Shaposhnikova T., Jacques Hadamard, Legend of Mathematics. MCNMO Publishers, Moscow, 2008 (revised, extended, and authorized translation from English to Russian).
  24. Maz’ya V., Shaposhnikova T., Theory of Sobolev Multipliers with Applications to Differential and Integral Operators, Grundlehren der Mathematischen Wissenschaften, vol. 337, Springer, 2009.
  25. Maz’ya V., Soloviev, A., Boundary Integral Equations on Contours with Peaks, Operator Theory Advances and Applications, vol. 196, Birkhäuser, 2010.
  26. Maz’ya V., Rossmann, J., Elliptic Equations in Polyhedral Domains, Mathematical Surveys and Monographs, vol. 162, 608 pp., American Mathematical Society, 2010.
  27. Maz’ya V., Sobolev Spaces with Applications to Elliptic Partial Differential Equations, Grundlehren der Mathematischen Wissenschaften, vol. 342, Springer, 2011.
  28. Kresin, G., Maz’ya, V. Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems, vol. 183, 328 pp., American Mathematical Society, 2012.
  29. Maz’ya, V., Movchan, A., Nieves, M. Green’s Kernels and Meso-Scale Approximations in Perforated Domains, Springer, Lecture Notes in Mathematics, v. 2077, 2013.
  30. Cialdea, A., Maz’ya, V. Semi-bounded Differential Operators, Contractive Semigroups and Beyond, Operator Theory, Advanves and Applications, vol. 243, Birkhäuser, 2014.
  31. Maz’ya V., Differential Equations of My Young Years, Birkhäuser/Springer, Cham, xiv+191 pp., 2014.

    Papers

    1959

  32. Maz’ya, V. G. Solution of Dirichlet’s problem for an equation of elliptic type. (Russian) Dokl. Akad. Nauk SSSR 129, 257–260.

    1960

  33. Maz’ya, V. G. Classes of domains and imbedding theorems for function spaces. Soviet Math. Dokl. 133:1, 882–885.

    1961

  34. Maz’ya, V. G. Some estimates of solutions of second-order elliptic equations. (Russian) Dokl. Akad. Nauk SSSR 137, 1057–1059.
  35. Maz’ya, V. G. On p-conductivity and theorems on embedding certain functional spaces into a C-space. (Russian) Dokl. Akad. Nauk SSSR 140, 299–302.

    1962

  36. Maz’ya, V. G. The negative spectrum of the higher-dimensional Schrödinger operator. (Russian) Dokl. Akad. Nauk SSSR 144, 721–722.
  37. Maz’ya, V. G. On the solvability of the Neumann problem. (Russian) Dokl. Akad. Nauk SSSR 147, 294–296.
  38. Burago, Yu. D.; Maz’ya, V. G.; Sapožnikova, V. D. On the double layer potential for non-regular domains. (Russian) Dokl. Akad. Nauk SSSR 147, 523–525.
  39. Maz’ya, V. G.; Sobolevskiĭ, P. E. On generating operators of semi-groups. (Russian) Uspehi Mat. Nauk 17:6 (108), 151–154.
  40. Maz’ya, V. G. Imbedding theorems for arbitrary sets. (Russian) Uspehi Mat. Nauk 17:1, 247-248.

    1963

  41. Maz’ya, V. G. The Dirichlet problem for elliptic equations of arbitrary order in unbounded domains. (Russian) Dokl. Akad. Nauk SSSR 150, 1221–1224.
  42. Maz’ya, V. G. On the boundary regularity of solutions of elliptic equations and of a conformal mapping. (Russian) Dokl. Akad. Nauk SSSR 152, 1297–1300. operators

    1964

  43. Maz’ya, V. G.; Sapožnikova, V. D. A remark on the regularization of a singular system in the isotropic theory of elasticity. (Russian) Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 19:2, 165–167. Erratum in: Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 9:4 (1977), 160.
  44. Maz’ya, V. G. On the theory of the higher-dimensional Schrödinger operator. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 28, 1145–1172.
  45. Maz’ya, V. G. The solvability in W∘ 22 of the Dirichlet problem for a region with a smooth irregular boundary. (Russian) Vestnik Leningrad. Univ. 19:7 163–165.
  46. Maz’ya, V. G.; Sapožnikova, V. D. Solution of the Dirichlet and Neumann problems for irregular domains by potential-theoretic methods. (Russian) Dokl. Akad. Nauk SSSR 159, 1221–1223.

    1965

  47. Maz’ya, V. G.; Plamenevskiĭ, B. A. On singular equations with a vanishing symbol. (Russian) Dokl. Akad. Nauk SSSR 160, 1250–1253.
  48. Maz’ya, V. G. Polyharmonic capacity in the theory of the first boundary-value problem. (Russian) Sibirsk. Mat. Ž. 6, 127–148.
  49. Maz’ya, V. G.; Plamenevskiĭ, B. A. The Cauchy problem for hyperbolic singular integral equations of convolution type. (Russian) Vestnik Leningrad. Univ. 20:19, 61–163.
  50. Maz’ya, V. G. On the theory of the multi-dimensional Schrödinger operator. (Russian) Vestnik Leningrad. Univ. 20:1, 135–137.

    1966

  51. Maz’ya, V. G. On the modulus of continuity of a solution of the Dirichlet problem near an irregular boundary. (Russian) 1966 Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian) pp. 45–58 Izdat. Leningrad. Univ., Leningrad.
  52. Burago, Ju. D.; Maz’ya, V. G.; Sapožnikova, V. D. On the theory of potentials of a double and a simple layer for regions with irregular boundaries. (Russian) 1966 Problems Math. Anal. Boundary Value Problems Integr. Equations (Russian) 3–34 Izdat. Leningrad. Univ., Leningrad.
  53. Mazz’ja, V. G. Boundary value problems in domains with irregular boundaries. Reports of the Internat. Congress of Math., Section 7, Moscow, 1966, 42.

    1967

  54. Maz’ya, V. G. Solvability in W∘ 22 of the Dirichlet problem in a region with a smooth irregular boundary. (Russian) Vestnik Leningrad. Univ. 22:7, 87–95.
  55. Maz’ya, V. G.; Mihlin, S. G. The Cosserat spectrum of the equations of elasticity theory. (Russian) Vestnik Leningrad. Univ. 22:13, 58–63.
  56. Maz’ya, V. G. The behavior near the boundary of the solution of the Dirichlet problem for an elliptic equation of the second order in divergence form. (Russian) Mat. Zametki 2, 209–220.
  57. Maz’ya, V. G.; Havin, V. P. Approximation in the mean by harmonic functions. (Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5, 196–200.
  58. Veržbinskiĭ, G. M.; Maz’ya, V. G. The asymptotics of solutions of the Dirichlet problem near a non-regular frontier. (Russian) Dokl. Akad. Nauk SSSR 176, 498–501.
  59. Maz’ya, V. G. Closure in the metric of the generalized Dirichlet integral. (Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)5 192–195.

    1968

  60. Babič, V. M.; Bakel’man, I. Ja.; Košelev, A. I.; Maz’ya, V. G. Solomon Grigor’evič Mihlin: On the sixtieth anniversary of his birth. (Russian) Uspehi Mat. Nauk 23:4 (142), 269–272.
  61. Maz’ya, V. G.; Havin, V. P. Approximation in the mean by analytic functions. (Russian) Vestnik Leningrad. Univ. 23:13, 62–74.
  62. Maz’ya, V. G.; Havin, V. P. The Cauchy problem for Laplace’s equation. (Russian) Vestnik Leningrad. Univ. 23:7, 146–147.
  63. Maz’ya, V. G. Examples of nonregular solutions of quasilinear elliptic equations with analytic coefficients. (Russian) Funkcional. Anal. i Priložen. 2:3, 53–57.
  64. Maz’ya, V. G. The Neumann problem in regions with nonregular boundaries. (Russian) Sibirsk. Mat. Ž. 9, 1322–1350.

    1969

  65. Maz’ya, V. G. The boundedness of the first derivatives of the solution of the Dirichlet problem in a region with smooth nonregular boundary. (Russian) Vestnik Leningrad. Univ. 24:1, 72–79.
  66. Maz’ya, V. G.; Panejah, B. P. Degenerate elliptic pseudo-differential operators on a smooth manifold without boundary. (Russian) Funkcional. Anal. i Priložen. 3:2, 91–92.
  67. Maz’ya, V. G. Weak solutions of the Dirichlet and Neumann problems. (Russian) Trudy Moskov. Mat. Obšč. 20, 137–172.
  68. Maz’ya, V. G.; Havin, V. P. On the uniqueness theorem of L. Carleson for analytic functions with finite Dirichlet integral. (Russian) 1969 Problems of Math. Anal., no. 2: Linear Operators and Operator Equations (Russian) pp. 153–156 Izdat. Leningrad. Univ., Leningrad.
  69. Krol’, I. N.; Maz’ya, V. G. The lack of continuity and Hölder continuity of solutions of a certain quasilinear equation. (Russian) Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 14 89–91.
  70. Maz’ya, V. G.; Haĭkin, Ju. E. A remark on the continuity in L2 of a singular integral operator. (Russian) Vestnik Leningrad. Univ. 24:19, 156–159.

    1970

  71. Maz’ya, V. G. The degenerate problem with oblique derivative. (Russian) Uspehi Mat. Nauk 25:2 (152), 275–276.
  72. Maz’ya, V. G.; Panejah, B. P. Degenerate elliptic pseudodifferential operators with simple complex characteristics. (Russian) Uspehi Mat. Nauk25:1 (151), 193–194.
  73. Maz’ya, V. G.; Havin, V. P. A nonlinear analogue of the Newtonian potential, and metric properties of (p, l)-capacity. (Russian) Dokl. Akad. Nauk SSSR 194, 770–773.
  74. Maz’ya, V. G. The continuity at a boundary point of the solutions of quasi-linear elliptic equations. (Russian) Vestnik Leningrad. Univ. 25:13, 42–55; erratum: Vestnik Leningrad. Univ. 27:1, 160; English translation: Vestnik Leningrad. Univ. Math. 3 (1976), 225—242.
  75. Maz’ya, V. G., Some questions from the theory of general differential operators. In the book: Mikhlin, S. G. Mathematical physics, an advanced course. Translated from the Russian. North-Holland Series in Applied Mathematics and Mechanics, Vol. 11 North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York 1970 xv+561 pp.; German translation: Maz’ya, W.G. Einige Fragen der Theorie allgemeiner Differentialoperatoren, In the book: Michlin, S. G. Lehrgang der mathematischen Physik. (German) Übersetzung aus dem Russischen: Mathematische Lehrbücher und Monographien. I. Abteilung: Mathematische Lehrbücher, Band XV. Akademie-Verlag, Berlin, 1972. xiv+475 pp.
  76. Maz’ya, V. G. Classes of sets and measures that are connected with imbedding theorems. (Russian) Imbedding theorems and their applications (Proc. Sympos., Baku, 1966) (Russian), pp. 142–159. Izdat. ”Nauka”, Moscow, 1970.
  77. Maz’ya, V. G. The selfadjointness of the Laplace operator. (Russian) Imbedding theorems and their applications (Proc. Sympos., Baku, 1966) (Russian), pp. 160–162, 246. Izdat. ”Nauka”, Moscow, 1970.
  78. Maz’ya, V. G.; Panejah, B. P. Coercive estimates and regularity of solutions of degenerate elliptic pseudodifferential equations. (Russian) Funkcional. Anal. i Priložen. 4:4, 41–56.

    1971

  79. Maz’ya, V. G.; Plamenevskiĭ, B. A. The asymptotics of the solutions of differential equations with operator coefficients. (Russian) Dokl. Akad. Nauk SSSR 196, 512–515.
  80. Maz’ya, V. G.; Plamenevskiĭ, B. A. The oblique derivative problem in a domain with a piecewise smooth boundary. (Russian) Funkcional. Anal. i Priložen 5:3, 102–103.
  81. Veržbinskiĭ, G. M.; Maz’ya, V. G. Asymptotic behavior of the solutions of second order elliptic equations near the boundary. I. (Russian) Sibirsk. Mat. Ž. 12, 1217–1249.

    1972

  82. Gel’man, I. V.; Maz’ya, V. G. Estimates for differential operators with constant coefficients in a half-space. (Russian) Dokl. Akad. Nauk SSSR 202, 751–754.
  83. Maz’ya, V. G. The Neumann problem for elliptic operators of arbitrary order in domains with nonregular boundaries. (Russian) Vestnik Leningrad. Univ. no. 1, 26–33.
  84. Maz’ya, V. G. The degenerate problem with an oblique derivativ. (Russian) Mat. Sb. (N.S.) 87 (129), 417–454.
  85. Maz’ya, V. G. Applications of certain integral inequalities to the theory of quasilinear elliptic equations. (Russian) Comment. Math. Univ. Carolinae 13, 535–552.
  86. Maz’ya, V. G. The removable singularities of bounded solutions of quasilinear elliptic equations of arbitrary order. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 6. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 27, 116–130.
  87. Maz’ya, V. G.; Havin, V. P. Approximation in the mean by harmonic functions. (Russian) Investigations on linear operators and the theory of functions, III. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30, 91–105.
  88. Veržbinskiĭ, G. M.; Maz’ya, V. G. Asymptotic behavior of the solutions of second order elliptic equations near the boundary. II. (Russian) Sibirsk. Mat. Ž. 13, 1239–1271.
  89. Maz’ya, V. G. On Beurling’s theorem on the minimum principle for positive harmonic functions. (Russian) Investigations on linear operators and the theory of functions, III. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 30, 76–90.
  90. Maz’ya, V. G.; Havin, V. P. On the theory of nonlinear potentials and (p,l)-capacity. (Russian) Vestnik Leningrad. Univ. Mat. Meh. Astronom. 13:3, 46–51.
  91. Maz’ya, V. G. Certain integral inequalities for functions of several variables. (Russian) Problems of mathematical analysis, no. 3: Integral and differential operators, Differential equations (Russian), pp. 33–68. Izdat. Leningrad. Univ., Leningrad.
  92. Maz’ya, W.G. Einige Fragen der Theorie allgemeiner Differentialoperatoren. In the book: Michlin, S. G. Lehrgang der mathematischen Physik. (German) Übersetzung aus dem Russischen: Mathematische Lehrbücher und Monographien. I. Abteilung: Mathematische Lehrbücher, Band XV. Akademie-Verlag, Berlin, 1972. xiv+475 pp.; extended version in: Mitteilungen der Math. Gesellschaft der DDR (1975) H.1, 92-116.
  93. Maz’ya, V. G.; Plamenevskiĭ, B. A. The asymptotic behavior of solutions of differential equations in Hilbert space. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 36, 1080–1133; erratum, ibid. 37 (1973), 709–710.
  94. Maz’ya, V. G.; Plamenevskiĭ, B. A.A certain class of manifolds with singularities. (Russian) Izv. Vysš. Učebn. Zaved. Matematika, no. 11(126), 46–52.
  95. Krol’, I. N.; Maz’ya, V. G. The absence of the continuity and Hölder continuity of the solutions of quasilinear elliptic equations near a nonregular boundary. (Russian) Trudy Moskov. Mat. Obšč. 26, 75–94.
  96. Vaĭnberg, B. R.; Maz’ya, V. G. Certain stationary problems of the linear theory of surface waves. (Russian) Dokl. Akad. Nauk SSSR 205, 310–313.
  97. Maz’ya, V. G.; Havin, V. P. A nonlinear potential theory. (Russian) Uspehi Mat. Nauk 27:6, 67–138.

    1973

  98. Maz’ya, V. G. A certain embedding operator, and set functions of the type of (p, l)-capacity. (Russian) Comment. Math. Univ. Carolinae 14, 155–175.
  99. Maz’ya, V. G.; Plamenevskiĭ, B. A. Elliptic boundary value problems with discontinuous coefficients on manifolds with singularities. (Russian) Dokl. Akad. Nauk SSSR 210, 529–532.
  100. Maz’ya, V. G. The coercivity of the Dirichlet problem in a domain with irregular boundary. (Russian) Izv. Vysš. Učebn. Zaved. Matematika, no. 4(131), 64–76.
  101. Maz’ya, V. G.; Plamenevskiĭ, B. A. The asymptotic behavior of solutions of the Navier-Stokes equations near the edges. (Russian) Dokl. Akad. Nauk SSSR 210, 803–806.
  102. Maz’ya, V. G. The oblique derivative problem in a domain with edges of various dimensions. (Russian) Vestnik Leningrad. Univ. 7 Mat. Meh. Astronom. Vyp. 2 (1973), 34–39.
  103. Maz’ya, V. G. The (p, l)-capacity, imbedding theorems and the spectrum of a selfadjoint elliptic operator. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 37, 356–385.
  104. Maz’ya, V. G. The continuity and boundedness of functions in S. L. Sobolev spaces. (Russian) Problems of mathematical analysis, no. 4: Integral and differential operators, Differential equations , pp. 46–77. Izdat. Leningrad. Univ., Leningrad.
  105. Maz’ya, V. G.; Havin, V. P.Application of the (p, l)-capacity to certain problems of the theory of exceptional sets. (Russian) Mat. Sb. (N.S.) 90 (132) (1973), 558–591.
  106. Maz’ya, V. G.; Plamenevskiĭ, B. P. The behavior of the solutions of quasilinear elliptic boundary value problems in the neighborhood of a conical point. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 7. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 38, 94–97.
  107. Maz’ya, V. G.; Plamenevskiĭ, B. A.Elliptic boundary value problems in a domain with a piecewise smooth boundary. (Russian) Proceedings of the Symposium on Continuum Mechanics and Related Problems of Analysis (Tbilisi, 1971), Vol. 1 , pp. 171–181. Izdat. ”Mecniereba”, Tbilisi.
  108. Maz’ya, V. G. The degenerate oblique derivative problem. (Russian) Proceedings of the Symposium on Continuum Mechanics and Related Problems of Analysis (Tbilisi, 1971), Vol. 1 (Russian), pp. 165–170. Izdat. ”Mecniereba”, Tbilisi.
  109. Vaĭnberg, B. R.; Maz’ya, V. G. On the plane problem of the motion of a solid immersed in a fluid. Trudy Moskov. Mat. Obšč. 28, 35–56.
  110. Vaĭnberg, B. R.; Maz’ya, V. G. On the problem of the steady oscillations of a layer of fluid of variable depth. (Russian) Trudy Moskov. Mat. Obšč. 28, 57–74.

    1974

  111. Maz’ya, V. G.; Plamenevskiĭ, B. A. The fundamental solutions of elliptic boundary value problems, and the Miranda-Agmon maximum principle in domains with conical points. (Russian) Sakharth. SSSR Mecn. Akad. Moambe 73, 277–280.
  112. Gel’man, I. V.; Maz’ya, V. G. Estimates on the boundary for differential operators with constant coefficients in a half-space. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 38, 663–720.
  113. Kuznecov, N. G.; Maz’ya, V. G. On the problem of the steady-state oscillations of a layer of fluid in the presence of an obstacle. (Russian) Dokl. Akad. Nauk SSSR 216, 759–762.
  114. Veržbinskiĭ, G. M.; Maz’ya, V. G. The closure in Lp of the operator of the Dirichlet problem in a domain with conical points. (Russian) Izv. Vysš. Učebn. Zaved. Matematika, no. 6(145), 8-19.
  115. Maz’ya, V. G. The connection between two forms of capacity. (Russian) Vestnik Leningrad. Univ. Mat. Mech. Astronom. 7:2, 33–40.
  116. Maz’ya, V. G.; Plamenevskiĭ, B. A. The coefficients in the asymptotic expansion of the solutions of elliptic boundary value problems to near conical points. (Russian) Dokl. Akad. Nauk SSSR 219, 286–289.
  117. Maz’ya, V. G.; Paneyah, B. Degenerate elliptic pseudo-differential operators and the problem with oblique derivative. (Russian) Collection of articles dedicated to the memory of Ivan Georgievič Petrovskiĭ. Trudy Moskov. Mat. Obšč. 31, 237–295.
  118. Maz’ya, V. G.; Havin, V. P. The solutions of the Cauchy problem for the Laplace equation (uniqueness, normality, approximation). (Russian) Trudy Moskov. Mat. Obšč. 30, 61–114.

    1975

  119. Maz’ya, V. G.; Plamenevskiĭ, B. A. Boundary value problems for a second order elliptic equation in a domain with ribs. (Russian) Collection of articles dedicated to the memory of Academician V. I. Smirnov. Vestnik Leningrad. Univ. Mat. Meh. Astronom. 1:1, 102–108.
  120. Gel’man, I. V.; Maz’ya, V. G. The domination of differential operators with constant coefficients in a half-space. (Russian) Dokl. Akad. Nauk SSSR 221:3, 528–531.
  121. Maz’ya, V. G.; Plamenevskiĭ, B. A. The coefficients in the asymptotic expansion of the solutions of elliptic boundary value problems in a cone. (Russian) Boundary value problems of mathematical physics and related questions of the theory of functions, 8. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 52, 110–127.
  122. Maz’ya, V. G. The index of closure of the operator of the Dirichlet problem in a domain with a nonregular boundary. (Russian) Problems of mathematical analysis, no. 5: Linear and nonlinear differential equations, Differential operators, pp. 98–121. Izdat. Leningrad. Univ., Leningrad.
  123. Maz’ya, V. G.; Gel’man, I. V. Estimates for differential operators with constant coefficients in a half-space. (Russian) Mat. Sb. (N.S.) 96 (138), 240–275.
  124. Maz’ya, V. G. The summability of functions belonging to Sobolev spaces. (Russian) Problems of mathematical analysis, no. 5: Linear and nonlinear differential equations, Differential operators, pp. 66–98. Izdat. Leningrad. Univ., Leningrad.
  125. Maz’ya, V. G. Einige Richtungen und Probleme der Theorie elliptischer Gleichungen. Mitteilungen Gesellschaft der DDR, H. 1, 26-91.
  126. Maz’ya, W.G. Einige Fragen der Theorie allgemeiner Differentialoperatoren. Mitteilungen der Math. Gesellschaft der DDR, H.1, 92-116.
  127. Maz’ya, V. G.; Plamenevskiĭ, B. A. Lp estimates, and the asymptotic behavior of the solutions of elliptic boundary value problems in domains with edges. (Russian) Conference on Differential Equations and Applications (Ruse, 1975). Godišnik Visš. Učebn. Zaved. Priložna Mat. 11:2, 113–123.

    1976

  128. Maz’ya, V. G.; Plamenevskiĭ, B. A. The coefficients in the asymptotic expansion of the solutions of elliptic boundary value problems near an edge. (Russian) Dokl. Akad. Nauk SSSR 229:1, 33–36.
  129. Maz’ya, V. G.; Haĭkin, Ju. E. The continuity of singular integral operators in normed spaces. (Russian) Vestnik Leningrad. Univ.Mat. Meh. Astronom. 1:1, 28–34.

    1977

  130. Maz’ya, V. G. The connection between Martin’s and Euclid’s topologies. (Russian) Dokl. Akad. Nauk SSSR 233:1, 27–30.
  131. Maz’ya, V. G.; Otelbaev, M. Imbedding theorems and the spectrum of a certain pseudodifferential operator. (Russian) Sibirsk. Mat. Ž. 18:5, 1073–1087.
  132. Maz’ya, V. G.; Plamenevskiĭ, B. A. The asymptotic behavior of the solution of the Dirichlet problem near an isolated singularity on the boundary. (Russian) Vestnik Leningrad. Univ. Mat. Meh. Astronom, 13:3, 60–66.
  133. Maz’ya, V. G.; Plamenevskiĭ, B. A.; Haĭkin, Ju. E. A well-posed problem for singular integral equations with a symbol that goes to zero. (Russian) Differencial’nye Uravnenija 13:8, 1479–1486.
  134. Fichera, G.; Maz’ya, V. G. In honour of Professor Solomon G. Mikhlin on the occasion of his seventieth birthday. Applicable Anal. 7:3, 167–170.
  135. Dudučava, R. V.; Maz’ya, V. G. A uniqueness theorem for the integral equation of a thin rectangular airfoil. (Russian) Sakharth. SSR Mecn. Akad. Moambe 87:1, 53–56.
  136. Maz’ya, V. G. Strong capacity-estimates for ”fractional” norms. (Russian) Numerical methods and questions on organization of computations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 70, 161–168.
  137. Maz’ya, V. G.; Plamenevskiĭ, B. A. Elliptic boundary value problems on manifolds with singularities. (Russian) Problems in mathematical analysis, no. 6: Spectral theory, boundary value problems, pp. 85–142. Izdat. Leningrad. Univ., Leningrad.
  138. Maz’ya, V. G.; Plamenevskiĭ, B. A. The pseudo-analyticity of the solutions of elliptic equations in the space Rn. (Russian) Sakharth. SSR Mecn. Akad. Moambe 85:1, 37–40.
  139. Maz’ya, V. G.; Plamenevskiĭ, B. A. The coefficients in the asymptotics of solutions of elliptic boundary value problems with conical points. (Russian) Math. Nachr. 76, 29–60.
  140. Maz’ya, V. G. Solvability of the problem of oscillations of a fluid in the presence of an immersed body. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 10. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 69, 124–128.
  141. Maz’ya, V. G. On a stationary problem on small oscillations of a fluid in the presence of an imbedded body. (Russian) Partial differential equations, 57–79, Proc. Sobolev Sem., no. 2, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk.
  142. Maz’ya, V. G. Behaviour of solutions to the Dirichlet problem for the biharmonic operator at a boundary point. Dokl. (Russian) Acad. Nauk USSR 235:6, 1263-1266.
  143. Maz’ya, V. G. Local square summability of a convolution. (Russian) Investigations on linear operators and the theory of functions, VIII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 73, 211–216. Erratum in: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113 (1981).

    1978

  144. Maz’ya, V. G.; Plamenevskiĭ, B. A. Estimates in Lp and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary. (Russian) Math. Nachr. 81, 25–82.
  145. Masja, W.; Nagel, J. Über äquivalente Normierung der anisotropen Funktionalräume Hμ(Rn). (German) Beiträge Anal. no. 12, 7–17.
  146. Maz’ya, V. G.; Morozov, N. F.; Plamenevskiĭ , B. A. The stressed-strained state in a neighborhood of a crack apex at nonlinear bending of a plate. (Russian) Dokl. Akad. Nauk SSSR 243:4, 889–892.
  147. Maz’ya, V. G.; Plamenevskiĭ , B. A. Estimates of the Green functions and Schauder estimates of the solutions of elliptic boundary value problems in a two-sided corner. (Russian) Sibirsk. Mat. Zh. 19:5, 1065–1082.
  148. Maz’ya, V. G.; Plamenevskiĭ , B. A. Lp-estimates of solutions of elliptic boundary value problems in domains with ribs. (Russian) Trudy Moskov. Mat. Obshch. 37, 49–93. English translation: Trans. Moscow Math. Soc. 1 (1980), 49–97.
  149. Maz’ya, V. G.; Plamenevskiĭ , B. A. Schauder estimates for the solutions of elliptic boundary value problems in domains with edges on the boundary. (Russian) Partial differential equations, pp. 69–102, Trudy Sem. S. L. Soboleva, no. 2, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk.
  150. Maz’ya, V. G.; Plamenevskiĭ , B. A. Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points. (Russian) Elliptische Differentialgleichungen (Meeting, Rostock, 1977), pp. 161–190, Wilhelm-Pieck-Univ., Rostock.
  151. Maz’ya, V. G. An integral inequality. (Russian) Sem. Inst. Prikl. Mat. Dokl. no. 12-13, 33–36.
  152. Maz’ya, V. G. On regularity of a boundary point for elliptic equations. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 81, 197–199.
  153. Maz’ya, V. G. Multipliers in Sobolev spaces. (Russian) In the book: Application of function theory and functional analysis methods to problems of mathematical physics. Pjatoe Sovetso-Čehoslovackoe Soveščanie, 1976, 181-189; Novosibirsk.

    1979

  154. Kresin, G. I.; Maz’ya, V. G. The essential norm of an operator of the double-layer potential type in the space Cm. (Russian) Dokl. Akad. Nauk SSSR 246:2, 272–275.
  155. Maz’ya, V. G. Behaviour of solutions to the Dirichlet problem for the biharmonic operator at a boundary point. Equadiff IV (Proc. Czechoslovak Conf. Differential Equations and their Applications, Prague, 1977), pp. 250–262, Lecture Notes in Math., 703, Springer, Berlin.
  156. Maz’ya, V. G.; Šapošnikova, T. O. Multipliers in spaces of functions with fractional derivatives. (Russian) Dokl. Akad. Nauk SSSR 244:5, 1065–1067.
  157. Maz’ya, V. G.; Šapošnikova, T. O. Traces and extensions of the multipliers in the space Wpl. (Russian) Uspekhi Mat. Nauk 34:2 (206), 205–206.
  158. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. Asymptotic behavior of the solutions of elliptic boundary value problems in the case of variation of the domain near conic points. (Russian) Dokl. Akad. Nauk SSSR 249:1, 94–96.
  159. Maz’ya, V. G.; Šapošnikova, T. O. Multipliers in S. L. Sobolev spaces. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 2, 33–40.
  160. Maz’ya, V. G. Summability, with respect to an arbitrary measure, of functions from S. L. Sobolev L. N. Slobodeckiĭ spaces. (Russian) Investigations on linear operators and the theory of functions, IX. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 92, 192–202.
  161. Maz’ya, V. G.; Plamenevskiĭ , B. A. Asymptotic behavior of the fundamental solutions of elliptic boundary value problems in domains with conical points. (Russian) Boundary value problems. Spectral theory, pp. 100–145, Probl. Mat. Anal., 7, Leningrad. Univ., Leningrad.
  162. Maz’ya, V. G. A new integral representation of differentiable functions and its applications. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 95:3, 537–540.
  163. Maz’ya, V.; Plamenevskiĭ , B.; Stupjalis, L. The three-dimensional problem of the steady-state motion of a fluid with a free surface. (Russian) Differentsial’nye Uravneniya i Primenen.—Trudy Sem. Protsessy Optimal. Upravleniya I Sektsiya no. 23, 157 pp.
  164. Maz’ya, V. G.; Plamenevskiĭ , B. A. Pseudoanalyticity of the solutions of a perturbed polyharmonic equation in Rn. (Russian) Scattering theory. Theory of oscillations, pp. 75–91, Probl. Mat. Fiz., 9, Leningrad. Univ., Leningrad.
  165. Maz’ya, V. G.; Šapošnikova, T. O. Multipliers in spaces of differentiable functions. (Russian) Theory of cubature formulas and the application of functional analysis to problems of mathematical physics (Proc. Sem. S. L. Sobolev, no. 1, 1979) (Russian), pp. 37–90, Trudy Sem. S. L. Soboleva, no. 1, 1979, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk.
  166. Maz’ya, V. G.; Morozov, N. F.; Plamenevskiĭ , B. A. Nonlinear bending of a plate with a crack. (Russian) Differential and integral equations. Boundary value problems, pp. 145–163, Tbilis. Gos. Univ., Tbilisi.
  167. Maz’ya, V. G. The spectrum of V. A. Steklov’s problem for a second-order equation with nonnegative characteristic form. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 95:1, 41–44.
  168. Maz’ya, V. G.; Gel’man, I. V. Estimates for the maximal operator in a half-space. I. (Russian) Beiträge Anal. no. 14, 7–24.

    1980

  169. Maz’ya, V. G. An integral representation of functions, satisfying homogeneous boundary conditions, and its applications. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. no. 2, 34–44.
  170. Vaĭnberg, B. R.; Maz’ya, V. G. A characteristic Cauchy problem for a hyperbolic equation. (Russian) Uspekhi Mat. Nauk 35:1 (211), 193–194.
  171. Maz’ya, V. G.; Plamenevskiĭ , B. A. A problem of the motion of a fluid with a free surface in a faceted vessel. (Russian) Dokl. Akad. Nauk SSSR 250:6, 315–1317.
  172. Maz’ya, V. G.; Šapošnikova, T. O. On conditions for the boundary in the Lp-theory of elliptic boundary value problems. (Russian) Dokl. Akad. Nauk SSSR 251:5, 1055–1059.
  173. Maz’ya, V. G.; Plamenevskiĭ , B. A. On the first boundary value problem for the equations of hydrodynamics in a domain with a piecewise smooth boundary. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 12. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96, 179–186.
  174. Gel’man, I. V.; Maz’ya, V. G. The domination of differential operators with constant coefficients in a half-space. (Russian) Math. Nachr. 95, 47–78.
  175. Maz’ya, V. G.; Šapošnikova, T. O. A coercive estimate for solutions of elliptic equations in spaces of multipliers. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 1, 41–47.
  176. Maz’ya, V. G.; Šapošnikova, T. O. Theory of multipliers in spaces of differentiable functions and their applications. (Russian) Theory of cubature formulas and numerical mathematics (Proc. Conf., Novosibirsk, 1978), pp. 225–233, ”Nauka” Sibirsk. Otdel., Novosibirsk.
  177. Maz’ya, V. G. An imbedding theorem and multipliers in pairs of S. L. Sobolev spaces. (Russian) Theory of analytic functions and harmonic analysis. Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 66, 59–69.
  178. Maz’ya, V. G.; Hvoles, A. A. Imbedding of the space ∘
L pl(Ω) into a space of generalized functions. (Russian) Theory of analytic functions and harmonic analysis. Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze 66, 70–83.
  179. Maz’ya, V. G.; Shaposhnikova, T. O. Multipliers of S. L. Sobolev spaces in a domain. (Russian) Math. Nachr. 99, 165–183.
  180. Maz’ya, V. G.; Shaposhnikova, T. O. Multipliers in pairs of spaces of potentials. (Russian) Math. Nachr. 99, 363–379.
  181. Maz’ya, V. G.; Shaposhnikova, T. O. On the regularity of the boundary in the Lp-theory of elliptic boundary value problems. I. (Russian) Partial differential equations, pp. 39–56, Trudy Sem. S. L. Soboleva, no. 2, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk.
  182. Maz’ya, V. G.; Preobrazhenskiĭ , S. P. Some estimates of (l, p)-capacities and their application to embedding theorems. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 100:1, 25–28.
  183. Maz’ya, V. G.; Gel’man, I. V. Estimates for the maximal operator in a half-space. II. (Russian) Beiträge Anal. no. 15, 7–25.
  184. Maz’ya, V.; Nazarov, S.; Plamenevskiĭ, B. Asymptotic behavior of the solutions of a quasilinear equation in nonregular perturbed domains. (Russian) Differentsial’nye Uravneniya i Primenen.—Trudy Sem. Protsessy Optimal. Upravleniya I Sektsiya no.27, 7–50.

    1981

  185. Maz’ya, Y. G.; Šapošnikova, T. O. Multipliers on the spaces Wpm, and their applications. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 1, 42–47.
  186. Maz’ya, V. G. On the extension of functions belonging to S. L. Sobolev spaces. (Russian) Investigations on linear operators and the theory of functions, XI. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 113, 231–236.
  187. Maz’ya, V. G.; Shaposhnikova, T. O. Sufficient conditions for belonging to classes of multipliers. (Russian) Math. Nachr. 100, 151–162.
  188. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. On the asymptotic behavior of the solutions to the Dirichlet problem in a three-dimensional domain with a cut-out thin body. (Russian) Dokl. Akad. Nauk SSSR 2561, 37–39.
  189. Maz’ya, V. G.; Shaposhnikova, T. O. Multipliers in pairs of spaces of differentiable functions. (Russian) Trudy Moskov. Mat. Obshch. 43, 37–80.
  190. Maz’ya, V. G.; Plamenevskiĭ , B. A. Properties of solutions of three-dimensional problems of the theory of elasticity and hydrodynamics in domains with isolated singular points. (Russian) Comm. Math. Phys. 82:2, 99–120.
  191. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. Asymptotics of the solutions of the Dirichlet problem in a domain with an excluded thin tube. (Russian) Uspekhi Mat. Nauk 36:5 (221), 183–184.
  192. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. The asymptotic behavior of solutions of the Dirichlet problem in a domain with a cut out thin tube. (Russian) Mat. Sb. (N.S.) 116:2, 187–217.
  193. Maz’ya, V. G.; Shaposhnikova, T. O. Change of variables as an operator on a pair of S. L. Sobolev spaces. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 1, 43–48.
  194. Kresin, G. I.; Maz’ya, V. G. On the maximum principle for Lamé and Stokes systems in a half-space. (Russian) Akad. Nauk Armyan. SSR Dokl. 73:1, 46–50.
  195. Maz’ya, V. G.; Shaposhnikova, T. O. On the regularity of the boundary in the Lp-theory of elliptic boundary value problems. II. (Russian) Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, pp. 57–102, Trudy Sem. S. L. Soboleva, no. 1, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk.
  196. Vaĭnberg, B. R.; Maz’ya, V. G. The characteristic Cauchy problem for a hyperbolic equation. (Russian) Trudy Sem. Petrovsk. no. 7, 101–117.
  197. Maz’ya, V. G.; Plamenevskiĭ , B. A. On the maximum principle for the biharmonic equation in a domain with conical points. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. no. 2, 52–59.
  198. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. On the asymptotic behavior of solutions of elliptic boundary value problems with irregular perturbations of the domain. (Russian) Probl. Mat. Anal., 8, pp. 72–153, Leningrad. Univ., Leningrad.
  199. Maz’ya, V. G. On the influence of boundary conditions on imbedding theorems. (Russian) In the book: Boundary value problems of mathematical physics, 66-72, Kiev.
  200. Kresin, G. I.; Maz’ya, V. G. The essential norm of an operator of the double-layer potential type in the space Cm. (Russian) Funkzion. Anal. i Vychisl. Matem. “Nauka”, Alma-Ata, 131-165.

    1982

  201. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. Homogeneous solutions of the Dirichlet problem in the exterior of a thin cone. (Russian) Dokl. Akad. Nauk SSSR 266:2, 281–284.
  202. Maz’ya, V. G. Theory of multipliers in spaces of differentiable functions and its applications. Nonlinear analysis, function spaces and applications, Vol. 2 (P’isek, 1982), pp. 150–190, Teubner-Texte zur Math. 49, Teubner, Leipzig.
  203. Kerimov, T. M.; Maz’ya, V. G.; Novruzov, A. A. An analogue of Wiener’s criterion for the Zaremba problem in a cylindrical domain. (Russian) Funktsional. Anal. i Prilozhen. 16:4, 70–71.
  204. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. Asymptotic behavior of the solution of the Dirichlet problem in a domain with a thin bridge. (Russian) Funktsional. Anal. i Prilozhen. 16:2, 39–46.
  205. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. Absence of a De Giorgi-type theorem for strongly elliptic equations with complex coefficients. (Russian) Boundary value problems of mathematical physics and related questions in the theory of functions, 14. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 115, 156–168.

    1983

  206. Maz’ya, V. G. Functions with a finite Dirichlet integral in a domain with a cusp at the boundary. (Russian) Investigations on linear operators and the theory of functions, XII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 126, 117–137.
  207. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ , B. A. Calculation of the asymptotics of ”coefficients of intensity” in the coming together of corner or conic points. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 23:2, 333–346.
  208. Zargaryan, S. S.; Maz’ya, V. G. Singularities of solutions of a system of equations of potential theory for Zaremba’s problem. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 1, 43–48.
  209. Maz’ya, V. G.; Donchev, T. Regularity in the sense of Wiener of a boundary point for a polyharmonic operator. (Russian) C. R. Acad. Bulgare Sci. 36:2, 177–179.
  210. Maz’ya, V. G.; Shaposhnikova, T. O. Theory of multipliers in spaces of differentiable functions. (Russian) Uspekhi Mat. Nauk 38:3 (231), 23–86.
  211. Kresin, G. I.; Maz’ya, V. G. The maximum principle for second-order elliptic and parabolic systems. (Russian) Dokl. Akad. Nauk SSSR 273:1, 38–41.
  212. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ, B. A. Singularities of solutions of the Dirichlet problem in the exterior of a thin cone. (Russian) Mat. Sb. (N.S.) 122 (164):4, 435–457.
  213. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ, B. A. Bending of a near-polygonal plate with a free open boundary. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. no. 8, 34–40.
  214. Maz’ya, V. G.; Plamenevskiĭ, B. A. The first boundary value problem for classical equations of mathematical physics in domains with piecewise-smooth boundaries. I. (Russian) Z. Anal. Anwendungen 2:4, 335–359.
  215. Maz’ya, V. G.; Plamenevskiĭ, B. A. The first boundary value problem for classical equations of mathematical physics in domains with piecewise smooth boundaries. II. (Russian) Z. Anal. Anwendungen 2:6, 523–551.

    1984

  216. Maz’ya, V. G.; Preobrazenskii, S. P. Estimates for capacities and traces of potentials. Internat. J. Math. Math. Sci. 7:1, 41–63.
  217. Maz’ya, V. G. The modulus of continuity of a harmonic function at a boundary point. (Russian) Investigations on linear operators and the theory of functions, XIII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 135, 87–95.
  218. Maz’ya, V. G.; Poborchiĭ, S. V. Extension of functions from S. L. Sobolev spaces to the exterior and interior of a small domain. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 2, 27–32.
  219. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ, B. A. Asymptotic expansions of eigenvalues of boundary value problems for the Laplace operator in domains with small openings. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 48:2, 347–371.
  220. Maz’ya, V. G.; Kresin, G. I. The maximum principle for second-order strongly elliptic and parabolic systems with constant coefficients. (Russian) Mat. Sb. (N.S.) 125(167):4, 458–480.
  221. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ, B. A. The Dirichlet problem in domains with thin cross connections. (Russian) Sibirsk. Mat. Zh. 25:2, 161–179.
  222. Zargaryan, S. S.; Maz’ya, V. G. The asymptotic form of the solutions of integral equations of potential theory in the neighbourhood of the corner points of a contour. (Russian) Prikl. Mat. Mekh. 48:1, 169–174; translation in J. Appl. Math. Mech. 48:1, 120–124 (1985).
  223. Maz’ya, V. G.; Poborchiĭ, S. V. Extension of functions belonging to S. L. Sobolev spaces into the exterior of a domain with a cusp on the boundary. (Russian) Dokl. Akad. Nauk SSSR 275:5, 1066–1069.
  224. Maz’ya, V. G.; Nazarov, S. A.; Plamenevskiĭ, B. A. Elliptic boundary value problems in domains of the type of the exterior of a cusp. (Russian) Linear and nonlinear partial differential equations. Spectral asymptotic behavior, 105–148, Probl. Mat. Anal., 9, Leningrad. Univ., Leningrad.
  225. Maz’ya, V. G.; Nazarov, S. A. On the Sapondjan-Babuška paradox for problems of the theory of thin plates. (Russian) Dokl. Acad. Nauk Arm. SSR 48:3, 127-130.
  226. Maz’ya, V. G. Über die Regularität eines Randpunktes für elliptisc he Differentialgleichungen. (German) Linear and complex analysis problem book, 199 research problems, Lecture Notes in Math. 1043, 507-514.
  227. Maz’ya, V. G. Rossman, J. Über die Lösbarkeit und Asymptotik der Lösungen elliptischer Randwertaufgaben in Gebiten mit Kanten. (German) Akad. der Wiss. der DDR, Inst. fur Math. I Preprint P-Math. 07/84, s. 1-50; II Preprint P-Math. 30/84, s. 1-50; III Preprint P-Math. 31/84, s. 1-50.

    1985

  228. Kresin, G. I.; Maz’ya, V. G. On the maximum of displacements in a viscoelastic half-space (a three-dimensional model). (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 4, 47–51.
  229. Kozlov, V. A.; Maz’ya, V. G.; Parton, V. Z. Asymptotic form of the stress intensity coefficients in quasistatic temperature problems for a domain with a cut. (Russian) Prikl. Mat. Mekh. 49:4, 627–636; translation in J. Appl. Math. Mech. 49:4, 482–489 (1986).
  230. Gel’man, I. V.; Maz’ya, V. G. Estimates in a half-space for systems of differential operators with constant coefficients. (Russian) Qualitative analysis of solutions of partial differential equations, 70–99, Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk.
  231. Kuznetsov, N. G., Maz’ya, V. G. Asymptotic expansions for transient surface waves due to short-period oscillating disturbances. (Russian) Proc. Leningrad Shipbuild. Inst./ Math. Modelling and Automated Design in Shipbuilding, 57-64.

    1986

  232. Maz’ya, V. G.; Nazarov, S. A. The apex of a cone can be irregular in Wiener’s sense for a fourth-order elliptic equation. (Russian) Mat. Zametki 39:1, 24–28.
  233. Maz’ya, V. G.; Kufner, A. Variations on the theme of the inequality (f)2 2f sup|f|. Manuscripta Math. 56:1, 89–104.
  234. Kuznetsov, N. G.; Maz’ya, V. G. Asymptotic expansions for surface waves caused by short-term disturbances. (Russian) Asymptotic methods, 103–138, ”Nauka” Sibirsk. Otdel., Novosibirsk.
  235. Kozlov, V. A.; Maz’ya, V. G. Estimates of the Lp-means and asymptotic behavior of the solutions of elliptic boundary value problems in a cone. I. The case of the model operator. (Russian) Seminar Analysis, 55–91, Akad. Wiss. DDR, Berlin.
  236. Grachev, N. V.; Maz’ya, V. G. The Fredholm radius of operators of double layer potential type on piecewise smooth surfaces. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 4, 60–64.
  237. Maz’ya, V. G. Boundary integral equations of elasticity in domains with piecewise smooth boundaries. Equadiff 6 (Brno, 1985), 235–242, Lecture Notes in Math., 1192, Springer, Berlin-New York.
  238. Maz’ya, V. G.; Poborchiĭ, S. V. Extension of functions in S. L. Sobolev classes to the exterior of a domain with the vertex of a peak on the boundary. I. (Russian) Czechoslovak Math. J. 36 (111):4, 634–661.
  239. Maz’ya, V. G.; Nazarov, S. A. Paradoxes of the passage to the limit in solutions of boundary value problems for the approximation of smooth domains by polygons. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 50:6, 1156–1177.
  240. Maz’ya, V. G. On potential theory for the Lamé system in a domain with a piecewise smooth boundary. (Russian) Partial differential equations and their applications (Tbilisi, 1982), 123–129, Tbilis. Gos. Univ., Tbilisi.
  241. Maz’ya, V. G., Slutskii, A. S., Fomin, V. A. Asymptotic behaviour of the stress function near the vertex of a crack in the problem of torsion under steady-state creep. (Russian) Mech. Tverd. Tela 4, 170-176.

    1987

  242. Maz’ya, V. G.; Sulimov, M. G. Asymptotic behavior of solutions of one-dimensional difference equations with constant operator coefficients. (Russian) Mat. Sb. (N.S.) 132 (174):4, 451–469.
  243. Maz’ya, V. G.; Poborchiĭ, S. V. Extension of functions in S. L. Sobolev classes to the exterior of a domain with the vertex of a peak on the boundary. II. (Russian) Czechoslovak Math. J. 37 (112):1, 128–150.
  244. Maz’ya, V. G.; Slutskiĭ, A. S. Averaging of differential equations on a fine grid. (Russian) Dokl. Akad. Nauk SSSR 293:4, 792–796.
  245. Kozlov, V. A.; Maz’ya, V. G. Singularities of solutions of the first boundary value problem for the heat equation in domains with conical points. I. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. no. 2, 38–46.
  246. Kozlov, V. A.; Maz’ya, V. G. Singularities of solutions of the first boundary value problem for the heat equation in domains with conical points. II. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. no. 3, 37–44.
  247. Maz’ya, V. G.; Nazarov, S. A. Asymptotic behavior of energy integrals under small perturbations of the boundary near corner and conic points. (Russian) Trudy Moskov. Mat. Obshch. 50, 79–129.
  248. Maz’ya, V. G.; Slutskiĭ, A. S.Averaging of a differential operator on a fine periodic curvilinear net. (Russian) Math. Nachr. 133, 107–133.
  249. Kuznetsov, N. G.; Maz’ya, V. G. Asymptotic expansions for surface waves that can be induced by rapidly oscillating or accelerating perturbations. (Russian) Asymptotic methods, 136–175, ”Nauka” Sibirsk. Otdel., Novosibirsk.
  250. Maz’ya, V. G.; Slutskiĭ, A. S. Averaging of difference equations with rapidly oscillating coefficients. (Russian) Seminar Analysis (Berlin, 1986/87), 63–92, Akad. Wiss. DDR, erlin.
  251. Maz’ya, V. G. A boundary integral equation of the Dirichlet problem in a plane domain with a cusp at the boundary. (Russian) Current problems in mathematical physics, Vol. II (Tbilisi, 1987), 263–270, Tbilis. Gos. Univ., Tbilisi.

    1988

  252. Maz’ya, V. G.; Solov’ev, A. A. Solvability of an integral equation of the Dirichlet problem in a plane domain with cusps on the boundary. (Russian) Dokl. Akad. Nauk SSSR 298:6, 1312–1315; translation in Soviet Math. Dokl. 37:1, 255–258.
  253. Maz’ya, V. G. Classes of domains, measures and capacities in the theory of spaces of differentiable functions. (Russian) Current problems in mathematics. Fundamental directions, Vol. 26 (Russian), 159–228, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow; English translation: Analysis, III, 141–211, Encyclopaedia Math. Sci., 26, Springer, Berlin, 1991.
  254. Maz’ya, V. G. Boundary integral equations. (Russian) Current problems in mathematics. Fundamental directions, Vol. 27 (Russian), 131–228, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow; English translation: Analysis, IV, 127–222, Encyclopaedia Math. Sci., 27, Springer, Berlin, 1991.
  255. Maz’ya, V. G.; Solov’ev, A. A. Asymptotic behavior of the solution of an integral equation of the Neumann problem in a plane domain with cusps at the boundary. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 130:1, 17–20.
  256. Maz’ya, V. G.; Rossmann, J. Über die Asymptotik der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten. (German) [On the asymptotics of solutions of elliptic boundary value problems in the neighborhood of edges] Math. Nachr. 138, 27–53.
  257. Kozlov, V. A.; Maz’ya, V. G. Estimates of the Lp-means and asymptotic behavior of the solutions of elliptic boundary value problems in a cone. II. Operators with variable coefficients. (Russian) Math. Nachr. 137, 113–139.
  258. Kozlov, V. A.; Maz’ya, V. G. Spectral properties of operator pencils generated by elliptic boundary value problems in a cone. (Russian) Funktsional. Anal. i Prilozhen. 22:2, 38–46, 96; translation in Functional Anal. Appl. 22: 2, 114–121.
  259. Kerimov, T. M.; Maz’ya, V. G.; Novruzov, A. A. A criterion for the regularity of the infinitely distant point for the Zaremba problem in a half-cylinder. (Russian) Z. Anal. Anwendungen 7:2, 113–125.
  260. Kresin, G. I.; Maz’ya, V. G. A sharp constant in a Miranda-Agmon-type inequality for solutions of elliptic equations. (Russian) Izv. Vyssh. Uchebn. Zaved. Mat. no. 5, 41–50; translation in Soviet Math. (Iz. VUZ) 32:5, 49–59.
  261. Kozlov, V. A.; Maz’ya, V. G.; Parton, V. Z. Thermal shock in a region with a crack. (Russian) Prikl. Mat. Mekh. 52:2, 318–326; translation in J. Appl. Math. Mech. 52:2, 250–256.
  262. Kuznetsov, N. G.; Maz’ya, V. G. Unique solvability of a plane stationary problem connected with the motion of a body submerged in a fluid. (Russian) Differentsial’nye Uravneniya 24:11, 1928–1940; translation in Differential Equations 24:11, 1291–1301.
  263. Kozlov, V. A.; Maz’ya, V. G. An asymptotic formula for eigenfunctions of the Dirichlet problem in a domain with a conic point. (Russian) Vestnik Leningrad. Univ. Mat. Mekh. Astronom. no. 4, 30–33,; translation in Vestnik Leningrad Univ. Math. 21:4, 36–40.
  264. Grachev, N. V.; Maz’ya, V. G. Representations and estimates for inverse operators of integral equations of potential theory for surfaces with conic points. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 32:1, 21–24.
  265. Maz’ya, V. G. Inversion formulas for boundary integral equations and their applications. (Russian) Functional and numerical methods in mathematical physics, 127–131, ”Naukova Dumka”, Kiev.
  266. Maz’ya, V. G., Poborchiĭ, S. V. Traces of functions in Sobolev spaces on the boundary of a domain with a peak. Preprint, MD 87.91, VGM SVP, TR 88-01, University of Maryland.
  267. Kuznetsov, N.G.; Maz’ya, V.G. Unique solvability of the plane Neumann-Kelvin problem. (Russian) Mat. Sb. (N.S.) 135 (177):4, 40–462; translation in Math. USSR-Sb. 63 (1989), no. 2, 425–446.

    1989

  268. Maz’ya, V. G.; Poborchiĭ, S. V. Traces of functions with a summable gradient in a domain with a cusp at the boundary. (Russian) Mat. Zametki 45:1, 57–65, 140; translation in Math. Notes 45:1-2, 39–44.
  269. Maz’ya, V. G.; Poborchiĭ, S. V. Traces of functions from S. L. Sobolev spaces on small and large components of the boundary. (Russian) Mat. Zametki 45:4, 69–77, 126; translation in Math. Notes 45:3-4, 312–317.
  270. Maz’ya, V. G.; Nazarov, S. A. Singularities of solutions of the Neumann problem at a conic point. (Russian) Sibirsk. Mat. Zh. 30:3, 52–63, 218; translation in Siberian Math. J. 30:3, 387–396.
  271. Maz’ya, V. G.; Solov’ev, A. A. An integral equation of the Dirichlet problem in a plane domain with cusps on the boundary. (Russian) Mat. Sb. 180:9, 1211–1233.
  272. Kozlov, V. A.; Maz’ya, V. G.; Parton, V. Z. Thermal shock in a thin plate with a crack in the presence of heat exchange with the surrounding medium. (Russian) Izv. Akad. Nauk Armyan. SSR Ser. Mekh. 42:2, 41–49.
  273. Kresin, G. I.; Maz’ya, V. G. On the maximum modulus principle for solutions of linear parabolic systems. Seminar Analysis (Berlin, 1988/1989), 41–50, Akad. Wiss. DDR, Berlin.
  274. Levin, A. V.; Maz’ya, V. G. Asymptotics of the densities of harmonic potentials near the apex of a cone. (Russian) Z. Anal. Anwendungen 8:6, 501–514.
  275. Maz’ya, V. G.; Poborchiĭ, S. V. Traces of functions in Sobolev spaces on a boundary of a domain with a cusp. (Russian) Trudy Inst. Mat. (Novosibirsk) 14, Sovrem. Probl. Geom. Analiz., 182–208; translation in Siberian Advances in Mathematics 1:3 (1991), 75-107.
  276. Kozlov, V. A.; Maz’ya, V. G. Iterative procedures for solving ill-posed boundary value problems that preserve the differential equations. (Russian) Algebra i Analiz 1:5, 144–170; translation in Leningrad Math. J. 1 (1990), no. 5, 1207–1228.
  277. Kozlov, V. A.; Kondrat’ev, V. A.; Maz’ya, V. G. On sign variability and the absence of ”strong” zeros of solutions of elliptic equations. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 53:2, 328–344; translation in Math. USSR-Izv. 34 (1990), no. 2, 337–353.

    1990

  278. Grachev, N. V.; Maz’ya, V. G. The Fredholm radius of integral operators of potential theory. (Russian) Nonlinear equations and variational inequalities. Linear operators and spectral theory, 109–133, Probl. Mat. Anal., 11, Leningrad. Univ., Leningrad.
  279. Maz’ya, V. G.; Solov’ev, A. A. On a boundary integral equation for the Neumann problem for a domain with a peak. (Russian) Trudy Leningrad. Mat. Obshch. 1, 109–134.
  280. Kozlov, V.A.; Levin, A.V.; Maz’ya, V. G. A mathematical algorithm for reconstruction of the optic distribution of the power dencity under the sondage of a laser beam. Preprint 35, Leningrad Department of the Institute for Engineering Studies Acad. Nauk SSSR, 1-45.
  281. Maz’ya, V. G.; Morozov, N. F.; Nazarov, S. A. On the elastic strain energy release due to the variation of the domain near the angular stress concentrator. Preprint, LiTH-MAT-R-90-21, Linköping University.
  282. Kozlov, V. A.; Maz’ya, V. G.; Parton, V. Z. Some mathematical problems of thermoelasticity. Problems of the long-term strength of power equipment. Proc. of the Polzunov Central Research Institute of power equipment, Leningrad, no. 260, 55-67.
  283. Maz’ya, V. G.; Tashchiyan, G. M. On the behavior of the gradient of the solution of the Dirichlet problem for the biharmonic equation near a boundary point of a three-dimensional domain. (Russian) Sibirsk. Mat. Zh. 31:6, 113–126; translation in Siberian Math. J. 31:6, 970–983 (1991).

    1991

  284. Kozlov, V. A.; Maz’ya, V. G.; Fomin, A. V. An iterative method for solving the Cauchy problem for elliptic equations. (Russian) Zh. Vychisl. Mat. i Mat. Fiz. 31:1, 64–74.
  285. Kozlov, V. A.; Maz’ya, V. G. On stress singularities near the boundary of a polygonal crack. Proc. Roy. Soc. Edinburgh Sect. A 117:1-2, 31–37.
  286. Maz’ya, V. G.; Rossmann, J. On the Agmon-Miranda maximum principle for solutions of elliptic equations in polyhedral and polygonal domains. Ann. Global Anal. Geom. 9:3, 253–303.
  287. Grachev, N. V.; Maz’ya, V. G. A contact problem for the Laplace equation in the exterior of the boundary of a dihedral angle. (Russian) Math. Nachr. 151, 207–231.
  288. Kozlov, V. A.; Maz’ya, V. G. On the spectrum of an operator pencil generated by the Dirichlet problem in a cone. (Russian) Mat. Sb. 182:5, 638–660.
  289. Maz’ya, V. G.; Poborchi, S. V. Boundary traces of functions from Sobolev spaces on a domain with a cusp [translation of Trudy Inst. Mat. (Novosibirsk) 14 (1989), Sovrem. Probl. Geom. Analiz., 182–208; Siberian Advances in Mathematics 1 (1991), no. 3, 75–107.
  290. Kozlov, V. A.; Maz’ya, V. G. On the spectrum of an operator pencil generated by the Neumann problem in a cone. (Russian) Algebra i Analiz 3:2, 111–131; translation in St. Petersburg Math. J. 3 (1992), no. 2, 333–353.
  291. Grachev, N.; Maz’ya, V. G. Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points. Preprint LiTH-MAT-R-91-07, Linköping niversity.
  292. Grachev, N.; Maz’ya, V. G. Invertibility of the boundary integral operators of elasticity on surfaces with conic points. Preprint LiTH-MAT-R-91-08, Linköping University.
  293. Grachev, N.; Maz’ya, V. G. Estimates for fundamental solutions of the Neumann problem in a polyhedron. Preprint, LiTH-MAT-R-91-28, Linköping University.
  294. Kozlov, V. A.; Maz’ya, V. G. On the asymptotic behaviour of solutions of ordinary differential equations with operator coefficients I, Preprint, LiTH-MAT-R-91-47, Linköping University.
  295. Grachev, N.; Maz’ya, V. G. Solvability of boundary integral equations in a polyhedron. Preprint, LiTH-MAT-R-91-50, Linköping University.
  296. Maz’ya, V. G. A new approximation method and its applications to the calculation of volume potentials. Boundary point method. DFG-Kolloquium des DFG-Forschungsschwer-puntes “Randelementmethoden”, 30 September-5 October, Schloss Reisenburg (1991), 8.

    1992

  297. Kozlov, V. A.; Maz’ya, V. G.; Schwab, C. On singularities of solutions of the displacement problem of linear elasticity near the vertex of a cone. Arch. Rational Mech. Anal. 119:3, 197–227.
  298. Maz’ya, V. G.; Rossmann, J. On the Agmon-Miranda maximum principle for solutions of strongly elliptic equations in domains of Rn with conical points. Ann. Global Anal. Geom. 10:2, 125–150.
  299. Kozlov, V.; Maz’ya, V. Solvability and asymptotic behaviour of solutions of ordinary differential equations with variable operator coefficients. Journées ”Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), Exp. no. V, 12 pp., École Polytech., Palaiseau.
  300. Maz’ya, V. G.; Rossmann, J. Stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points or edges. Operator calculus and spectral theory (Lambrecht, 1991), 215–224, Oper. Theory Adv. Appl., 57, Birkhäuser, Basel.
  301. Maz’ya, V. G.; Mahnke, R. Asymptotics of the solution of a boundary integral equation under a small perturbation of a corner. Z. Anal. Anwendungen 11:2, 173–182.
  302. Maz’ya, V. G.; Poborchii, S. V. Imbedding theorems for Sobolev spaces in domains with cusps. Preprint, LiTH-MAT-R-92-14, Linköping University.
  303. Maz’ya, V. G.; Slutskii, A. S. An asymptotic solution of a non-linear Dirichlet problem with strong singularity at the corner point I. Preprint, LiTH-MAT-R-92-15, Linköping University.
  304. Kozlov, V. A.; Maz’ya, V. G. On the asymptotic behaviour of solutions of ordinary differential equations with operator coefficients I, Preprint, LiTH-MAT-R-92-18, Linköping University.
  305. Kozlov, V. A.; Maz’ya, V. G. On the asymptotic behaviour of solutions of ordinary differential equations with operator coefficients III, Preprint, LiTH-MAT-R-92-29, Linköping University.
  306. Maz’ya, V.; Rossmann, J. On a problem of Babuška (stable asymptotics of the solution to the Dirichlet problem for elliptic equations of second order in domains with angular points). Math. Nachr. 155, 199–220.

    1993

  307. Maz’ya, V. G.; Hänler, M. Approximation of solutions of the Neumann problem in disintegrating domains. Math. Nachr. 162, 261–278.
  308. Maz’ya, V. G.; Vaĭnberg, B. R. On ship waves. Wave Motion 18:1, 31–50.
  309. Maz’ya, V.; Sulimov, M. Asymptotics of solutions of difference equations with variable coefficients. Math. Nachr. 161, 155–170.
  310. Kresin, G. I.; Maz’ya, V. G. Criteria for validity of the maximum modulus principle for solutions of linear strongly elliptic second order systems. Potential Anal. 2:1, 73–99.
  311. Maz’ya, V. Solvability and asymptotic behavior of solutions of ordinary differential equations with operator coefficients. Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993), 354–362, SIAM, Philadelphia, PA.
  312. Maz’ya, V. G.; Slodichka, M. Some time-marching algorithms for semilinear parabolic equations based upon approximate approximations. Preprint, LiTH-MAT-R-93-38, Linköping University.

    1994

  313. Kozlov, V.; Maz’ya, V.; Rozin, L., On certain hybrid iterative methods for solving boundary value problems. SIAM J. Numer. Anal. 31:1, 101–110.
  314. Kozlov, V.; Maz’ya, V.; Fomin, A., The inverse problem of coupled thermoelasticity. Inverse Problems 10:1, 153–160.
  315. Maz’ya, V. G.; Rossmann, J. On the behaviour of solutions to the Dirichlet problem for second order elliptic equations near edges and polyhedral vertices with critical angles. Z. Anal. Anwendungen 13:1, 19–47.
  316. Kresin, G. I.; Maz’ya, V. G. Criteria for validity of the maximum modulus principle for solutions of linear parabolic systems. Ark. Mat. 32:1, 121–155.
  317. Kozlov, V. A.; Maz’ya, V. G.; Parton, V. Z. Asymptotics of the intensity factors for stresses induced by heat sources. J. Thermal Stresses 17:3, 309–320.
  318. Maz’ya, V. Approximate approximations. The mathematics of finite elements and applications (Uxbridge, 1993), 77–104, Wiley, Chichester.
  319. Kozlov, V. A.; Maz’ya, V. G.; Schwab, C. On singularities of solutions to the Dirichlet problem of hydrodynamics near the vertex of a cone. J. Reine Angew. Math. 456, 65–97.
  320. Kozlov, V. A.; Maz’ya, V. G.; Movchan, A. B. Asymptotic analysis of a mixed boundary value problem in a multi-structure. Asymptotic Anal. 8:2, 105–143.
  321. Carlsson, A.; Maz’ya, V., On approximation in weighted Sobolev spaces and self-adjointness. Math. Scand. 74:1, 111–124.
  322. Maz’ya, V.; Karlin, V., Semi-analytic time-marching algorithms for semi-linear parabolic equations. BIT 34:1, 129–147.

    1995

  323. Maz’ya, V. G.; Poborchiĭ, S. V. On traces of functions in S. L. Sobolev spaces on the boundary of a thin cylinder. (Russian) Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzii 99, 17–36.
  324. Maz’ya, V.; Netrusov, Y., Some counterexamples for the theory of Sobolev spaces on bad domains. Potential Anal. 4:1, 47–65.
  325. Maz’ya, V. G.; Verbitsky, I. E. Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers. Ark. Mat. 33:1, 81–115.
  326. Kresin, G. I.; Maz’ya, V. G. The norm and the essential norm of the double layer elastic and hydrodynamic potentials in the space of continuous functions. Math. Methods Appl. Sci. 18:14, 1095–1131.
  327. Maz’ya, V.; Schmidt, G., ”Approximate approximations” and the cubature of potentials. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6:3, 161–184.
  328. Kozlov, V. A.; Maz’ya, V. G.; Movchan, A. B. Asymptotic representation of elastic fields in a multi-structure. Asymptotic Anal. 11:4, 343–415.
  329. Karlin, V.; Maz’ya, V., Time-marching algorithms for initial-boundary value problems based upon ”approximate approximations”. BIT 35:4, 548–560.

    1996

  330. Maz’ya, V.; Schmidt, G., On approximate approximations using Gaussian kernels. IMA J. Numer. Anal. 16:1, 13–29.
  331. Maz’ya, V. G.; Poborchi, S. V. Extension of functions in Sobolev spaces on parameter dependent domains. Math. Nachr. 178, 5–41.
  332. Maz’ya, V.; Soloviev, A. A. Boundary integral equations of the logarithmic potential theory for domains with peaks. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), no. 4, 211–236 (1996).
  333. Kozlov, V. A.; Maz’ya, V. G. Singularities in solutions to mathematical physics problems in non-smooth domains. Partial differential equations and functional analysis, 174–206, Progr. Nonlinear Differential Equations Appl., 22, Birkhäuser, Boston, MA.
  334. Kozlov, V. A.; Maz’ya, V. G. On ”power-logarithmic” solutions of the Dirichlet problem for elliptic systems in Kd × Rn-d, where Kd is a d-dimensional cone. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 7:1, 17–30.

    1997

  335. Kozlov, V. A.; Maz’ya, V. G. On ”power-logarithmic” solutions to the Dirichlet problem for the Stokes system in a dihedral angle. Math. Methods Appl. Sci. 20:4, 315–346.
  336. Karlin, V.; Maz’ya, V., Time-marching algorithms for nonlocal evolution equations based upon ”approximate approximations”. SIAM J. Sci. Comput. 18:3, 736–752.
  337. Livshits, M.; Maz’ya, V., Solvability of the two-dimensional Kelvin-Neumann problem for a submerged circular cylinder. Appl. Anal. 64:1-2, 1–5.
  338. Maz’ya, V., Unsolved problems connected with the Wiener criterion. The Legacy of Norbert Wiener: A Centennial Symposium (Cambridge, MA, 1994), 199–208, Proc. Sympos. Pure Math., 60, Amer. Math. Soc., Providence, RI.
  339. Maz’ya, V.; Soloviev, A. Lp-theory of a boundary integral equation on a cuspidal contour. Appl. Anal.65:3-4, 289–305.
  340. Kozlov, V. A.; Maz’ya, V. G. On ”power-logarithmic” solutions to the Dirichlet problem for the Stokes system in a dihedral angle. Math. Methods Appl. Sci. 20:4, 315–346.
  341. Maz’ya, V. Asymptotic theory of operator differential equations and its applications. Modern mathematical methods in diffraction theory and its applications in engineering (Freudenstadt, 1996), 163–173, Methoden Verfahren Math. Phys., 42, Lang, Frankfurt am Main.
  342. Kuznetsov, N.; Maz’ya, V. Asymptotic analysis of surface waves due to high-frequency disturbances. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8:1, 5–29.
  343. Kozlov, V.; Maz’ya, V. G.; Rossmann, J. Spectral properties of operator pencils generated by elliptic boundary value problems for the Lamé system. Rostock. Math. Kolloq. no. 51, 5–24.
  344. Maz’ya, V. G. Boundary integral equations on a contour with peaks. IABEM Symposium on Boundary Integral Methods for Nonlinear Problems (Pontignano, 1995), 145–153, Kluwer Acad. Publ., Dordrecht.

    1998

  345. Maz’ ya, V.; Soloviev, A. Lp-theory of boundary integral equations on a contour with inward peak. Z. Anal. Anwendungen 17:3, 641–673.
  346. Maz’ ya, V., Soloviev A. Lp-theory of boundary integral equations on a contour with outward peak. Integral Equations Operator Theory 32:1, 75–100.
  347. Kresin, G.I., Maz’ya, V.G. On the maximum modulus principle for linear parabolic systems with zero boundary data. Functional Differential Equations 5:1–2, 165–181.
  348. Maz’ya, V. From Warschawski’s conformal mapping theorem to higher order multi-dimensional elliptic equations. Analysis, numerics and applications of differential and integral equations. Pitman Res. Notes Math. Ser., 379, Longman, Harlow, 137–142.
  349. Kozlov, V.; Maz’ya, V. Comparison principles for nonlinear operator differential equations in Banach spaces. Birman’s 70-th Anniversary Collection, American Mathematical Society, Translations 2, 189, 149–157.
  350. Maz’ ya, V., Soloviev A. Integral equations of logarithmic potential theory in Hölder spaces, on contours with peak. (Russian) Algebra i Analiz 10:5, 85-142. English translation in St. Petersburg Math. J. 10 (1999), No. 5.
  351. Kozlov, V.A., Maz’ya, V., Rossmann, J. Conic singularities of solutions to problems in hydrodynamics of a viscous fluid with a free surface. Math. Scand. 83, 103-141.
  352. Kresin, G.I., Maz’ya, V.G. On the maximum principle with respect to smooth norms for linear strongly coupled parabolic systems. Functional Differential Equations 5 No. 3-4 (1998), 349–376.

    1999

  353. Maz’ya, V.; Netrusov, Y.; Poborchi, S. Boundary values of Sobolev functions on non-Lipschitz domains bounded by Lipschitz surfaces. Algebra i Analiz (Russian), 11:1, 141–170.
  354. Langer, M.; Maz’ya, V. On Lp-contractivity of semigroups generated by linear partial differential operators. J. Funct. Anal. 164 (1999), no. 1, 73–109.
  355. Maz’ya, V.; Shaposhnikova, T. On pointwise interpolation inequalities for derivatives. Mathematica Bohemica, 124:2-3 (1999), 131–148.
  356. Kozlov, V., Maz’ya, V. Angle singularities of solutions to the Neumann problem for the two-dimensional Riccati equation. Asymptot. Anal. 19 (1999), no. 1, 57–79.
  357. Kresin, G.I., Maz’ya, V.G. Criteria for validity of the maximum norm principle for parabolic systems. Potential Analysis 10 (1999), 3, 243–272.
  358. Hansson, K.; Maz’ya, V.; Verbitsky, I. Criteria of solvability for multidimensional Riccati’s equations. Ark. för Mat., 37:1 (1999), 87–120.
  359. Maz’ya, V. On the Wiener-type regularity of a boundary point for the polyharmonic operator. Appl. Anal. 71 (1999), 1-4, 149–165.
  360. Maz’ya, V., Schmidt, G. Approximate wavelets and the approximation of pseudodifferential operators. Appl. Comput. Harmon. Anal. 6 (1999), 3, 287–313.
  361. Maz’ya, V. On Wiener-type regularity of a boundary point for higher-order elliptic equations. In Nonlinear Analysis, Function Spaces and Applications, vol. 6, Math. Inst. Czech Acad. of Sci., Prague, 1999, 19–155.
  362. Ivanov, T., Maz’ya, V., Schmidt, G. Boundary layer approximate approximations and cubature of potentials in domains. Adv. Comput. Math. 10 (1999), no. 3-4, 311–342.
  363. Kozlov, V., Maz’ya, V., Boundary singularities of solutions to quasilinear elliptic equations, Journées Équations aux érivées partilelles, 31 mai-4 juin 1999 GDR 1151 (CNRS), VII-1–9. 131–148
  364. Ivanov, T., Maz’ya, V., Schmidt, G., Construction of Basis Functions for High Order Approximate Approximations, Bonnet, M., Sändig, A-M, Wendland, W. (Eds), Mathematical Aspects of Boundary Element Methods, Chapman & Hall/CRC Research Notes in Mathematics, London, 1999, 165–177.
  365. Maz’ya, V., Schmidt, G., Boundary Layer Approximate Approximations for Cubature of Potentials, Bonnet, M., Sändig, A-M, Wendland, W. (Eds), Mathematical Aspects of Boundary Element Methods, Chapman & Hall/CRC Research Notes in Mathematics, London, 1999, 191–202.
  366. Maz’ya, V., Soloviev, A., Lp-Theory of Direct Boundary Integral Equations on a Contour with Peak, Bonnet, M., Sändig, A-M, Wendland, W. (Eds), Mathematical Aspects of Boundary Element Methods, Chapman & Hall/CRC Research Notes in Mathematics, London, 1999, 203–214.
  367. Maz’ya, V. , Criteria for validity of the maximum modulus and the maximum norm principles for solutions of linear parabolic systems, Complex analysis and differential equations (Uppsala, 1997), Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 64, Uppsala Univ., Uppsala, 1999, pp 249–254

    2000

  368. Maz’ya, V., Slutskiĭ, A., Asymptotic analysis of the Navier-Stokes system in a plane domain with thin channels, Asympt. Anal., 23, no. 1, pp 59-89.
  369. Björn J., Maz’ya, V. Capacity estimates for solutions of the Dirichlet problem for second order elliptic equations in divergence form , Potential Analysis, 12, no. 1, pp 81–113.
  370. Maz’ya, V., Shaposhnikova, T. , Pointwise interpolation inequalities for Riesz and Bessel potentials, Analytical and computational methods in scattering and applied athematics, Chapman & Hall/CRC Res. Notes Math., 417, pp 217–229.
  371. Karlin, V., Maz’ya, V., Movchan, A., Willis, J., Bullough, R., Numerical analysis of nonlinear hypersingular integral equations of the Peierls type in dislocation theory, SIAM J. Appl. Anal., 60, no. 2, pp 664–678.
  372. Maz’ya, V.; Shaposhnikova, T., Traces and extensions of multipliers in pairs of Sobolev spaces, Operator Theory: Advances and Applications, 113, Birkhäuser, 2000, pp 221–237.
  373. Maz’ya, V., Movchan, A., Dynamic singular perturbation for multi-structures, Applied Stochastic Models in Business and Industry, 16, pp 249-278.
  374. Maz’ya, V., In memory of Gaetano Fichera, Problemi Attuali dell’Analisi e della Fisica Matematica, pp 1–4, Arcane.
  375. Kuznetsov, N., Maz’ya, V., On a well-posed formulation of the two dimensional Neumann–Kelvin problem for a surface-piercing body, Problemi Attuali dell’Analisi e della Fisica Matematica, pp 77–109, Arcane.
  376. Maz’ya, V., Shaposhnikova, T., Maximal Banach Algebra in spaces of multipliers between Bessel potential spaces, , Operator Theory: Advances and Applications, Siegfried Prößdorf Memorial Volume, Birkhäuser Verlag, 121, pp 352-365.
  377. Kuznetsov, N., Maz’ya, V., Water-wave problem for a vertical shell, Mathematica Bohemica, 126, no. 2, pp 411-420.
  378. Kresin, G.I., Maz’ya, V.G., Fichera’s maximum principle in elastostatics revisited and related topics, Quaderni di Matematica, 7, pp 207–231.
  379. Kozlov, V., Maz’ya, V., Movchan, A., Fields in nondegenerate 1D–3D elastic multistructures, The Quarterly Journal of Mechanics and Applied Mathematics, 4:2, 177-212. .
  380. Maz’ya, V., The Wiener test for higher order elliptic equations, Report No. 38, 1999/2000, Institut Mittag-Leffler, pp 1–41.
  381. Kuznetsov, N.; Maz’ya, V.; Vainberg, B., Lectures on linear time-harmonic water waves, Technical report series, Dept. of Math., University of North Carolina at Charlotte, pp 1–207, July 2000.

    2001

  382. Maz’ya, V., Schmidt, G., On quasi–interpolation with non-uniformly distributed centers on domains and manifolds, J. Approx. Theory, 110, pp 125-145.
  383. Maz’ya, V., In memory of Siegfried Prößdorf , Operator Theory: Advances and Applications, 121, pp 4–8, Birkhäuser Verlag.
  384. Kozlov, V., Maz’ya, V., Boundary behavior of solutions to linear and nonlinear elliptic equations in plane convex domains, Mathematical Research Letters, 8, pp 1-5.
  385. Maz’ya, V., Soloviev, A. Boundary integral equations of plane elasticity theory in domains with peaks, Georgian Mathematical Journal 8:3, 517-614. Addendum: Georgian Mathematical Journal 9:2, 403–404.

    2002

  386. Maz’ya V. The Wiener test for higher order elliptic equations, Duke Mathematical Journal, 115:3, 479–512.
  387. Maz’ya, V., Verbitsky, I., Boundedness and compactness criteria for the one-dimensional Schrödinger operator, Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), pp 369–382, de Gruyter, Berlin.
  388. Maz’ya, V., Rossmann J., Point estimates for Green’s matrix to boundary value problems for second order elliptic systems in a polyhedral cone, Z. Angew. Math. Mech., 82, no. 5, pp 291-316.
  389. Maz’ya, V., Shaposhnikova, T., An elementary proof of the Brezis and Mironescu theorem on the composition operator in fractional Sobolev spaces, Journal of Evolution Equations, 2, pp 113-125.
  390. Maz’ya, V., Shaposhnikova, T., Sharp pointwise interpolation inequalities for derivatives, Journal of Functional Analysis and its Applications, 36, no. 1, pp 36-58.
  391. Maz’ya, V., Shaposhnikova, T. On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, Journal of Functional Analysis, 195, 230-238.
  392. Maz’ya, V., Shaposhnikova, T. On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg type inequality for fractional Sobolev norms, Journal de Mathématiques Pures et Appliquées, 81, 877-884.
  393. Kresin, G.I., Maz’ya, V.G., Sharp parametric estimates for analytic and harmonic functions related to Hadamard-Borel-Caratheodory inequalities, Functional Differential Equations, 9, no. 1, pp 135–163.
  394. Maz’ya, V., Verbitsky, I. The Schrödinger operator on the energy space: boundedness and compactness criteria, Acta Mathematica, 188, 263–302.
  395. Maz’ya, V. Wiener’s test for higher order elliptic equations, Proceedings of the International Congress of Mathematicians, vol.3, Invited lectures, Beijing, pp. 189-195.
  396. Maz’ya, V., Shaposhnikova, T., A survey of pointwise interpolation inequalities for integer and fractional derivatives, Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, pp 212-221, World Scientific.

    2003

  397. Kozlov, V.A., Maz’ya V.G., Asymptotics of a singular solution to the Dirichlet problem for elliptic equations with discontinuous coefficients near the boundary, Function Spaces, Differential Operators and Nonlinear Analysis, pp 75-115, Birkhäuser.
  398. Maz’ya, V., Schmidt, G., Wendland, W., On the computation of multi-dimensional single layer harmonic potentials via approximate approximations, Calcolo, 40, no. 1, pp 33-53.
  399. Maz’ya, V., Rossmann, J., Weighted Lp estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains, Z. Angew. Math. Mech., 83, no. 7, pp 435-467.
  400. Kresin, G.I., Maz’ya, V.G., Best constants in the Miranda-Agmon inequalities for solutions of elliptic systems and the classical maximum modulus principle for fluid and elastic half-spaces, Applicable Analysis, 82, no. 2, pp 157-185.
  401. Karlin, V., Maz’ya, V., Schmidt, G. High accurate periodic solutions to the Sivashinsky equation, Journal of Computational Physics, 188, 209-231.
  402. Hellsten H., Maz’ya V., Vainberg B. On the spectrum of waves produced by moving point sources on the sea surface, and a related inverse problem, Wave Motion, 38, 345-354.
  403. Maz’ya, V., Soloviev, A., The direct method for boundary integral equations on a contour with peak, Georgian Mathematical Journal, 10, no. 3, pp 573-593.
  404. Maz’ya, V., Shaposhnikova, T., Erratum to: ”On the Bourgain, Brezis and Mironescu theorem concerning limiting embeddings of fractional Sobolev space”, Journal of Functional Analysis, 201, no. 1, pp 298-300.
  405. Maz’ya, V., Applications of Isoperimetric and Isocapacitary Inequalities to the Theory of Sobolev Spaces, Graduate Texts in Mathematics, 4, University of Helsinki, pp 1-39.
  406. Kozlov, V.A., Maz’ya, V.G., Asymptotic formula for solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients near the boundary, Ann. Scuola. Norm. Sup. Pisa, 2, no. 3, pp 551-600.
  407. Maz’ya, V., Lectures on Isoperimetric and Isocapacitary Inequalities in the Theory of Sobolev Spaces, Contemporary Mathematics, 338, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, American Math. Society, pp 307-340.
  408. Kresin, G.I., Maz’ya, V.G., Sharp estimates for derivatives of analytic functions related to Hadamard-Borel-Carathéodory, Carathéodory and Landau inequalities, Funct. Diff. Equat., 10, no. 3-4, pp 493-533.
  409. Maz’ya, V., Rossmann, J. Estimates for Green’s matrix of boundary value problems for the Stokes system in a polyhedral cone (Preprint ESI 1419).

    2004

  410. Maz’ya, V., Elschner, J., Rehberg, J., Schmidt, G., Solutions for quasilinear, nonsmooth evolution systems in Lp, Archive for Rat. Mech. Analysis, 171, no. 2, pp 219-262.
  411. Maz’ya, V., Rossmann, J., Schauder estimates for solutions to boundary value problems for second order elliptic systems in polyhedral domains, Appl. Analysis, 83, no. 3, pp 271-308.
  412. Kondratiev V., Maz’ya V., Shubin M., Discretness of spectrum and strict positivity criteria for magnetic Schrödinger operators, Comm. Partial Differential Equations, 29, no. 3-4, pp 489-521.
  413. Maz’ya, V., Verbitsky, I., The form boundedness criterion for the relativistic Schrödinger operator, Ann. Inst. Fourier, 54, no. 2, pp 317-339.
  414. Maz’ya, V., Remembering Erhard Meister, Operator Theoretical Methods and Applications to Mathematical Physics: The Erhard Meister Memorial Volume, Birkhäuser, pp 83-87.
  415. Maz’ya, V., Shaposhnikova, T., Characterization of multipliers in pairs of Besov spaces, Operator Theoretical Methods and Applications to Mathematical Physics: The Erhard Meister Memorial Volume, Birkhäuser, pp 365-387.
  416. Kozlov, V., Maz’ya, V., Sharp conditions for the classical asymptotic behaviour near a point for solutions to quasilinear elliptic systems, Asymptotic Analysis, 38, no. 2, pp 143-165.
  417. Maz’ya, V., Slutskii A. Asymptotic solution to the Dirichlet problem for a two-dimensional Riccati’s type equation near a corner point, , Asymptotic Analysis, 39, no. 2, pp 169-185.
  418. Kozlov, V., Maz’ya, V. An asymptotic theory of higher-order operator differential equations with nonsmooth nonlinearities , Journal of Functional Analysis, 217, pp 448-488.
  419. Filippas, S., Maz’ya, V., Tertikas, A., Sharp Hardy-Sobolev inequalities, C.R. Acad. Sci. Paris, 339, no. 7, pp 483-486.
  420. Kresin, G., Maz’ya, V., Sharp pointwise estimates for analytic functions by Lp-norm of real part, Complex Variables, 49, no. 14-15, pp 997–1023.
  421. Lanzara, F., Maz’ya, V., Schmidt, G., Numerical solution of the Lippmann-Schwinger equation by approximate approximations, Journal of Fourier Analysis and Applications, 10, no. 6, pp 645–660.

    2005

  422. Maz’ya V., Shaposhnikova, T., Traces of multipliers in pairs of weighted Sobolev spaces, Journal of Function Spaces and Applications, 3, pp 91–115.
  423. Maz’ya V., Shaposhnikova, T., Higher regularity in the classical layer potential theory for Lipschitz domains, Indiana University Mathematics Journal, 54, no. 1, pp 99–142.
  424. Maz’ya, V., Conductor and capacitary inequalities for functions on topological spaces and their applications to Sobolev type imbeddings, Journal of Functional Analysis, 224, no. 2, pp 408–430.
  425. Kozlov, V., Maz’ya, V., Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary, Ann. Mat. Pura ed Appl., 184, no. 2, pp 185–213.
  426. Maz’ya, V., Shubin, M., Discreteness of spectrum and positivity criteria for Schrödinger operators, Annals of Mathematics, 162, pp 1–24.
  427. Cialdea, A., Maz’ya, V., Criterion for the Lp-dissipativity of second order differential operators with complex coefficients, Journal de Mathématiques Pures et Appliquées, 84, pp 1067-1100.
  428. Gibiansky E., Maz’ya, V., Movchan A., Three-scale asymptotics for a diffusion problem coupled with the wave equation, Applicable Analysis, 84, no. 6, pp 585–600.
  429. Maz’ya, V., Verbitsky, I. Infinitesimal form boundedness and Trudinger’s subordination for the Schrödinger operator , Inventiones Mathematicae, 161, pp 81–136.
  430. Maz’ya, V., Mitrea, M., Shaposhnikova, T., The Dirichlet problem in Lipschitz domains with boundary data in Besov spaces for higher order elliptic systems with rough coefficients (arXiv.math.AP/0505372)
  431. Maz’ya, V., Shubin, M., Can one see the fundamental frequency of a drum?, Letters in Mathematical Physics, 74, no. 2, pp 135–151.
  432. Maz’ya, V., Rossmann, J., Pointwise estimates for Green’s kernel of a mixed boundary value problem to the Stokes system in a polyhedral cone, Math. Nachr., 278, no. 15, pp 1766–1810.

    2006

  433. Maz’ya, V., Verbitsky, I., Form boundedness of the general second order differential operator, Comm. Pure Appl. Math., 59, no. 9, pp 1286–1329.
  434. Mazya, V., J. Rossmann, J., Schauder estimates for solutions to a mixed boundary value problems for Stokes system in polyhedral domains, Math. Methods Appl. Sci., 29, no. 9, pp 965–1017.
  435. Maz’ya, V., Movchan, A., Uniform asymptotic formulae for Green’s functions in regularly and singularly perturbed domains, C. R. Math. Acad. Sci. Paris, 343, no. 3, pp 185–190.
  436. Maz’ya, V., Conductor inequalities and criteria for Sobolev type two-weight imbeddings, J. Comput. Appl. Math., 194, no. 1, pp 94–114.
  437. Filippas, S., Maz’ya, V., Tertikas, A., On a question of Brezis and Marcus, Calc. Var. Partial Differential Equations, 25, no. 4, pp 491–501.
  438. Cialdea, A., V. Maz’ya, V., Criteria for the Lp-dissipativity of systems of second order differential equations, Ric. Mat., 55, no. 2, pp 233-265.
  439. Mazya, V., Poborchi, S., Embedding theorems for Sobolev spaces on a domains with a peak and in Hölder domains, Algebra i Analiz, 18, no. 4, pp 95-126.

    2007

  440. Maz’ya, V., Analytic criteria in the qualitative spectral analysis of the Schrödinger operator, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math., Part 1, Amer. Math. Soc., Providence, RI, 76, pp 257–288.
  441. Maz’ya, V., McOwen, R., Asymptotics for solutions of elliptic equations in double divergence form, Comm. in Partial Diff. Eq., 32, pp 191-207.
  442. Filippas, S., Maz’ya, V., Tertikas, A., Critical Hardy-Sobolev inequalities, Journal de Math. Pure et Appl., 87, pp 37-56.
  443. Maz’ya, V., Poborchi, S., On solvability of the Neumann problem in an energy space for a domain with peak, Georgian Math. J., 14, no. 3, pp 499-518.
  444. Maz’ya, V., Rossmann, J., Lp estimates of solutions to mixed boundary value problems for the Stokes system in polyhedral domains, Math. Nachr., 280, no. 7, pp 751-793.
  445. Maz’ya, V., Movchan, A., Uniform asymptotic formulae for Green’s kernels in regularly and singularly perturbed domains, J. Comput. Appl. Math., 208, no. 1, pp 194-206.
  446. Maz’ya, V., Schmidt, G., Potentials of Gaussians and approximate wavelets, Math. Nachr., 280, no. 9-10, pp 1176–1189. ( arXiv:math. SP/0601057)
  447. Kresin, G., Maz’ya, V., Sharp Bohr’s type real part theorem, Comput. Methods Funct. Theory, 7, no. 1, pp 151-165.
  448. Maz’ya, V., A new type of integral equations related to the co-area formula (reduction of dimension in multi-dimensional integral equations), J. Funct. Anal., 245, no. 2, pp 493–504.
  449. Lanzara, F., Maz’ya, V., Schmidt, G., Approximate approximations from scattered data, J. Approx. Theory, 145, no. 2, pp 141–170.
  450. Kresin, G., Maz’ya, V., Sharp pointwise estimates for solutions of strongly elliptic second order systems with boundary data from Lp., Appl. Analysis, 86, no. 7, pp 783-805.
  451. Luo, G., Maz’ya, V., Weighted positivity of second order elliptic systems, Potential. Anal., 27, no. 3, pp 251-270.
  452. Maz’ya, V. G., Movchan, A. B., Nieves, M. J., Uniform asymptotic formulae for Green’s tensors in elastic singularly perturbed domains, Asymptot. Anal., 52, no. 3-4, pp 173-206.
  453. Maz’ya, V., Bourgain-Brezis type inequality with explicit constants, Interpolation Theory and Applications, Contemporary Mathematics, 445, pp 247-264.
  454. Lanzara, F., Maz’ya, V., Schmidt, G., Approximate approximations on nonuniform grids, Matematiche (Catania), 62, no. 2, pp 303–318.

    2008

  455. Maz’ya, V., Poborchi, S., On solvability of the Neumann problem for a planar domain with peak, Vestnik SPbGU, 41, no. 2, pp 145–160.
  456. Maz’ya, V., Poborchi, S., On solvability of the Neumann problem in a domain with peak, (Russian) Algebra and Analysis, 20, no. 5, pp 108–153.
  457. Lanzara, F., Maz’ya, V., Schmidt, G., Approximate approximations with data on a perturbed uniform grid, Z. Anal. Anwend., 27, no. 3, pp 323–338.
  458. Costin, O., Maz’ya, V., Sharp Hardy-Leray inequality for axisymmetric divergence-free fields, Calc. Var. Partial Differential Equations, 32, no. 4, pp 523–532.
  459. Cianchi, A., Maz’ya, V., Neumann problems and isocapacitary inequalities, J. Math. Pures Appl., 89, pp 71–105.
  460. Maz’ya, V., Shaposhnikova, T., A Collection of sharp dilation invariant integral inequalities for differentiable functions, Sobolev Spaces in Mathematics I. Sobolev Type Inequalities, pp 223–248, Springer.
  461. Costea, S., Maz’ya, V., Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities, Sobolev Spaces in Mathematics II. Applications in Analysis and Partial Differential Equations, pp 103–122, Springer.
  462. Maz’ya, V., Movchan, A., Uniform asymptotics of Green’s kernels for mixed and Neumann problems in domains with small holes and inclusions, Sobolev Spaces in Mathematics III. Applications in Mathematical Physics, pp 277–316, Springer.
  463. Maz’ya,V., Movchan, A., Nieves, M., Uniform asymptotic formulae for Green’s tensors inelastic singularly perturbed domains with multiple inclusions, Rendiconti Accademia Nazionale delle Scienze detta dei XL, Memorie di Matematica e Applicazioni, 124, XXX, no. 1, pp 103-158.
  464. Lang, J., Maz’ya, V., Essential norms and localization moduli of Sobolev embeddings for general domains, J. London Math. Soc., 78, no. 2, pp 373–391.
  465. Maz’ya, V., Rossmann, J., Mixed boundary value problems for the stationary Navier-Stokes System in polyhedral domains, Arch. Rational Mech. Anal., no. DOI 10.1007/s00205-008-0171-z.
  466. Mayboroda, S., Maz’ya, V., Boundedness of the Hessian of a biharmonic function in a convex domain, Communications on Partial Differential Equations, 33, no. 8, pp 1439–1454.
  467. Maz’ya, V., Movchan, A., Uniform asymptotic approximations of Green’s functions in a long rod, Math. Meth. Appl. Sci., 31, pp 2055–2068.

    2009

  468. Mayboroda, S., Maz’ya, V., Boundedness of the gradient of a solution and Wiener test of order one for the biharmonic equation, Invent. Math., 175, no. 2, pp 287–334.
  469. Maz’ya, V., Boundedness of the gradient of a solution to the Neumann-Laplace problem in a convex domain, C.R. Acad. Sci. Paris, Ser. I, 347, pp 517-520.
  470. Kozlov, V. A., Maz’ya, V. G., Fomin, A. V., Uniqueness of the solution of an inverse problem of thermoelasticity, Zh. Vychisl. Mat. Mat. Fiz. (Russian), 49, no. 3, pp 542–548.
  471. Maz’ya, V., Shaposhnikova, T., A collection of sharp dilation invariant integral inequalities for differentiable functions, Sobolev spaces in mathematics. I, Int. Math. Ser. (N. Y.), 8, Springer, New York, pp 223–247.
  472. Maz’ya, V., Integral and isocapacitary inequalities, Linear and complex analysis, Amer. Math. Soc. Transl. Ser. 2, 226, Amer. Math. Soc., Providence, RI, pp 85–107.
  473. Jin, T., Maz’ya, V., Van Schaftingen, J., Pathological solutions to elliptic problems in divergence form with continuous coefficients, C. R. Math. Acad. Sci. Paris, 347, no. 13-14, pp 773–778.
  474. Maz’ya, V., Movchan, A., Uniform asymptotics of Green’s kernels for mixed and Neumann problems in domains with small holes and inclusions, Sobolev Spaces in Mathematics. III, Int. Math. Ser. (N. Y.), 10, Springer, New York, pp 277–316.
  475. Maz’ya, V., Rossmann, J., A maximum modulus estimate for solutions of the Navier-Stokes system in domains of polyhedral type, Math. Nachr., 282, no. 3, pp 459–469.
  476. Costea, S., Maz’ya, V., Conductor inequalities and criteria for Sobolev-Lorentz two-weight inequalities, Sobolev spaces in mathematics. II, Int. Math. Ser. (N. Y.), 9, Springer, New York, pp 103–121.
  477. Kondratiev, V., Maz’ya, V., Shubin, M.,, Gauge optimization and spectral properties of magnetic Schrödinger operators, Communications in Partial Differential Equations, 34, no. 10, pp 1127–1146.
  478. Maz’ya, V., Mitrea, M., Shaposhnikova, T., The nonhomogeneous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to VMO, Funct. Anal. Appl., 43, no. 3, pp 217–235.
  479. Maz’ya, V., On the boundedness of first derivatives for solutions to the Neumann-Laplace problem in a convex domain, J. Math. Sci. (N. Y.), 159, no. 1, pp 104–112.

    2010

  480. Maz’ya, V., Poborchii, S., On solvability of boundary integral equations of potential theory for a multidimentional cusp domain, J. of Math. Sciences, 164, no. 3, pp 403–414.
  481. Cialdea, A., Maz’ya, V., A quasicommutativity property of the Poisson and composition operators, J. of Math. Sciences, 164, no. 3, pp 415–426.
  482. Maz’ya, V., Estimates for differential operators of vector analysis involving L1-norm, J. Eur. Math. Soc., 12, no. 1, pp 221–240.
  483. Kresin, G., Maz’ya, V., Optimal estimates for the gradient of harmonic functions in the multidimensional half-space, Discrete and Continuous Dynamical Systems, A special issue dedicated to Louis Nirenberg on the occasion of his 85th birthday, AIMS, 28, no. 2, pp 425–440.
  484. Maz’ya, V., Mitrea, M., Shaposhnikova, T., The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients, Journal d’Analyse Mathématique, 110, pp 167–239.
  485. Luo, G., Maz’ya, V., Wiener type regularity of a boundary point for the 3D Lamé system, Potential Anal., 32, no. 2, pp 133 – 151.
  486. Maz’ya, V., Movchan, A., Asymptotic treatment of perforated domains without homogenization, Math. Nachr., 283, no. 1, pp 104–125.
  487. Alvino, A., Cianchi, A., Maz’ya, V., Mercaldo, A., Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, no. 4, pp 1017–1054.
  488. Maz’ya, V., McOwen, R., On the fundamental solution of an elliptic equation in nondivergence form, Nonlinear Partial Differential Equations and Related Topics, Amer. Math. Soc. Transl. Ser. 2, 229, pp 145–172.
  489. Maz’ya, V., Movchan, A., Nieves, M., Green kernels for transmission problems in bodies with small inclusions, Operator Theory and its Applications. In memory of V.B. Lidsky (1924–2008), Amer. Math. Soc. Transl. Ser. 2, 231, pp 127–160.

    2011

  490. Alvarado, R., Brigham, D., Maz’ya, V., Mitrea, M., Ziade, E., Sharp geometric maximum principles for semi-elliptic operators with singular drift, Math. Res. Lett., 18, no. 4, pp 613–620.
  491. Lanzara, F., Maz’ya, V., Schmidt, G., On the fast computation of high dimensional volume potentials, Math. Comp., 80, no. 274, pp 887–904.
  492. Cianchi, A., Maz’ya, V., Global Lipschitz regularity for a class of quasilinear elliptic equations, Comm. Partial Differential Equations, 36, no. 1, pp 100–133.
  493. Maz’ya, V., McOwen, R., Differentiability of solutions to second-order elliptic equations via dynamical systems, J. Diff. Equations, 250, pp 1137 – 1168.
  494. Maz’ya, V., Shaposhnikova, T., Tampieri, D., Solomon Grigoryevich Mikhlin, MacTutor, March 2011, pp 1–5.
  495. Maz’ya, V., Shaposhnikova, T., Recent progress in elliptic equations and systems of arbitrary order with rough coefficients in Lipschitz domains, Bulletin of Mathematical Sciences, 1, no. 1, pp 33–77.
  496. Galaktionov, V.A., Maz’ya, V., Boundary characteristic point regularity for semilinear reaction-diffusion equations: towards an ODE criterion, J. of Mathematical Sciences, 175, no. 3.
  497. Maz’ya, V., Shaposhnikova,T., Brezis-Gallouet-Wainger type inequality for irregular domains, Complex Variables and Elliptic Equations, 56, no. 10, pp 991–1002.
  498. Maz’ya, V., Poborchi, S., Existence and uniqueness of the energy solution to the Dirichlet problem for the Laplace equation in the exterior of a multi-dimensional paraboloid, J. of Math. Sciences, 172, no. 4, pp 532–554.
  499. Kamotski, I., Maz’ya, V., On the third boundary value problem in domains with cusps, J. of Math. Sciences, 173, no. 5, pp 609-631.
  500. Alvarado, R., Brigham, D., Maz’ya, V., Mitrea, M., Ziade, E., On the regularity of domains satisfying a uniform hour-glass condition and sharp version of the Hopf-Oleinik boundary point principle, J. of Math. Sciences, 176, no. 3, pp 281–360.
  501. Kresin, G., Maz’ya, V., Sharp real part theorems in the upper halfplane and similar estimates for harmonic functions, J. of Math. Sciences, 179, no. 1, pp 144–163.

    2012

  502. Kresin, G., Maz’ya, V., Sharp real part theorems for higher order derivatives, J. of Math. Sciences, 181, no. 2, pp 107–125.
  503. Galaktionov, V.A., Maz’ya, V., Boundary characteristic point regularity for Navier-Stokes equations: Blow-up scaling and Petrovskii-type criterion (a formal approach), Nonlinear Anal., 75, no. 12, pp 4534–4559.
  504. Maz’ya, V., Movchan, A., Uniform asymptotics of Green’s kernels in perforated domains and meso-scale approximations, Complex Var. Elliptic Equ., 57, no. 2–4, pp 137–154.
  505. Maz’ya, V., Representations and estimates for inverse operators in the harmonic potential theory for polyhedra, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 23, no. 3, pp 229–258.
  506. Grachev, N., Maz’ya, V., Estimates for kernels of inverse operators of integral equations of elasticity theory on surfaces with conic points, J. Math. Sci. (N. Y.), 186, no. 2, pp 179–208.
  507. Grachev, N., Maz’ya, V., Invertibility of boundary integral operators of elasticity on surfaces with conic points, J. Math. Sci. (N. Y.), 186, no. 2, pp 209–233.
  508. Cianchi, A., Maz’ya, V., Boundedness of solutions to the Schrödinger equation under Neumann boundary conditions, J. Math. Pures Appl., 98, no. 6, pp 654–688.
  509. Jaye, B. J., Maz’ya, V. G., Verbitsky, I. E., Existence and regularity of positive solutions of elliptic equations of Schrödinger type, J. Anal. Math., 118, pp 577–621.

    2013

  510. Jaye, B. J., Maz’ya, V., Verbitsky, I.E., Quasilinear elliptic equations and weighted Sobolev-Poincaré inequalities with distributional weights, Adv. Math., 232, no. 1, pp 513–542.
  511. Grachev, N.V., Maz’ya, V., Solvability of boundary integral operators of elasticity on surfaces with conic points, J. Math. Sci. (N. Y.), 191, no. 2, pp 178–192.
  512. Grachev, N.V., Maz’ya, V., Solvability of a boundary integral equation on a polyhedron, J. Math. Sci. (N. Y.), 191, no. 2, pp 193–213.
  513. McOwen, R., Maz’ya, V., Second order differentiability for solutions of elliptic equations in the plane, J. Math. Sci. (N. Y.), 191, no. 2, pp 243–253.
  514. Kamotski, I. V., Maz’ya, V. G., On the linear water wave problem in the presence of a critically submerged body, SIAM J. Math. Anal., 44, no. 6, pp 4222–4249.
  515. Cianchi, A., Maz’ya, V., Bounds for eigenfunctions of the Laplacian on noncompact Riemannian manifolds, Amer. J. Math., 135, no. 3, pp 579–635.
  516. Kamotski, I. V., Maz’ya, V. G., Estimate for a solution to the water wave problem in the presence of a submerged body, Russ. J. Math. Phys., 20, no. 4, pp 453–467.
  517. Cialdea, A.; Maz’ya V. , Lp-dissipativity of the Lamé operator, Mem. Differ. Equ. Math. Phys., 60, pp 111–133.

    2014

  518. Mayboroda, S., Maz’ya, V., Regularity of solutions to the polyharmonic equation in general domains, Inventiones Mathematicae, 196, no. 1, pp 1–68.
  519. Cianchi, A., Maz’ya, V., Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems, J. Eur. Math. Soc., 16, no. 3, pp 571–595.
  520. Cianchi, A., Maz’ya, V. G., Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Ration. Mech. Anal., 212, no. 1, pp 129–177.
  521. Lanzara, F.; Maz’ya, V.; Schmidt, G., Fast cubature of volume potentials over rectangular domains by approximate approximations, Appl. Comput. Harmon. Anal., 36, no. 1, pp 167–182.
  522. Carbery, A.; Maz’ya, V.; Mitrea, M.; Rule, D., The integrability of negative powers of the solution of the Saint Venant problem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13, no. 2, pp 465–531.
  523. Kresin, G.; Maz’ya, V., Optimal pointwise estimates for derivatives of solutions to Laplace, Lamé, and Stokes equations, J. Math. Sci. (N. Y.), 196, no. 3, pp 300–321.
  524. Alkhutov, Yu.; Maz’ya, V., Lp-coercitivity and estimates of the Green function of the Neumann problem in a convex domain, J. Math. Sci. (N. Y.), 196, no. 3, pp 245–261.
  525. Maz’ya, V., Notes on Hölder regularity of a boundary point with respect to an elliptic operator of second order, J. Math. Sci. (N. Y.), 196, no. 4, pp 572–577.
  526. Maz’ya, V.; Movchan, A.; Nieves, M., Mesoscale approximations for solutions of the Dirichlet problem in a perforated elastic body, J. Math. Sci. (N. Y.), 202, no. 2, pp 215–244.

    2015

  527. Cianchi, A.; Maz’ya, V., Global gradient estimates in elliptic problems under minimal data and domain regularity, Commun. Pure Appl. Anal., 14, no. 1, pp 285–311.
  528. Maz’ya, V., Topics on Wiener regularity for elliptic equations and systems, Mem. Differ. Equ. Math. Phys., 64, no. 35-02, pp 1–121.
  529. Luo, G.; Maz’ya, V., Pointwise inequalities for elliptic boundary value problems, J. Math. Sci. (N.Y.), 210, no. 14, pp 391–398.
  530. Kresin, G.; Maz’ya, V., Criteria for invariance of convex sets for linear parabolic systems, Complex analysis and dynamical systems VI. Part 1, Contemp. Math., Amer. Math. Soc., Providence, RI, 653, pp 227–241.

    2016

  531. Lanzara, F.; Maz’ya, V.; Schmidt, G., Approximation of solutions to multidimensional parabolic equations by approximate approximations, Appl. Comput. Harmon. Anal., 41, no. 3, pp 749–767. .
  532. Cianchi, A.; Maz’ya, V., Sobolev inequalities in arbitrary domains, Adv. Math., 293, pp 644–696.
  533. Maz’ya, V.; Movchan, A.; Nieves, M., Mesoscale models and approximate solutions for solids containing clouds of voids, Multiscale Model. Simul., 14, no. 1, pp 138–172.

    Books edited

  534. Maz’ya, V., Nikol’skii, S.M. (Editors) Analysis IV: Linear and Boundary Integral Equations, Encyclopedia of Mathematical Sciences, Spronger, 1991.
  535. Maz’ya, V. (Editor) Sobolev Spaces in Mathematics, I. Sobolev Type Inequalities, Springer, 2008.
  536. Maz’ya, V. (Editor) Sobolev Spaces in Mathematics, II. Applications in Analysis and Partial Differential Equations, Springer, 2008.
  537. Agranovsky, M., Ben-Artzi, M., Galloway, G., Karp, L., Maz’ya, V., Reich, S., Shoikhet, D., Weinstein, G., Zalcman, L. (Editors) Complex Analysis and Dynamical Systems V, Fifth International Conference on Complex Analysis and Dynamical Systems May 22–27, 2011 Akko (Acre), Israel, Contemporary Mathematics, v.591, American Mathematical Society Providence, Rhode Island

Last update: 2017–4–17